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Essay 11 

Penetration Testing 
Clark Weissman 

 
The TCB shall be found resistant to penetration. 

 
— Department of Defense, “Trusted Computer System Evaluation 
Criteria,” DoD 5200.28-STD, December 1985 (The Orange Book). 

 
Near flawless penetration testing is a requirement for high-

rated secure systems — those rated above B1 based on the 
Trusted Computer System Evaluation Criteria (TCSEC) and its 
Trusted Network and Database Interpretations (TNI and TDI). 
Unlike security functional testing, which demonstrates correct 
behavior of the product’s advertised security controls, penetra-
tion testing is a form of stress testing which exposes weaknesses 
— that is, flaws — in the trusted computing base (TCB). This es-
say describes the Flaw Hypothesis Methodology (FHM), the earli-
est comprehensive and widely used method for conducting 
penetrations testing. It reviews motivation for penetration test-
ing and penetration test planning, which establishes the goals, 
ground rules, and resources available for testing. The TCSEC de-
fines “flaw” as “an error of commission, omission, or oversight in 
a system that allows protection mechanisms to be bypassed.” 
This essay amplifies the definition of a flaw as a demonstrated 
unspecified capability that can be exploited to violate security 
policy. The essay provides an overview of FHM and its analogy to 
a heuristic-based strategy game. 

The 10 most productive ways to generate hypothetical flaws 
are described as part of the method, as are ways to confirm them. 
A review of the results and representative generic flaws discov-
ered over the past 20 years is presented. The essay concludes 
with the assessment that FHM is applicable to the European 
ITSEC and with speculations about future methods of penetra-
tion analysis using formal methods, that is, mathematically 
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specified design, theorems, and proofs of correctness of the de-
sign. One possible development could be a rigorous extension of 
FHM to be integrated into the development process. This ap-
proach has the potential of uncovering problems early in the de-
sign, enabling iterative redesign. 

 
A security threat exists when there are the opportunity, motivation, 

and technical means to attack: the when, why, and how. FHM deals 
only with the “how” dimension of threats. It is a requirement for high-
rated secure systems (for example, TCSEC ratings above B1) that pene-
tration testing be completed without discovery of security flaws in the 
evaluated product, as part of a product or system evaluation [DOD85, 
NCSC88b, NCSC92]. Unlike security functional testing, which demon-
strates correct behavior of the product’s advertised security controls, 
penetration testing is a form of stress testing, which exposes weak-
nesses or flaws in the trusted computing base (TCB). It has been cyni-
cally noted that security functional testing demonstrates the security 
controls for the “good guys,” while penetration testing demonstrates the 
security controls for the “bad guys.” Also, unlike security functional test-
ing by the product vendor, penetration testing is the responsibility of 
the product evaluators. However, product vendors would be ill advised 
to ignore their own penetration testing as part of the design, test, and 
preparation for a high-rated security product evaluation, for such ven-
dors will surely be surprised by unanticipated debilitating vulnerabilities 
long after the development phase, when repairs are impractical. 

Of all the security assurance methods — including layered design, 
proof of correctness, and software engineering environments (SEE) — 
only penetration testing is holistic in its flaw assessment. It finds flaws 
in all the TCB evidence: policy, specification, architecture, assumptions, 
initial conditions, implementation, software, hardware, human inter-
faces, configuration control, operation, product distribution, and docu-
mentation. It is a valued assurance assessment tool. 

This essay is in 10 parts and describes a comprehensive method for 
conducting penetration analysis, of which penetration testing is but one 
aspect. The parts include background motivation, test planning, testing, 
and the analysis of the test results. The essay is largely based on the 
author’s Flaw Hypothesis Methodology (FHM), the earliest and most 
widely used approach [WEIS73]. 

The “Background” section reviews the reference monitor concept of 
policy, mechanism, and assurance that forms the basis of the TCB. 
Penetration testing, a pseudo-enemy attack, is one method of evaluat-
ing the security strength of the reference monitor TCB. The section 
“Develop a penetration test plan” establishes the ground rules, limits, 
and scope of the testing. The test team identifies what is the “object” 
being tested and when the testing is complete. The section advances 
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the idea that the tests seek to confirm security claims of the vendor and 
to support the evaluation class rating. Testing is not a challenge or invi-
tation to the test team to “crack” the system and steal something of 
value. 

The section “Flaw hypothesis methodology (FHM) overview” provides a 
technical foundation for penetration testing. It establishes the idea that 
a security flaw is an unspecified capability that can be exploited to vio-
late security policy — for example, to penetrate the protection controls. 
Finding and assessing flaws is a four-phase process of flaw generation, 
flaw confirmation, flaw generalization, and flaw elimination. These 
phases are covered in separate sections. The section “FHM experience” 
provides examples of results of application of the method to dozens of 
systems. Some costs of penetration testing are also discussed. The final 
section, “Penetration analysis for the 1990s and beyond,” examines the 
ITSEC and where FHM can be applied, and work in formal methods and 
promising future approaches to flaw detection. 

Background 

Per the TCSEC, a TCB is the amalgam of hardware, software, facilities, 
procedures, and human actions that collectively provide the security 
enforcement mechanism of the reference monitor [ANDE72]. A reference 
monitor mediates every access to sensitive programs and data (security 
objects) by users and their programs (security subjects). It is the security 
policy mechanism equivalent of abstract data-type managers in strongly 
typed programming languages such as Algol, Modula, and Ada. The ref-
erence monitor software is placed in its own execution domain, the 
privileged supervisor state of the hardware, to provide tamper resistance 
to untrusted code. The reference monitor software, often called the se-
curity kernel, is small and simple enough in its architecture to enable it 
to be evaluated for correctness with assurance that only the authorized 
security policy is enforced and never bypassed. The strength of this triad 
of policy, mechanism, and assurance of the reference monitor is the ba-
sis for the evaluation of the TCB. Penetration testing is but one method 
for assessing the strength of a TCB. 

