
89

Chapter 3

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Windows Memory 
Analysis

  Solutions in this chapter: 

  Collecting Process Memory   ■

  Dumping Physical Memory   ■

  Analyzing a Physical Memory Dump    ■



90 Chapter 3 • Windows Memory Analysis

         Introduction 
 In  Chapter 1 , we discussed collecting volatile data from a live, running Windows system. 
From the order of volatility listed in RFC 3227, we saw that one of the fi rst items of volatile 
data that should be collected during live-response activities is the contents of physical 
memory, commonly referred to as RAM. Although the specifi cs of collecting particular parts 
of volatile memory, such as network connections or running processes, have been known 
for some time and discussed pretty extensively, the issue of collecting, parsing, and analyzing 
the entire contents of physical memory is a relatively new endeavor, even today. This fi eld 
of research has really opened up in the past several years, beginning in summer 2005, at least 
from a public perspective. 

 The most important question that needs to be answered at this point is “Why?” 
Why would you want to collect the contents of RAM? How is doing this useful, how is it 
important, and what would you miss if you didn’t collect and analyze the contents of 
RAM? Until now, some investigators have collected the contents of RAM in the hope of 
fi nding something they wouldn’t fi nd on the hard drive during a postmortem analysis—
specifi cally, passwords. Programs will prompt the user for a password, and if the dialog box 
has disappeared from view, the most likely place to fi nd that password is in memory. 
Malware analysts will look to memory in dealing with encrypted or obfuscated malware, 
because when the malware is launched, it will be decrypted in memory. More and more, 
malware is obfuscated in such a way that static, offl ine analysis is extremely diffi cult at best. 
However, if the malware were allowed to execute, it would exist in memory in a decrypted 
state, making it easier to analyze what the malware does. Finally, rootkits will hide processes, 
fi les, Registry keys, and even network connections from view by the tools we usually use to 
enumerate these items, but by analyzing the contents of RAM we can fi nd what’s been 
hidden. We can also fi nd information about processes that have since exited. 

 In 2008, Greg Hoglund (perhaps best known for writing the fi rst viable rootkit for 
Windows systems and rootkit.com, but also as the CEO of HBGary, Inc.) wrote a short 
paper titled “The Value of Physical Memory Analysis for Incident Response” ( www.hbgary.
com/resources.html ). In that paper, Greg describes what can be extracted from the contents 
of physical memory, and perhaps most importantly, the value of that information with 
respect to addressing issues in incident response and computer forensic analysis. 

  A Brief History 
 In the past, the “analysis” of physical memory dumps has consisted of running strings or  grep  
against the “image” fi le, looking for passwords, Internet Protocol (IP) addresses, e-mail 
addresses, or other strings that could give the analyst an investigative lead. The drawback of 
this method of “analysis” is that it is diffi cult to tie the information you fi nd to a distinct 
process. Was the IP address that was discovered part of the case, or was it actually used by 



 Windows Memory Analysis • Chapter 3 91

some other process? How about that word that looks like a password? Is it the password 
an attacker uses to access a Trojan on the system, or is it part of an instant messaging (IM) 
conversation? 

 Being able to perform some kind of analysis of a dump of physical memory has been 
high on the wish lists of many within the forensic community for some time. Others (such 
as myself) have recognized the need for easily accessible tools and frameworks for retrieving 
physical memory dumps and analyzing their contents. 

 In summer 2005, the Digital Forensic Research Workshop (DFRWS;  www.dfrws.org ) 
issued a “memory analysis challenge” in order “to motivate discourse, research, and tool 
development” in this area. Anyone was invited to download the two fi les containing dumps 
of physical memory (the dumps were obtained using a modifi ed copy of dd.exe available 
on the Helix 1.6 distribution) and answer questions based on the scenario provided at the 
Web site. Chris Betz and the duo of George M. Garner, Jr., and Robert-Jan Mora were 
selected as the joint winners of the challenge, providing excellent write-ups illustrating 
their methodologies and displaying the results of the tools they developed. Unfortunately, 
these tools were not made publicly available. 

 In the year following the challenge, others continued this research or conducted their 
own, following their own avenues. Andreas Schuster ( http://computer.forensikblog.de/en/
topics/windows/memory_analysis ) began releasing portions of his research on the English 
version of his blog, together with the format of the EProcess and EThread structures from 
various versions of Windows, including Windows 2000 and XP. Joe Stewart posted a Perl 
script called pmodump.pl as part of the Truman Project ( www.secureworks.com/research/
tools/truman.html ), which allows you to extract the memory used by a process from a dump 
of memory (important for malware analysis). Mariusz Burdach released information regarding 
memory analysis (initially for Linux systems but then later specifi cally for Windows systems) 
to include a presentation at the BlackHat Federal 2006 conference. Jesse Kornblum has 
offered several insights in the area of memory analysis to include determining the original 
operating system from the contents of the memory dump. During summer 2006, Tim Vidas, 
( http://nucia.unomaha.edu/tvidas/ ), a senior research fellow at Nebraska University, released 
procloc.pl, a Perl script to locate processes in RAM dumps as well as crash dumps. 

 Since then, the fi eld of study with respect to collecting and analyzing memory dumps 
has grown by leaps and bounds, and in many instances the key fi gures have risen to the 
top. Perhaps the most notable individual in the fi eld of memory analysis is Aaron Walters, 
co-creator of the FATKit ( http://4tphi.net/fatkit/ ) and the Volatility Framework ( https://www.
volatilesystems.com/default/volatility ). Although tools have been released to allow for 
collecting the contents of physical memory from Windows XP and Vista systems (addressed 
in detail in this chapter), Aaron and his co-developer, Nick L. Petroni Jr., have focused 
primarily on providing a framework for analysis of memory dumps. Aaron and Nick have 
been assisted by Brendan Dolan-Gavitt (you can fi nd Brendan’s blog at  http://moyix.blog-
spot.com/ , and his graduate research page is  www.cc.gatech.edu/~brendan/ ) and others who 



92 Chapter 3 • Windows Memory Analysis

have made signifi cant contributions to the area of memory analysis and specifi cally to the 
Volatility Framework. Matthieu Suiche ( www.msuiche.net/ ) has contributed a program for 
dumping the contents of physical memory, and has also published information and tools 
for parsing Windows hibernation fi les (which have been incorporated    into the Volatility 
Framework). Andreas Schuster ( http://computer.forensikblog.de/en/ ) has continued his 
contributions to parsing of Windows memory dumps, including the release of a PTFinder 
(discussed later in this chapter) for Vista in November 2008, which is included as part of 
the PTFinder collection of Perl scripts. 

 In addition to free, open source tools for parsing Windows memory dumps, the security 
company Mandiant (the company Web site is  www.mandiant.com , and the company blog 
is  http://blog.mandiant.com/ ) released its Memoryze memory collection and parsing tool, 
along with the Audit Viewer tool for better presentation of the results of Memoryze. 
In addition, the folks at HBGary ( www.hbgary.com/ ) have released their own memory 
analysis application called Responder, which comes in Professional and Field editions. 
The HBGary Web site includes a wealth of information about the tools, including videos 
demonstrating how to use them.   

  Collecting Process Memory 
 During an investigation, you might be interested in only particular processes rather than a list 
of all processes, and you’d like more than just the contents of process memory available in a 
RAM dump fi le. For example, you might have quickly identifi ed processes of interest that 
required no additional extensive investigation. There are ways to collect all the memory used 
by a process—not just what is in physical memory, but also what is in virtual memory or the 
page fi le. 

 To do this, a couple of tools are available. One is pmdump.exe ( www.ntsecurity.nu/
toolbox/pmdump/ ), written by Arne Vidstrom and available from NTSecurity.nu. However, 
as the NTSecurity.nu Web site states, pmdump.exe allows you to dump the contents of 
process memory  without  stopping the process. As we discussed earlier, this allows the process 
to continue and the contents of memory to change while being written to a fi le, thereby 
creating a “smear” of process memory. Also, pmdump.exe does not create an output fi le 
that can be analyzed with the Microsoft Debugging Tools   . 

 Tobias Klein has come up with another method for dumping the contents of process 
memory in the form of a free (albeit not open source) tool called Process Dumper (available 
in both Linux and Windows versions from  www.trapkit.de/research/forensic/pd/index.
html ). Process Dumper (pd.exe) dumps the entire process space along with additional 
metadata and the process environment to the console (STDOUT) so that the output can 
be redirected to a fi le or a socket (via netcat or other tools; see  Chapter 1  for a discussion 
of some of those tools). A review of the documentation that Tobias makes available for 
pd.exe provides no indication that the process is debugged, halted, or frozen prior to the 



 Windows Memory Analysis • Chapter 3 93

dumping process. Tobias also provides the Memory Parser graphical user interface (GUI) 
utility for parsing the metadata and memory contents collected by the Process Dumper. 
These tools appear to be an extension of Tobias’s work toward extracting RSA private keys 
and certifi cates from process memory ( www.trapkit.de/research/sslkeyfi nder/index.html ).

   TIP  
   Jeff Bryner wrote pdgmail (you can fi nd the pdgmail tool at  www.jeffbryner.
com/code/pdgmail ), a Python-based tool that uses the output of Tobias’s 
Process Dumper program to search for Gmail artifacts (e.g., contacts, last 
access records, account names, etc.). Jeff posted to the SANS Forensic blog 
( http://sansforensics.wordpress.com ) regarding pdgmail, stating that he had 
not tested it on the Windows platform. Jeff subsequently released pdymail 
for extracting Yahoo! mail remnants ( http://jeffbryner.com/code/pdymail ) 
from process memory, as well. In this section of the chapter, we discuss 
 dumping the contents of process memory, whereas later in the chapter we 
discuss how an analyst can dump the contents of process memory for a full 
dump of physical memory. You can use either method to retrieve data for use 
with pdgmail or pdymail.    

   Another tool that is available and recommended by a number of sources is userdump.exe, 
available from Microsoft. Userdump.exe will allow you to dump any process on the fl y, 
without attaching a debugger and without terminating the process once the dump has been 
completed. Also, the dump fi le generated by userdump.exe can be read by the Microsoft 
Debugging Tools. However, userdump.exe requires that a driver be installed for it to work, 
and depending on the situation, this might not be something you’d want to do. 

 Based on conversations with Robert Hensing, formerly of the Microsoft PSS Security 
team, the preferred method of dumping memory used by a process is to use the adplus.vbs 
script that ships with    the debugging tools, as this methodology attaches a debugger to the 
process and suspends the process to dump it.  Adplus  stands for  Autodumplus  and was originally 
written by Robert (the documentation for the script states that versions 1 through 5 were 
written by Robert, and as of Version 6, Israel Burman has taken over). The help fi le 
(debugger.chm) for    the MS Debugging Tools contains a great deal of information about 
the script as well as    the cdb.exe debugging tool, which it uses to dump the processes you 
designate.    The MS Debugging Tools do not require that an additional driver be installed, 
and they can be run from a CD. This means the tools (adplus.vbs and cdb.exe, as well as 



94 Chapter 3 • Windows Memory Analysis

supporting dynamic link libraries, or DLLs) can be written to a CD (adplus.vbs uses the 
Windows scripting host Version 5.6, also known as cscript.exe, which comes installed on 
most systems) and used to dump processes to a shared drive or to a USB-connected storage 
device. Once the dumps have been completed, you can use the freely available MS 
   Debugging Tools to analyze the dump fi les. In addition, you can use other tools, such as 
BinText, to extract ASCII, Unicode, and resource strings from the dump fi le. Also, after 
dumping the process, you can use still other tools (such as those discussed in  Chapter 1 ) 
to collect additional information about the process from the running system, which may 
provide a quicker view into the details of the process itself. Handle.exe (which is available 
from  http://technet.microsoft.com/en-us/sysinternals/bb896655.aspx  and requires that 
you have Administrator rights on the system when running it) will provide you with a list 
of handles (to fi les, directories, etc.) that have been opened by the process, and listdlls.exe 
(Version 2.25 at the time of this writing, available from  http://technet.microsoft.com/
en-us/sysinternals/bb896656.aspx ) will show you the full path to and the version numbers 
of the various modules loaded by a process. 

 Extensive help is available for using adplus.vbs, not only in the MS    Debugging Tools 
help fi le but also in Microsoft Knowledge Base article 286350 ( http://support.microsoft.
com/kb/286350 ). You can use adplus.vbs to hang the process while it is being dumped 
(i.e., halt it, dump it, and then resume the process) or to crash the process (halt the process, 
dump it, and then terminate). To run adplus.vbs in hang mode against a process, you would 
use the following command line:

    D:\debug>cscript adplus.vbs –quiet –hang –p <PID>     

 This command will create a series of fi les within the debug directory within a 
 subdirectory prefaced with the name  Hang_mode_  that includes the date and time of the 
dump. (You can change the location where the output is written using the – o  switch.) You 
will see an adplus.vbs report fi le, the dump fi le for the process (multiple processes can be 
designated using multiple – p  entries), a process list (generated by default using tlist.exe; you 
can turn this off using the – noTList  switch), and a text fi le showing all the loaded modules 
(DLLs) used by the process. 

 Although all the information collected about processes using adplus.vbs can be 
extremely useful during an investigation, you can use this tool only on processes that are 
visible via the application program interface (API). If a process is not visible (say, if it’s hidden 
by a rootkit), you cannot use these tools to collect information about the process. 

 You can use the  volatility memdmp  command (we discuss the Volatility Framework later in 
the chapter) to dump the addressable memory for a process from a Windows XP memory 
dump, as follows:

    D:\Volatility>python volatility memdmp -f d:\hacking\xp-laptop1.img -p 4012     

 This command results in a 4012.dmp fi le that is 118,300,672 bytes in size.  



 Windows Memory Analysis • Chapter 3 95

  Dumping Physical Memory 
 So, how do you go about collecting the full contents of physical memory, rather than just 
dumping a process? Several methods are available, each with strengths and weaknesses. The 
goal of this chapter is to provide an understanding of the various options available as well as 
the technical aspects associated with each option. This way, as a fi rst responder or investigator, 
you’ll make educated choices regarding which option is most suitable, taking the business 
needs of the client (or victim) into account along with infrastructure concerns. 

  DD 
  DD  ( http://en.wikipedia.org/wiki/Dd_(Unix) ) is the short name given to a powerful tool from 
the UNIX world which has a variety of uses, not the least of which is to copy fi les or even 
entire hard drives. DD has long been considered a standard for producing forensic images, and 
most major forensic imaging/acquisition tools as well as analysis tools support the dd format. 
GMG Systems Inc. produced a modifi ed version of dd that runs on Windows systems and can 
be used to dump the contents of physical memory from Windows 2000 and XP systems. This 
version of dd was part of the Forensic Acquisition Utilities, but is no longer available. This utility 
was able to collect the contents of physical memory by accessing the  \Device\PhysicalMemory  
object from user mode. The following command line could be used to capture the contents of 
RAM in the fi le ram.img on a network share or a USB thumb drive attached to the system:

    D:\tools>dd if=\\.\PhysicalMemory of=F:\ram.img bs=4096 conv=noerror     

 In the preceding command line, the block size ( bs  value) is set to 4 kilobytes (KB) or 
4096 bytes, as this is the default size for pages in memory. Therefore, the command tells 
dd.exe to grab one page at a time. This version of dd.exe also allows compression and the 
generation of cryptographic hashes for the content. Due to the volatile nature of RAM 
(i.e., it continues to change throughout the process of dumping it), however, it is not advisable 
to hash it until it is written from the disk, simply because there is no advantage in doing so. 
If the user images memory twice, even with little delay, the contents of RAM and thus 
the subsequent hashes will be different. In this case, it is only worthwhile to employ a 
cryptographic hash to address the integrity of the collected memory dump.

   WARNING  
   The version of dd.exe from George M. Garner, Jr., discussed earlier, is no longer 
available or supported, but there may be responders out there who still have 
a copy of the tool on a CD or hard drive someplace (I do!). Discussion of and 
reference to the tool is provided here for completeness, as well as to recognize 
George’s contributions to the fi eld of memory acquisition and analysis.    



96 Chapter 3 • Windows Memory Analysis

     Nigilant32 
 Other tools use a process similar to dd.exe to capture the contents of RAM. Nigilant32 
( www.agilerm.net/publications_4.html ), from Matt Shannon of Agile Risk Management, 
uses a graphical interface to allow the responder to acquire the contents of physical memory. 
 Figure 3.1    illustrates a portion of the Nigilant32 GUI, showing the option for imaging 
physical memory. 

 Figure 3.1    Portion of the Nigilant32 GUI    

 Nigilant32 has the advantage of a GUI, which may be a friendlier tool for some 
responders to use. You can deploy Nigilant32 on a CD or USB thumb drive along with 
other tools, and use it to quickly collect the contents of physical memory (primarily from 
Windows XP systems). As with dd.exe and other tools, Nigilant32 requires local access 
to the system from which the responder wishes to dump memory. You also can deploy 
Nigilant32 prior to an actual incident occurring, and responders can either run the tool 
locally and dump physical memory to a thumb drive or network share, or access the system 
remotely (via applications such as VNC or Remote Desktop Client) and perform the 
memory dump.  

