
Windows Kernel Internals II
Virtual Machine Architecture

University of Tokyo – July 2004

Dave Probert, Ph.D.
Advanced Operating Systems Group

Windows Core Operating Systems Division
Microsoft Corporation

© Microsoft Corporation 2004 1



Hosted VM Model

Windows acts as a “host”
– Resources for each VM are allocated from the host
– All I/O with external devices is performed through the host

“Guest” code runs within a 
separate context
– Independent address space
– Specialized “VMM” kernel

Process

Host Kernel

Host Physical Machine

Virtual 
Machine

Process

VMM Kernel

Host context Guest context

Guest Code

© Microsoft Corporation 2004 2



VM Components
VMM Kernel

– Thin layer, all in assembly
– Code executed at ring-0
– Exception handling
– External Interrupt pass-

through
– Page table maintenance
– Located within a 32MB area

of address space known as
the “VMM work area”

– Work area is relocatable
– One VMM instance per

virtual processor
Host Physical Machine

VMM Kernel

Host context Guest context

Guest Code

VMM 
Driver

NDIS 
Driver

Host 
Kernel

Virtual 
PC

Virtual
Server

Virtual 
Machine 

“Additions”

© Microsoft Corporation 2004 3



VM Components
VMM Driver
- Provides kernel-level VM-related 

services
- CreateVirtualMachine
- CreateVirtualProcessor
- ExecuteVirtualProcessor

- Implements context switching 
mechanism between the host 
and guest contexts

- Loads and bootstraps 
the VMM kernel

- Much of the security work we’ve 
done recently involved 
repackaging the VMM kernel 
code into the VMM driver Host 

Kernel

Host Physical Machine

VMM Kernel

Host context Guest context

Guest Code

VMM 
Driver

NDIS 
Driver

Virtual 
PC

Virtual
Server

Virtual 
Machine 

“Additions”

© Microsoft Corporation 2004 4



VM Components
NDIS Filter Driver
- Allows VM to send and 

receive 
Ethernet packets via 
physical 
Ethernet hardware

- Spoofs unique MAC 
addresses 
for virtual NICs

- Injects packets into host 
Ethernet stack for guest-
to-host
networking

Host 
Kernel

Host Physical Machine

VMM Kernel

Host context Guest context

Guest Code

VMM 
Driver

NDIS 
Driver

Virtual 
PC

Virtual
Server

Virtual 
Machine 

“Additions”

© Microsoft Corporation 2004 5



VM Components
Virtual PC / Virtual Server 

executables
- Device emulation modules
- Resource allocation
- VM configuration creation 

& editing
- VM control (start, stop, 

pause, save)
- Scripting APIs
- User interaction
- Host side of guest/host 

integration features

Virtual 
PC

Host 
Kernel

Host Physical Machine

Virtual
Server

VMM Kernel

Host context Guest context

Guest Code

VMM 
Driver

NDIS 
Driver

Virtual 
Machine 

“Additions”

© Microsoft Corporation 2004 6



VM Components
Virtual Machine “Additions”

– Collection of components 
installed within the guest 
environment by the user

– Implement optimizations
• Video
• SCSI
• Networking (in the future)
• Guest kernel patches

– Implement guest half of
guest/host integration 
features

• Clipboard sharing
• File drag and drop
• Arbitrary video resizing

Virtual 
PC

Host 
Kernel

Host Physical Machine

Virtual
Server

VMM Kernel

Host context Guest context

Guest Code

VMM 
Driver

NDIS 
Driver

Virtual 
Machine 

“Additions”

© Microsoft Corporation 2004 7



VM Execution Loop
Host code repeatedly calls ExecuteVirtualProcessor
VMM acts as “co-routine” (i.e. VMM state is saved and 

restored each time ExecuteVirtualProcessor is 
called)

Cycles spent inside guest context are counted against 
the calling thread
– Host code can control how much time is spent in 

guest
Return code indicates why ExecuteVirtualProcessor

returned
– Time slice complete
– IN or OUT instruction encountered
– HLT instruction encountered

