Monad Shell — Task-Oriented
Automation Framework

Jeffrey P. Snover

Management Architect

Windows Enterprise Management Division
Jsnover (@ microsoft.com

mailto:jsnover@microsoft.com

Task-Based Administrative
EXxperience

Tasks are the actions users perform from a
m GUI console
m Command line

Example tasks
m Add user, add disk, remove user, ...

Tasks can be comprised of sub-tasks (e.g., add user)
m Create account in Active Directory

m Add account to appropriate Groups

m Create a home directory

|

Administrative Experience is determined by how tasks are
defined, organized, and exposed to end users

2

Microsoft Shell (MSH) Mission

m Deliver an extensible scripting environment that is secure,
Interactive, programmable, and production-ready to
enable consistent and reliable automation of
administrative tasks

m Improve the developer experience by making it easier to add
command-line management capabilities using .NET

m |Improve the administrative experience by enabling IT Pros to
write secure automation scripts that can run locally or remotely

m Deliverables
m A scripting language
An interactive shell
A way to produce task-oriented commands
A set of domain-independent utility commands
A mechanism to do remote scripting

3

MSH Problem Statement

m \Windows administration has not met the needs of administrators
m Overemphasis on GUI-based tools and developer-oriented SDKs
m \Weak command shell with incomplete coverage and limited automation

m Unix employs a powerful model for automating administration tasks
m Composition (A|B|C)
m Text-based pipelines
m Command A output processed by command B...
m Uniform remoting of commands
m .NET enables Windows to do better than Unix
m Object-based pipelines
m Managed code

m Commands are classes
m Reflection-based utilities

MSH — Key AdmiE]SCenarios

m Better than Unix Shell E
- NET-based eXperIence Administrator — Kevin Parrish
m Compatibility and Interoperability l Enterprise Network
m Existing commands and scripts fay ministrator=Garlos Garcia
(.exe, .bat, .vbs, ...) work W o Account Manager - Ghad
m Secure Remote Scripting m e
m Signed cmdlets (tiny commands)
and SC”ptS E xvllvci)zvr\:; Server Administrator —
m Configuration Settings
Management %] Print Administrator — Lyle
m Get and set configuration values il Enles o2 7

for desktop (network, print,
Internet Explorer, ...)

m Server role deployment and

Server Systems Administrator -
Sam Watson

Upper MORG IT

m Execute admin tasks on 1:many

operations “
. ! Network Systems Administrator —
|| BatCh | ng Eq Chuck Thomas

ComputerS Core MORG Operations Core MORG IT
. . Engineer —
m Seamless navigation M Chric Green
m File system, Registry, AD, WMI
E_ " Do It Yourselfer — SORG IT
’ :v Frank Martinez

MSH Demo

m |Let's get MSH in focus

m As interactive and composable as KSH
or BASH

m As programmable as PERL or RUBY

m As production-oriented as VMS DCL or
AS400 CL

m Makes accessing mgmt information as easy
as accessing a file system

MSH Architecture

1 T Hosting T 1 m Monad shell (msh.exe)

Interfaces m Character-based command-line host for
the Monad engine

Script & Command Parser . Monad.engme (e
m Script/Parser — processes language

constructs such as scripts, predicates,
conditionals, etc.

Pipeline Processor — manages inter-
cmdlet communication via pipes

m Command Processor — manages cmdlet

Plogling Processor =

Command Process execution, registration and associated
metadata

: | m Session State — manages the data set
Error & Extended . used by a cmdlet for execution
e 5 W{Je m Extended Type System — provides a
Handler SYSLEN common interface for accessing

o properties, methods, etc. independent of
VionadNERgIne the underlying object type

m Error and Event Handler — manages
exception to error mapping and reporting

Remoting (WMX)

Key MSH Concepts For The
Developer

m Cmdlets are .NET classes
m Think DLLs not EXEs

m Providers enable groups or families of related cmdlets
(i.e., namespaces)
m File System, Registry, Active Directory, ...

m Pipelines are composed of classes (cmdlets) passing
structured objects
m Objects are processed into records

m Extended Type System (ETS) simplifies developer
experience

m Common interfaces for operating on pipeline objects independent
of type

Cmdlet Class

m Cmdlet class properties and methods allow cmdlets to
Access parameters

Write objects to output streams

Write errors

Access session state

m CmdletDeclarationAttribute metadata enables MSH to identify .NET
class as a cmdlet

m Requires two parameters: VerbName, NounName

using System.Management . AUtomation
[CmdletDeclarationAttribute ("get",
“process") |

class GetProcess : Cmdlet

{

SmpA ementa t i on

J

Writing A cmdlet

m Cmdlet class defines three virtual methods

StartProcessing()
ProcessRecord()
EndProcessing()