  ProDiscover 
 ProDiscover IR (Version 4.8 was used in writing this book, and Version 5.0 was released 
in summer 2008) also allows the investigator to collect the contents of physical memory 
(as well as system BIOS) via a remote server applet that can be distributed to a system via 
removable storage media (CD, thumb drive, etc.) or via the network.  Figure 3.2    illustrates 
the user interface for this capability.  



 Windows Memory Analysis • Chapter 3 97

  KnTDD 
 The problem with using tools such as dd.exe or Nigilant32, however, is that as of 
Windows 2003 SP1, access to the  \Device\PhysicalMemory  object has been restricted from 
user mode ( http://technet.microsoft.com/en-us/library/cc787565.aspx ). That is, only 
kernel drivers are allowed to access this object. As such, tools such as dd.exe, Nigilant32, 
and ProDiscover (as previously mentioned, the Incident Response edition of ProDiscover 
includes a servlet that will allow an analyst to access physical memory on a remote 
Windows XP system) will not allow you to collect the contents of physical memory from 
Windows 2003 SP1 and later systems, including Vista. To address this issue, George M. 
Garner, Jr. (a.k.a. GMG Systems) produced a new utility called KnTDD, which is part of 
the KnTTools set of utilities. According to the licensing for KnTTools, the utilities are 
available for private sale to law enforcement personnel and bona fi de security professionals. 
KnTDD includes the following capabilities:

    Able to acquire the contents of physical memory using multiple methods, including  ■

via the  \Device\PhysicalMemory  object  

   Runs on Microsoft operating systems from Windows 2000 through Vista, including  ■

AMD64 versions of the operating systems  

   Able to convert a raw memory “image” to Microsoft crash dump format so  ■

that the resultant data can be analyzed using the Microsoft Debugging Tools  

   Able to acquire to a local removable (USB, FireWire) storage device as well  ■

as via the network using Transmission Control Protocol/Internet Protocol 
(TCP/IP)  

   Designed specifi cally for forensic use, with audit logging and cryptographic  ■

integrity checks    

 Figure 3.2    Excerpt of the Capture Image Dialog Box from ProDiscover IR    



98 Chapter 3 • Windows Memory Analysis

 The KnTTools Enterprise Edition includes the following capabilities:

    Bulk encryption of output using X.509 certifi cations, AES-256 (default), and  ■

downgrading to 3DES on Windows 2000  

   Memory acquisition using a KnTDDSvc service   ■

   A remote deployment module that is able to deploy the KnTDDSvc service by  ■

either “pushing” it to a remote admin share or “pulling” it from a Web server over 
Secure Sockets Layer (SSL), with cryptographic verifi cation of the binaries before 
they are executed    

 One of the aspects of using dd.exe, and tools like it, that you need to keep in mind is 
Locard’s Exchange Principle. To use these tools to collect the contents of RAM, they must 
be loaded into RAM as a running process. This means memory space is consumed and other 
processes may have pages written out to the page fi le. 

 Another aspect of these tools to keep in mind is that they do not freeze the state of the 
system, as occurs when a crash dump is generated. This means that while the tool is reading 
through the contents of RAM, as the thirtieth “page” is being read the eleventh page could 
change as the process using that page continues to run. The amount of time it ultimately 
takes to complete the dump depends on factors such as processor speed and rates of bus and 
disk I/O. The question then becomes, are these changes that occur in the limited amount of 
time enough to affect the results of your analysis? 

 Under most incident response conditions, tools such as dd.exe might be the best method 
for retrieving the contents of physical memory, particularly from Windows 2000 and XP 
systems. Such tools do not require that the system be taken down, nor do they restrict how 
and to where the contents of physical memory are written (e.g., using netcat, you can write 
the contents of RAM out over a socket to another system rather than to the local hard 
drive). Tools have been developed and made freely available (discussed later in this chapter) 
to parse the contents of these RAM dumps to extract information about processes, network 
connections, and the like. Further, development of the KnTTools and other similar tools 
allows for continued support of this methodology beyond Windows 2003 SP1. 

   NOTE  
   The primary issue with using a methodology such as the Forensic Acquisition 
Utilities or KnTTools is that the system is still running when the contents of 
physical memory are retrieved. This means that not only are memory pages 
consumed simply by using the utilities (i.e., executable images are read and 
loaded into memory), but as the tool enumerates through memory, pages 



 Windows Memory Analysis • Chapter 3 99

     MDD 
 The early part of 2008 saw the release of several new tools for collecting the contents of 
physical memory from Windows systems, particularly Windows 2003 SP1 and Vista. 
Fortunately, these tools work equally well on Windows XP systems, making them more 
universal than previously available tools (e.g., dd.exe, Nigilant32, etc.). Perhaps the most 
notable was mdd.exe which was released to the public by ManTech International 
( www.mantech.com/msma/MDD.asp ). Mdd.exe is a straightforward and simple command-
line interface (CLI) tool, allowing a responder to dump the contents of physical memory 
with a simple command line:

    E:\response>mdd.exe –o F:\system1\memory.dmp     

 The preceding command line illustrates an example of mdd.exe run from a CD (E:\), 
sending the output fi le (via the – o  switch) to a USB external hard drive (F:\). You can also run 
mdd.exe from a batch fi le, as I described in  Chapter 1 , using a command line such as:

    mdd.exe –o %1\mdd-o.img     

 Alternatively, you can use the available variables from a live Windows environment to 
segregate your collected volatile data by prepending the name of the system from which 
you’re collecting data:

    mdd.exe –o %1\%ComputerName%-mdd-o.img     

 Once mdd.exe completes the memory dump, it displays an MD5 checksum for the 
resultant dump fi le:

    took 108 seconds to write   

   MD5 is: 6fe975ee3ab878211d3be3279e948649     

 The analyst can save this information and use it to ensure the integrity of the memory 
dump fi le later. 

 Not only is mdd.exe simple to use and deploy, but also the output of the tool is what 
is referred to as a raw, dd-style memory dump fi le, similar to what is achieved using other 
tools (dd.exe, VMware, etc.). However, prior to using mdd.exe, you should be aware that, 

that have already been read can change. That is, the state of the system 
and its memory are not frozen in time, as would be the case with acquiring 
a forensic image of a hard drive via traditional “forensic” methodologies. 
Interacting with a live system, however, may be the only manner with which 
certain information can be retrieved. Keeping Locard’s Exchange Principle 
in mind, responders must thoroughly and clearly document their actions 
when performing live response. Issues such as the need for live response, 
as well as the “footprint” of live-response tools, have been (and will likely 
continue to be) the subject of discussion for some time.    



100 Chapter 3 • Windows Memory Analysis

according to the ManTech International Web site for the tool, mdd.exe is unable to collect 
more than 4  GB of RAM. On systems with 8  GB or more of RAM, some users have 
reported system crashes, so take this into account when considering whether to collect 
the contents of RAM from a system.

   TIP  
   If you intend to collect the contents of RAM from a live Windows system 
as part of your response methodology using a batch fi le, I recommend that 
you collect the contents of RAM fi rst. This will provide you with as “clean” 
a dump as possible, particularly if you’ve included other third-party (tlist.exe, 
tcpvcon.exe) and native Windows tools (netstat.exe) in your batch fi le.    

     Win32dd 
 Matthieu Suiche released his own tool for dumping the contents of physical memory, called 
win32dd ( http://win32dd.msuiche.net/ ). Win32dd is described as a “free kernel    land and 100% 
open-source tool”; this means that like mdd.exe, win32dd.exe is free, but unlike ManTech’s 
tool, win32dd.exe is open source. Win32dd.exe has some additional features, including the 
 ability to create a WinDbg-compatible “crash dump” (similar to a Windows crash dump) which 
you can then analyze using the Microsoft Debugging Tools ( www.microsoft.com/whdc/
DevTools/Debugging/default.mspx ). As with mdd.exe and other CLI tools, win32dd.exe can 
be included in batch fi les. 

 Version 1.2.1.20090106 of win32dd.exe was available at the time this chapter was being 
written. You can view the syntax information available for win32dd.exe using the following 
command:

    D:\tools\win32dd>win32dd -h   

      Win32dd - v1.2.1.20090106 - Kernel land physical memory acquisition   

      Copyright (c) 2007 - 2009, Matthieu Suiche  < http://www.msuiche.net >  

      Copyright (c) 2008 - 2009, MoonSols  < http://www.moonsols.com >   

   Usage:   

      win32dd [option] [output path]   

   Option:   

      -r   Create a raw memory dump/snapshot. (default)   

      -l   Level for the mapping (with -r option only).   

          l 0   Open \\Device\\PhysicalMemory device (default).   

          l 1   Use Kernel API MmMapIoSpace()   



 Windows Memory Analysis • Chapter 3 101

      -d   Create a Microsoft full memory dump fi le (WinDbg compliant).   

      -t   Type of MSFT dump fi le (with -d option only).   

          t 0   Original MmPhysicalMemoryBlock, like BSOD. (default).   

          t 1   MmPhysicalMemoryBlock (with PFN 0).   

      -h    Display this help.   

   Sample:   

   Usage: win32dd -d physmem.dmp   

   Usage: win32dd -l 1 -r C:\dump\physmem.bin     

 As you can see, win32dd.exe has a number of options available for dumping the contents 
of physical memory. To create a raw, dd-style memory dump fi le, you can use the following 
command line:

    D:\tools\win32dd>win32dd -l 0 -r d:\tools\memtest\win32dd-l0-xp.img     

 Including the command-line options (such as – l 0 ) in the name of the output fi le serves 
as a modicum of additional documentation for the analyst, to identify the command-line 
switches used. As with other CLI tools, including such a command in a batch fi le is simple 
and straightforward (besides being self-documenting).  

  Memoryze 
 The consulting company Mandiant released its own memory collection and analysis tool, 
called Memoryze ( www.mandiant.com/software/memoryze.htm ). Memoryze fi nds its origins 
in the Mandiant Intelligent Response (MIR) product, and has been made freely available 
from the Mandiant Web site, along with examples of how to run the tool. Once you’ve 
downloaded the Memoryze Microsoft installer (MSI) fi le to your system and installed it, 
you can run Memoryze to collect a memory dump via the memorydd.bat batch fi le by 
typing the following command:

    D:\Mandiant\memorydd.bat     

 This will create a memory dump fi le in a directory structure within the current 
directory; running the command as is on my system created the directory structure 
Audits\WINTERMUTE\20090103003442\, and within that fi nal directory it created 
several XML fi les and a memory image fi le. Running the batch fi le with the – output  
switch will let you confi gure the location for the dump fi le. 

 Also, when run on a live system, Memoryze reportedly “makes use of the page fi le(s),” 
incorporating memory contents from the page fi le into the collection process. This allows 
for more complete collection of data, as memory contents that have been swapped out to 
the page fi le are now available during the analysis process. In addition, Memoryze Version 
1.3.0 (announced February 9, 2009) is capable of dumping memory that is accessible via 
F-Response, which we’ll discuss later in this chapter.  



102 Chapter 3 • Windows Memory Analysis

  Winen 
 Guidance Software also released its own tool for collecting the contents of physical memory, 
called winen.exe. Like some of the other tools, winen.exe is a CLI tool, but unlike the 
other tools, the memory dump is not collected in raw, dd-style format; instead, it is collected 
in the same proprietary imaging format used by the EnCase image acquisition tool, 
commonly referred to as Expert Witness Format (or EWF, for short). Most available analysis 
tools require that the memory dump be in a raw, dd-style format, so memory dumps 
collected using winen.exe must be converted to a raw format prior to being parsed. As Lance 
Mueller points out in his blog ( www.forensickb.com/2008/06/new-version-of-encase-
includes-stand.html ), you can run winen.exe by simply providing various options at the 
console (i.e., typing  winen  at the command prompt and then providing responses to the 
queries) or by providing the path to a confi guration fi le with the necessary information via 
the – f  switch. Winen.exe has a total of    six required options, the settings for which can be 
provided via the command line or in a confi guration fi le: the path to the output fi le(s), 
the compression level, the examiner’s name, the evidence name, the case number, and the 
evidence number. An example confi guration fi le is included in the home directory when 
you download and install EnCase. 

 Richard McQuown provides additional information about the use of winen.exe in his 
ForensicZone blog ( http://forensiczone.blogspot.com/2008/06/winenexe-ram-imaging-
tool-included-in.html ), as well as a link to a user manual fi le for winen.exe (you must have 
access to the EnCase User Forum and be logged in to obtain the PDF document at  https://
support.guidancesoftware.com/forum/downloads.php?do=fi le&id=478 ). 

 You can then convert the resultant memory dump to a raw format by opening the 
memory dump fi le in FTK Imager and choosing  Create Disk Image  from the menu 
( http://windowsir.blogspot.com/2008/06/memory-collection-and-analysis-part-ii.html ), 
or by opening the memory dump in EnCase and choosing  Copy/UnErase  from the 
EnCase menu. 

 Guidance also has a version of winen.exe for 64-bit versions of the Windows operating 
system, called winen64.exe. As with the 32-bit version of the tool, winen64.exe allows a 
responder to dump the contents of physical memory in an EWF format dump fi le.  

  Fastdump 
 Consulting company HBGary released a copy of its tool for collecting the contents of physical 
memory, called fastdump ( www.hbgary.com/download_fastdump.html ). Although fastdump.
exe (Version 1.2 is available at the time of this writing) is free, as with Nigilant32 and some 
of the other available tools it is not able to collect memory contents from Windows 2003 SP1 
and later systems, including Vista. You can use this tool only to collect the contents of physical 
memory from Windows XP and Windows 2003 (no service packs installed) systems. 



 Windows Memory Analysis • Chapter 3 103

 To address this issue, HBGary also released a commercial version of the tool, called 
FastDump Pro (fdpro.exe), which is available from the same Web page as fastdump.exe, albeit 
for a fee. The commercial version supports all versions of Windows, including 32- and 64-bit 
versions, and will also reportedly dump memory from systems with more than 4  GB of 
RAM. 

 Besides being able to dump more than 4  GB of physical memory, FastDump Pro has 
some other differences from and advantages over other tools. Typing  fdpro  at the command 
prompt displays the syntax information for the tool:

    D:\HBGary\bin\FastDump>fdpro   

   -= FDPro v1.3.0.377 by HBGary, Inc =-   

   ***** Usage Help *****   

   ______________________________________________________________________________   

   General Usage: fdpro output_dumpfi le_path [options] [modifi ers]   
   ______________________________________________________________________________   

   FDPro supports dumping .bin and .hpak format fi les   

   ______________________________________________________________________________   

   To dump physical memory only to literal .bin format:   

      fdpro mymemdump.bin [options] [modifi ers]   

   To dump physical memory to an .hpak formatted fi le:   

      fdpro mysysdump.hpak [options] [modifi ers]   
   ______________________________________________________________________________   

   *** Valid .bin [options] Are: ***   

   -probe [all|smart|pid|help]   Pre-Dump Memory Probing   

   ______________________________________________________________________________   

   *** Valid .bin [modifi ers] Are: ***   

   -nodriver   Use old-style memory acquisition (XP/2k only)   

   -driver   Force driver based memory acquisition   
   ______________________________________________________________________________   

   *** Valid .hpak [options] Are: ***   

   -probe [all|smart|pid|help]   Pre-Dump Memory Probing   

   -hpak [list|extract]   HPAK archive management   
   ______________________________________________________________________________   

   *** Valid .hpak [modifi ers] Are: ***   

   -nodriver   Use old-style memory acquisition (XP/2k only)   

   -driver   Force driver based memory acquisition   

   -compress   Create archive compressed   

   -nocompress   Create archive uncompressed   
   ______________________________________________________________________________     

 As you can see, fdpro.exe has essentially two modes in which it can be used. The fi rst mode 
is to dump the contents of physical memory in the usual raw, dd-style format, using either the 
driver to access physical memory on versions of Windows that require it (i.e., Windows 2003 
SP1, Vista, and later), or the – nodriver  switch to perform “old-style memory acquisition.” 



104 Chapter 3 • Windows Memory Analysis

 Fdpro.exe also has an .hpak-style format, which is described as follows:

  “HPAK is an HBGary proprietary format which is capable of several key 
features, namely the ability to store and archive the RAM and Pagefi le 
in a single archive. HPAK format also supports compression using the 
gzip format. This is useful during instances where space on the  collecting 
device/system is limited.”   

 One of the limitations of most of the available tools for dumping physical memory is 
that they allow access only to physical memory, and do not incorporate the page fi le. Not 
only does fdpro.exe provide access to a wide range of Windows operating systems (including 
64-bit versions) and memory capacities (i.e., greater than 4  GB),    but also (as with Mandiant’s 
Memoryze tool) the tool will incorporate the page fi le in the collection process, which then 
allows that data to be incorporated into the analysis process, as well (we will discuss the 
HBGary Responder product later in this chapter). As you will see later in this chapter, 
contents of memory that have been swapped out to the page fi le may contain information 
pertinent to your response and analysis.

