
Windows Kernel Internals II
Windows Driver Model
University of Tokyo – July 2004*

Dave Probert, Ph.D.
Advanced Operating Systems Group

Windows Core Operating Systems Division
Microsoft Corporation

© Microsoft Corporation 2004 1

Windows I/O Model
Asychronous, Packet-based, Extensible
Device discovery supports plug-and-play

— volumes automatically detected and mounted
— power management support (ACPI)

Drivers attach to per device driver stacks
— Drivers can filter actions of other drivers in each stack

Integrated kernel support
— memory Manager provides DMA support
— HAL provides device access, PnP manages device resources
— Cache manager provides file-level caching via MM file-mapping

Multiple I/O completion mechanisms:
—synchronous
—update user-mode memory status
—signal events
—callbacks within initiating thread
—reaped by threads waiting on an I/O Completion Port

© Microsoft Corporation 2004 2

IO Request Packet (IRP)
IO operations encapsulated in IRPs
IO requests travel down a driver stack in an IRP
Each driver gets an IRP stack location which contains

parameters for that IO request
IRP has major and minor codes to describe IO

operations
Major codes include create, read, write, PNP, devioctl,

cleanup and close
Irps are associated with the thread that made the IO

request

© Microsoft Corporation 2004 3

Object Relationships

© Microsoft Corporation 2004 4

Driver Object

Device
Object

Device
Object

Device
Object

Device
Object

Device
Object

File ObjectDriver Object

File Object

Volume

Layering Drivers
Device objects attach one on top of another using

IoAttachDevice* APIs creating device stacks
– IO manager sends IRP to top of the stack
– drivers store next lower device object in their private

data structure
– stack tear down done using IoDetachDevice and

IoDeleteDevice
Device objects point to driver objects

– driver represent driver state, including dispatch table
File objects point to open files
File systems are drivers which manage file objects for

volumes (described by VolumeParameterBlocks)

© Microsoft Corporation 2004 5

Loading Device Drivers
Drivers can be loaded by:

– the boot loader at boot time
– the IO manager at system initialization
– the service control manager or Plug-and-play

Driver details are obtained from the registry
Driver object is created and DriverEntry for the driver is

invoked
Drivers provide dispatch routines for various IO

operations. (e.g., create, read, write)
Drivers can optionally provide fast path entry points

© Microsoft Corporation 2004 6

Device Deletion and Driver Unload
Drivers delete devices using IoDeleteDevice
Drivers are unloaded by calling NtUnloadDriver or by

Plug-and-play
No further opens/attaches allowed after a device is

marked for deletion or unload
Driver unload function is invoked when all its device

objects have no handles/attaches
Driver is unloaded when last reference to driver object

goes away

© Microsoft Corporation 2004 7

IRP Fields
See %DDK%¥inc¥ddk¥wnet¥ntddk.h

– flags, per-IRP pointers to buffers, an MDL, other IRPs
active on thread, completion/cancel info, status, …

– union of APC control block used at completion with
device queuing/communication used while active

– the stack vector with an entry for each driver in ‘stack’
• major/minor function codes, flags and control fields
• four words, formatted per major function code, e.g.

– read: length, key, byteoffset
– create: security ctx, create options, attrib, sharing, EAlen

• deviceobject, fileobject, completion routine/context

© Microsoft Corporation 2004 8

IRP flow of control (synchronous)
IOMgr (e.g. IopParseDevice) creates IRP, fills in top

stack location, calls IoCallDriver to pass to stack
driver determined by top device object on device stack
driver passed the device object and IRP

IoCallDriver
copies stack location for next driver
driver routine determined by major function in drvobj

Each driver in turn
does work on IRP, if desired
keeps track in the device object of the next stack device

Calls IoCallDriver on next device
Eventually bottom driver completes IO and returns on callstack