Traditional methods of testing and repair are poor strategies for secur-
ing TCBs. Such strategies lead to games biased in favor of the hacker, 
who possesses modern power tools to attack aging computer systems. 
The “hack-and-patch” approach to assure secure systems is a losing 
method because the hacker need find only one flaw, whereas the ven-
dor must find and fix all the flaws [SCHE79]. Furthermore, there are 
many flaw opportunities with little risk of detection or punishment for 
the interloper. So why bother with penetration testing by FHM? Be-
cause FHM penetration testing is not hack-and-patch, but a compre-
hensive, holistic method to test the complete, integrated, operational 
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TCB — hardware, software, and people. It is an empirical design review 
and a credible bridge between abstract design (theory) and concrete im-
plementation and operation (practice). It is a peer review of all the TCB 
assurance evidence. It is one of many methods for satisfying assurance 
requirements. It works. It finds flaws. But we must not overstate its 
value. Penetration testing cannot prove or even demonstrate that a sys-
tem is flawless. It can place a reasonable bound on the knowledge and 
work factor required for a penetrator to succeed. With that information, 
together with countermeasures, we can restrict the penetrator’s access 
freedom below this bound, and therefore have a degree of assurance to 
operate the system securely in a specific threat environment [CSC85]. 

Develop a penetration test plan 

Establishing the test ground rules is a particularly important part of 
penetration analysis. The rules are captured in the penetration test 
plan, which defines the test objective, the product configuration, the 
test environment, test resources, and schedule. It is important that 
penetration testing use ethical evaluators who are nonantagonistic to-
ward the vendor to encourage cooperation, to protect proprietary infor-
mation and vendor investment, and ultimately to yield an improved 
security product. Test results and flaws discovered during penetration 
testing must be kept strictly proprietary and not be made public by the 
test team. 

Establish testing goal. There can be many goals for penetration test-
ing, including security assurance [DOD85], system design research 
[KARG74], and systems training [HEBB80, WILK81]. For this essay, pene-
tration testing will focus only on the goal of generating sufficient evi-
dence of flawlessness to help obtain product certification to operate at a 
B2, B3, or A1 security assurance level. 

The ground rules for the analysis define successful completion. The 
analysis is successfully concluded when 

1. a defined number of flaws are found, 
2. a set level of penetration time has transpired, 
3. a dummy target object is accessed by unauthorized means, 
4. the security policy is violated sufficiently and bypassed, or 
5. the money and resources are exhausted. 

Most often the last criterion ends the penetration test, after a defined 
level of effort is expended. For some systems, multiple independent 
penetration teams are used to provide different perspectives and in-
creased confidence in the flawlessness of the product if few flaws are 
found. As a holistic assurance technology, penetration testing is best 
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used to explore the broad capabilities of the object system for flaws 
rather than to create a gaming situation between the vendor and the 
penetration team of trying to acquire an identified protected object by 
unauthorized means. Dummy target acquisition penetration goals waste 
effort by forcing the test team to prepare and debug a break-in, rather 
than focusing their energy on proven methods of finding flaws. 

The reference monitor defines a "perimeter” between itself and un-
trusted user application code, and between different user processes. 
Flaws within the application code have no impact on the TCB and are of 
little interest to security or penetration testing. Flaws internal to the 
security kernel are of interest to security, but they cannot be exploited 
unless the security perimeter is breached. In international travel, it re-
quires passports and visas to control border crossings. In banking, turn-
ing account balances into cash is a form of boundary crossing called 
“conversion.” Control is imposed at the interface. Therefore, much of 
penetration testing focuses on the design, implementation, and opera-
tional integrity of the security perimeter, the control of the boundary 
crossings of this critical security interface. 

Define the object system to be tested. FHM can be applied to most 
any system whose developers are interested in TCSEC evaluation. How-
ever, C1, C2, or B1 candidate systems are intended for benign environ-
ments, protected by physical, personnel, procedural, and facility 
security. Systems in these benign evaluation classes are not designed to 
resist hostile attack and penetration. Such attacks are always likely to 
uncover flaws. The TCSEC wisely does not require penetration analysis 
for these systems. FDM is most valuable for testing security resistance to 
attack of candidate systems for evaluation classes B2, B3, or A1, systems 
designed to operate in hostile environments. 

A system intended for TCSEC evaluation at B2 or higher is delivered 
with a collection of material and documentation that supports the secu-
rity claim, including a security policy model, a descriptive top level speci-
fication (DTLS), a formal top level specification (FTLS) for A1 
evaluations, code correspondence matrices to the DTLS or FTLS, and 
security functional test results. All the source and object code, the de-
sign and test documentation, and the security evidence must be under 
configuration management control for B2, B3, or A1 evaluation classes. 
This controlled collection of security material will be referred to as the 
security “evidence,” and defines the security system to be penetration 
tested. Not all the evidence will be complete if the penetration testing is 
performed by the vendor during the development phase. The evidence 
must be frozen and remain unmodified during the penetration testing 
period to avoid testing a moving target. 

Experience has shown that probing for security flaws may require sys-
tem halts and dumps by the penetration team. When tests succeed, 
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they yield unpredictable results — for example, uncontrolled file modifi-
cation or deletion, or system crash — which disrupt normal operation. 
Therefore, penetration testing should be performed in a controlled labo-
ratory environment on a stand-alone copy of the target system to assure 
noninterference with real users of the system. 

When the object system is a network, the TCB is distributed in various 
components, the whole collection of which is called the network TCB 
(NTCB). As noted in the TNI, penetration testing must be applied to 

1. the components of the NTCB, that is, the partitions of the NTCB; 
and 

2. the whole integrated network NTCB [NCSC87a]. 

Therefore, the TNI Mandatory (M), Audit (A), Identification & Authenti-
cation (I), and Discretionary (D) M-A-I-D network components must be 
penetration tested individually and collectively — individually during the 
component evaluation, and collectively during the network evaluation. 

In a similar manner, a trusted application, for example, a DBMS, must 
be penetration tested individually as a component and collectively with 
the operating system TCB on which it depends, according to the 
“evaluation by parts” criteria of the TDI [NCSC91]. 