© Microsoft Corporation 2004 8



Processor Virtualization
x86 Virtualization

– Processor is non-virtualizable
• Poor privileged and user state separation

– For example, EFLAGS register contains condition codes 
(user state) and interrupt mask (privileged state)

• Some instructions that access privileged state are 
non-trapping

– Overly complex and messy architecture
• Many modes, legacy protection mechanisms and 

general “warts”

© Microsoft Corporation 2004 9



Processor Emulation
In general, emulation is necessary

– VM uses a binary translation mechanism
• Most instructions are copied directly
• Non-virtualizable (“dangerous”) instructions are 

modified
– Binary translation execution imposes ~50% 

performance overhead

© Microsoft Corporation 2004 10



Direct Execution
In some processor modes, it’s safe to use direct 

execution, others require emulation

Real Mode Emulation

Virtual 8086 (v86) mode Direct Execution

Protected Mode Ring 3 Direct Execution (with a few exceptions)

Protected Mode Ring 0 Emulation, unless known to be safe

© Microsoft Corporation 2004 11



Direct Execution
“Ring Compression”

– Guest ring-0, 1, 2 code is executed at ring 1
– Guest ring-3 code is executed at ring 3
– Provides correct MMU protection semantics (since ring 0-2 can 

access privileged pages)

Direct execution of ring-0 code is only allowed if the 
VMM is notified that it’s “safe”
– This requires patching certain “dangerous” instruction sequences 

in the Windows kernel and HAL
– Patching is performed at runtime in memory only
– Patches are different for each version of Windows kernel & HAL

© Microsoft Corporation 2004 12



Guest OS Patching
Examples:

– PUSHFD / POPFD
– CLI / STI
– Spin lock acquisition failure (in the future)

pushfd
cli
mov eax,[ebp+8]
call [eax]
popfd
ret

Original Code
pushfd never traps (breaks IF virtualization)

popfd never traps (breaks IF virtualization)

cli traps, but cannot be easily patched with a 
jmp because it only takes up one byte

This sequence prevents correct behavior in direct execution

© Microsoft Corporation 2004 13



Guest OS Patching
Synthetic instructions

– Use an illegal instruction form (reserved for us by Intel)
– Five bytes in length (for ease in patching)
– Exhibit same side effects of real instruction

pushfd
cli
mov eax,[ebp+8]
call [eax]
popfd
ret

vmpushfd
vmcli
mov eax,[ebp+8]
call [eax]
vmpopf
ret

Original Code With Synthetic Instructions

All synthetic 
instructions trap and 
are five bytes long so 
they can be replaced 
with jmp or call 
instructions at runtime

This sequence allows correct behavior in direct execution, but generates three traps

© Microsoft Corporation 2004 14



Guest OS Patching
Runtime Guest OS Patching

– Replace synthetic instructions with subroutine calls
– This technique prevents us from exposing internal VMM 

implementation details to OS vendors. We can change the 
subroutine implementations in the future. 

pushfd
cli
mov eax,[ebp+8]
call [eax]
popfd
ret

vmpushfd
vmcli
mov eax,[ebp+8]
call [eax]
vmpopf
ret

Original Code With Synthetic Instructions

call _vmpushfd
call _vmcli
mov eax,[ebp+8]
call [eax]
call _vmpopfd
ret

With Runtime Patches

This patched sequence is correct and fast

© Microsoft Corporation 2004 15



Direct Execution Overhead
Necessary to trap into the VMM kernel on some 

instructions
– IN & OUT for I/O device emulation
– STI & CLI for interrupt mask virtualization
– INT & IRET to catch ring transitions
– INVLPG and MOV to CR3 for page table virtualization

Traps are expensive – and getting worse
– ~500 cycles on Pentium III or AMD processors; ~2000 

cycles on Pentium 4
– Runtime patching of some trapping instructions is 

possible

© Microsoft Corporation 2004 16



Physical Memory & RAM
Virtualized RAM

– User decides how much RAM is associated with each 
virtual machine

Physical pages
– Allocated by VMM from host OS
– Currently allocated at the time the VM starts, but 

could be allocated on demand
– Host physical addresses don’t match guest physical 

addresses

© Microsoft Corporation 2004 17



Logical Page Mappings
Logical Memory

– Logical mappings defined by guest page tables 
(mostly)

– VMM finds 32MB unused area for the VMM code and 
data (the “VMM work area”).