© Microsoft Corporation 2004 9

IRP flow of control (asynch)
Eventually a driver decides to be asynchronous

driver queues IRP for further processing
driver returns STATUS_PENDING up call stack
higher drivers may return all the way to user, or may

wait for IO to complete (synchronizing the stack)
Eventually a driver decides IO is complete

usually due to an interrupt/DPC completing IO
each completion routine in device stack is called,

possibly at DPC or in arbitrary thread context
IRP turned into APC request delivered to original thread
APC runs final completion, accessing process memory

© Microsoft Corporation 2004 10

Path of an Async IO request

© Microsoft Corporation 2004 11

File
object

Devobj1

Devobj2

Security and
access validation

Allocate IRP

Devobj1
Dispatch routine

Devobj2
Dispatch routine Interrupt service

routine

DPC routine

IoCompleteRequest

User APCs
Completion ports

NtReadFile(Handle,
…..)

Handle
IO Special APC

Async IO from Win32
Applications can issue asynchronous IO requests

– to files opened with FILE_FLAG_OVERLAPPED
– passing an LPOVERLAPPED parameter to the IO API

Methods available to wait for IO completion
– Wait on the file handle
– Wait on an event handle passed in the overlapped

structure

• e.g., GetOverlappedResult(…)
– Specify a routine to be called on IO completion.
– Use completion ports

© Microsoft Corporation 2004 12

Canceling IRPs
IO manager provides cancellation for IRPs

– canceling is done on a per IRP basis
IO is canceled when a thread exits
IO is canceled when CancelIo is called by the thread
Drivers can cancel IRPs using IoCancelIrp()
Drivers which queue long-running IRPs must provide a

cancel routine
create operations must be cancellable
driver clears cancel routine before completing IRP

More recent help: Cancel Safe Queues (CSQs)

© Microsoft Corporation 2004 13

NT IO APIs
Establish IO handles
• NtCreateFile
• NtOpenFile
• NtCreateNamedPipeFile
• NtCreateMailslotFile
IO Completion APIs
• NtCreateIoCompletion
• NtOpenIoCompletion
• NtQueryIoCompletion
• NtSetIoCompletion
• NtRemoveIoCompletion

Actual IO operations
• NtReadFile
• NtReadFileScatter
• NtWriteFile
• NtWriteFileGather
• NtCancelIoFile
• NtFlushBuffersFile
File operations
• NtLockFile
• NtUnlockFile
• NtDeleteFile

© Microsoft Corporation 2004 14

NT IO APIs - 2
Meta IO operations
NtFsControlFile
NtDeviceIoControlFile
NtQueryDirectoryFile
NtQueryAttributesFile
NtQueryFullAttributesFile
NtQueryEaFile
NtSetEaFile
NtQueryInformationFile
NtSetInformationFile
NtNotifyChangeDirectoryFile

Administrative operations
NtLoadDriver
NtUnloadDriver
NtQueryVolumeInformationFile
NtSetVolumeInformationFile
NtQueryQuotaInformationFile
NtSetQuotaInformationFile

© Microsoft Corporation 2004 15

Why is writing drivers hard?

Driver unload routine cannot fail
Driver image can still remain after invocation of unload

routine
Driver unload routine can race with other driver routines
Legacy drivers should properly detach and delete device

objects.
Verifier checks for uncanceled timers and worker

threads after unload

© Microsoft Corporation 2004 16

Miscellaneous Crashes

Multiple IRP completions
– Cancellation issue
– Pending flag not set correctly. If a driver returns

STATUS_PENDING it should mark the IRP pending
System buffer already freed over overrun
MDL already freed.
STATUS_MORE_PROCESSING_REQUIRED should be

used carefully
Drivers should watch out for IRP and MDL ownership
Spinlocks held in pageable code (verifier catches this)

© Microsoft Corporation 2004 17

Miscellaneous Crashes - 2
DRIVER_LEFT_LOCKED_PAGES bug check

– caused by lack of cancel routine
– driver locked the pages and forgot to unlock it in

completion routine
Memory leaks of IO tags

– file object leaks (caused by process not closing
handles)

– completion packet leaks (caused by user process not
reading completion queues)

– lack of quota enforcement with pool tagging causes
this

– MDL and IRP leaks (use !irpfind in debugger)