Posture the penetrator. When an actual test is required to confirm a 
flaw, a host of test conditions must be established, which derive directly 
from the test objectives and the test environment defined in the plan. 
These conditions derive from the security threats of interest and the 
posture of the “simulated” antagonist adopted by the evaluators. Will it 
be an “inside job” or a “break-and-entry” hacker? These assumptions 
demand different conditions for the test team. The test conditions are 
described as “open-box” or “closed-box” testing, corresponding to 
whether the test team can place arbitrary code in the product (open 
box) or not (closed box). In the latter case, the team is restricted to ex-
ternally stimulated functional testing. Open-box penetration testing is 
analogous to computer software unit (CSU) testing, where internal code 
is accessible, and closed-box penetration testing is analogous to com-
puter software configuration item (CSCI) integration testing, where code 
modules are an integrated closed whole. The TNI testing guideline calls 
these “white-box” (internal) and “black-box” (functional) testing, respec-
tively [NCSC88b]. 

In open-box testing we assume the penetrator can exploit internal 
flaws within the security kerne and work backward to find flaws in the 
security perimeter that may allow access to the internal flaws. In the 
case of a general-purpose system such as Unix, open-box testing is the 
most appropriate posture. For special-purpose systems such as network 
NTCB components, which prohibit user code (for example, where code is 
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in ROM), closed-box penetration testing by methods external to the 
product is analogous to electrical engineering “black-box” testing. In 
closed-box testing the penetrator is clearly seeking flaws in the security 
perimeter and exploiting flaws in the interface control document specifi-
cations (ICD). Open-box testing of the NTCB is still a test requirement to 
determine the vulnerability of the network to Trojan horse or viral at-
tacks. 

Fix penetration analysis resources. It was believed that finding 
flaws in OS VS2/R3 would be difficult [MCPH74]. However, another 
study claimed: 

The authors were able, using the SDC FHM, to discover over 
twenty such “exposures” in less than 10 man-hours, and have 
continued to generate “exposures” at the rate of one confirmed 
flaw hypothesis per hour per penetrator... Only the limitations of 
time available to the study governed the total number of flaws 
presented [GALI76]. 

Penetration analysis is an open-ended, labor-intensive methodology 
seeking flaws without limit. The testing must be bound in some man-
ner, usually by limiting labor hours. Small teams of about four people 
are most productive. Interestingly, penetration testing is destructive 
testing. It is intense, detailed work that burns out team members if fre-
quent rotation of the evaluators is not practiced. Experience shows the 
productivity of the test team falls off after about six months. Therefore, 
a penetration test by four people for no more than six months — 24 per-
son-months — is optimal. The test team must include people knowl-
edgeable in the target system, with security and penetration testing 
expertise. Much time is spent perusing the security evidence. However, 
there must be liberal access to the target system to prepare and run live 
tests. The team needs access to all the TCB creation tools — compilers, 
editors, configuration management system, word processors — and a 
database management system to inventory their database of potential 
flaws and to store their assessments of the flaws. 

Flaw hypothesis methodology (FHM) overview 

COMPUSEC’s (computer security’s) raison d’être is to automate many 
of the security functions traditionally enforced by fallible human over-
sight. In theory, a trusted system should perform as its security specifi-
cations define and do nothing more. In practice, most systems fail to 
perform as specified and/or do more than is specified. Penetration 
analysis is one method of discovering these discrepancies. 
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Evidence implication chain. For high-rated trusted systems, the 
trust evidence must show that theory and practice agree — that the 
“evidence implication chain” is correctly satisfied at each step. The im-
plication chain of evidence shows: 

1. the operation of the target system is compliant with hardware and 
software design, and human behavior; 

2. those elements comply with the “correct” specifications; 
3. the specifications satisfy the security policy exclusively; and 
4. the policy meets operational requirements. 

The TCSEC requires evidence that each step in the implication chain 
is correctly satisfied by various techniques, including human facility 
management and login procedures, audit trails, security officer over-
sight, automatic monitoring and alarms, code-to-specification corre-
spondences, test results, peer review, mathematical proof, model-to-
reality correspondence, and other methods. Penetration analysis is a 
disciplined method of examining weaknesses or failures in the implica-
tion chain. 

Essentially, the method seeks counterarguments to the “truth” as-
serted by the evidence — that is, it seeks to establish the evidence is 
false or incomplete. A flaw is such a counterargument. A flaw is a dem-
onstrated undocumented capability that can be exploited to violate 
some aspect of the security policy. 

The emphasis of FHM is on finding these flaws. It is not on building 
demonstrations of their exploitation, though such examples may have 
merit in some cases. Exploitation demonstrations consume valuable re-
sources that can better be applied to further flaw assessment of the im-
plication chain. 

The induction hypothesis. At the heart of the TCSEC is mathemati-
cal induction, sometimes called the induction hypothesis. It is the theo-
retical basis of TCSEC security and argues that 

1. if the TCB starts operation in a secure state, and 
2. the TCB changes state by execution from a closed set of trans-

forms (that is, functions), and 
3. each transform preserves defined security properties, 
4. then, by mathematical induction, all states of the TCB are secure. 

Finding flaws begins with finding weaknesses in implementation of 
this protection theory — policy, model, architecture, FTLS/DTLS, code, 
and operation. The evidence implication chain of the previous section 
forms the basis of the flaw search for violations of the induction hy-
pothesis. As examples, false clearances and permissions void initial 
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conditions (rule 1), bogus code (for example, a Trojan horse or virus) vio-
lates the closed set (rule 2), and a large covert channe does not preserve 
the information containment security properties of functions (rule 3). 

Stages of the Flaw Hypothesis Methodology (FHM). FHM consists 
of four stages: 

1. Flaw generation develops an inventory of suspected flaws. 
2. Flaw confirmation assesses each flaw hypothesis as true, false, or 

untested. 
3. Flaw generalization analyzes the generality of the underlying secu-

rity weakness represented by each confirmed flaw. 
4. Flaw elimination recommends flaw repair or the use of external 

controls to manage risks associated with residual flaws. 