   WARNING   
   It is important to point out that proprietary formats for data collection 
often lead to the requirement to use one particular tool for data analysis. 
Memory dumped using winen.exe, for example, must be converted to a raw 
format prior to being analyzed using other tools (although EnScripts are 
available to perform some limited parsing of the dump fi le). The same holds 
true with HBGary’s .hpak format, as well; at this point, only HBGary’s 
Responder product can be used to analyze an .hpak format memory dump. 
This is something you must keep in mind when deciding which tool to use.    

     F-Response 
 Finally, 2008 heralded the coming of a new age in incident response with Matt Shannon’s 
release of F-Response. F-Response is an acquisition-tool-agnostic framework that uses 
the iSCSI protocol to provide raw access to disks over the network. Matt designed and 
wrote F-Response so that the access is read-only; write operations to the remote disk are 
buffered and silently dropped. The three editions of F-Response (Field Kit, Consultant, 
and Enterprise) are all deployed differently, but all allow you to “see” drives on remote 



 Windows Memory Analysis • Chapter 3 105

systems (e.g., in another room, on another fl oor, or even in another building) as mounted 
drives on your own system. F-Response is acquisition-tool-agnostic in the sense that 
once you’re connected to the remote system and can “see” the drive, you can use any 
tool you want (dd.exe, ProDiscover, FTK Imager, etc.) to acquire an image of that drive. 
You can deploy F-Response on Mac OS X, Linux, and Windows systems, and on 
Windows systems it has the added benefi t of providing remote, read-only access to physical 
memory. At the SANS Forensic Summit in October 2008, during his presentation with 
Aaron Walters, Matt announced the release of F-Response 2.03, which provides remote, 
real-time, read-only access to a Windows system’s physical memory, for all versions of 
Windows, including XP and Vista. Once the connection to the remote system is set up, 
a responder can then use tools such as dd.exe or FTK Imager to acquire a copy of physical 
memory. 

 F-Response’s capability (Version 2.06 beta was used in this example) for obtaining 
a copy of physical memory from a remote Windows system has tremendous implications 
for incident response, particularly when deploying the Enterprise Edition (see the 
“F-Response Enterprise Edition (EE)” sidebar for more information on deploying this 
capability in an enterprise environment). Matt has several videos linked to the F-Response 
blog ( www.f-response.com/index.php?option=com_content&task=blogsection&id=4&
Itemid=9 ) that demonstrate uses and aspects of the F-Response tool, such as illustrating 
how to acquire specifi c data, for example, by accessing a live Microsoft Exchange server. 

 At the SANS Forensic Summit in October 2008, Matt announced that F-Response 
would provide remote, read-only access to drives on Windows systems and to physical 
memory. Upon a successful connection, remote drives appear on the responder’s system 
with the familiar drive icon, as  Figure 3.3    illustrates.



106 Chapter 3 • Windows Memory Analysis

 Figure 3.3    Remote Windows System Drive Connected to As F:\    

   Tools & Traps…  

    F-Response Enterprise Edition (EE) 
 You can deploy F-Response Enterprise Edition (EE) agents in a proactive fashion. 
Deploying the EE agents ahead of time can signifi cantly speed response time, as the 
agents install as a Windows service, but by default do  not  start automatically when 
the system is booted. 

Continued



 Windows Memory Analysis • Chapter 3 107

 You also can install the agent in a stealthy manner, using tools such as psexec.exe 
( http://technet.microsoft.com/en-us/sysinternals/bb897553.aspx )   or   xcmd.exe ( http://
feldkir.ch/xcmd.htm ). The PDF document “Remote (Stealth) Deployment of F-Response 
EE on Windows Systems,” located in the ch3 directory on the media that accompanies 
this book, clearly illustrates the necessary steps for deploying F-Response EE remotely 
(or in a stealthy manner) over the network. 

 In spring 2009, Matt Shannon released the F-Response Enterprise Management 
Console, or FEMC. The FEMC is a GUI-based tool that completely removes all of the 
effort required to manually deploy the Enterprise Edition. Clicking through the user 
interface, a responder (or consultant) can locate systems in the domain (or workgroup) 
on which to install F-Response EE, as  Figure 3.4    illustrates. 

 Figure 3.4    FEMC User Interface Populated with Systems    

 Once systems have been located and selected, deploying and starting the 
F-Response service is nothing more than a couple of mouse clicks away, as illustrated 
in part in  Figure 3.5   . This is the case whether you want to install it on one system or 
on a dozen systems. 

Continued



108 Chapter 3 • Windows Memory Analysis

 All the responder needs to do is select the systems onto which she wishes to 
deploy F-Response, and then with a couple of mouse clicks deploy the agent automati-
cally. Even the confi guration of the .ini fi le is handled automatically through the user 
interface, as  Figure 3.6    illustrates. 

 Figure 3.5    Logging in to F-Response EE via the FEMC User Interface    

 Figure 3.6    Confi guring F-Response EE via the FEMC User Interface    

Continued



 Windows Memory Analysis • Chapter 3 109

   As physical memory (RAM) does not contain a partition table, the responder’s system 
will not recognize the connection to the remote system’s physical memory as a drive. 
However, the connection can be seen through the Disk Management Microsoft 
Management Console (MMC), as  Figure 3.7    shows. 

 Figure 3.7    F-Response EE Connection to 
Remote RAM Seen via Disk Management MMC    

 Information entered into the Domain/Network Credentials section of the 
Confi guration dialog shown in  Figure 3.6  is available throughout the duration of the 
session, but is  not  saved or preserved in any way when the FEMC is closed. 

 Working with the FEMC, it actually took me more effort to play BrickBreaker on 
my BlackBerry than it does to deploy F-Response EE across several systems, connect to 
each, and then completely uninstall the agent. The FEMC pushes the functionality of 
an extremely powerful and valuable tool forward by a quantum leap (not to take 
anything away from Scott Bakula…).     

 Once the connection to the remote system’s RAM has been verifi ed, you can use tools 
such as FTK Imager to perform a memory dump.  Figure 3.8  illustrates selecting the remote 
system’s RAM via FTK Imager. 



110 Chapter 3 • Windows Memory Analysis

  Figure 3.9  illustrates the selected RAM from  Figure 3.8  as it appears in the FTK Imager 
Evidence Tree. 

 Figure 3.9    Selected RAM in FTK Imager Evidence Tree    

 Figure 3.8    Selecting a Remote System’s RAM via FTK Imager    

 The RAM from the remote system can now be acquired using FTK Imager. Other tools 
can also be used; F-Response is a tool-agnostic framework, as it does not require that you 
use a specifi c tool. A responder can use EnCase, X-Ways Forensics, or even versions of dd.exe 
to dump RAM from the remote system. Again, the connection is read-only, and as illus-
trated in  Figures 3.8 and 3.9     , the remote system’s RAM appears on the responder’s system 
as a  \\.\PhysicalDrive  object (i.e.,  \\.\PhysicalDrive2  or  \\.\PhysicalDrive3 ).



 Windows Memory Analysis • Chapter 3 111

     Section Summary 
 John Sawyer posted to the SANS Forensics blog ( http://sansforensics.wordpress.
com/2008/12/13/windows-physical-memory-fi nding-the-right-tool-for-the-job/ ) on 
December 13, 2008, listing some of the various tools available for collecting (as well as 
analyzing) memory dumps from Windows systems, along with brief descriptions of each of 
them. In addition to John’s blog post, other posts (to blogs and discussion lists) have made 
comments and addressed concerns about the availability and use of the various tools for 
dumping memory from Windows systems. In many ways, this chapter serves as an initial step 
into this realm of tools, as I do not doubt that between the time I submit this chapter to the 
publisher and the time the fi nished book is available the tools will have changed. This very 
thing happened between the time I submitted this chapter for technical review and the time 
I received the tech editor’s comments—in the ensuing time, HBGary had released FastDump 
Pro and announced its availability to the public. I fi rmly believe that the landscape of memory 
dumping (and analysis) tools will change, doing so in relatively short order. 

 So far in this section you’ve seen some of the tools available for dumping the contents of 
physical memory from Windows systems, but little else. In an effort to provide more of a 
side-by-side comparison of some of these tools, I ran some of my own limited testing. Using 
the command lines (in the case of Memoryze, the memorydd.bat fi le) for each tool discussed 
previously in this chapter that might be run from a CD or USB thumb drive, I ran each of 
them (with the exception of winen.exe) on a Dell Latitude D820 system with 4  GB of 
RAM installed, running Windows XP Service Pack 3. My testing process was to simply boot 
the system, run one of the tools, and once the tool had completed its dump of memory, 

   NOTE  
   At the SANS Forensic Summit in October 2008, Aaron Walters and Matt 
Shannon gave a presentation that incorporated the use of F-Response and 
the Volatility Framework in something called “Voltage” ( http://volatilesys-
tems.blogspot.com/2008/10/voltage-giving-investigators-power-to.html ). 
Although not available at the time of this writing, Voltage is described as 
providing an unprecedented level of real-time, read-only, remote access, 
automation, and visualization to temporally relevant information that has 
not been available to date. For all the fancy words, Voltage provides a 
responder with the capability to quickly reach out to remote systems, 
identify systems that may have malware installed and running, and then 
collect a sample of physical memory, all without modifying the artifacts on 
the remote system.    



112 Chapter 3 • Windows Memory Analysis

reboot the system to run the next tool. In doing so, I saved the memory dumps so that 
I could see the sizes of each of them in relation to the dumps produced by other tools; 
my fi nal results appear as follows, listed by the size in bytes and the output fi lename:

    3,210,854,400 win32dd-l0-xp.img   

   3,210,854,400 win32dd-l1-xp.img   

   3,210,854,400 mdd-xp-2.img   

   3,210,854,400 mdd-xp.img   

   3,211,329,536 dd_xp.img   

   3,211,329,536 nigilant_xp.img   

   3,211,333,632 fdpro-xp.bin   

   3,211,334,904 fdpro-xp.hpak   

   3,211,329,536 memory.1e1d2b07.img (Memoryze)     

 As you can see, I included the name of the tool and some additional identifying 
information from the command line in the name of the output dump fi le. Also, it’s clear 
that there are some variations in the sizes of the resultant dumps, likely due to the process 
each tool used. As expected, the exception to this is the .hpak format dump fi le produced 
by FastDump Pro, as the – page  switch had been used to incorporate the page fi le in the 
dump process. The fi le size would likely have been signifi cantly larger had there been 
greater activity on the system, and had the system been allowed to run longer. 

 It should be clear at this point that the tool you should use to collect the contents of 
physical memory really depends on a number of factors, including the version of Windows 
(not only Windows XP versus Vista, but also 32- versus 64-bit), the amount of physical 
memory installed in the system, and your analysis tools.

   WARNING  
   As with using any tools that you’ve downloaded from the Internet, be sure 
that you’ve tested the tools and you’ve read and that you understand the 
license agreement regarding their use. Some tools, although extremely 
powerful and useful, cannot be used by consultants. Also, you need to be 
aware of the artifacts left by various tools. As discussed in  Chapter 1 , many 
of the tools available from Microsoft (formerly Sysinternals) create Registry 
entries when run. Winen.exe does something similar, in that it will write its 
driver (winen_.sys) to the same directory from which the fi le is run, and will 
create a Services subkey within the Registry. The key here, as with all live-
response activities, is not to avoid using a tool because it leaves “footprints” 
or artifacts of its use, but rather to understand this fact and incorporate that 
understanding into your methodology and documentation.    



 Windows Memory Analysis • Chapter 3 113

     Alternative Approaches 
for Dumping Physical Memory 
 The software we’ve discussed so far aren’t the only means by which the contents of physical 
memory can be dumped from a live system; several alternative methods have been put forth in 
the past. Some of those methods use native functionality inherent to the operating system 
(i.e., crash dumps) or to virtualization platforms (i.e., VMware). As we’ll see, other alternative 
methods for dumping physical memory from a system take a more physical approach. 

  Hardware Devices 
 In February 2004, the  Digital Investigation Journal  published a paper by Brian Carrier and 
Joe Grand titled “A Hardware-Based Memory Acquisition Procedure for Digital Investigations.” 
In the paper, Brian and Joe presented the concept for a hardware expansion card dubbed 
Tribble (possibly a reference to that memorable  Star Trek  episode) that could be used to 
retrieve the contents of physical memory to an external storage device. This would allow an 
investigator to retrieve the volatile memory from the system without introducing any new 
code or relying on potentially untrusted code to perform the extraction. In the paper, the 
authors stated that they had built a proof-of-concept Tribble device, designed as a    Payment 
Card Industry (PCI) expansion card that could be plugged into a PC bus. Other hardware 
devices are available that allow you to capture the contents of physical memory and are largely 
intended for debugging hardware systems. These devices may also be used for forensics. 

 As illustrated in the DFRWS 2005 Memory Challenge (referred to earlier in this chapter), 
one of the limitations of a software-based approach to retrieving volatile memory is that the 
program the investigator is using has to be loaded into memory. Subsequently, particularly on 
Windows systems, the program may (depending on its design) rely on untrusted code or libraries 
(DLLs) that the attacker has subverted. Let’s examine the pros and cons of such a device: 

 Hardware devices such as Tribble are unobtrusive and easily accessible. Dumping the 
contents of physical memory in this manner introduces no new or additional software to 
the system, minimizing the chances of data being obscured in some manner. However, the 
primary limitation of using the hardware-based approach is that the hardware needs to 
be installed prior to the incident. At this point, the Tribble devices are not widely available. 
Other hardware devices  are  available and intended for hardware debugging, but they must 
still be installed prior to an incident to be of use.  

  FireWire 
 Due to technical specifi cs of FireWire devices and protocols, there is a possibility that 
with the right software, an investigator can collect the contents of physical memory from 
a system. FireWire devices use direct memory access (DMA), meaning they can access 
system memory without having to go through the CPU. These devices can read from 



114 Chapter 3 • Windows Memory Analysis

and/or write to memory at much faster rates than systems that do not use DMA. The inves-
tigator would need a controller device that contains the appropriate software and is capable 
of writing a command into a specifi c area of the FireWire device’s memory space. Memory 
mapping is performed in hardware without going through the host operating system, allowing 
for high-speed low-latency data transfers. 

 Adam Boileau (see  www.storm.net.nz/projects/16 ) came up with a way to extract 
physical memory from a system using Linux and Python. The software used for this collection 
method runs on Linux and relies on support for the /dev/raw1394 device as well as Adam’s 
pythonraw1394 library, the libraw1394 library, and Swig (software that makes C/C++ header 
fi les accessible to other languages by generating wrapper code). In his demonstrations, Adam 
even included the use of a tool that will collect the contents of RAM from a Windows 
system with the screen locked, then parse out the password, after which Adam logs in to 
the system. 

 Jon Evans, an offi cer with the Gwent police department in the United Kingdom, has 
installed Adam’s tools and successfully collected the contents of physical memory from 
Windows systems as well as from various versions of Linux. As part of his master’s thesis, 
Jon wrote an overview on how to install, set up, and use Adam’s tools on several different 
Linux platforms, including Knoppix v.5.01, Gentoo Linux 2.6.17, and BackTrack, from 
Remote-exploit.org. Once all the necessary packages (including Adam’s tools) have been 
downloaded and installed, Jon walks through the process of identifying FireWire ports and 
tricking the target Windows system into “thinking” the Linux system is an iPod by using the 
Linux  romtool  command to load a data fi le containing the Control Status Register (CSR) for 
an iPod (the CSR fi le is provided with Adam’s tools). Here are the pros and cons of this 
approach: 

 Many systems available today have FireWire/IEEE 1394 interfaces built right into the 
motherboards, increasing the potential accessibility of physical memory using this method. 
However, Arne Vidstrom has pointed out some technical issues (see  http://ntsecurity.nu/
onmymind/2006/2006-09-02.html ) regarding the way dumping the contents of physical 
memory over FireWire can result in a hang or in parts of memory being missed. George M. 
Garner, Jr., noted in an e-mail exchange on a mailing list in October 2006 that in limited 
testing, there were notable differences in important offsets between a RAM dump collected 
using the FireWire technique and one collected using George’s own software. This difference 
could only be explained as an error in the collection method. Furthermore, this method has 
caused Blue Screens of Death (BSoDs, discussed further in a moment) on some target 
Windows systems, possibly due to the nature of the FireWire hardware on the system.  

  Crash Dumps 
 We’ve all seen crash dumps at one point or another; in most cases they manifest themselves 
as an infamous Blue Screen of Death (a.k.a. BSoD, with more descriptive information 
available at  http://en.wikipedia.org/wiki/Blue_Screen_of_Death ). In most cases they’re an 



 Windows Memory Analysis • Chapter 3 115

annoyance, if not indicative of a much larger issue. However, if you want to obtain a pristine, 
untainted copy of the content of RAM from a Windows system, perhaps the only way to do 
that is to generate a full crash dump. This is because when a crash dump occurs, the system 
state is frozen and the contents of RAM (along with about 4     Kb of header information) 
are written to the disk. This preserves the state of the system and ensures that no alterations 
are made to the system, beginning at the time the crash dump was initiated. 

 This information can be extremely valuable to an investigator. First, the contents of the 
crash dump are a snapshot of the system, frozen in time. I have been involved in several 
investigations during which crash dumps have been found and used to determine root 
causes, such as avenues of infection or compromise. Second, Microsoft provides tools for 
analyzing crash dumps—not only in the Microsoft Debugging Tools ( www.microsoft.com/
whdc/devtools/debugging/default.mspx ) but also in the Kernel Memory Space Analyzer 
(a tool with a ridiculously long URL, so it’s best to do a search for it), which is based on 
the Debugging Tools. 