© Microsoft Corporation 2004 18

Hangs
Process stuck in kernel inside IO manager

– frequently seen as CriticalSection timeouts
– !thread shows IRP and identifies driver
– NPFS IRPs are usually hung because the consumer is

another process (e.g. service hung or in debugger)
– not marking Pending flag causes hangs (verifier

catches this)
– recursive locking (e.g. due to FS filter problems)
– APC deadlocks (IO issued at IRQL > PASSIVE_LEVEL)

blocks IRP completion

© Microsoft Corporation 2004 19

IO Security – attack routes
How are exploits found?
• Use full crash dumps, documentation
• Probe exposed interfaces

– IP packets, RPC interfaces, IOCTLs, etc
• Random data, malformed data…

• Reverse engineer crashes into exploits
– Hackers may spend months doing this!

• Buffer overflows Exploit
• Double frees Exploit
• Synchronization bugs Exploit

© Microsoft Corporation 2004 20

Parameter Probing
Probing ensures pointers are legal

– probe functions fail if app passes kernel addresses
• needed as try/except won’t catch writes to valid kernel

addresses

– catches boundary cases, wrap-around cases
– alignment can be specified

Probing must be done for read or write as well
– probing for write handles copy-on-write cases
– missing ProbeForWrite could allow app to overwrite

code in multiple processes instead of just it’s own!

© Microsoft Corporation 2004 21

Missing Probe Example
case IOCTL_QUERY_HANDLER: {case IOCTL_QUERY_HANDLER: {

PVOID *PVOID *EntryPointEntryPoint;;

EntryPointEntryPoint = irpSp= irpSp Parameters.DeviceIoControl.Type3InputBuffer;Parameters.DeviceIoControl.Type3InputBuffer;

**EntryPointEntryPoint = (= (PVOID)SendDataPVOID)SendData;;
status = STATUS_SUCCESS;status = STATUS_SUCCESS;
break;break;

}}

EntryPoint not validated
– could be NULL or unmapped memory
– could be kernel address
– could be shared DLL code address
– could be misaligned

© Microsoft Corporation 2004 22

Missing Probe Example - Fixed

© Microsoft Corporation 2004 23

case IOCTL_QUERY_HANDLER: {case IOCTL_QUERY_HANDLER: {

PVOID *PVOID *EntryPointEntryPoint;;

EntryPointEntryPoint = irpSp= irpSp Parameters.DeviceIoControl.Type3InputBuffer;Parameters.DeviceIoControl.Type3InputBuffer;

try {try {
if (if (IrpIrp RequestorModeRequestorMode != != KernelModeKernelMode) {) {

ProbeForWriteProbeForWrite((EntryPointEntryPoint, , sizeof(PVOIDsizeof(PVOID),), sizeof(PVOIDsizeof(PVOID));));
}}

**EntryPointEntryPoint = (PVOID) = (PVOID) SendDataSendData;;
status = STATUS_SUCCESS;status = STATUS_SUCCESS;

} } except(EXCEPTION_EXECUTE_HANDLERexcept(EXCEPTION_EXECUTE_HANDLER) {) {
status = status = GetExceptionCodeGetExceptionCode ();();

}}
break;break;

}}

IOCTL Security

© Microsoft Corporation 2004 24

Drivers encode the security requirements of IOCTLs
in the 32bit code itself

The Access mask can specify one of four rights
masks:
– openable
– opened with FILE_READ_ACCESS
– opened with FILE_WRITE_ACCESS
– opened with both read and write access

The I/O Manager won’t send IOCTLs for handles with
insufficient rights

Bad IOCTLs in drivers is huge problem
– throw garbage!