These stages are shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1. FHM stages. 
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FHM can be likened to a computer strategy game. In artificial intelli-

gence (AI) game software, there is a body of logic that generates “plausi-
ble moves” which obey the legal constraints of the game — for example, 
it ensures a chess pawn never moves backward. In like fashion, pene-
tration testing needs for flaw generation a “plausible flaw generator.” 
Flaw finding begins with the evidence implication chain, our experience 
of security failures in the reasoning chain in other systems, and their 
potential for existence in the target system. The security evidence for 
the target system is the principal source for generating new flaw hy-
potheses. 

Continuing our AI game analogy, there is a body of heuristic rules the 
game uses to distinguish good plausible moves from poor ones. Likewise, 
in penetration testing flaw confirmation, there is human judgment — a 
“cerebral filter” — that evaluates and rates each prospective flaw in 
terms of its existence and how significantly it violates the security pol-
icy. Filtering flaws for confirmation involves desk checking of code, speci-
fications, and documentation evidence, as well as live testing. 

The flaw generalization stage of penetration testing gives an assess-
ment of our results in progress, the game analogy of “winning” or im-
proving game position. Flaw generalization assesses confirmed flaws, 
seeking reasons why they exist. For example, in the penetration testing 
of OS VS2 [LIND75], a simple coding error was traced to a library macro 
and multiple instantiations of the flaw in the code. Inductive reasoning 
on the cause of confirmed flaws can lead to new flaws, generators for 
still more weaknesses. 

The flaw elimination stage considers results of the generalization 
stage and recommends ways to repair flaws. Implementation flaws are 
generally easier to repair than design flaws. Some flaws may not be 
practical to repair; slow covert timing channel flaws may be tolerable, for 
example. These flaws remain in the system as residual flaws and place 
the operational environment at risk. However, external countermea-
sures can be recommended to the approving authority for managing 
these risks, by lowering the TCSEC Risk Index [CSC85], for example. 

Flaw generation 

Flaw generation begins with a period of study of the evidence to pro-
vide a basis for common understanding of the object system. Early in the 
effort there is an intensive “attack-the-system” session of team brain-
storming. Target system expertise must be represented in the attack 
sessions. Each aspect of the system design is reviewed in sufficient 
depth during the session for a reasonable model of the system and pro-
tection mechanisms to be understood and challenged. The vendor’s 
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evaluation evidence is available for in-depth reference by the team. 
Flaws are hypothesized during these reviews. Critical security design 
considerations are the basis for the penetration team’s probing of the 
target system’s defenses. These design considerations become the 
“plausible move generators” of the flaw generation phase. The most 
productive “top 10” generators are the following: 

  1. Past experience with flaws in other similar systems. 
  2. Ambiguous, unclear architecture and design. 
  3. Circumvention/bypass of “omniscient” security controls. 
  4. Incomplete design of interfaces and implicit sharing. 
  5. Deviations from the protection policy and model. 
  6. Deviations from initial conditions and assumptions. 
  7. System anomalies and special precautions. 
  8. Operational practices, prohibitions, and spoofs. 
  9. Development environment, practices, and prohibitions. 
10. Implementation errors. 

Each candidate flaw is documented on a flaw hypothesis sheet (FHS), 
which contains a description of the flaw speculation. The total set of 
FHS becomes the flaw database that guides and documents the pene-
tration analysis. 

Past experience. The literature is filled with examples of successful 
penetration attacks on computer systems [ABBO76, ATTA76, BELA74, 
BISB78, BISH82, GALI75, GALI76, GARF91, KARG74, MCPH74, PARK75, 
SDC76]. There is also a body of penetration experience that is vendor 
proprietary or classified [BULL91, LIND76a, PHIL73, SDC75]. Although 
general access to this past experience is often restricted, such experi-
ence is among the best starting points for flaw generation. 

Unclear design. The design must clearly define the security perimeter 
of the TCB. How are boundary crossings mediated? Where are the secu-
rity attributes — permissions, classifications, IDs, labels, keys, and so on 
— obtained, stored, protected, accessed, and updated? What is the divi-
sion of labor among hardware, software, and human elements of the 
TCB? And how are all the myriad other secure design issues described 
[GASS88]? If the secure design cannot be clearly described, it probably 
has holes. The team will rapidly arrive at consensus by their probing 
and uncover numerous flaws and areas for in-depth examination, par-
ticularly weaknesses in the evidence implication chain. 

Circumvent control. What comes to mind is Atlas down on one knee 
holding up the world. The anthropomorphic view of TCB design gives 
the numerous protection control structures omniscience in their critical 
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Atlantean role of supporting the secure design. If such control can be 
circumvented, the security can be breached. The security architecture 
evidence must show noncircumvention or bypass of security controls. 
The attack sessions will rapidly identify these omniscient objects, be 
they password checkers, label checkers, I/O drivers, or memory maps. A 
method of determining their vulnerability to attack is to build a “de-
pendency graph” of subordinate control objects on which the omnis-
cient ones depend. Each node in the graph is examined to understand 
its protection structure and vulnerability to being circumvented, 
spoofed, disabled, lied to, or modified. If the security design is weak or 
flawed, control can be bypassed. The penetration testing of OS VS2/R3 
[SDC76] gives a detailed example of the use of dependency graphs to 
determine the vulnerability of VS2 to unauthorized access to job data 
sets, virtual memory, and password protection control objects. 

Incomplete interface design. Interfaces are rife with flaw potential. 
Where two different elements of the architecture interface, there is a 
potential for incomplete design. This is often the case because human 
work assignments seldom give anyone responsibility for designing the 
interface. Although modern methodologies for system design stress in-
terface control documents (ICD), these tend to be for interfaces among 
like elements — for example, hardware-hardware interfaces and soft-
ware-software protocols. The discipline for specifying interfaces among 
unlike elements is less well established. Hardware-software, software-
human, human-hardware, hardware-peripheral, and operating system-
application interfaces can have incomplete case analyses. For example, 
the user-operator interface to the TCB must deal with all the combina-
tions of human commands and data values to avoid operator spoofing by 
an unauthorized user request. Operating procedures may be hardware 
configuration dependent. For example, booting the system from the 
standard drive may change if the configuration of the standard drive is 
changed. All the various error states of these interfaces may not have 
been considered. 