 Sounds like a good deal, doesn’t it? After all, other than having a 1GB fi le written to the 
hard drive, possibly overwriting evidence (and not really minimizing the impact of your 
investigation on the system), there are no limitations to this approach, right? Under some 
circumstances, this is true … or you might be willing to accept that condition, depending on 
the circumstances. However, there are still a couple of stumbling blocks. First, not all systems 
generate full crash dumps by default. Second, by default, Windows systems do not generate 
crash dumps on command. 

 The fi rst issue is relatively simple to deal with, according to Microsoft Knowledge 
Base article Q254649 ( http://support.microsoft.com/kb/254649 ). This article lists the 
three types of crash dumps: small (64  KB), kernel, and complete crash dumps. We’re looking 
for the complete crash dump because it contains the complete contents of RAM. 
The article also states that Windows 2000 Pro and Windows XP (both Pro and Home) 
will generate small crash dumps, and Windows 2003 (all versions) will generate full crash 
dumps. My experience with Windows Vista RC1 is that it will generate small crash 
dumps, by default. 

   NOTE  
   Microsoft Knowledge Base article 235496 ( http://support.microsoft.com/
kb/235496 ) specifi es the Registry entries that contain confi guration informa-
tion for Windows systems with respect to the memory.dmp fi le that is the 
result of a crash dump. The default location for the memory.dmp fi le is 
%SystemRoot%\memory.dmp, but the administrator can specify another 
location via the  DumpFile  Registry value.    



116 Chapter 3 • Windows Memory Analysis

   Along the same lines, Microsoft Knowledge Base article Q274598 ( http://support.
microsoft.com/kb/274598 ) states that complete crash dumps are not available on systems 
with more than 2  GB of RAM. According to the article, this is largely due to the space 
requirements (i.e., for systems with complete crash dumps enabled, the page fi le must be 
as large as the contents of RAM + 1  MB) as well as the time it will take to complete the 
crash dump process. 

 Microsoft Knowledge Base article Q307973 ( http://support.microsoft.com/kb/307973 ) 
describes how to set the full range of system failure and recovery options. These settings are 
more for system administrators and information technology (IT) managers who are setting 
up and confi guring systems before an incident occurs, but the Registry key settings can 
provide some signifi cant clues for an investigator. For example, if the system was confi gured 
(by default or otherwise) to generate a complete crash dump and the administrator reported 
seeing the BSoD, the investigator should expect to see a complete crash dump fi le on the 
system. 

   NOTE  
   Investigators must be extremely careful when working with crash dump fi les, 
particularly from systems that process but do not necessarily store sensitive 
data. In some cases, crash dumps have occurred on systems that processed 
information such as credit card numbers, Social Security numbers, or the like, 
and these crash dumps have been found to contain that sensitive information. 
Even though the programmers specifi cally wrote the application so that no 
sensitive personal information was saved locally on the system, a crash dump 
wrote the contents of memory to the hard drive.    

   So, let’s say the system failure and recovery confi guration options on a system are set 
ahead of time (as part of the confi guration policies for the systems) to perform a full crash 
dump. How does the investigator “encourage” a system to perform a crash dump on 
command, when it’s needed? It turns out that there’s a Registry key (see Knowledge Base 
article Q244139, available at  http://support.microsoft.com/kb/244139 ) that can be set to 
cause a crash dump when the right Ctrl key is held down and the Scroll Lock key is pressed 
 twice . However, once this key is set, the system must be rebooted for the setting to take effect. 
Let’s look at the pros and cons of this technique: 

 Dumping memory via a crash dump is perhaps the only technically accurate (albeit not 
“forensically sound”) method for creating an image of the contents of RAM. This is 
because when the  KeBugCheck  API function is called, the entire system is halted and the 
contents of RAM are written to the page fi le, after which they are written to a fi le on the 



 Windows Memory Analysis • Chapter 3 117

system hard drive (overwriting data). Further, Microsoft provides debugging tools as well 
as the Kernel Memory Space Analyzer (which consists of an engine, plug-ins, and user 
interface) for analyzing crash dump fi les. Some Windows systems do not generate full 
crash dumps by default (e.g., Vista RC1; I had an issue with a driver when I fi rst installed 
Vista RC1 and I would get BSoDs whenever I attempted to shut down the machine, 
which resulted in mini dump fi les). 

 In addition, modifying a system to accept the keystroke sequence to create a crash 
dump requires a reboot and must be done ahead of time to be used effectively for incident 
response. Even if this confi guration change has been made, the crash dump process will 
still create a fi le equal in size to physical memory on the hard drive. To do so, as stated in 
Knowledge Base article Q274598, the page fi le must be confi gured to be equal to at least 
the size of physical memory plus 1  MB. This is an additional step that must be corrected 
to use this method of capturing the contents of physical memory; it’s one that is not often 
followed.

   TIP  
   A support article available at the Citrix Web site ( http://support.citrix.com/
article/CTX107717&parentCategoryID=617 ) provides a methodology for 
using livekd.exe ( http://technet.microsoft.com/en-us/sysinternals/bb897415.aspx ) 
and the Microsoft Debugging Tools to generate a full kernel dump of physical 
memory. Once livekd.exe is launched, the command  .dump /f <fi lepath>  is 
used to generate the dump fi le. The support article does include the caveat 
that RAM dumps generated in this manner can be inconsistent because the 
dump can take a considerable amount of time and the system is live and 
 continues to run during the memory dump.    

     Virtualization 
 VMware is a popular virtualization product (VMware Workstation 5.5.2 was used extensively 
in this book) that, for one thing, allows the creation of pseudo-networks utilizing the 
hardware of a single system. This capability has many benefi ts. For example, you can set up 
a guest operating system and create a snapshot of that system once you have it confi gured 
to your needs. From there, you can perform all manner of testing, including installing 
and monitoring malware, and you will always be able to revert to the snapshot, beginning 
anew. I have even seen active production systems run from VMware sessions. 

 When you’re running a VMware session, you can suspend that session, freezing it 
temporarily.  Figure 3.10    illustrates the menu items for suspending a VMware session. 



118 Chapter 3 • Windows Memory Analysis

 When a VMware session is suspended, the contents of physical memory are contained 
in a fi le with the .vmem extension. The format of this fi le is very similar to that of raw, 
dd-style memory, and in fact, it can be parsed and analyzed with the same tools discussed 
previously in the chapter. 

 VMware isn’t the only virtualization product available. Others include VirtualPC from 
Microsoft, as well as the freeware Bochs ( http://bochs.sourceforge.net/ ). None of these 
virtualization products    have been tested to determine whether they can generate dumps 
of physical memory; however, if this is an option available to you, suspending a VMware 
session to obtain a dump of physical memory is quick and easy and minimizes your interaction 
with and impact on the system.

   TIP  
   In May 2006, Brett Shavers wrote an excellent article for the ForensicFocus 
Web site, titled “VMware as a forensic tool” (available at  www.forensicfocus.
com/vmware-forensic-tool ). Brett followed that article in 2008 with the paper 
“Virtual Forensics: A Discussion of Virtual Machines Related to Forensics 
Analysis” ( www.forensicfocus.com/downloads/virtual-machines-forensics-
analysis.pdf ), which is by far the best treatment of the topic that I’ve been 
able to fi nd anywhere.    

 Figure 3.10    Menu Items for Suspending a Session in VMware Workstation 6.5    



 Windows Memory Analysis • Chapter 3 119

     Hibernation File 
 When a Windows (Windows 2000 or later) system “hibernates,” the Power Manager saves 
the compressed contents of physical memory to a fi le called hiberfi l.sys in the root directory 
of the system volume. This fi le is large enough to hold the uncompressed contents of 
physical memory, but compression is used to minimize disk I/O and to improve resume-
from-hibernation performance. During the boot process, if a valid hiberfi l.sys fi le is 
located, the NT Loader (NTLDR) will load the fi le’s contents into physical memory and 
transfer control to code within the kernel that handles resuming system operation after 
a hibernation (loading drivers, etc.). This functionality is most often found on laptop 
systems. Here are the pros and cons: 

 Analyzing the contents of a hibernation fi le could give you a clue as to what was 
happening on the system at some point in the past. Matthieu Suiche decoded the hiber-
nation fi le format and presented his fi ndings at the BlackHat USA 2008 conference 
( www.blackhat.com/presentations/bh-usa-08/Suiche/BH_US_08_Suiche_Windows_
hibernation.pdf   ). This presentation followed his earlier write-up on the subject from 
February 2008 titled “Sandman Project” (  http://sandman.msuiche.net/docs/SandMan_
Project.pdf   ), and his previous work from 2007 with Nicolas Ruff. The Sandman tool is 
available from  www.msuiche.net/category/sandman/ , and the functionality is incorporated 
into the Volatility Framework (discussed later in this chapter). 

 Something else to consider about hibernation fi les is that this functionality may be the 
only option available for capturing the full contents of physical memory. Some of the 
available tools for collecting the contents of physical memory may have “issues” (more 
specifi cally, they may have caused systems with more than 4  GB of physical memory—
including 64-bit systems—to crash) or may not be available or feasible for use in some 
environments. Using powercfg.exe to enable hibernation mode (if it is not already 
enabled) and then using some other mechanism or tool to force the system to hibernate 
may be the only option for obtaining a memory dump. You can force a system with 
hibernation enabled to hibernate using Microsoft’s psshutdown.exe ( http://technet.microsoft.
com/en-us/sysinternals/bb897541.aspx ) utility with the – h  option, or by creating a batch 
fi le that contains the line:

    %windir%\System32\rundll32.exe powrprof.dll,SetSuspendState Hibernate     

 The hibernation fi le is compressed and in most cases will not contain the  current  contents 
of memory. Thanks to the work performed by Matthieu and Nicolas, the hibernation fi le 
can be accessed in the same manner as a live memory dump, so I can’t really think of any 
“cons” to using it. In addition to dumping memory from a live system, having a hibernation 
fi le available will give you memory contents from a previous point in time against which 
to compare your memory dump.    



120 Chapter 3 • Windows Memory Analysis

  Analyzing a Physical Memory Dump 
 Now that you have seen ways to acquire the contents of RAM from a system (both local 
and remote methods), what can you do with the memory dump? For the most part, prior to 
summer 2005, the standard operating procedure for most folks who had bothered to collect 
a memory dump (usually via the version of dd.exe available with George M. Garner, Jr.’s 
Forensic Acquisition Utilities) was to run strings.exe against it, or run  grep  searches (for 
e-mail addresses, IP addresses, etc.), or both. Although this would result in investigative leads 
(fi nding what appeared to be a password geographically “close” to a username might give an 
investigator a clue or something to examine further) that would often lead to something 
defi nitive, it does not provide overall context to the information that is discovered. For example, 
is that string that was located part of a word processing or text document, or was it copied 
to the system Clipboard? What process was using the memory where that string or IP address 
was located? 

 With the DFRWS 2005 Memory Challenge as a catalyst, steps have been taken in an 
attempt to add context to the information found in RAM. By locating specifi c processes 
(or other objects maintained in memory) and the memory pages used by those processes, 
investigators can gain greater insight into the information they discover as well as perform 
signifi cant data reduction by fi ltering out “known good” processes and data and focusing on 
the data that appears “unusual.” Several individuals have written tools that can be used to 
parse through RAM dumps and retrieve detailed information about processes and other 
structures. 

 In 2007, Aaron Walters released the Volatility Framework ( https://www.volatilesystems.
com/ ), an open source, Python-based framework for parsing memory dumps from (at the 
time of this writing) Windows XP systems. During summer 2008, Aaron held the fi rst Open 
Memory Forensics Workshop ( https://www.volatilesystems.com/default/omfw ) just prior to 
the DFRWS 2008 conference, during which researchers, analysts, and practitioners could rub 
elbows and discuss issues surrounding memory acquisition and analysis. Version 1.3 of the 
Volatility Framework was available at the conference, and was even used during the DFRWS 
Forensic Rodeo exercise. 

 Throughout the rest of this chapter, we will look at these tools for performing analysis 
of memory dumps. We will initially use the memory dumps from the DFRWS 2005 
Memory Challenge as exemplars, for examples and demonstrations of tools and techniques 
for parsing Windows 2000 memory dumps. You’re probably asking yourself, why even 
bother with that? Windows 2000 is the new MS-DOS, right? Well, that’s probably not far 
from the truth, but the dumps do provide an excellent basis for examples because they 
have already been examined in great detail. Also, they’re freely available for download and 
examination. 



 Windows Memory Analysis • Chapter 3 121

  Determining the 
Operating System of a Dump File 
 Have you ever been handed an image of a system, and when you asked what the operating 
system is/was, you simply got “Windows” in response? Shakespeare doesn’t cut it here, my 
friends, because a rose by any other name might  not  smell as sweet. When you’re working 
with an image of a system, the version of Windows that you’re confronted with  matters , and 
depending on the issue you’re dealing with, it could matter a lot. The same is true when 
you’re dealing with a RAM dump fi le; in fact, it could be even more so. As I’ve already 
stated, the structures that are used to defi ne threads and processes in memory vary not only 
between major versions of the operating system but also within the same version with 
different service packs installed. 

 So, when someone hands you a RAM dump and says “Windows,” you’d probably want 
to know how to fi gure that out, wouldn’t you? After all, you don’t want to waste a lot of 
time running the dump fi le through every known tool until one of them starts producing 
valid hits on processes, right? Through personal correspondence (that’s a fancy term for 
“e-mail”) awhile ago, Andreas Schuster suggested to me that the Windows kernel might 
possibly be loaded into the same location in memory every time Windows boots. Now, that 
location is likely to, and does, change for every version of Windows, but so far it seems to 
be consistent for each version. The easiest way to fi nd this location is to run LiveKD as we 
did earlier in this chapter, but note in particular the information that’s displayed as it starts up 
(shown here on a Windows XP SP2 system):

    Windows XP Kernel Version 2600 (Service Pack 2) MP (2 procs) Free x86 
compatible   

   Product: WinNt, suite: TerminalServer SingleUserTS   

   Built by: 2600.xpsp.050329-1536   

    Kernel base = 0x804d7000  PsLoadedModuleList = 0x8055c700     

 We’re most interested in the information that I’ve boldfaced—the address of the kernel 
base. We subtract 0x80000000 from that address and then go to the resultant physical location 
within the dump fi le. If the fi rst two bytes located at that address are  MZ , we could have 
a full-blown Windows portable executable (PE) fi le at that location, and we  might  have the 
kernel. From this point, we can use code similar to what’s in lspi.pl to parse apart the PE 
header and locate the various sections within the PE fi le. Because the Windows kernel is 
a legitimate Microsoft application fi le, we can be sure that there is a resource section within 
the fi le that contains a  VS_VERSION_INFO  section. Following information provided by 
Microsoft regarding the various structures that make up this section, we can then parse 
through it looking for the fi le description string. 



122 Chapter 3 • Windows Memory Analysis

 On the accompanying DVD, you’ll fi nd a fi le called osid.pl that does just that. Osid.pl 
began life as kern.pl and found its way into Rick McQuown’s PTFinderFE utility. Rick 
asked me via e-mail one day whether there was a way to shorten and clarify the output, 
so I made some modifi cations to the fi le (changed the output, added some switches, etc.) 
and renamed it. 

 In its simplest form, you can run osid.pl from the command line, passing in the path to 
the image fi le as the sole argument:

    C:\Perl\memory>osid.pl d:\hacking\xp-laptop1.img     

 Alternatively, you can designate a specifi c fi le using the – f  switch:

    C:\Perl\memory>osid.pl –f d:\hacking\xp-laptop1.img     

 Both of these commands will give you the same output; in this case, the RAM dump 
was collected from a Windows XP SP2 system, so the script returns  XPSP2 . If this isn’t quite 
enough information and you’d like to see more, you can add the – v  switch (for  verbose ), and 
the script will return the following for the xp-laptop1.img fi le:

    OS   : XPSP2   

   Product  : Microsoft« Windows« Operating System ver 5.1.2600.2622     

 As you can see, the strings within the  VS_VERSION_INFO  structure that refer to the 
product name and product version get concatenated to produce the additional output. If we 
run the script with both the – v  and the – f  switches against the fi rst RAM dump fi le from 
the DFRWS 2005 Memory Challenge, we get:

    OS   : 2000   

   Product  : Microsoft(R) Windows (R) 2000 Operating System ver 5.00.2195.1620     

 Running this script against other memory dumps mentioned previously in this 
chapter illustrates how well it works across various versions of Windows. For example, 
when run against the memory dump used in the Memoryze example, we see the 
following:

    C:\Perl\memory>osid.pl -f d:\hacking\boomer-win2003.img -v   

   OS   : 2003   

   Product  : Microsoft« Windows« Operating System ver 5.2.3790.0     

 Running the script against another Windows 2003 memory dump gives us slightly 
different results:

    C:\Perl\memory>osid.pl -f d:\hacking\win2k3sp1_physmem.img -v   

   OS   : 2003SP1   

   Product  : Microsoft« Windows« Operating System ver 5.2.3790.1830     

 This script also works equally well against VMware .vmem fi les. I ran the script against a 
.vmem fi le from a Windows 2000 VMware session and received the following output:



 Windows Memory Analysis • Chapter 3 123

    OS   : 2000   

   Product  : Microsoft(R) Windows (R) 2000 Operating System ver 5.00.2195.7071     

 I think that more than anything else, this demonstrates the utility of scripts or tools 
such as this, as it provides an analyst with the ability to more completely document the 
various items to be analyzed, particularly when such things may not have been completely 
documented during the response activities when data was initially collected.