MethodMethodFunctionFunctionAccessAccessDevice NumberDevice Number

3131 1515 1313 22

Other Common Security Issues
Validating Data That Can Change

– app can be actively modifying buffers passed to Direct
and MethodNeither IOCTLs

– value validation should be done on a copy (called
capturing)

PortName = MmGetSystemAddressForMdl(Irp->MdlAddress);
…
//

// Make sure the port name is properly zero
// terminated for RtlInitUnicodeString
//
PortName[PortLen] = UNICODE_NULL;

RtlInitUnicodeString(&AdapterName, PortName);

© Microsoft Corporation 2004 25

SuspendThread Attacks
An application can suspend threads running in kernel

– threads can be suspended indefinitely when at
PASSIVE_LEVEL

Especially dangerous if driver grabs PASSIVE_LEVEL
locks
– KeWaitForSingleObject(mutex, …)

Prevent by using KeEnterCriticalRegion and
KeLeaveCriticalRegion
– Driver Verifier enforces this for ERESOURCE, but not

other synchronization primitives

© Microsoft Corporation 2004 26

Handle Attacks
A driver might call a function that returns a handle

– ZwCreateFile, etc

By default, handle is in current process’ handle table
– application could substitute it’s own handle by closing a handle

and opening something else
– attacker would use driver’s kernel-mode access to bypass various

privilege checks, etc, and use substituted handle

Pass OBJ_KERNEL_HANDLE to InitializeObjectAttributes(…)
– handle will instead be placed in the System’s process table, not

the applications

© Microsoft Corporation 2004 27

Memory Attacks
A driver might allocate memory in response to an IOCTL

– Attack – app calls driver until all memory is exhausted

Memory allocated on behalf of application should be
done via ExAllocatePoolWithQuotaTag

Warning: Low Memory Behavior and exceptions
– ExAllocatePoolWithTag returns NULL, but

ExAllocatePoolWithQuotaTag raises an exception

© Microsoft Corporation 2004 28

Class Drivers and Miniports
Drivers can be loaded as DLLs (called Class Drivers)

– allows drivers to focus on a specific flavor of a common
device (called miniport drivers)

– large number of class driver/miniport driver models:
• USB, 1394, SCSI, ATAPI, Serial, NICs

– too many class drivers using solving similar problems
with slightly different approachs – more unification and
simplification needed

© Microsoft Corporation 2004 29

Plug-and-Play
Basic device installation
User plugs a new device into a Bus
The Bus driver

– Notices the new device’s arrival
– Enumerates the device
– Retrieves identification information for the device

• Device and instance ID (for device node name)
• Device capabilities (UniqueID capability indicates whether we

must “unique-ify” the devnode name)
• One or more Hardware IDs and zero or more Compatible IDs

– Passes information to Plug and Play
© Microsoft Corporation 2004 30

Plug-and-Play - 2

Windows Plug-and-play
– Searches for ID matches in the set

of available INFs
– Ranks the matched ID entries in the INFs according

to signature, ID match, and DriverVer date, in that
order

– Selects the best ID match – identifies the INF
containing that ID

– Uses the ID entry in that INF to install the driver
referenced in the INF

© Microsoft Corporation 2004 31

Why is plug-and-play hard?
Installing drivers is privileged operation
Vendors aren’t reliable about assigning IDs
Devices can have multiple IDs

Hardware ID – identifies a specific device
Compatible ID -- Used when no hardware ID match

ID formats are bus-specific
Vendor IDs, Device IDs, Subsystem IDs, Subsystem

Vendor IDs, Revision, …
Some devices are multi-function (combos)

Drivers become artificial bus drivers

© Microsoft Corporation 2004 32

Why is plug-and-play hard? - 2
Plug-and-play uses IRP path

IRP_MJ_PNP / IRP_MN_QUERY_ID
Race conditions with normal IO and also power IRPs

Vendors opt for software-first installation to get right results
Trying to defeat Pnp ranking of drivers by loading driver first
Results in conflicts with better drivers in box or from WU vs old CD

Driver signing requirements add complexity which vendors duck
Want only tested drivers, so Windows pops UI – which goes badly

Vendors want to add lots of user-mode software at same time
Drivers fail to install due to user-mode configuration issues
Compatible ID -- Used when no hardware ID match

© Microsoft Corporation 2004 33

Power Management - History
APM

BIOS-based OS-independent Intel mechanism
assumed BIOS could hide details from software
implemented by SMM
not synchronized with OS, unbounded latency, not debuggable