Implicit sharing is now a classical source of incomplete design flaws. 
Sharing flaws usually manifest themselves as flaws in shared memory or 
shared variables between the TCB and the user processes during pa-
rameter passing, state variables context storage, setting status vari-
ables, reading and writing semaphores, accessing buffers, controlling 
peripheral devices, and global system data access — for example, clock, 
date, and public announcements. Careful design of these interfaces is 
required to remove system data from user memory. 

Policy and model deviations. For B2 and higher evaluation classes, 
the security evidence includes a formal security policy and a model of 
how the target system meets the policy. Subjects and objects are de-
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fined. The rules of access are specified. For lower evaluation classes, the 
policy and model are less well stated and, in the early years of penetra-
tion testing, required the penetration team to construct or define the 
policy and model during the attack sessions. However, penetration test-
ing is not required for these classes today. 

Consider the adequacy of the policy and the model for the target sys-
tem. Is the model complete? Is the policy correct? Are there policies for 
mandatory and discretionary access control (MAC and DAC), identifica-
tion and authentication (I&A), audit, trusted path, and communications 
security? Examine the security architecture and the TCB design to see if 
there are deviations from the stated policy or model. For example, are 
there user-visible objects that are not defined in the model, such as 
buffers and queues? Omniscient control objects, as described in the 
earlier section “Circumvent control,” should certainly be represented. 
Are there deviations in the implementation of the policy and model? 
This consideration receives greater emphasis during flaw confirmation; 
however, there may be reasons to generate implementation flaws at this 
time. 

Initial conditions. Assumptions abound in secure system design but 
are not documented well, except in evaluation class A1, where formal 
specifications require entry and exit assertions to condition the state-
machine transforms. For all other evaluation classes the assumptions 
and initial conditions are often buried in thick design documentation, if 
they are documented at all. If these assumptions can be made invalid by 
the user, or if in the implementation reality the initial conditions are 
different from the design assumptions, the policy and model may be in-
valid and design flaws should exist. The induction hypothesis presented 
earlier begins with “starts operation in a secure state.” Initial conditions 
determine the starting secure state. If the actual initial conditions are 
other than as assumed in the design, attacks will succeed. 

The whole range of security profiles and administrative security data 
on user IDs, clearances, passwords, and permissions (MAC and DAC) de-
fines the “current access” and “access matrix” of the Bell-LaPadula pol-
icy model [BELL76]. These data are initial conditions. Their correct 
initialization is a testable hypothesis. Other assumptions and initial 
conditions need to be established and tested by penetration analysis, 
including the computer hardware configuration, software configuration, 
facility operating mode (periods processing, compartmented, system 
high, MLS), operator roles, user I&A parameters, subject/object sensitiv-
ity labels, system security range, DAC permissions, audit formats, system 
readiness status, and more. 

System anomalies. Every system is different. Differences that may 
have security ramifications are of particular interest. The IBM Program 
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Status Word (PSW) implements status codes for testing by conditional 
instructions, unlike the Univac 1100, which has direct conditional 
branching instructions. The IBM approach allows conditional instruc-
tions to behave as nonconditional instructions if the programmer avoids 
checking the PSW [SDC76]. That is an anomaly. The Burroughs B5000-
7000 computer series compiler software has privilege to set hardware tag 
bits that define “capabilities,” many of which are security sensitive, such 
as write permission. The Master Control Program (MCP) checks the tag 
bit for permission validity. User code does not have this privilege. Code 
imports can circumvent such checks [WILK81]. That is an anomaly. The 
IBM 370 I/O channel programs are user programs that can access real 
memory via the “Virtual = Real” command without a hardware memory 
protect fault [BELA74]. That’s an anomaly. Nearly every software product 
has clearly stated limits and prohibitions on use of its features, but few 
define what occurs if a prohibition is ignored. What happens when an 
identifier greater than eight characters is used? Is the identifier trun-
cated from the left, right, or middle, or is it just ignored? Anomalous be-
havior may not be security-preserving functionality per the induction 
hypothesis theory. This behavior can be exploited. 

Operational practices. The complete system comes together during 
operation, when many flaws reveal themselves. Of particular interest 
are the man-machine relationship, the configuration assumptions, and 
error recovery. A well-designed TCB will have the system boot process 
progress in stages of increasing operating system capability. Each stage 
will check itself to ensure it begins and ends in a secure state. If there is 
need for human intervention to load security parameters, the human 
must be identified, authenticated, and authorized for known actions. 
The penetrator must see if the boot process progresses correctly. For 
example, how is the security officer/administrator authenticated? If via 
passwords, how did they get loaded or built into the initial boot load? 
Where does the operator obtain the master boot load? From a tape or 
disk library? Is the physical media protected from unauthorized access, 
product substitution, or label switching? If the security officer loads or 
enters on-line permissions to initialize the security parameters of the 
system, how does the security officer authenticate the data? If users 
send operator requests to mount tapes or disks, print files, or execute a 
myriad of other security-sensitive actions, how does the TCB protect the 
operator from spoofs to take unauthorized action? If the system crashes, 
does the system reboot follow a process similar to the initial “cold” boot? 
If there is a “warm” boot mode — a shortcut boot that salvages part of 
the system state — does the security officer have a role in the boot to 
ensure the system begins in a secure state? How is the assurance de-
termined? 
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A common initialization flaw occurs when the system is shipped from 
the vendor with the “training wheels” still on [STOL89]. This class of 
flaw has been known to include training files that provide ID-password 
authorizations to users so they may train for jobs as security officers, 
system administrators, database controllers, and system operators. 
These files were not removed by good system operational practice per 
the Trusted Facility Manual (TFM) and can be used by unauthorized 
parties to circumvent security controls. 

The development environment. Flaws may be introduced by bad 
practices in the security kernel/TCB development environment. A sim-
ple example is the conditional compilation, which generates special 
code for debugging. If the released code is not recompiled to remove the 
debugging “hooks,” the operational system code violates the closed set 
(rule 2) and the secure transform (rule 3) of the induction hypothesis, 
similar to a trap-door bypass of security controls. 