   TIP  
   Most analysis tools, discussed later in this chapter, are capable of performing 
the same function as was just discussed. For example, you can use the 
Volatility  ident  command to identify the operating system of a memory 
dump.    

     Process Basics 
 Throughout this chapter, we will focus primarily on parsing information regarding processes 
from a memory dump. This is due, in part, to the fact that the majority of the publicly available 
research and tools focus on processes as a source of forensic information. That is not to say 
that other objects within memory should be excluded, but rather that most researchers seem 
to be focusing on processes. We will discuss another means of retrieving information from 
a RAM dump later in the chapter, but for now, we will focus our efforts on processes. 
To that end, we need to have a pretty good idea of what a process “looks like” in memory. 
The following section focuses on processes in Windows 2000 memory, but most of the 
concepts remain the same for all versions of Windows. The biggest difference is in the 
actual structure of the process itself, and going into the details of the process structures on 
all versions of Windows is beyond the scope of this book. 

  EProcess Structure 
 Each process on a Windows system is represented as an executive process, or EProcess, 
block. This EProcess block is a data structure in which various attributes of the process, as 
well as pointers to a number of other attributes and data structures (threads, the process 
environment block) relating to the process, are maintained. Because the data structure is a 
sequence of bytes, with each sequence having a specifi c meaning and purpose, these structures 
can be read and analyzed by an investigator. However, the one thing to keep in mind is that 
the only thing consistent between versions of the Windows operating system regarding 
these structures is that they aren’t consistent. You heard right: The size and even the values 
of the structures change not only between operating system versions (e.g., Windows 2000 



124 Chapter 3 • Windows Memory Analysis

to XP) but also between service packs of the same version of the operating system 
(Windows XP to XP SP2). 

 Andreas Schuster has done a great job of documenting the EProcess block structures in 
his blog ( http://computer.forensikblog.de/en/topics/windows/memory_analysis ). However, 
it is relatively easy to view the contents of the EProcess structure (or any other structure 
available on Windows). First, download and install the Microsoft Debugging Tools and the 
correct symbols for your operating system and Service Pack. Then download livekd.exe from 
Sysinternals.com (when you type  sysinternals.com  into the address bar of your browser, 
you will be automatically redirected to the Microsoft site, because by now, Mark 
Russinovich has long since been in the employ of Microsoft), and for convenience copy it 
into the same directory as the Debugging Tools. Once you’ve done this, open a command 
prompt, change to the directory where you installed the Debugging Tools, and type the 
following command:

    D:\debug>livekd –w     

 This command will open WinDbg, the GUI interface to the debugger tools. To see 
what the entire contents of an EProcess block “looks like” (with all the substructures 
that make up the EProcess structure broken out), type  dt –a –b –v _EPROCESS  into 
the command window and press  Enter . The – a  flag shows each array element on a new 
line, with its index, and the – b  switch displays blocks recursively. The – v  flag creates 
more verbose output, telling you the overall size of each structure, for example. In 
some cases, it can be helpful to include the – r  flag for recursive output. The following 
illustrates a short excerpt from the results of this command, run on a Windows 2000 
system:

    kd> dt -a -b -v _EPROCESS   

   struct _EPROCESS, 94 elements, 0x290 bytes   

      +0x000 Pcb    : struct _KPROCESS, 26 elements, 0x6c bytes   

       +0x000 Header   : struct _DISPATCHER_HEADER, 6 elements, 0x10 bytes   

        +0x000 Type   : UChar   

        +0x001 Absolute   : UChar   

        +0x002 Size   : UChar   

        +0x003 Inserted   : UChar   

        +0x004 SignalState   : Int4B   

        +0x008 WaitListHead   : struct _LIST_ENTRY, 2 elements, 0x8 bytes   

         +0x000 Flink   : Ptr32 to   

         +0x004 Blink   : Ptr32 to   

        +0x010 Profi leListHead   : struct _LIST_ENTRY, 2 elements, 0x8 bytes   

        +0x000 Flink   : Ptr32 to   

        +0x004 Blink   : Ptr32 to   

       +0x018 DirectoryTableBase  : (2 elements)  Uint4B     



 Windows Memory Analysis • Chapter 3 125

 The entire output is much longer (according to the header, the entire structure is 0x290 
bytes long), but don’t worry, we will address important (from a forensic/investigative aspect) 
elements of the structure as we progress through this chapter. 

   NOTE  
   The Windows kernel keeps track of active processes by way of a doubly 
linked list; this means that each process “points to” both the process after it 
and the process before it, in a circular list. The operating system enumerates 
a list of active processes by walking  PsActiveProcessList  and developing a list 
of known active processes. Within the EProcess structure is a  LIST_ENTRY  item 
named  ActiveProcessLinks . This entry has two values,  fl ink  and  blink , which 
are pointers to the next and previous processes, respectively. Many memory 
analysis tools will do the same thing (i.e., walk the list of active processes) in 
a memory dump fi le, whereas others will perform a brute force enumeration 
of process objects (e.g., lsproc.pl and Volatility), enumerating even exited 
processes. This is very important, as some rootkits (see  Chapter 7 ) hide 
processes by unlinking their processes from this doubly linked list.    

   An important element of a process that the EProcess structure points to is the  process 
environment block , or PEB. This structure contains a great deal of information, but the elements 
that are important to us, as forensic investigators, are:

    A pointer to the loader data (referred to as   ■ PPEB_LDR_DATA ) structure that 
includes pointers or references to modules (DLLs) used by the process  

   A pointer to the image base address, where we can expect to fi nd the beginning  ■

of the executable image fi le  

   A pointer to the process parameters structure, which itself maintains the DLL path,  ■

the path to the executable image, and the command line used to launch the process    

 Extracting this information from a dump fi le can prove to be extremely useful to an 
investigator, as you will see throughout the rest of this chapter.  

  Process Creation Mechanism 
 Now that you know a little bit about the various structures involved with processes, it 
would be helpful to know something about how the operating system uses those structures, 
particularly when it comes to creating an actual process. 



126 Chapter 3 • Windows Memory Analysis

 A number of steps are followed when a process is created. These steps can be broken 
down into six stages (taken from  Windows Internals , 4 th  Edition,  Chapter 6 , by Russinovich 
and Solomon):

   1 .  The image (.exe) fi le to be executed is opened. During this stage, the appropriate 
subsystem (POSIX, MS-DOS, Win 16, etc.) is identifi ed. Also, the Image File 
Execution Options Registry key (see  Chapter 4 ) is checked to see whether 
there is a Debugger value, and if there is, the process starts over.  

  2 .  The EProcess object is created. The kernel process block (KProcess), the process 
environment block, and the initial address space are also set up.  

  3 .  The initial thread is created.  

  4 .  The Windows subsystem is notifi ed of the creation of the new process and thread, 
along with the ID of the process’s creator and a fl ag to identify whether the process 
belongs to a Windows process.  

  5 .  Execution of the initial thread starts. At this point, the process environment has 
been set up and resources have been allocated for the process’s thread(s) to use.  

  6 .  The initialization of the address space is completed, in the context of the new 
process and thread.    

 At this point, the process now consumes space in memory in accordance with the 
EProcess structure (which includes the KProcess structure) and the PEB structure. The process 
has at least one thread and may begin consuming additional memory resources as the process 
itself executes. At this point, if the process or memory as a whole is halted and dumped, 
there will at least be something to analyze.   

  Parsing Memory Dump Contents 
 The tools described in the DFRWS 2005 Memory Challenge used a methodology for 
parsing memory contents of locating and enumerating the active process list, using specifi c 
values/offsets (derived from system fi les) to identify the beginning of the list and then 
walking through the doubly linked list until all the active processes had been identifi ed. 
The location of the offset for the beginning of the active process list was derived from one 
of the important system fi les, ntoskrnl.exe. 

 Andreas Schuster took a different approach in his Perl script, called ptfi nder.pl. His idea 
was to take a brute force approach to the problem—identifying specifi c characteristics of 
processes in memory and then enumerating the EProcess blocks as well as other information 
about the processes based on those characteristics. Andreas began his approach by enumerating 
the structure of the  DISPATCHER_HEADER , which is located at offset 0 for each EProcess 



 Windows Memory Analysis • Chapter 3 127

block (actually, it’s within the structure known as the KProcess block). Using LiveKD, we see 
that the enumerated structure from a Windows 2000 system has the following elements:

    +0x000 Header   : struct _DISPATCHER_HEADER, 6 elements, 0x10 bytes   

     +0x000 Type   : UChar   

     +0x001 Absolute   : UChar   

     +0x002 Size   : UChar   

     +0x003 Inserted   : UChar   

     +0x004 SignalState   : Int4B     

 In a nutshell, Andreas found that some of the elements for the  DISPATCHER_
HEADER  were consistent in all processes on the system. He examined the  DISPATCHER_
HEADER  elements for processes (and threads) on systems ranging from Windows 2000 up 
through early betas of Vista and found that the  Type  value remained consistent across each 
version of the operating system. He also found that the  Size  value remained consistent 
within various versions of the operating system (e.g., all processes on Windows 2000 or XP 
had the same  Size  value) but changed between those versions (e.g., for Windows 2000 the 
 Size  value is 0x1b, but for early versions of Vista it was 0x20). 

 Using this information as well as the total size of the structure and the way the structure 
itself could be broken down, Andreas wrote his ptfi nder.pl Perl script, which would enumerate 
processes and threads located in a memory dump. At the DFRWS 2006 conference he also 
presented a paper, “Searching for processes and threads in Microsoft Windows memory 
dumps” ( www.dfrws.org/2006/proceedings/2-Schuster.pdf  ), which addressed not only 
the data structures that make up processes and threads but also various rules to determine 
whether what was found was a legitimate structure or just a bunch of bytes in a fi le.

   NOTE  
   In fall 2006, Richard McQuown ( http://forensiczone.blogspot.com/ ) put 
together a GUI front end for Andreas Schuster’s PTFinder tools. The PTFinder 
tools are Perl scripts and require that the Perl interpreter be installed on a 
system to run them. (Perl is installed by default on many Linux distributions 
and is freely available for Windows platforms from ActiveState.com.) 

 Not only can Richard’s tool detect the operating system of the RAM dump 
(rather than have the user enter it manually) using code I’ll discuss later in 
this chapter, but it can also provide a graphical representation of the output. 
PTFinderFE has some interesting applications, particularly with regard to 
visualization.    



128 Chapter 3 • Windows Memory Analysis

   In spring 2006, I wrote some of my own tools to assist in parsing through Windows 
RAM dump fi les. Because the currently available exemplars at the time were the dumps for 
Windows 2000 systems available from the DFRWS 2005 Memory Challenge, I focused my 
initial efforts on producing code that worked for that platform. This allowed me to address 
various issues in code development without getting too wrapped up in the myriad differ-
ences between the various versions of the Windows operating system. The result was four 
separate Perl scripts, each run from the command line. All of these scripts are provided on 
the accompanying DVD, and we’ll discuss them here.

   NOTE  
   The following tools (lsproc.pl, lspd.pl, lspi.pl, and lspm.pl) are designed to be 
used solely with Windows 2000 memory dumps. As we’ve discussed so far, 
there are signifi cant changes in the EProcess structure format between the 
various versions of Windows (2000, XP, 2003, Vista, etc.). As such, signifi cant 
work needs to be done to produce a single application that will allow you to 
parse memory dumps from all versions.    

    Lsproc.pl 
  LSproc , short for  list processes , is similar to Andreas’s ptfi nder.pl; however, lsproc.pl locates 
 processes but not threads. Lsproc.pl takes a single argument, the path and name to a RAM 
dump fi le:

    c:\perl\memory>lsproc.pl d:\dumps\drfws1-mem.dmp     

 The output of lsproc.pl appears at the console (i.e., STDOUT) in six columns: the word 
 Proc  (I was anticipating adding threads at a later date), the parent process identifi er (PPID), 
the process identifi er (PID), the name of the process, the offset of the process structure 
within the dump fi le, and the creation time of the process. Here is an excerpt of the lsproc.
pl output:

    Proc  820  324   helix.exe   0x00306020  Sun   Jun 5   14:09:27   2005   

   Proc  0  0   Idle   0x0046d160   

   Proc  600  668   UMGR32.EXE   0x0095f020  Sun   Jun 5   00:55:08   2005   

   Proc  324  1112   cmd2k.exe   0x00dcc020  Sun   Jun 5   14:14:25   2005   

   Proc  668  784   dfrws2005.exe(x)   0x00e1fb60  Sun   Jun 5   01:00:53   2005   

   Proc  156  176   winlogon.exe   0x01045d60  Sun   Jun 5   00:32:44   2005   

   Proc  156  176   winlogon.exe   0x01048140  Sat   Jun 4   23:36:31   2005   



 Windows Memory Analysis • Chapter 3 129

   Proc  144  164   winlogon.exe   0x0104ca00  Fri   Jun 3   01:25:54   2005   

   Proc  156  180   csrss.exe   0x01286480  Sun   Jun 5   00:32:43   2005   

   Proc  144  168   csrss.exe   0x01297b40  Fri   Jun 3   01:25:53   2005   

   Proc  8  156   smss.exe   0x012b62c0  Sun   Jun 5   00:32:40   2005   

   Proc  0  8   System   0x0141dc60   

   Proc  668  784   dfrws2005.exe(x)   0x016a9b60  Sun   Jun 5   01:00:53   2005   

   Proc  1112  1152   dd.exe(x)   0x019d1980  Sun   Jun 5   14:14:38   2005   

   Proc  228  592   dfrws2005.exe   0x02138640  Sun   Jun 5   01:00:53   2005   

   Proc  820  1076   cmd.exe   0x02138c40  Sun   Jun 5   00:35:18   2005   

   Proc  240  788   metasploit.exe(x)   0x02686cc0  Sun   Jun 5   00:38:37   2005   

   Proc  820  964   Apoint.exe   0x02b84400  Sun   Jun 5   00:33:57   2005   

   Proc  820  972   HKserv.exe   0x02bf86e0  Sun   Jun 5   00:33:57   2005   

   Proc  820  988   DragDrop.exe   0x02c46020  Sun   Jun 5   00:33:57   2005   

   Proc  820  1008   alogserv.exe   0x02e7ea20  Sun   Jun 5   00:33:57   2005   

   Proc  820  972   HKserv.exe   0x02f806e0  Sun   Jun 5   00:33:57   2005   

   Proc  820  1012   tgcmd.exe   0x030826a0  Sun   Jun 5   00:33:58   2005   

   Proc  176  800   userinit.exe(x)   0x03e35020  Sun   Jun 5   00:33:52   2005   

   Proc  800  820   Explorer.Exe   0x03e35ae0  Sun   Jun 5   00:33:53   2005   

   Proc  820  1048   PcfMgr.exe   0x040b4660  Sun   Jun 5   00:34:01   2005     

 The fi rst process listed in the lsproc.pl output is helix.exe. According to the information 
provided at the DFRWS 2005 Memory Challenge Web site, utilities on the Helix Live CD 
were used to acquire the memory dump. 

 The preceding listing shows only an excerpt of the lsproc.pl output. A total of 45 
 processes were located in the memory dump fi le. You’ll notice in the output that several of 
the processes have  (x)  after the process name. This indicates that the processes have exited. 

   NOTE  
   Looking closely, you’ll notice some interesting things about the lsproc.pl 
output. One is that the csrss.exe process (PID = 168) has a creation date that 
appears to be a day or two earlier than the other listed processes. Looking 
even more closely, you’ll see something similar for two winlogon.exe processes 
(PID = 164 and 176). Andreas Schuster noticed these as well, and according 
to an entry on data persistence in his blog ( http://computer.forensikblog.de/
en/2006/04/persistance_through_the_boot_process.html ), the system boot 
time for the dump fi le was determined to be Sunday, January 5, 2005, at 
approximately 00:32:27. So, where do these processes come from? 



130 Chapter 3 • Windows Memory Analysis

     Lspd.pl 
 Lspd.pl is a Perl script that will allow you to list the details of the process. Like the other 
tools we will be discussing, lspd.pl is a command-line Perl script that relies on the output of 
lsproc.pl to obtain its information. Specifi cally, lspd.pl takes two arguments: the full path of 
the dump fi le and the physical offset of the process that you’re interested in (the physical 
 offset of the process within memory is obtained from the lsproc.pl output). Although lsproc.
pl takes some time to parse through the contents of the dump fi le, lspd.pl is much quicker, 
because you’re telling it exactly where to go in the fi le to enumerate its information. 