#ifdef _PNP_POWER_
1st attempt at Pwr/PnP in NT

assumed hal/kernel could hide details from drivers

WDM - redesign of PM/PnP for NT and Win9x
ACPI - firmware interface for supporting WDM
WDF- next step in Pwr/PnP evolution

© Microsoft Corporation 2004 34

Power Management - WDM
Creates concept of “Devnode”

– PDO – Physical Device Object, represents parent bus in a
device stack

– FDO – Functional Device Object, traditional device driver
function

– Filters – Allow for other drivers, like ACPI, to take part in
PnP/Power

Power Management split into:
– S-states, representing the entire system

• S0: Working state, S1 – S3: Sleeping states
• S4: Hibernated state, S5: Soft-off state

– D-states, representing single devices
• D0: Working state, D1 – D2: Low power states, D3: Off state

© Microsoft Corporation 2004 35

WDM – S0 State
Devices can be in any Dx state while the machine itself

is in the S0 state
– S0-D0: Device is powered on and fully active
– S0-D(1-3): Device is in a low power state, but the

machine is still running. The user may not even be
aware that the device is not in D0

– Devices in D(1-3) may be armed for wakeup, even
though the machine is awake

© Microsoft Corporation 2004 36

WDM – S1-S3 – Sleep
Machine appears to be off
RAM context is maintained
All clocks are stopped, except for RTC
Devices may or may not have power
Some devices may have trickle current, but not main

power source
Power in S1 >= S2 >= S3
Differences between S1, S2 and S3 are machine specific

© Microsoft Corporation 2004 37

WDM – S4 – Hibernate
RAM context is written to disk
Machine is powered off
All devices are in the D3 state, unless they have external

power sources
Machine execution resumes through NTLDR, which

restores RAM context
BIOS has a chance to reprogram devices

© Microsoft Corporation 2004 38

WDM – S5 – Off
All context is lost
Machine is powered off
Resume from S5 == booting

© Microsoft Corporation 2004 39

WDM – D-states
Reasons for moving a device out of D0

– The machine is leaving S0 – time to save the device
state

– The device is being ejected – time to turn off the power
to it

– The device is not being used – save some power
Example: Ethernet PHYs consume lots of power. Moving the

device to D3 when there is no cable plugged in recovers that
lost power

© Microsoft Corporation 2004 40

WDM – D-states continued
Reasons for moving from D1-3 to D0

– The machine is moving from S1-4 to S0 and your
device has handles open to it

– The device has received IRP_MN_START_DEVICE
– The device has been inserted and now it need to be

enumerated
– Something is requesting to use the device

Example: The ethernet in the laptop had no cable plugged into it.
But now the user has plugged in a cable, so we need to get an
IP address

© Microsoft Corporation 2004 41

Converting S IRPs To D IRPs
The WDM Power Manager sends S IRPs:

– IRP_MN_QUERY_POWER, IRP_MN_SET_POWER

Each device stack has a “Power Policy Owner” who
converts S IRPs to D IRPs
– The Power Policy Owner is typically the FDO
– The mapping comes from the S D array stored in the

IRP_MN_QUERY_CAPABILITIES structure
– Each entry calls out the lightest possible D state for

a given S state
– Mappings can be rounded down (deeper)

The Power Policy Owner then uses PoRequestPowerIrp
to request the appropriate D IRP

The conversion code is complicated, but most drivers
can use the boilerplate code in the WDM DDK