Large untrusted reuse and runtime libraries are properties of many 
programming environments. The TCB may be built using code from the 
library, which finds its way into operational use. All kinds of security 
flaws may obtain from such environments. If the libraries are not secu-
rity sensitive, they can be searched for flaws that are exploitable in the 
operational TCB. If the penetration team can substitute its own code in 
the libraries, even more sophisticated flaws can be created. Runtime 
linkers and loaders have similar properties of appending unevaluated 
code to the trusted object code being loaded to enable code-operating 
system communication. If access to such tools is unprotected, similar 
code-substitution attacks are possible. 

A classic way to attack an operational system is to attack its develop-
ment environment, plant bogus code in the source files, and wait for the 
normal software update maintenance procedures to install your unau-
thorized code into the operational system object code. If the develop-
ment and operational system are the same, then the penetration team 
must mount an attack on the development environment first, particu-
larly the system configuration files. Flaws found there relate directly to 
the operational system, the source files of which are then accessible 
and modifiable by the penetrator without authorization. Substitute con-
figuration files give the penetrator a high-probability attack and essen-
tial control of the TCB. 

Implementation errors. In any system built by humans, there will be 
errors of omission and commission. This is not a promising class of flaws 
to explore, as there is no logic to them. Many are just typos. Implemen-
tation errors that can be analyzed are those of the IF-THEN-ELSE condi-
tional form. Often a programmer fails to design or implement all the 
conditional cases. Incomplete case analysis may occur if the code logic 
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assumes some of the predicates are performed earlier. Most often, im-
plementation flaws are just coding errors. 

Other areas for investigation are macros and other code generators. If 
the original macro is coded incorrectly, the error code will be propagated 
in many different parts of the system. Similarly, if data declarations are 
incorrect, they will affect different parts of the code. Incorrect code se-
quences should be traced back to automatic source code generators to 
see if the code error appears in multiple parts of the TCB. 

Sometimes there are errors in the development tools that generate 
bad code. Few configuration management tools provide a trusted code 
pedigree or history of all the editor, compiler, and linker tools that touch 
the code. Therefore, an error in these tools, which becomes known late 
in the development cycle and is fixed, may persist in some earlier gener-
ated modules that are not regenerated. The penetration team may find 
it fruitful to interview the development team for such cases. 

Flaw hypothesis sheets. FHM candidate flaws are documented on 
flaw hypothesis sheets (FHS), one page (record) per flaw. An FHS is in-
tended to be concise and easy to use throughout the penetration test-
ing. The FHS contains seven fields: 

1. a flaw name for identification, 
2. a brief description of the flaw vulnerability speculation, 
3. a localization reference of the flaw to a part of the system or mod-

ule, 
4. an assessment of the probability of the flaw being confirmed, 
5. an estimate of the damage impact of the flaw on the protection of 

the system if confirmed, 
6. an estimate of the effort/work factor needed to confirm a flaw, 

and 
7. a description of the attack and result. 

Probabilities for fields 4, 5, and 6 are measured on a scale of high (H), 
medium (M), or low (L). The combined assessment of HH, HM, HL, MH, 
..., LL yields an overall scale of nine for ranking FHS. The ranking is 
valuable in allocating resources during the flaw confirmation phase of 
penetration analysis. The FHS documents an estimate of the work re-
quired to demonstrate a flaw. High work-factor flaws — for example, 
cracking encryption codes — are given lower priority, even if the flaw is 
ranked HH. An FHS has a section for describing the results obtained 
from the flaw confirmation phase. The total set of FHS becomes the flaw 
database that guides and documents the penetration analysis. The FHS 
can be mechanized with tool support — for example, a word processor or 
a DBMS — to permit flexible sorts and searches based on key fields of 
an FHS database of hundreds of records. 
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Flaw confirmation 

Conducting the actual penetration test is part of the testing procedure 
developed in the plan. The bulk of the testing should be by “Gedanken” 
experiments, thought experiments, that confirm hypothesized flaws in 
the product by examination of the product’s documentation and code, 
that is, the security evidence. There are three steps to the flaw confir-
mation stage: flaw prioritization and assignment, desk checking, and live 
testing. 

Flaw prioritization and assignment. The flaw hypothesis sheets 
represent a comprehensive inventory of potential flaws. Sorted by the 
probability of existence, payoff (damage impact, if confirmed), work factor 
to confirm, and area of the system design, they provide a ranking of po-
tential flaws for each design area from high probability/high payoff (HH) 
to low probability/low payoff (LL). Usually, only high and medium ranks 
are studied. Team members divide the rank lists among themselves 
based on expertise in the different system design areas. They move out 
as individuals on their lists. At daily team meetings, they share one an-
other’s progress and findings. Management may reallocate staff and FHS 
to balance the work load. Often confirmed flaws raise the priority of 
other FHS or provide the analysts with insight to generate new FHS. 

Desk checking. The penetrator analyst studies the FHS and the TCB 
evidence. Code, models, code correspondence maps, or dependency 
graphs are examined to see if the flaw exists. The analyst must be flexi-
ble in considering alternatives, but concentrate on what exists in the 
actual code and other evidence. Analysts use code walk-throughs, prior 
test results, their own insights, and conversations with other team 
members to reach conclusions about the likelihood of the flaw’s exis-
tence. 

Results are documented on the FHS. Confirmed flaws are flagged in 
the database for later examination. An analyst spends a few days, at 
most, on each flaw. The desk checking continues for weeks, and possi-
bly a few months, yielding an FHS productivity rate of 10 to 20 FHS per 
person-month. The work is tedious and detailed, and requires destruc-
tive thinking. Occasionally an FHS is of sufficient complexity and inter-
est to warrant a live test, but the investment in the testing process will 
lower productivity. 