– VMM monitors guest OS address space usage and 
relocates itself if necessary

© Microsoft Corporation 2004 18



VMM Page Tables
VMM maintains its own private page table

– Initially, only the VMM work area is mapped

© Microsoft Corporation 2004 19

Physical CR3

PD Table

VMM work area
mapped here

VMM Page Tables

Virtual CR3

PD Table

Guest Page Tables

Unused area



VMM Page Tables
VMM maintains its own private page table

– Initially, only the VMM work area is mapped
– Guest pages are mapped on demand as they are 

accessed

© Microsoft Corporation 2004 20

Physical CR3

PD Table

VMM work area
mapped here

VMM Page Tables

Virtual CR3

PD Table

Guest Page Tables

Unused area



VMM Page Tables
VMM maintains its own private page table

– Initially, only the VMM work area is mapped
– Guest pages are mapped on demand as they are 

accessed
– Guest pages are unmapped when guest flushes its TLB
– VMM work area is relocated as necessary

© Microsoft Corporation 2004 21

Physical CR3

PD Table

VMM work area
mapped here

VMM Page Tables

Virtual CR3

PD Table

Guest Page Tables

Previous VMM 
location now in use 
by the guest



Memory Sharing
Memory allocated with VMM APIs
can be used in three ways

– Mapped within the VMM work area
– As guest virtual RAM (mapped into the guest address 

space according to the guest page tables)
– Mapped within the host context (for emulated DMA 

operations)

© Microsoft Corporation 2004 22



Device Emulation
Device emulation modules
- Emulate behaviors of a real hardware 

device
- Register “callbacks” for I/O port 

accesses
- Can access virtualized “RAM” for 

emulated DMA operations
- Communicate among themselves (e.g. 

Ethernet module “plugs into” the PCI 
bus module and communicates with 
the PIC module to assert interrupts)

- May call host services to perform 
emulation

- Can be suspended, saved and 
restored

Device Emulation Models

440BX chipset with PIIX4
System BIOS (AMI)

PCI Bus
ISA Bus

Power Management
SM Bus

8259 PIC
PIT

DMA Controller
CMOS
RTC

Memory Controller
RAM & VRAM

COM (Serial) Ports
LPT (Parallel) Ports 

IDE/ATAPI Controllers
SCSI Adapters (Adaptec 2940)

SVGA Video Adapter (S3 Trio64)
VESA BIOS

2D Graphics Accelerator
Hardware Cursor

Ethernet Adapters (DEC 21140)
SoundBlaster Sound Card

Keyboard
Mouse

© Microsoft Corporation 2004 23



Device I/O Accesses
I/O accesses (IN & OUT 

instructions)
- Trap into VMM kernel
- Force a context switch back

to the host context where
device emulation module
is invoked

- “Fast I/O handlers” can be
called from within the VMM
context

- Some OUTs can be batched
MMIO accesses
- Caught in VMM’s page 

fault handler
- Very expensive

Host Kernel

Host Physical Machine

Virtual PC

VMM Kernel

Host context Guest context

Guest User Code

Guest Kernel

Guest HAL

Host HAL

3

0

0 0

1

1

3

VMM 
Driver

Device 
Emulation 

Module

OUT instr.

GPF trapContext Switch

© Microsoft Corporation 2004 24



Discussion

© Microsoft Corporation 2004 25


	Windows Kernel Internals IIVirtual Machine ArchitectureUniversity of Tokyo – July 2004
	Hosted VM Model
	VM Components
	VM Components
	VM Components
	VM Components
	VM Components
	VM Execution Loop
	Processor Virtualization
	Processor Emulation
	Direct Execution
	Direct Execution
	Guest OS Patching
	Guest OS Patching
	Guest OS Patching
	Direct Execution Overhead
	Physical Memory & RAM
	Logical Page Mappings
	VMM Page Tables
	VMM Page Tables
	VMM Page Tables
	Memory Sharing
	Device Emulation
	Device I/O Accesses
	Discussion