© Microsoft Corporation 2004 42

System State S0 –
Working D0D0

D1D1
D2D2

D3D3
ModemModem

D0D0
D1D1

D2D2
D3D3
HDDHDD

D0D0
D1D1

D2D2
D3D3

CDROMCDROM

C0C0
D1D1

D2D2
D3D3
Net CardNet Card

D0D0

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYSPCI BusPCI Bus
S0 S0 D0D0

SCSI CardSCSI Card
S0 S0 D0D0

SCSIPORT.SYSSCSIPORT.SYS

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYS

Net CardNet Card
S0 S0 D0D0

NDIS.SYSNDIS.SYS

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYS

ACPI.SYSACPI.SYS

PCIIDE.SYSPCIIDE.SYSIDE ControllerIDE Controller
S0 S0 D0D0

PCI.SYSPCI.SYS

PCIIDE.SYSPCIIDE.SYS

ATAPI.SYSATAPI.SYSIDE ChannelIDE Channel
S0 S0 D0D0

CDROMCDROM
S0 S0 D0D0

SCSIPORT.SYSSCSIPORT.SYS

CDROM.SYSCDROM.SYS

ATAPI.SYSATAPI.SYS

DISK.SYSDISK.SYSHDDHDD
S0 S0 D0D0

© Microsoft Corporation 2004 43
S0 S0 D0D0

System State S1 –
Standby D0D0

D1D1
D2D2

D3D3
ModemModem

D0D0
D1D1

D2D2
D3D3
HDDHDD

D0D0
D1D1

D2D2
D3D3

CDROMCDROM

C0C0
D1D1

D2D2
D3D3
Net CardNet Card

D0D0

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYSPCI BusPCI Bus
S1 S1 D1D1

SCSI CardSCSI Card
S1 S1 D3D3

SCSIPORT.SYSSCSIPORT.SYS

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYS

Net CardNet Card
S1 S1 D3D3

NDIS.SYSNDIS.SYS

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYS

ACPI.SYSACPI.SYS

PCIIDE.SYSPCIIDE.SYSIDE ControllerIDE Controller
S1 S1 D1D1

PCI.SYSPCI.SYS

PCIIDE.SYSPCIIDE.SYS

ATAPI.SYSATAPI.SYSIDE ChannelIDE Channel
S1 S1 D1D1

CDROMCDROM
S1 S1 D3D3

SCSIPORT.SYSSCSIPORT.SYS

CDROM.SYSCDROM.SYS

ATAPI.SYSATAPI.SYS

DISK.SYSDISK.SYSHDDHDD
S1 S1 D1D1

© Microsoft Corporation 2004 44
S1 S1 D?D?

System State S3 –
Standby D0D0

D1D1
D2D2

D3D3
ModemModem

D0D0
D1D1

D2D2
D3D3
HDDHDD

D0D0
D1D1

D2D2
D3D3

CDROMCDROM

C0C0
D1D1

D2D2
D3D3
Net CardNet Card

D0D0

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYSPCI BusPCI Bus
S3 S3 D3D3

SCSI CardSCSI Card
S3 S3 D3D3

SCSIPORT.SYSSCSIPORT.SYS

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYS

Net CardNet Card
S3 S3 D3D3

NDIS.SYSNDIS.SYS

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYS

ACPI.SYSACPI.SYS

PCIIDE.SYSPCIIDE.SYSIDE ControllerIDE Controller
S3 S3 D3D3

PCI.SYSPCI.SYS

PCIIDE.SYSPCIIDE.SYS

ATAPI.SYSATAPI.SYSIDE ChannelIDE Channel
S3 S3 D3D3

CDROMCDROM
S3 S3 D3D3

SCSIPORT.SYSSCSIPORT.SYS

CDROM.SYSCDROM.SYS

ATAPI.SYSATAPI.SYS

DISK.SYSDISK.SYSHDDHDD
S3 S3 D3D3

© Microsoft Corporation 2004 45
S3 S3 D?D?