Live testing. Test case design, coding, and execution are expensive, 
so live testing is not the preferred FHS evaluation method. However, 
testing is often the fastest way to confirm complex or time-dependent 
flaws. In penetration testing, live tests are similar to computer software 
configuration item (CSCI) functional tests with the FHS acting as the 
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(dis)functional specification for the test. There is little unique about 
these tests, except they may be destructive of the system. Avoid running 
them on the operational system since they can have unpredictable re-
sults. Also, the testing is to confirm the flaw, not to exploit it. Test code 
should be a narrowly focused (by the FHS) quick one-shot routine. This 
will be easier to write if there is a rich library of debug and diagnostic 
routines. 

Flaw generalization 

When the team assembles for the daily meeting, the confirmed flaws 
of the day are briefed and examined. Each team member considers the 
possibility that the flaw might exist in his area, and whether the test 
technique and code can be used on his FHS. Often a confirmed flaw has 
only medium payoff value but can be used with other confirmed flaws to 
yield a high payoff. This stringing of flaws together is called “beading” 
and has led to many unusual high-payoff penetrations. 

Deductive thinking confirms a flaw. Inductive thinking takes a specific 
flaw to a more general class of flaws. The team examines the basic 
technology upon which each confirmed flaw is based to see if the flaw is 
a member of a larger class of flaws. By this generalization of the flaw, 
one may find other instances of the weakness or gain new insight on 
countermeasures. Inductive thinking proceeds simultaneously with de-
ductive thinking of new instances of the flaw, so that the flaw becomes 
a new flaw hypothesis generator. Some classic flaws were discovered by 
this induction — for example, parameter passing by reference [LIND75, 
SDC76], piecewise decomposition of passwords [TANE87], puns in I/O 
channel programs [ATTA76, PHIL73], and time-of-check-to-time-of-use 
(TOCTTOU) windows [LIND75]. These are described in the upcoming 
section “FHM experience.” 

Flaw elimination 

Experts have argued the futility of penetrate-and-patch and hack-and-
patch methods of improving the trust of a TCB for substantial reasons 
that reduce to the traditional position that you must design security, 
quality, performance, and so on, into the system and not add it on 
[SCHE79]. However, most human progress is made in incremental for-
ward steps. Products improve with new releases and new versions that 
fix flaws by patching, workarounds, and redesign. 

The TCSEC requires that all known flaws be repaired. The evaluators 
can suggest to the vendor repair of simple implementation and coding 
errors, or recommend known generic design flaw countermeasures. After 
repair, the system must be reevaluated to confirm the flaws were fixed 
and to ensure no new flaws were introduced. Reevaluation is a com-
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plete repetition of the penetration testing process. However, application 
of the Ratings and Maintenance Process (RAMP) [NCSC89a] to B2 and 
better evaluations may be a possible method to avoid total repetition. 
This speculation has been tried on the B2 evaluation of trusted Xenix 
ported to new hardware platforms [MCAU92]. It is impractical for the 
vendor to fix some flaws. These residual flaws will result in a lower class 
rating. However, the using agency can prepare a risk analysis that 
shows the DAA (Designated Approving Authority) alternative security 
measures to counter the residual flaws. 

FHM experience 

FHM has been a cost-effective method of security system assurance 
assessment for over twenty years. Unlike other assurance methods, 
which focus on narrower objectives (for example, formal correctness 
proofs of design or risk assessment costs of failures), FHM seeks security 
flaws in the overall operation of a system due to policy, specification, 
design, implementation, and/or operational errors. It is a complete sys-
tems analysis method that uncovers flaws introduced into the system at 
any stage of the product life cycle. 

FHM management experience. Management models and work 
breakdown structures (WBS) of tasks, schedules, and labor loadings to 
perform typical penetration testing are available in the literature 
[RUB86, WEIS92a]. For weak systems in the TCSEC C1 to B1 classes, ex-
perience predicts a typical penetration team of four people operating for 
six months will generate about 1,000 FHS and assess about 400 of the 
highest priority. Some 50 to 100 of these will be confirmed flaws. That 
yields a productivity rate of one flaw for every one to two person-weeks 
of effort. Stronger systems in the TCSEC B2 to A1 classes, by definition, 
must be flawless. However, even these systems have flaws — far fewer, 
of course, because of the greater attention to secure system develop-
ment. Such flaws are repaired, audited, or considered an acceptable 
risk. Higher flaw rates may signal a lesser evaluation class than B2 is 
warranted for the target system. 

Vulnerability classes of flaws. Confirmed flaws are sorted into vul-
nerability classes: 

1. flaw gives total control of the TCB/system (TC), 
2. security policy violation (PV), 
3. denial of service (DS), 
4. installation dependent (IN), and 
5. harmless (H). 
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These vulnerability classes are based on the degree of unauthorized 
control of the system permitted by the flaw — that is, damage extent. 
The greatest vulnerability is TCB capture; the machine is under total 
control of the interloper (TC — total control — flaws). Flaws that permit 
lesser control are unintentional, undocumented capabilities that violate 
the policy model, but do not allow total control (PV — policy violation — 
flaws). Denial of service flaws permit the penetrator to degrade individ-
ual and system performance, but do not violate the confidentiality secu-
rity policy (DS — denial of service — flaws). Installation-dependent flaws 
are weaknesses in the TCB that obtain from local initialization of the 
system, such as a poor password algorithm (IN — installation-dependent 
— flaws). Last, there are flaws that are harmless in the sense that they 
violate policy in a minor way, or are implementation bugs that cause no 
obvious damage (H — harmless — flaws). These codes will categorize 
flaws presented in subsequent sections. 

Penetration results: Example generic attack methods. This sec-
tion presents a representative collection of attack methods found effec-
tive in finding flaws by the innovative and skilled penetration teams 
using FHM. An extensive taxonomy of flaws is in preparation by NRL 
(Naval Research Laboratory) [BULL91]. 

Weak identification/authentication. Passwords are the cheapest form of 
authentication. Weak passwords, however, are quite expensive, allow-
ing the penetrator to impersonate key security administrators to gain 
total control of the TCB (TC flaw). In one system, a weak password pro-
tected the password file itself. The password was a short English word 
that took but a few hours of trial and error to crack. A modern form of 
this attack on the Unix password file is embodied in a program called 
Crack, which runs for days as a background task generating popular 
candidate passwords and trying them for confirmation [MUFF4a]. Since 
most passwords are initialized by system administration, this is an ex-
ample of an operational flaw and an initial-condition (IN) flaw. 