m Cmdlets override one or more of these methods to do work

StartProcessing()

m \Where one-time cmdlet startup operations are performed
ProcessRecord()

m Where cmdlets perform the bulk of their work

m Processes a single object (e.g., record) at a time
EndProcessing()

m \Where one-time cmdlet close operations are performed

10

Example: Get-Process cmdlet

lem. J\/J NE Jéménrr\llrom ation;
S ("get’, process’)|

PIIC OVerride vold Startl

WiiteOBJects

Pipelines

m Cmdlets execute in pipelines (A 2> B 2> C->)

m Cmdlet attribution defines parameters for driving the parser

m Pipeline Processor manages cmdlet execution and
communication

m Cmdlets communicate indirectly through objects
m Each cmdlet execution has its own input/output

m Cmdlets execute in same thread as pipeline

m Remoted cmdlet executes in a separate pipeline
m Different computer, different process
m |nput/output for remoted cmdlet is serialized between pipelines

m Cmdlets use extended reflection to operate on objects
independent of type

m MSHODbject provides developers a common interface to access
methods, properties, brokered methods, brokered properties,
property sets, ...

12

Pipeline Processing

(1) (2) (3 (4
get-process | where “handlecount —gt 400” | sort handlecount | out-chart processname,handlecount
—

Cornrpzlelel Peifsar

sort
request
object

l

Where
cmdiet

EIPElINENEIOCESSONE

Parameters

m Cmdlets request parameters from
m Command line
m |Incoming pipeline objects

m Cmdlets define parameters as fields and mark them with
metadata

ParsingParameterDeclaration]

ParsingMandatoryParameter]

[ParsingAllowPipelinelnput]

[ParsingParameterMapping(index)]

m MSH ensures parameters are filled in and validated
before cmdlet ProcessRecord() method is called

14

Example: Stop-Process
cmdlet With Parameter

Using system.Vianagement.Automation

[CmdletDeclarationAttribute (“stop”, “process)]

public class Stoprrocess: Cmalet

{ [ParsingMandatoryParameter]
[ParsingParameterMapping(0)]

[ParsingAllowPipelinelnput]

J

E L

H;ermJHerr)urmg(‘Name of the g
public string| ProcessName;

blic 0\/~rrJrJ void StartlProcessing()
P

S’
=)

(L‘
Ul
U’

=N "L{
2 (=
o
(@ %

O
U\
Ll
‘_U
-
@
(®
(1>
U\
U‘ Lo
@
_L_J

@
o,
(D
(2§
- /_E
) .
Q - v
) -
(D
U\
U\
@

v

=k
70
C
fe
=
o v
L‘\
(>
Ll\
Ll\

= =h

Error Handling

get-process | where “handlecount —gt 400” | sort handlecount | out-chart processname,handlecount

:
JEIFPIOCESS

SUCCESS qUEUE

JEL-Process

0 ;\'_.r 0) 0520252 lh A ~
get-process; Where

CIOIRYUCUC EInoIr queue:

B Cmdlets communicate success and failure via
gueue objects

m 1 input queue, 2 output queues (success, error)

m Additional streams for verbose, progress, and debug
m Errors are first class citizens

m Errors can be reported immediately

m Cmdlets and pipelines can partially succeed
16

Cmdlet Providers

Cmdiet Class

Core ¢ *mrllﬁ'ra
(gt s, ousinl, dog, ...

CaplellaiProvielar Gleissas

\e2plV/ e
RCUVE

REGISTIA
redlsiry Dirzciory

Cmdlet class provides common interfaces for writing cmdlets
CmdletProvider classes expose APls for writing cmdlet providers
Each cmdlet provider inherits a common set of core cmdlets

Cmdlet providers should be written for

m Configuration stores that can be navigated

m Containers where new, move, copy, rename, and remove operations can
be performed

17

Cmdlet/Provider Configuration
And Registration

m Cmdlet file naming is verb-noun.cmdlet and contains
m Assembly binding information
m Help file binding information
m Syntax (metadata) information

m Cmdlet files can be generated using export-cmdlet utility
m Reflects on .NET assemblies to produce .cmdlet files

m Cmdlets are discovered by searching for .msh or .cmdlet
files based on environment path variable settings

s $MSHCOMMANDPATH, $PATH, $PATHEXT
m At startup MSH reads profile.msh

m profile.msh is used to create a set of valid functions and aliases

18

Demo: Retrieving A List Of
Running Processes

1191936

explorer 16 94286992
CecmEXxec 183 923 161710086
0)