System State S4 –
Hibernate D0D0

D1D1
D2D2

D3D3
ModemModem

D0D0
D1D1

D2D2
D3D3
HDDHDD

D0D0
D1D1

D2D2
D3D3

CDROMCDROM

C0C0
D1D1

D2D2
D3D3

Net CardNet Card

D0D0

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYSPCI BusPCI Bus
S4 S4 D3D3

SCSI CardSCSI Card
S4 S4 D3D3

SCSIPORT.SYSSCSIPORT.SYS

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYS

Net CardNet Card
S4 S4 D3D3

NDIS.SYSNDIS.SYS

ACPI.SYSACPI.SYS

PCI.SYSPCI.SYS

ACPI.SYSACPI.SYS

PCIIDE.SYSPCIIDE.SYSIDE ControllerIDE Controller
S4 S4 D3D3

PCI.SYSPCI.SYS

PCIIDE.SYSPCIIDE.SYS

ATAPI.SYSATAPI.SYSIDE ChannelIDE Channel
S4 S4 D3D3

CDROMCDROM
S4 S4 D3D3

SCSIPORT.SYSSCSIPORT.SYS

CDROM.SYSCDROM.SYS

ATAPI.SYSATAPI.SYS

DISK.SYSDISK.SYSHDDHDD
S4 S4 D3D3

© Microsoft Corporation 2004 46
S4 S4 D3D3

ACPI
Register interface for handling power management

interrupts
Interpreted p-code language (AML)
Human-readable specification for AML (ASL)
Collection of firmware objects organized in namespace

that describe the machine – built from AML
Namespace structure mirrors WDM device tree
Most devices in tree correspond to Devnodes
Devices in tree contain child-objects that modify the

properties of the device (special properties)
Various bus specifications leave out important parts,

which can be filled in with ACPI objects
© Microsoft Corporation 2004 47

ACPI Objects – Motherboard
ACPI objects can fill in machine-specific information

– If the serial port in a laptop is only exposed when
connected to a dock, an ACPI object can tell us that

– If two chips are connected to the same power plane,
a collection of ACPI objects can describe that

– If the CD-ROM drive can be ejected while the
machine is running ACPI objects can describe that

ACPI Objects can give thermal information
– Can be used to expose temperature sensors to the

OS
– Can be used to describe thermal relationships

• Slowing the processor may also cool the CD-ROM
• Charging the battery may overheat the processor

© Microsoft Corporation 2004 48

ACPI Objects – Motherboard - 2

ACPI Objects can abstract interfaces to batteries,
– OS need know nothing about physics or chemistry

ACPI Objects can abstract very simple devices,
– a single driver to operate with very different hardware

• Lid Switches
• Power Buttons
• Fans

© Microsoft Corporation 2004 49

Why is power management hard?
System/Device states + PnP states => EXPLOSION
IRP-based communication with drivers causes races
Drivers can/will veto power state changes

Hard hangs in drivers are common
As is the melting laptop
Compatible ID -- Used when no hardware ID match

Apps can/will veto power state changes
Ditto

Flexible “power policy” results in bad decisions
Physical topology, PnP topology, power topology

entertwined
© Microsoft Corporation 2004 50

Discussion

© Microsoft Corporation 2004 51

	Windows Kernel Internals IIWindows Driver Model University of Tokyo – July 2004*
	Windows I/O Model
	IO Request Packet (IRP)
	Object Relationships
	Layering Drivers
	Loading Device Drivers
	Device Deletion and Driver Unload
	IRP Fields
	IRP flow of control (synchronous)
	IRP flow of control (asynch)
	Path of an Async IO request
	Async IO from Win32
	Canceling IRPs
	NT IO APIs
	NT IO APIs - 2
	Why is writing drivers hard?
	Miscellaneous Crashes
	Miscellaneous Crashes - 2
	Hangs
	IO Security – attack routes
	Parameter Probing
	Missing Probe Example
	Missing Probe Example - Fixed
	IOCTL Security
	Other Common Security Issues
	SuspendThread Attacks
	Handle Attacks
	Memory Attacks
	Class Drivers and Miniports
	Plug-and-Play
	Plug-and-Play - 2
	Why is plug-and-play hard?
	Why is plug-and-play hard? - 2
	Power Management - History
	Power Management - WDM
	WDM – S0 State
	WDM – S1-S3 – Sleep
	WDM – S4 – Hibernate
	WDM – S5 – Off
	WDM – D-states
	WDM – D-states continued
	Converting S IRPs To D IRPs
	System State S0 – Working
	System State S1 – Standby
	System State S3 – Standby
	System State S4 – Hibernate
	ACPI
	ACPI Objects – Motherboard
	ACPI Objects – Motherboard - 2
	Why is power management hard?
	Discussion