 Let’s take a look at a specifi c process. In this case, we’ll look at dd.exe, the process with 
PID 284. The command line to use lspd.pl to get detailed information about this process is:

    c:\perl\memory>lspd.pl d:\dumps\dfrws1-mem.dmp 0x0414dd60    

 As Andreas points out in his blog, without having more defi nitive infor-
mation about the state of the test system prior to collecting data for the 
Memory Challenge, it is diffi cult to develop a complete understanding of this 
issue. However, the specifi cations of the test system were known and docu-
mented, and it was noted that the system suffered a crash dump during data 
collection. 

 It is entirely possible that the data survived the reboot. There don’t seem 
to be any specifi cations that require that when a Windows system shuts 
down or suffers a crash dump, the contents of physical memory are zeroed 
out or wiped in some manner. It is possible, then, that contents of physical 
memory remain in their previous state, and if they are not overwritten when 
the system is restarted, the data is still available for analysis. Many BIOS 
 versions have a feature to overwrite memory during boot as part of a RAM 
test, but this feature is usually disabled to speed up the boot process. 

 This is definitely an area that requires further study. As Andreas states 
( http://computer.forensikblog.de/en/2006/04/data_lifetime.html ), this area of 
study has “a bright future.”    

   NOTE  
   The lsproc.pl output just shown is an excerpt of the entire output; I didn’t list 
the entire output simply because the excerpt illustrates enough information 
for me to make my point. However, the process referenced in the lspd.pl 
 command line (i.e., at offset 0x0414dd60) is not listed in that excerpt, although 
it is visible in the full output of lsproc.pl.    



 Windows Memory Analysis • Chapter 3 131

   Notice that with lspd.pl, we’re using two arguments: the name and path to the dump fi le 
and the physical offset in the dump fi le where we found the process with lsproc.pl. We’ll take 
a look at the output of lspd.pl in sections, starting with some useful information pulled 
directly from the EProcess structure itself:

    Process Name   : dd.exe   

   PID   : 284   

   Parent PID   : 1112   

   TFLINK   : 0xff2401c4   

   TBLINK   : 0xff2401c4   

   FLINK   : 0x8046b980   

   BLINK   : 0xff1190c0   

   SubSystem   : 4.0   

   Exit Status   : 259   

   Create Time   : Sun Jun 5 14:53:42 2005   

   Exit Called   : 0   

   DTB   : 0x01d9e000   

   ObjTable   : 0xff158708 (0x00eb6708)   

   PEB   : 0x7ffdf000 (0x02c2d000)   

     InheritedAddressSpace   : 0   

     ReadImageFileExecutionOptions   : 0   

     BeingDebugged   : 0   

     CSDVersion   : Service Pack 1   

     Mutant   = 0xffffffff   

     Img Base Addr   = 0x00400000 (0x00fee000)   

     PEB_LDR_DATA   = 0x00131e90 (0x03a1ee90)   

     Params   = 0x00020000 (0x03a11000)    

   NOTE  
   Earlier in the chapter, I mentioned that the list of active processes on a live 
system is maintained in a doubly linked list. The  fl ink  and  blink  values seen 
in the preceding lspd.pl output are the values that point to the next and 
previous processes, respectively. As displayed in the output of lspd.pl, these 
pointers are to addresses in memory, not physical addresses or offsets within 
the dump fi le.    



132 Chapter 3 • Windows Memory Analysis

   Lspd.pl also follows pointers provided by the EProcess structure to collect other data 
as well. For example, we can also see the path to the executable image and the command 
line used to launch the process (bold added for emphasis):

     Current Directory Path  = E:\Shells\   

    DllPath  = E:\Acquisition\FAU;.;C:\WINNT\System32;C:\WINNT\system;   

     C:\WINNT;E:\Acquisition\FAU\;E:\Acquisition\GNU\;
E:\Acquisition\CYGWIN\;E:\IR\bin\;E:\IR\WFT;E:\IR\
windbg\;E:\IR\Foundstone\;E:\IR\Cygwin;E:\IR\
somarsoft\;E:\IR\sysinternals\;E:\IR\ntsecurity\;
E:\IR\perl\;E:\Static-Binaries\gnu_utils_win32\;C:\WINNT\
system32;C:\WINNT;C:\WINNT\System32\Wbem   

    ImagePathName    = E:\Acquisition\FAU\dd.exe   

    Command Line  =  ..\Acquisition\FAU\dd.exe if=\\.\PhysicalMemory of=F:\
intrusion2005\physicalmemory.dd conv=noerror --md5sum 
--verifymd5 --md5out=F:\intrusion2005\physicalmemory.dd.
md5 --log=F:\intrusion2005\audit.log   

   Environment Offset   = 0x00000000 (0x00000000)   

    Window Title    =  ..\Acquisition\FAU\dd.exe if=\\.\PhysicalMemory of=F:\
intrusion2005\physicalmemory.dd conv=noerror --md5sum 
--verifymd5 --md5out=F:\intrusion2005\physicalmemory.dd.
md5 --log=F:\intrusion2005\audit.log   

    Desktop Name    = WinSta0\Default     

 Lspd.pl also retrieves a list of the names of various modules (DLLs) used by the process 
and whatever available handles (fi le handles, etc.) it can fi nd in memory. For example, lspd.pl 
found that dd.exe had the following fi le handle open:

    Type : File   

     Name = \intrusion2005\audit.log     

 As you can see from the preceding command line, the fi le \intrusion\audit.log is located 
on the F:\ drive and is the output fi le for the log of activity generated by dd.exe, which 
explains why it would be listed as an open fi le handle in use by the process. Using this infor-
mation as derived from other processes, you can get an understanding of fi les you should be 
concerned with during an investigation. In this particular instance, you can assume that the 
E:\ drive listed in  ImagePathName  is a CD-ROM drive, because Helix can be run from a CD. 
You can confi rm this by checking Registry values in an image of the system in question 
(a system image is not provided as part of the memory challenge, however). You can also 
use similar information to fi nd out a little bit more about the F:\ drive. I will cover this 
 information in  Chapter 4 . 

 Finally, one other thing that lspd.pl will do is go to the location pointed to by the Image 
Base  Addr  value (once it has been translated from a virtual address to a physical offset within 
the memory dump fi le) and check to see whether a valid executable image is located at that 
address. This check is very simple; all it does is read the fi rst two bytes starting at the translated 



 Windows Memory Analysis • Chapter 3 133

address to see whether they’re  MZ . These two bytes are not a defi nitive check, but PE fi les 
(fi les with .exe, .dll, .ocs, .sys, and similar extensions) start with the initials of Mark Zbikowski, 
one of the early architects of MS-DOS and Windows NT. The format of the PE fi le and its 
header is addressed in greater detail in  Chapter 6 .

   TIP  
   If you dumped the contents of physical memory from a Windows 2000 or XP 
system using winen.exe and you have a licensed EnCase dongle, you can parse 
process information from a memory dump using EnScripts written by TK_Lane 
and available through the “EDD and Forensics” blog ( http://eddandforensics.
blogspot.com/2008/04/windows-memory-analysis.html ).    

     Volatility Framework 
 Aaron Walters provides some valuable information about the Volatility Framework in his 
OMFW presentation, available from  https://www.volatilesystems.com/volatility/omfw/
Walters_OMFW_2008.pdf . 

 The readme.txt fi le that is part of the Volatility distribution ( Version 1.3 beta at the time 
of this writing) provides a great deal of information about how to use Volatility and what 
types of commands and capabilities are available, as well as examples of how to launch the 
various commands. Aaron designed Volatility to use some of the commands that are com-
monly used in incident response activities; for example, to get a list of running processes 
from a memory dump, Volatility uses  pslist . Before using Volatility, be sure to read through the 
readme.txt fi le to see what type of information can be retrieved from a Windows XP SP2 or 
SP3 memory dump. 

 To illustrate what type of information is available from a raw, dd-style memory dump, 
let’s take a look at an example; in this case a 512MB memory dump from a Windows XP 
SP2 laptop. We can start by getting some basic information about the memory dump using 
the  ident  command:

    D:\Volatility>python volatility ident -f d:\hacking\xp-laptop1.img   

      Image Name : d:\hacking\xp-laptop1.img   

      Image Type : Service Pack 2   

      VM Type : nopae   

     DTB : 0x39000   

      Datetime : Sat Jun 25 12:58:47 2005     

 This can be very useful information in documenting our analysis of the memory 
dump, as in some instances, we may not have access to the  ident  information as part of our 



134 Chapter 3 • Windows Memory Analysis

documentation. Using the  pslist  command, we can retrieve the active process list from the 
memory dump in a format similar to what we’re used to seeing when running pslist.exe on 
a live system:

    D:\Volatility>python volatility pslist -f d:\hacking\xp-laptop1.img   

   Name   Pid   PPid   Thds   Hnds   Time   

   System   4   0   61   1140   Thu  Jan 01 00:00:00  1970   

   smss.exe   448   4   3   21     Sat  Jun 25 16:47:28  2005   

   csrss.exe   504   448   12   596   Sat  Jun 25 16:47:30  2005   

   winlogon.exe   528   448   21   508   Sat  Jun 25 16:47:31  2005   

   services.exe   580   528   18   401   Sat  Jun 25 16:47:31  2005   

   lsass.exe   592   528   21   374   Sat  Jun 25 16:47:31  2005   

   svchost.exe   740   580   17   198   Sat  Jun 25 16:47:32  2005   

   svchost.exe   800   580   10   302   Sat  Jun 25 16:47:33  2005   

   svchost.exe   840   580   83   1589   Sat  Jun 25 16:47:33  2005   

   Smc.exe   876   580   22   423   Sat  Jun 25 16:47:33  2005   

   svchost.exe   984   580   6   90   Sat  Jun 25 16:47:35  2005   

   svchost.exe   1024   580   15   207   Sat  Jun 25 16:47:35  2005   

   spoolsv.exe   1224   580   12   136   Sat  Jun 25 16:47:39  2005   

   ssonsvr.exe   1632   1580   1   24   Sat  Jun 25 16:47:46  2005   

   explorer.exe   1812   1764   22   553   Sat  Jun 25 16:47:47  2005   

   Directcd.exe   1936   1812   4   40   Sat  Jun 25 16:47:48  2005   

   TaskSwitch.exe   1952   1812   1   21   Sat  Jun 25 16:47:48  2005   

   Fast.exe   1960   1812   1   22   Sat  Jun 25 16:47:48  2005   

   VPTray.exe   1980   1812   2   89   Sat  Jun 25 16:47:49  2005   

   atiptaxx.exe   2040   1812   1   51   Sat  Jun 25 16:47:49  2005   

   jusched.exe   188   1812   1   22   Sat  Jun 25 16:47:49  2005   

   EM_EXEC.exe   224   112   2   74   Sat  Jun 25 16:47:50  2005   

   ati2evxx.exe   432   580   4   38   Sat  Jun 25 16:47:55  2005   

   Crypserv.exe   688   580   3   34   Sat  Jun 25 16:47:55  2005   

   DefWatch.exe   864   580   3   27   Sat  Jun 25 16:47:55  2005   

   msdtc.exe   1076   580   14   166   Sat  Jun 25 16:47:55  2005   

   Rtvscan.exe   1304   580   37   300   Sat  Jun 25 16:47:58  2005   

   tcpsvcs.exe   1400   580   2   94   Sat  Jun 25 16:47:58  2005   

   snmp.exe   1424   580   5   192   Sat  Jun 25 16:47:58  2005   

   svchost.exe   1484   580   6   119   Sat  Jun 25 16:47:59  2005   

   wdfmgr.exe   1548   580   4   65   Sat  Jun 25 16:47:59  2005   

   Fast.exe   1700   580   2   32   Sat  Jun 25 16:48:01  2005   

   mqsvc.exe   1948   580   23   205   Sat  Jun 25 16:48:02  2005   

   mqtgsvc.exe   2536   580   9   119   Sat  Jun 25 16:48:05  2005   

   alg.exe   2868   580   6   108   Sat  Jun 25 16:48:11  2005   



 Windows Memory Analysis • Chapter 3 135

   wuauclt.exe   2424   840   4   160   Sat  Jun 25 16:49:21  2005   

   fi refox.exe   2160   1812   6   182   Sat  Jun 25 16:49:22  2005   

   PluckSvr.exe   944   740   9   227   Sat  Jun 25 16:51:00  2005   

   iexplore.exe   2392   1812   9   365   Sat  Jun 25 16:51:02  2005   

   PluckTray.exe   2740   944   3   105   Sat  Jun 25 16:51:10  2005   

   PluckUpdater.ex   3076   1812   0   -1   Sat  Jun 25 16:51:15  2005   

   PluckUpdater.ex   1916   944   0   -1   Sat  Jun 25 16:51:40  2005   

   PluckTray.exe   3256   1812   0   -1   Sat  Jun 25 16:54:28  2005   

   cmd.exe   2624   1812   1   29   Sat  Jun 25 16:57:36  2005   

   wmiprvse.exe   4080   740   7   0   Sat  Jun 25 16:57:53  2005   

   PluckTray.exe   3100   1812   0   -1   Sat  Jun 25 16:57:59  2005   

   dd.exe   4012   2624   1   22   Sat  Jun 25 16:58:46  2005     

 We can run similar commands to retrieve information about all process objects in the 
memory dump, including exited processes, using the  psscan  or  psscan2  command. Commands 
to retrieve information about all objects (network connections, processes, etc.) are slower, as 
they use a linear scanning method to run completely through the memory dump fi le, exam-
ining all possible objects, rather than using specifi c offsets provided by the operating system 
(see the discussion about LiveKD earlier in this chapter). 

 One of the more useful things most analysts look to when responding to an intrusion 
or compromise is network connections. You can retrieve a list of active network connections 
(similar to using the  netstat –ano  command) from a memory dump using the  connections  
 command, as follows:

    D:\Volatility>python volatility connections -f d:\hacking\xp-laptop1.img   

   Local Address   Remote Address   Pid   

   127.0.0.1:1056   127.0.0.1:1055   2160   

   127.0.0.1:1055   127.0.0.1:1056   2160   

   192.168.2.7:1077   64.62.243.144:80   2392   

   192.168.2.7:1082   205.161.7.134:80   2392   

   192.168.2.7:1066   199.239.137.200:80   2392     

 Taking this a step further, you can scan the entire memory dump fi le for indications of 
network connection objects, specifi cally looking for network connections that may have 
been closed at the time the memory dump was acquired:

    D:\Volatility>python volatility connscan2 -f d:\hacking\xp-laptop1.img   

   Local Address   Remote Address   Pid   

   ------------------  -------------------  ------   

   192.168.2.7:1115   207.126.123.29:80   1916   

   3.0.48.2:17985   66.179.81.245:20084   4287933200   

   192.168.2.7:1164   66.179.81.247:80   944   

   192.168.2.7:1082   205.161.7.134:80   2392   



136 Chapter 3 • Windows Memory Analysis

   192.168.2.7:1086   199.239.137.200:80   1916   

   192.168.2.7:1162   170.224.8.51:80   1916   

   127.0.0.1:1055   127.0.0.1:1056   2160   

   192.168.2.7:1116   66.161.12.81:80   1916   

   192.168.2.7:1161   66.135.211.87:443   1916   

   192.168.2.7:1091   209.73.26.183:80   1916   

   192.168.2.7:1151   66.150.96.111:80   1916   

   192.168.2.7:1077   64.62.243.144:80   2392   

   192.168.2.7:1066   199.239.137.200:80   2392   

   192.168.2.7:1157   66.151.149.10:80   1916   

   192.168.2.7:1091   209.73.26.183:80   1916   

   192.168.2.7:1115   207.126.123.29:80   1916   

   192.168.2.7:1155   66.35.250.150:80   1916   

   127.0.0.1:1056   127.0.0.1:1055   2160   

   192.168.2.7:1115   207.126.123.29:80   1916   

   192.168.2.7:1155   66.35.250.150:80   1916     

 Volatility is a powerful open source framework, allowing others to extend its capabilities by 
developing additional modules (knowledge of Python programming is a signifi cant require-
ment). Brendan Dolan-Gavitt (a.k.a. Moyix) created a Volatility module that looks for Windows 
messages ( http://moyix.blogspot.com/2008/09/window-messages-as-forensic-resource.html ), 
which are various events generated by Windows GUI applications and handled by the message 
queue. As Brendan points out, an application may be poorly written and may not handle its 
own messages very well; if this is the case, you may be able to fi nd remnants of those messages 
still visible in the memory dump. This information may be useful during a forensic examination. 

   TIP  
   Brendan also produced several Volatility plug-ins for accessing Registry data 
found in Windows memory dumps (his blog post is at  http://moyix.blogspot.
com/2009/01/memory-registry-tools.html , and updates to the code are at 
 http://moyix.blogspot.com/2009/01/registry-code-updates.html ). In his own 
blog ( http://forensiczone.blogspot.com/2009/01/using-volatility-1.html ), 
Richard McQuown demonstrated using these modules to extract passwords 
from a Security Account Manager (SAM) hive fi le located in memory so that 
he could crack those passwords using his tool of choice. 