ISass 1196¢

winlogon
OUTLOOK 1520
SVchost 1020

m Explanation of what the above script does
m get-process retrieves a list of running processes

m where filters the get-process results to retain only processes with
more than 400 open handles

m sort handlecount orders the sort results by # of open handles

19

Demo: Using MSH To
Generate A Report

B getl-proecess | wherne handlecount —gt 400"
| sort handlecount | eut-chart
precessname,handliecount

m Explanation of what the above script does
m get-process retrieves a list of running processes

m where filters the get-process results to retain only processes with
more than 400 open handles

m sort handlecount orders the sort results by # of open handles

m out-chart writes the where results to an Excel chart using
processname and associated handlecount values

20

Call To Action

m Sign up for Command Shell Preview from
betaplace

m Install it

m Use it
m \Write SCRIPTS
m \Write Cmdlets
m \Write Providers

m Give us feedback, early and often
m Help us ship the V1 that meets your needs

21

Additional Resources

m \Web Resources

m Available on hitp://betaplace.com
Use the guest account: mshPDC

m Logon and password e-mailed within
24 hours

m Download bits, SDK, samples, private
newsgroup, and a feedback/bug reporting
environment

22

http://betaplace.com/

Question & Answer

MSH Architecture

Scripting Language

m Cmdlet syntax: <verb>-<noun> [-<qualifier> <value> [,<value>...] ...]
m Verb refers to the action
m Noun refers to the system object
m Qualifier-value pair refers to the parameter

m |anguage constructs

arithmetic binary operators (+, -, * /, %)
assignment operators (=, +=, -=, *=, /=, %=)
comparison operators (-eq, ==, -ne, !=, -gt, -ge, -It, -le)
logical operators (!, -and, -or)

unary operators (++, --, +, -)

redirection operators (>, >>)

arrays and associative arrays (hash tables)
boolean, string

break, continue, return

comparisons

for, foreach, while

if, elseif, else

functions, method calls, invoke (&)
properties

variables

scoping

25

Base Cmdlets

Providers

B new-provider
m get-provider
B remove-provider
Drives

m new-drive

m get-drive

B remove-drive
Location

m get-location

m set-location

m push-location
m pop-location
Children

m get-children

ltem

B new-item
get-item
set-item
remove-item
rename-item
copy-item
move-item
clear-item
invoke-item

roperty
new-property
get-property
set-property
remove-property
rename-property
Copy-property
move-property
clear-pyoperty

H B B E R B BE R UNEEENEEREEBERGBETBHR

Property Value

get-propertyvalue
set-propertyvalue
add-propertyvalue

remove-
propertyvalue

clear-propertyvalue

Content

add-content
get-content
set-content
clear-content

Path

test-path
convert-path
parse-path
resolve-path
combine-path

More Cmdlets

Process

m get-process
m set-process
m stop-process
Service

m get-service

m set-service

m start-service
m stop-service
Pipeline

m pick-object

m sort-object

m group-object

B measure-object
m compare-object
Environment

m get-environment
m set-environment
Help

m get-help

Alias

m new-alias

m get-alias

m set-alias

m remove-alias
History

m get-history
m eval-history
m import-history

Variable

m new-variable

m get-variable

m set-variable

m add-variable

m remove-variable
File

m in-file

m out-file

Format

format-table
format-list
format-wide
format-default
format-object

XML

||
||
||
|
|
O
||
||
|

convert-xml
test-xml
converto-mshxml
convertfro-mshxml
iInvoke-xsilt

utput

out-console
out-printer
out-chart

Expressions

reduce-expression
apply-expression

And Even More Cmdlets ...

m Runspace

new-runspace
wait-runspace
remove-runspace
push-runspace
pop-runspace
test-runspace
import-runspace
export-runspace

m Security

get-securitydescriptor
set-securitydescriptor

get-securitycontext
get-credential
set-credential
get-signature
set-signature
test-signature

Console

get-console
set-console
write-console
read-console

Utility

get-date
get-localizedstring
write-object
write-errorobject
set-debug
write-debug
write-verbose
write-progress
add-note
start-subshell
get-culture
set-culture

Command

get-command
eval-command
export-command

Configuration

import-assembly
import-typexml
export-typexml
test-typexmi
update-typexml
import-displayxml
export-displayxml
test-displayxml
update-displayxml

Interactive-Composable

Command-line-oriented

Interactive experience (aliases, navigation,
IntelliSense, command line editing)

History (statement, status, and results)
Help (rich schema and searching)
Pipelines (.NET and structures)
Utilities (reflection)

29

Demo

get-process
Globbing applies to objects
get-service A*

Descriptive names for cmds & params
start-service -ServiceName Alerter

only need to disambiguate
stop-service -S Alerter

You can run any existing executable

ipconfig

You can invoke files
demo.txt

#Rich aliasing reduces typing
alias ps get-process
pS

Rich Navigation capabilities
cd c:¥

pushd doc*¥js*¥msh*

popd

$CdPath

cd mshf*

get-history

Object pipeline and utilities
gps |member
gps |where "handlecount -ge 400" |sort handlecount

gps |sort MainModule.FileVersioninfo.companyName,handlecount
[table -groupby MainModule.FileVersionlnfo.CompanyName
processname,handlecount

gps msh |pick ProcessName -expand modules [table
processname,filename

gps |pick processname -expand modules |where "filename -like
*ntdll.dll" |table processname

gps |pick processname -expand modules |group filename |sort
count -desc |head 15 |table count:6,name:70

we don't limit ourselves to the console window

gps |out-grid processname,id,handlecount

gps |sort handlecount [tail 10 |out-chart processname,handlecount
gps |out-excel processname,handlecount,id,workingset

30

Programmable

Rich, typed variables (read-only, constraints,
descriptions)

Rich operators

Control structures (C# like with access to cmds
and utilities)

Functions (positional-named-typed-constrained
params)

Object property-method access
Hosting

Glide path (MMC => MSH => C#)
Efficient cmdlet development model

Demo

Typed variables
$a = "string"
$a=1,2,34

$a = $(get-date)
$a = {get-date }
$a.Invoke()

Rich set of operators
$i=2

$s = "hello"

$i*3

$s*3

Si+=1

$s += "world"

$i=10
3i % 3
$s = get-date

"Today's data is {0:MM-YY-dd}" % s

C# like control structures

for ($i=0; $i -le 100 ; $i +=10) {$i }

But still have access to cmds

foreach ($p in get-process |where "handlecount -ge 500" |sort
handlecount) { "{0,-15} has {1,6} Handles" %
$p.ProcessName,$p.Handlecount }

We have scripts

edit test.msh

get-console -prompt "Enter to get a list of processes”
get-process

We have functions

edit test.msh

function t1 {

get-console -prompt "Enter to get a list of processes"
get-process

Object property & method access
%s=$(new-stopwatch)
S
$s.Start()
$s.Stop()

Ky

Easy To Use

m File systems are easy to use
m Navigation and manipulation are universal

m Other stores are hard

m Require domain-specific utilities
and concepts

m How do we make other stores easy?
m Interact with them as with file systems

33

Demo

get-drive -scope global

pushd hkim:¥software¥microsoft

dir

cd wbem

new-item -path .¥cimom -Name TEST1 -content "first TEST STRING" -type String
new-item -path ¥xml¥Decoders -Name TEST2 -content "Second TEST STRING" -type String
new-item -path .¥wmic -Name TEST3 -content "Third TEST STRING" -type String
new-item -path . -Name TEST4 -content "Forth TEST STRING" -type String

get-children -recurse -include TEST*
get-children -recurse -include TEST* [remove-item

dir C:¥do*¥*¥*.msh
dir c:¥do™¥*¥*.msh -exclude *profile*

dir alias:c*

dir env:

dir variables:

dir variables:*err*
Dir AD:

34

Production Oriented

m Uniform syntax, formatting, outputting,
and processing

m Strong style guide
m Naming
m Errors
m [argeting
Admin friendly (Whatif, Confirm, VVerbose)
Rich error support ($error, -errvar,
-errorpolicy, error pipelines)

m Remote Management (Secure, 1:many)

35

Demo

gps c*,s* -exc *t,*d
gps c*,s* -exc *t,*d [stop-process -whatif
gps c*,s* -exc *t,*d [stop-process -confirm

stop-service a*

$error

stop-service a* -errvar myvar

$myvar

stop-service a* -errorpolicy notifycontinue
stop-service a* -errorpolicy silentcontinue
stop-service a* -errorpolicy notifystop
stop-service a* -errorpolicy inquire

36

	Monad Shell – Task-Oriented Automation Framework
	Task-Based Administrative Experience
	Microsoft Shell (MSH) Mission
	MSH Problem Statement
	MSH – Key Admin Scenarios
	MSH Demo
	MSH Architecture
	Key MSH Concepts For The Developer
	Cmdlet Class
	Writing A cmdlet
	Example: Get-Process cmdlet
	Pipelines
	Pipeline Processing
	Parameters
	Example: Stop-Process cmdlet With Parameter
	Error Handling
	Cmdlet Providers
	Cmdlet/Provider Configuration And Registration
	Demo: Retrieving A List Of Running Processes
	Demo: Using MSH To Generate A Report
	Call To Action
	Additional Resources
	MSH Architecture
	Scripting Language
	Base Cmdlets
	More Cmdlets
	And Even More Cmdlets …
	Interactive-Composable
	Demo
	Programmable
	Demo
	Easy To Use
	Demo
	Production Oriented
	Demo