 To use Volatility and Brendan’s modules to extract passwords from hive 
files located in memory, you have to install the PyCrypto modules (available 
as prebuilt Windows binaries from  www.voidspace.org.uk/python/modules.
shtml#pycrypto ).    



 Windows Memory Analysis • Chapter 3 137

   In addition, Jesse Kornblum produced two modules: suspicious, which looks for suspicious 
entries in process command lines, and cryptoscan, which looks for TrueCrypt passphrases. 
This last module can be extremely benefi cial to an analyst, as TrueCrypt ( www.truecrypt.org/ ) 
is a powerful, albeit free, application that can be used to encrypt volumes and disks. 

 Volatility works with much more than just simply raw memory dumps. Thanks to the 
efforts of Matthieu Suiche ( www.msuiche.net/ ), Volatility includes the capability to parse 
hibernation fi les, as well. This started out as the    Sandman Project, and later became an 
 integral part of the Volatility Framework. In December 2008, Matthieu released a stand-alone, 
closed source (alpha) version of the hibernation framework shell, called hibrshell ( www.msuiche.
net/hibrshell/ ). This version of hibrshell reportedly works with hibernation fi les from 
Windows XP, 2003, Vista, and 2008 systems.

   TIP  
   Regardless of the framework used to analyze it, the hibernation fi le provides 
a responder or analyst with several options that were not previously available. 
First, the hibernation fi le can be used as historical data, providing informa-
tion about the system’s live, running state at a previous point in time. This can 
be extremely valuable in malware analysis, as well as to assist in determining 
a timeline for an intrusion, particularly if the analyst also has a current mem-
ory dump to analyze. In circumstances where the previously mentioned tools 
(e.g., mdd.exe, etc.) cannot be used to dump the contents of physical mem-
ory from a system, the responder may be able to force the system to hibernate 
to create a memory dump that can then be analyzed.    

   Volatility can also parse crash dump fi les, as well as convert a raw, dd-style memory 
dump to crash dump format so that the analyst can use Microsoft’s debugger tools. 

 By now it should be clear that the Volatility Framework provides some extremely 
powerful capabilities, and just how much information the analyst can retrieve from a memory 
dump. To help correlate some of the data that can be retrieved using Volatility, Jamie Levy 
wrote a Perl script called vol2html.pl ( http://gleeda.blogspot.com/2008/11/vol2html-perl-
script.html ). The script takes the output of the Volatility  pslist ,  fi les , and  dlllist  commands and 
correlates them into an HTML report, an example of which you can see at  http://venus.cs.
qc.edu/~jlevy/code/report/index.html . Similar to the familiar listdlls.exe available from 
Microsoft (Sysinternals), the Volatility  dlllist  command includes the process command line as 
part of its output; this command line also appears in the HTML output of vol2html.pl. 

 Examples of Windows XP memory dump fi les are available as part of the DFRWS 2008 
Forensic Rodeo ( www.dfrws.org/2008/rodeo.shtml ), as well as from the    National Institute 
of Standards and Technology ( www.cfreds.nist.gov/mem/Basic_Memory_Images.html ). 



138 Chapter 3 • Windows Memory Analysis

 Michael Hale Ligh provides two blog posts that describe how he has used the Volatility 
Framework to great effect, particularly with respect to malware analysis; see “Recovering 
CoreFlood Binaries with Volatility” ( http://mnin.blogspot.com/2008/11/recovering-
corefl ood-binaries-with.html ), and “Locating Hidden Clampi DLLs (VAD-style)” ( http://mnin.
blogspot.com/2008/11/locating-hidden-clampi-dlls-vad-style.html ). Both blog posts provide 
excellent examples of how the Volatility Framework can maximize an analyst’s capabilities.  

  Memoryze 
 Mandiant’s Memoryze tool provides the analyst with the ability to parse and analyze memory 
dumps from several versions of Windows. To install Memoryze, download the MSI fi le from the 
Mandiant Web site (mentioned previously in this chapter) and install it. I chose to install it in the 
D:\Mandiant directory. Then, to install Audit Viewer, download the zipped archive, and be sure 
that you’ve downloaded the dependencies (i.e., Python 2.5 or 2.6, wxPython GUI extensions) as 
described at the Mandiant Web site (if you’ve already installed and tried Volatility, you already have 
Python installed). I chose to unzip the Audit Viewer fi les into the directory D:\Mandiant\AV. 

 To demonstrate the use of Memoryze and Audit Viewer, we’ll start by selecting a memory 
dump from a Windows 2003 system: boomer-win2003.img. The fi rst thing we’ll need to do 
to analyze this memory dump is to run Memoryze against it to extract various data: 

    D:\mandiant>process.bat -input d:\hacking\boomer-win2003.img -ports true -handles 
true -sections true     

 The preceding command tells Memoryze to parse the process information from the 
memory dump, and get ports, handles, and memory sections (I’ve purposely opted not to get 
the strings from each process) for the processes in the active process list. The full range of 
usage options for process.bat includes the following:

    Usage: process.bat   

   -input   name of snapshot. Exclude for live memory.   

   -pid   PID of the process to inspect. Default: 4294967295 = All   

   -process  optional name of the process to inspect. Default: Excluded   

   -handles  true|false inspect all the process handles. Default: false   

   -sections  true|false inspect all process memory ranges. Default: false   

   -ports  true|false inspect all the ports of a process. Default: false   

   -strings  true|false inspect all the strings of a process. Default: false   

   -output  directory to write the results. Default .\Audits     

 By default, the preceding command line places its resultant XML fi les in the .\Audit 
directory. In this case, the full path is D:\mandiant\Audits\WINTERMUTE\20090103134554. 

 Mandiant’s Audit Viewer is a GUI tool that provides the analyst with a graphical interface 
into the XML fi les created by using Memoryze to parse memory dumps. To launch Audit 
Viewer, double-click the  AuditViewer.py  fi le in the directory where you unzipped the 



 Windows Memory Analysis • Chapter 3 139

archive downloaded from the Mandiant site. As you’ve installed the wxPython modules, you 
will see the Audit Viewer GUI open, at which point you will need to confi gure the tool by 
changing the  Memoryze Install Directory  (if necessary), selecting the  Running on 
image  checkbox, and providing the  Path to image fi le , as  Figure 3.11    illustrates. 

 Figure 3.11    Audit Viewer User Interface Showing Confi guration Changes    

 Figure 3.12    Audit Viewer User Interface Showing Processes Tree    

 Once you’ve made the necessary changes, click the  Open Audit  button at the top of 
the Audit Viewer user interface, and navigate to the directory where the XML audit fi les 
were created. Once the directory has been selected, Audit Viewer will parse the available fi les 
and populate the Processes tree in the user interface, as shown in  Figure 3.12   . 



140 Chapter 3 • Windows Memory Analysis

  Figure 3.12  also illustrates two processes expanded to show the PID, PPID, arguments 
(or command line), as well as other information about each process. To dig deeper into each 
process, double-click the process name in the Processes tree, and then view the contents of 
the various tabs (Files, Directories, etc.) visible in the Audit Viewer user interface, as  Figure 3.13  
  illustrates. 

 Figure 3.13    Audit Viewer User Interface Showing Process Detail Tabs    

 Memoryze and Audit Viewer provide a number of additional options to the analyst. 
For example, based on your fi ndings in Audit Viewer, you may decide that you’d like to 
acquire an image of a process executable from the image fi le. To do so, use the processdd.bat 
batch fi le as follows:

    D:\mandiant\processdd.bat –pid PID –input d:\hacking\boomer-win2003.img     

 You can also use other batch fi les provided with Memoryze to perform rootkit and 
hook detection, as well as search for drivers ( www.mandiant.com/software/usememoryze.htm ). 
The Mandiant M-unition blog ( http://blog.mandiant.com/ ) provides additional examples 
of how to use Memoryze and Audit Viewer, such as how to integrate the two tools into 
Guidance Software’s EnCase forensic analysis application.  

  HBGary Responder 
 HBGary’s Responder product is a commercial GUI memory dump analysis tool that is 
described on the company Web site ( www.hbgary.com ) as a “live memory and runtime 
 analysis software suite used to detect, diagnose, and respond to today’s advanced computer 
threats”. As with other analysis tools, the Responder products (Professional and Field editions) 
allow a responder to parse and analyze a memory dump without having to utilize the 
potentially compromised or infected system’s API. Although Responder was written with 
malware analysis in mind, it is also a fast and capable tool that provides a great deal of 
functionality with respect to incident response, and is very easy for responders to use to 
get the information they need quickly.



 Windows Memory Analysis • Chapter 3 141

   All you need to do to begin analyzing a memory dump with Responder Pro is to create 
a case and then import a physical memory snapshot by selecting  File  from the menu bar, 
then  Import , and then  Import a Physical Memory Snapshot . For this example, we’ll 
use the fi rst Windows 2000 memory dump from the DFRWS 2005 Memory Challenge; 
however, like Memoryze, Responder works with memory dumps from Windows 2000, all 
the way up through the latest versions of Windows. 

 When importing a memory dump “snapshot” fi le into a Responder case, an option 
is available to “extract and analyze all suspicious binaries”. The rules that the Responder 
product uses to determine what constitutes “suspicious” are in a text-based fi le that you can 
open and review, and to which you can even add or remove comments, reducing false positives; 
you also can add entries to the fi le based on experience, thereby increasing the product’s 
effectiveness. 

 Once the memory dump fi le has been imported and parsed, Responder will show in the 
left-hand pane the memory dump fi le with two folders, Hardware and Operating System, as 
 Figure 3.14    illustrates. 

 Figure 3.14    Memory Dump File Imported into a Responder Project    

   NOTE  
   An evaluation copy of Responder Professional Edition 1.3.0.377 was used in 
the examples listed in this section of the chapter. However, the functionality 
presented and observed in this section is inherent to both the Professional 
and Field Edition products. We will not conduct a comprehensive review of 
the Responder Professional product (the Professional product includes binary 
disassembly, control fl ow graphing, and reverse engineering capabilities), as 
doing so is beyond the scope of this book and we are focusing on aspects of 
the product that most directly pertain to the memory dump analysis pursuant 
to incident response activities.    



142 Chapter 3 • Windows Memory Analysis

 Expanding the folder beneath the Hardware folder will display the Interrupt Table. 
Expanding the Operating System folder will display a great deal of additional information, 
including Processes and All Open Network Sockets (in part, what responders may be most 
interested in), as shown in  Figure 3.15   . 

 Figure 3.16    Excerpt of Processes Listed with Details in Responder User Interface    

 Figure 3.15    Expanded Operating System Folder in Responder User Interface    

 You can then expand the Processes folder to see all of the active processes extracted from 
the memory dump, or double-click the Processes folder to have the processes and detailed 
information about each process visible in the right-hand pane of the Responder user 
 interface, as shown in  Figure 3.16   . 



 Windows Memory Analysis • Chapter 3 143

 The Responder user interface provides a good deal of information that is immediately 
useful to you. You can also adjust the columns by selecting them and dragging them to a new 
location within the same view pane. Also, you can export information (this functionality is 
not supported in the evaluation version) from the view pane to various formats by clicking 
the appropriate icon at the top of the view pane, as  Figure 3.17    illustrates. 

 Figure 3.17    Selecting to Export Data in Responder User Interface    

 Double-clicking the  All Open Network Sockets  folder will open the Network tab in 
the right-hand view pane, similar to the output of netstat.exe, as shown in  Figure 3.18   . 

 Figure 3.18    Open Network Sockets from 
Memory Dump in Responder User Interface    

 You can also view the open fi le handles for all processes by double-clicking the 
 All Open Files  folder, as  Figure 3.19    illustrates. 



144 Chapter 3 • Windows Memory Analysis

 You can view open fi le handles for a specifi c process by expanding the tree for each 
 process and selecting  Open Files . You can do the same for open network sockets and open 
Registry keys. 

 In addition to being able to quickly view all of this information, both on a memory 
dump-wide format as well as on a per-process format, you can parse executable images 
(.exe and .dll fi les) for strings, as well as search for specifi c items within the memory dump 
using substrings, regular expressions, or exact matches. Having the ability to sort items visible 
in columns also allows you to identify suspicious processes or modules (i.e., DLLs) much 
more quickly.   

  Parsing Process Memory 
 We discussed the need for context for evidence earlier in this chapter, and you can achieve 
this, in part, by extracting the memory used by a process. In the past, investigators have used 
tools such as strings.exe or  grep  searches to parse through the contents of a RAM dump and 
look for interesting strings (passwords), IP or e-mail addresses, URLs, and the like. However, 
when you’re parsing through a fi le that is about half a megabyte in size, there isn’t a great 
deal of context to the information you fi nd. Sometimes an investigator will open the dump 
fi le in a hex editor and locate the interesting string, and if she saw what appeared to be a 
username nearby, she might assume that the string is a password. However, investigating a 
RAM dump fi le in this manner does not allow the investigator to correlate that string to a 
particular process. Remember the example of Locard’s Exchange Principle from  Chapter 1 ? 
Had we collected the contents of physical memory during the example, we would have had 
no way to defi nitively say that a particular IP address or other data, such as a directory listing, 
was tied to a specifi c event or process. However, if we use the information provided in the 
process structure within memory and locate all the pages the process used that were still in 
memory when the contents were dumped, we could then run our searches and determine 
which process was using that information. 

 The tool lspm.pl allows you to do this automatically when working with Windows 2000 
memory dumps. Lspm.pl takes the same arguments as lspd.pl (the name and path of the dump 

 Figure 3.19    Partial Listing of Open Files from Responder User Interface    



 Windows Memory Analysis • Chapter 3 145

fi le, and the physical offset within the fi le of the process structure) and extracts the available 
pages from the dump fi le, writing them to a fi le within the current working directory. To run 
lspm.pl against the dd.exe process, use the following command line:

    c:\perl\memory>lspm.pl d:\dumps\dfrws1-mem.dmp 0x0414dd60     

 The output looks like this:

    Name : dd.exe -> 0x01d9e000   

   There are 372 pages (1523712 bytes) to process.   

   Dumping process memory to dd.dmp…   

   Done.     

 Now you have a fi le called dd.dmp that is 1,523,712 bytes in size and contains all the 
memory pages (372 in total) for that process that were still available when the dump fi le was 
created. You can run strings.exe or use BinText (illustrated in  Figure 3.20   ) from Foundstone.
com to parse through the fi le looking for Unicode and ASCII strings, or run  grep  searches 
for IP or e-mail addresses and credit card or Social Security numbers. 

 Figure 3.20    Contents of Process Memory in BinText    



146 Chapter 3 • Windows Memory Analysis

 In  Figure 3.20 , you can see some of the Unicode strings contained in the memory used 
by the dd.exe process, including the name of the system and the name of the  LogonServer  
for the session. All of this information can help further your understanding of the case; an 
important aspect of this capability is that now you can correlate what you fi nd to a specifi c 
process. 

 Volatility incorporates this same functionality in the  memdmp  command. As mentioned 
previously in the chapter, you can use the  volatility memdmp  command to dump the addressable 
memory for a process from a Windows XP memory dump, as follows:

    D:\Volatility>python volatility memdmp -f d:\hacking\xp-laptop1.img -p 4012    

   TIP  
   You can use Volatility to collect process memory for processes that are hidden 
by rootkits, even those hidden using direct kernel object manipulation 
(DKOM) techniques (see  Chapter 7 ). Specifi cally, DKOM techniques “unlink” 
the EProcess block for the hidden process from the doubly linked active pro-
cess list that the operating system “sees.” However, using Volatility to exam-
ine a Windows XP raw memory dump or hibernation fi le, you can search for 
processes that are not part of that doubly linked list (discussed later in the 
chapter), and then use the  memdmp  command to retrieve the memory used 
by the process from the memory dump fi le.    

     Extracting the Process Image 
 As you saw earlier in this chapter, when a process is launched the executable fi le is read 
into memory. One of the pieces of information that you can get from the process details 
(via lspd.pl) is the offset within a Windows 2000 memory dump fi le to the Image Base Address. 
As you saw, lspd.pl will do a quick check to see whether an executable image can be found 
at that location. One of the things you can do to develop this information further is to parse 
the PE fi le header (the contents of which we will cover in detail in  Chapter 6 ) and see 
whether you can extract the entire contents of the executable image from the Windows 
2000 memory dump fi le. Lspi.pl lets you do this automatically. 

 Lspi.pl is a Perl script that takes the same arguments as lspd.pl and lspm.pl and locates 
the beginning of the executable image for that process. If the Image Base Address offset does 
indeed lead to an executable image fi le, lspi.pl will parse the values contained in the PE 
header to locate the pages that make up the rest of the executable image fi le. 

 Okay, so you can run lspi.pl against the dd.exe process (with the PID of 284) using the 
following command line:

    c:\perl\memory>lspi.pl d:\dumps\dfrws1-mem.dmp 0x0414dd60     



 Windows Memory Analysis • Chapter 3 147

 The output of the command appears as follows:

   Process Name  : dd.exe  

   PID   : 284   

   DTB   : 0x01d9e000   

   PEB   : 0x7ffdf000 (0x02c2d000)   

   ImgBaseAddr  : 0x00400000 (0x00fee000)   

   e_lfanew = 0xe8   

   NT Header = 0x4550   

   Reading the Image File Header   

   Sections = 4   

   Opt Header Size = 0x000000e0 (224 bytes)   

   Characteristics:   

        IMAGE_FILE_EXECUTABLE_IMAGE   

        IMAGE_FILE_LOCAL_SYMS_STRIPPED   

        IMAGE_FILE_RELOCS_STRIPPED   

        IMAGE_FILE_LINE_NUMS_STRIPPED   

        IMAGE_FILE_32BIT_MACHINE   

   Machine = IMAGE_FILE_MACHINE_I860   

   Reading the Image Optional Header   

   Opt Header Magic = 0x10b   

   Subsystem  : IMAGE_SUBSYSTEM_WINDOWS_CUI   

   Entry Pt Addr  : 0x00006bda   

   Image Base  : 0x00400000   

   File Align  : 0x00001000   

   Reading the Image Data Directory information   

   Data Directory   RVA   Size   

   --------------   ----------   ----------   

   ResourceTable   0x0000d000   0x00000430   

   DebugTable   0x00000000   0x00000000   

   BaseRelocTable   0x00000000   0x00000000   

   DelayImportDesc   0x0000af7c   0x000000a0   

   TLSTable   0x00000000   0x00000000   

   GlobalPtrReg   0x00000000   0x00000000   

   ArchSpecifi c   0x00000000   0x00000000   

   CLIHeader   0x00000000   0x00000000   

   LoadConfi gTable   0x00000000   0x00000000   

   ExceptionTable   0x00000000   0x00000000   

   ImportTable   0x0000b25c   0x000000a0   

   unused   0x00000000   0x00000000   



148 Chapter 3 • Windows Memory Analysis

   BoundImportTable   0x00000000   0x00000000   

   ExportTable   0x00000000   0x00000000   

   Certifi cateTable   0x00000000   0x00000000   

   IAT   0x00007000   0x00000210   

   Reading Image Section Header Information   

   Name   Virt Sz   Virt Addr   rData Ofs   rData Sz   Char   

   ---- ------- --------- --------- -------- ----   

   .text   0x00005ee0  0x00001000  0x00001000  0x00006000  0x60000020   

   .data   0x000002fc  0x0000c000  0x0000c000  0x00001000  0xc0000040   

   .rsrc   0x00000430  0x0000d000  0x0000d000  0x00001000  0x40000040   

   .rdata   0x00004cfa  0x00007000  0x00007000  0x00005000  0x40000040   

   Reassembling image fi le into dd.exe.img   

   Bytes written = 57344   

   New fi le size = 57344     

 As you can see, the output of lspi.pl is pretty verbose, and much of the information displayed 
might not be readily useful to (or understood by) an investigator unless that investigator is 
interested in malware analysis. Again, we will discuss this information in detail in  Chapter 6 . 
For now, the important elements are the table that follows the words “Reading Image Section 
Header Information” and the name of the fi le to which the executable image was reassembled. 
The section header information provides you with a road map for reassembling the executable 
image because it lets you know where to fi nd the pages that make up that image fi le. Lspi.pl 
uses this road map and attempts to reassemble the executable image into a fi le. If it’s successful, 
it writes the fi le out to the fi le based on the name of the process, with .img appended 
(to prevent accidental execution of the fi le). Lspi.pl will not reassemble the fi le if any of the 
memory pages have been marked as invalid and are no longer located in memory (e.g., they 
have been paged out to the swap fi le, pagefi le.sys). Instead, lspi.pl will report that it could not 
reassemble the complete fi le because some pages (even just one) were not available in memory. 

 Now, the fi le you extract from the memory dump will not be exactly the same as the 
original executable fi le. This is because some of the fi le’s sections are writeable, and those 
sections will change as the process is executing. As the process executes, various elements of 
the executable code (addresses, variables, etc.) will change according to the environment and 
the stage of execution. However, there are a couple of ways you can determine the nature of 
a fi le and get some information about its purpose. One of those ways is to see whether the 
fi le has any fi le version information compiled into it, as is done with most fi les created by 
legitimate software companies. As you saw from the section headers of the image fi le, there 
is a section named .rsrc, which is the name often used for a resource section of a PE fi le. 
This section can contain a variety of resources, such as dialogs and version strings, and is 
organized like a fi le system of sorts. Using BinText, you can look for the Unicode string 
 VS_VERSION_INFO  and see whether any identifying information is available in the 
 executable image fi le.  Figure 3.21    illustrates some of the strings found in the dd.exe.img fi le 
using BinText. 



 Windows Memory Analysis • Chapter 3 149

 Another method of determining the nature of the fi le is to use fi le hashing. You’re 
probably thinking, “Hey, wait a minute! You just said the fi le created by lspi.pl isn’t exactly 
the same as the original fi le, so how can we use hashing?” Well, you’re right … up to a point. 
We can’t use MD5 hashes for comparison, because as we know, altering even a single bit—
fl ipping a 1 to a 0—will cause an entirely different hash to be computed. So, what can we do? 

 In summer 2006, Jesse Kornblum released a tool called ssdeep ( http://ssdeep.sourceforge.
net ) that implements something called  context-triggered piecewise hashing , or  fuzzy hashing . 
For a detailed understanding of what this entails, be sure to read Jesse’s DFRWS 2006 paper 
(  http://dfrws.org/2006/proceedings/12-Kornblum.pdf  ) on the subject. In a nutshell, 
Jesse implemented an algorithm that will tell you a weighted percentage of the identical 
sequences of bits the fi les have in common, based on their hashes, and computed by ssdeep. 
Because we know that in this case, George Garner’s version of dd.exe was used to dump the 
contents of RAM from a Windows 2000 system for the DFRWS 2005 Memory Challenge, 
we can compare the dd.exe.img fi le to the original dd.exe fi le that we just happen to have 
available. 

 First, we start by using ssdeep.exe to compute a hash for our image fi le:

    D:\tools>ssdeep c:\perl\memory\dd.exe.img > dd.sdp     

 Figure 3.21    Version Strings Found in dd.exe.img with BinText    



150 Chapter 3 • Windows Memory Analysis

 We’ve now generated the hash and saved the information to the dd.sdp fi le. Using 
other switches available for ssdeep.exe, we can quickly compare the .img fi le to the original 
executable image:

    D:\tools>ssdeep -v -m dd.sdp d:\tools\dd\old\dd.exe   

   d:\tools\dd\old\dd.exe matches c:\perl\memory\dd.exe.img (97)     

 We can also do this in one command line using either the – d  or the – p  switch:

    D:\tools\> ssdeep -d c:\perl\memory\dd.exe.img d:\tools\dd\old\dd.exe   

   C:\perl\memory\dd.exe.img matches d:\tools\dd\old\dd.exe (97)     

 We see that the image fi le generated by lspi.pl has a 97 percent likelihood of matching 
the original dd.exe fi le. 

 Remember, for a hash comparison to work properly, we need something to which we can 
compare the fi les created by lspi.pl. Ssdeep.exe is a relatively new, albeit extremely powerful, 
tool, and it will likely be awhile before hash sets either are generated using ssdeep.exe or 
incorporate hashes calculated using ssdeep.exe. 

 We can use the Volatility Framework to attempt to extract the executable image from a 
Windows XP memory dump fi le using the  procdump  command. The  procdump  command 
syntax (from the Volatility readme.txt fi le) appears as follows:

    procdump   

   --------   

   For each process in the given image, extract an executable sample.   

   If -t and -b are not specifi ed, Volatility will attempt to infer   

   reasonable values.   

   Options:   

      -f  <Image>   Image fi le to load   

      -b  <base>   Hexadecimal physical offset of valid Directory Table Base   

      -t  <type>   Image type (pae, nopae, auto)   

      -o  <offset>   Hexadecimal physical offset of EPROCESS object   

      -p  <pid>   Pid of process   

      -m  <mode>   Strategy to use when extracting executable sample.    

    Use "disk" to save using disk-based section sizes or "mem"   

    for memory based sections (default": "mem").     

 Continuing with the Volatility example from earlier in this chapter, we can extract the 
executable image fi le for the dd.exe process (PID 4012 in the xp-laptop1.img memory 
dump fi le) using this command:

       D:\Volatility>python volatility procdump -f d:\hacking\xp-laptop1.img -p 4012   

   ******************************************************************************   

   Dumping dd.exe, pid: 4012 output: executable.4012.exe   

   D:\Volatility>dir exe*.exe   



 Windows Memory Analysis • Chapter 3 151

   Volume in drive D is Data   

   Volume Serial Number is 8049-F885   

   Directory of D:\Volatility   

   01/01/2009 12:45 PM   57,344 executable.4012.exe   

     1 File(s)   57,344 bytes     

 Although not as verbose as the lspi.pl Perl script for Windows 2000 memory dumps, the 
 volatility procdump  command extracts the executable image fi le for the process. This can be 
extremely useful during malware analysis, as a good deal of the current malware is obfuscated 
(encrypted, compressed, or both) while on disk, making static analysis (see  Chapter 6 ) diffi cult. 
Also, some malware may be memory-resident only, never actually being written to the hard 
drive; being able to extract an executable image fi le from a memory dump may be the only 
way to get a copy of the fi le for analysis.

   TIP  
   Responders may often be confronted with systems that employ some sort 
of encryption of either a specifi c volume or the entire disk. I’ve acquired a 
number of these systems, and when I have to conduct that acquisition with 
the intention of performing analysis (as opposed to simply acquiring an 
image), I’ve opted to perform a live acquisition of the hard drive. In May 
2007, Brian Kaplan wrote a thesis paper titled “RAM is Key: Extracting Disk 
Encryption Keys from Volatile Memory.” Along with that paper, Brian also 
released a proof of concept tool for extracting Pretty Good Privacy (PGP) 
Whole Disk Encryption (WDE) keys from a memory dump. The paper and 
proof of concept tool are available from  www.andrew.cmu.edu/user/
bfkaplan/#KeyExtraction .    

     Memory Dump Analysis and the Page File 
 So far, we’ve looked at parsing and analyzing the contents of a RAM dump in isolation—
that is, without the benefi t of any additional information. This means tools such as lspm.pl 
that rely solely on the contents of the RAM dump will provide an incomplete memory 
dump, because memory pages that have been swapped out to the page fi le (pagefi le.sys on 
Windows systems) will not be incorporated in the resultant memory dump. To overcome 
this defi ciency, in spring 2006 Nicholas Paul Maclean published his thesis work, “Acquisition 
and Analysis of Windows Memory” (at the time of this writing, I could not locate an active 
link to the thesis), which explains the inner workings of the Windows memory management 
system and provides an open source tool called vtop (written in Python) to reconstruct the 
virtual address space of a process. 



152 Chapter 3 • Windows Memory Analysis

 In early 2007, Jesse Kornblum’s “Buffalo” paper was published in the  Journal of Digital 
Investigation  (the full title of the paper is “Using Every Part of the Buffalo in Windows Memory 
Analysis”), and the publisher of the  Journal  allowed Jesse to post a copy of this paper on his 
Web site. 

 In this paper, Jesse demonstrates the nuances of page address translation and how the 
page fi le can be incorporated into the memory analysis process to establish a more complete 
(and accurate) view of the information that is available.  

  Pool Allocations 
 When the Windows memory manager allocates memory, it generally does so in    4 KB 
(4096 bytes) pages. However, allocating an entire    4 KB page for, say, a sentence copied to 
the Clipboard would be a waste of memory. So, the memory manager allocates several pages 
ahead of time, keeping an available  pool  of memory. Andreas Schuster has done extensive 
research in this area, and even though Microsoft provides a list of pool headers used to 
designate commonly used pools, documentation for any meaningful analysis of these pools 
is simply not available. Many of the commonly used pool headers are listed in the pooltag.
txt ( www.microsoft.com/whdc/driver/tips/PoolMem.mspx ) fi le provided with the Microsoft 
Debugging Tools, and Microsoft provides a Knowledge Base article that describes how to 
locate pool tags/headers used by third-party applications ( http://support.microsoft.com/
default.aspx?scid=kb;en-us;298102 ). Andreas used a similar method to determine the format 
of memory pools used to preserve information about network connections in Windows 2000 
memory dumps ( http://computer.forensikblog.de/en/2006/07/fi nding_network_socket_
activity_in_pools.html ); he searched for the pool header in the tcpip.sys driver on a Windows 
2000 system and was able to determine the format of network connection information 
within the memory pool.

      The downside to searching for memory pool allocations is that although the pool headers 
do not seem to change between versions of Windows, the format of the data resident within 
the memory pool changes, and there is no available documentation regarding the format of 
these memory pools.   



 Windows Memory Analysis • Chapter 3 153

  Summary 
 By now it should be clear that you have several options for collecting physical or process 
memory from a system during incident response. In  Chapter 1 , we examined a number of 
tools for collecting various portions of volatile memory during live response (processes, 
network connections, and the like), keeping in mind that there’s always the potential for the 
Windows API (on which the tools rely) being compromised by an attacker. This is true in 
any case where live response is being performed, and therefore we might decide to use 
multiple disparate means of collecting volatile information. A rootkit can hide the existence 
of a process from most tools that enumerate the list of active processes (tlist.exe, pslist.exe), 
but dumping the contents of RAM will allow the investigator to list active and exited 
 processes as well as processes hidden using kernel-mode rootkits (more about rootkits in 
 Chapter 7 ).  

  Solutions Fast Track 
  Collecting Process Memory 

     A responder may be presented with a situation in which it is not necessary to collect  ˛
the entire contents of physical memory; rather, the contents of memory used by a 
single process would be suffi cient.  

   Collecting the memory contents of a single process is an option that is available only  ˛
for processes that are seen in the active process list by both the operating system and 
the investigator’s utilities. Processes hidden via some means (see  Chapter 7 ) might 
not be visible, and the investigator will not be able to provide the process identifi er 
to the tools he is using to collect the memory used by the process.  

   Dumping process memory allows the investigator to collect not only the memory  ˛
used by the process that can be found in RAM, but also the memory located in the 
page fi le.  

   Once process memory has been collected, additional information about the process,  ˛
such as open handles and loaded modules, can then be collected.     

  Dumping Physical Memory 
     Several methodologies are available for dumping the contents of physical memory.  ˛
The responder should be aware of the available options as well as their pros and 
cons so that she can make an intelligent choice as to which methodology should 
be used.  



154 Chapter 3 • Windows Memory Analysis

   Dumping the contents of physical memory from a live system can present issues  ˛
with consistency because the system is still live and processing information while 
the memory dump is being generated.  

   When dumping the contents of physical memory, both the responder and the  ˛
analyst must keep Locard’s Exchange Principle in mind.     

  Analyzing a Physical Memory Dump 
     Depending on the means used to collect the contents of physical memory, various  ˛
tools are available to extract useful information from the memory dump. The use 
of strings.exe, BinText, and  grep  with various regular expressions has been popular, 
and research conducted beginning in spring 2005 reveals how to extract specifi c 
processes.  

   Dumps of physical memory contain useful information and objects such as processes,  ˛
the contents of the Clipboard, and network connections.  

   Continuing research in this area has demonstrated how the page fi le can be used in  ˛
conjunction with a RAM dump to develop a more complete set of information.      



 Windows Memory Analysis • Chapter 3 155

  Frequently Asked Questions 
     Q:  Why should I dump the contents of RAM from a live system? What use does this have, 

and what potentially useful or important information will be available to me?  

   A:  As we discussed in  Chapter 1 , a signifi cant amount of information available on a live 
system can be extremely important to an investigation. This volatile information exists 
in memory, or RAM, while the system is running. We can use various third-party tools 
(discussed in  Chapter 1 ) to collect this information, but it might be important to collect 
the entire contents of memory so that we not only have a complete record of informa-
tion available, but also can “see” things that might not be “visible” via traditional means 
(e.g., things hidden by a rootkit; see  Chapter 7  for more information regarding rootkits). 
You might also fi nd information regarding exited processes as well as process remnants 
left over after the system was rebooted.  

   Q:  Once I’ve dumped the contents of RAM, what can I then do to analyze them?  

   A:  Investigators have historically used standard fi le-based search tools to “analyze” RAM 
dumps. Strings.exe and  grep  searches have been used to locate passwords, e-mail addresses, 
URLs, and the like within RAM dumps. Tools now exist to parse RAM dumps for processes, 
process details (command lines, handles), threads, and other objects as well as extract execut-
able images, which is extremely benefi cial to malware analysis (see  Chapter 6  for more 
information on this topic) as well as more traditional computer forensic examinations.  

   Q:  I have an issue in which a person is missing. On examination of a computer system in his 
home, I found an active instant messaging (IM) application window open on the desktop. 
When I scrolled back through the window and reviewed the conversation, it became clear 
to me that useful information could be available from that process. What can I do?  

   A:  If the issue you’re faced with is primarily one that centers around a single visible process, 
dumping the entire contents of physical memory might not be necessary. One useful 
approach would be to dump the contents of process memory, then use other tools to 
extract specifi c information about the process, such as loaded modules, the command 
line used to launch the process, or open handles. Once all the information is collected, 
the next step could be to save the contents of the IM conversation. After all pertinent 
information has been collected, searching the contents of process memory for remnants 
of a previous conversation or other data might provide you with useful clues.                                       