On the DEC PDP-10 and many contemporary machines, there are 
powerful string compare instructions used to compare stored versus en-
tered passwords. These array instructions work like DO-WHILE loops 
until the character-by-character compare fails or the password string 
ends. It was discovered in the Tenex operating system that the instruc-
tion also failed when a page fault occurred. This turned a neat binary 
password predicate — yes/no — into a trinary decision condition — 
yes/no/maybe — that enabled piecewise construction of any password 
in a matter of seconds. In this case the flaw was a weak password 
checking routine that permitted the user to position the candidate 
password across page boundaries [TANE87]. This is an example of a 
hardware anomaly and an implicit memory sharing (TC) flaw. 
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On the IBM OS/VS2 R3 and similar vintage operating systems, files or 
data sets are protected by password. When the user is absent during 
batch processing, surrendered passwords for the file are placed in the 
Job Control Language (JCL) load deck and queue file for command to 
the batch process. The JCL queue is an unprotected database, which is 
readable by any user process, thus permitting theft of passwords. This is 
an example of a badly designed user-system interface, where system 
data is placed in the user’s address space [MCPH74, SDC75, SDC76]. It is 
also an example of bad security policy, a policy violation (PV) flaw. 

In most systems the user logs into a well-designed password authenti-
cation mechanism. However, the system never authenticates itself to 
the user. This lack of mutual authentication permits users to be 
spoofed into surrendering their passwords to a bogus login simulation 
program left running on a vacant public terminal. This spoof has been 
around forever and is still effective. It is an example of a poor user-
system interface that yields a policy violation (PV) flaw. Mutual authen-
tication is a necessity in the modern world of distributed computing, 
where numerous network servers handle files, mail, printing, manage-
ment, routing, gateways to other networks, and specialized services for 
users on the net. Without it, such services will surely be spoofed, modi-
fied, and/or falsified. New smart card I&A systems provide mutual 
authentication by use of public key cryptography [KRAJ92]. 

Security perimeter infiltration. Untrusted code must be confined and 
permitted to call the TCB only in a prescribed manner for secure access 
to needed system services [LAMP73]. These boundary crossings of the 
security perimeter are often poorly designed and result in “infiltration” 
flaws. A classic example of this is the uncontrolled channel program of 
the IBM 370. Since channel programs are allowed to be self-modifying to 
permit scatter reads and writes and the user can turn off memory map-
ping (for example, Virtual = Real), it is possible to write into protected 
system memory and modify code and/or process management data. At-
tempts to eliminate these problems by static analysis of the channel 
programs in VM/370 failed to prevent clever “puns” in the code from 
continued exploitation [ATTA76, BELA74, PHIL73]. 

Another example of poor confinement is the Honeywell HIS 6000 
GCOS suspend feature. It allows a user to freeze an interactive session 
for a lunch break or longer suspension, and resume later by thawing the 
program. The design flaw stores the frozen image in the user’s file space, 
including all the sensitive system context needed to restart the code. It 
is a simple process for a user to edit the frozen image file and modify the 
context data such that the restarted program runs in system state with 
total control of the TCB (TC flaw). This is yet another example of an im-
plied memory sharing flaw. 
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Among the most sophisticated penetrations is the legendary break-
point attack of Linde and Phillips [ATTA76, PHIL73]. It is an excellent 
example of a beading attack. When a user plants a breakpoint in his 
user code, the system replaces the user code at the breakpoint with a 
branch instruction to the system. The system’s breakpoint routine saves 
the user code in a system save area. Later, when the breakpoint is re-
moved, the user code is restored. The breakpoint feature helps the 
penetrator plant code in the system itself — that is, the replaced user 
code — an example of a harmless (H) flaw. It was observed that another 
existing harmless flaw, a move string error exit, left the address of the 
system memory map, rather than the address of the string, upon error 
return. It was possible to induce the string flaw by reference to an un-
available memory page — that is, a page fault. A third harmless flaw al-
lowed control to return to the caller while the string move was in 
progress in the called program. 

The penetrators set up the bead attack by planting a breakpoint at a 
carefully prepared instruction on the same page as a string move com-
mand. They carefully selected a string that crossed a page boundary. 
They executed the string move, and upon regaining control, released 
the page containing the end of the long string. That caused a page fault 
when the string move crossed the page boundary, at which time the 
breakpoint was removed. In restoring the prebreakpoint user code, the 
system retrieved the saved user code but erroneously wrote the user 
code into protected system memory, specifically, the system page map. 
This unauthorized system modification was possible because a hard-
ware design flaw in the page fault error return left the page address of 
the system memory map, not the page address of the original user’s 
string. The attack had successfully modified the system map, placing 
user data in the system interrupt vector table. The attack gave arbitrary 
control of the TCB — another subtle flaw in implicit memory sharing (a 
TC flaw). 

Incomplete checking. Imports and exports that cross the security pe-
rimeter per the TCSEC are either label checked or use implicit labels for 
the I/O channel used. Lots of flaws occur when labels are not used or 
are used inconsistently. Another attack exploits interoperability be-
tween systems that use different label semantics. The Defense Data 
Network (DDN) employs the standard IP datagram Revised Internet Pro-
tocol Security Option (RIPSO) security sensitivity label [RFC1038]. It dif-
fers from emerging commercial standards. Here is a situation ripe for a 
future security (IN) flaw. 

Array-bounds overflow is a particularly nasty flaw and quite pervasive 
and difficult to counter. The flaw manifests itself in system operation, 
but its cause is usually traced to the development compiler’s failure to 
generate code for dynamic array-bounds checking. When the array 
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bound is exceeded, the code or data parameters adjacent to the array 
are overwritten and modified. In one case the user-entered password 
was stored adjacent to the system-stored password, so the two strings 
(arrays) could be rapidly compared. However, there was no bounds 
checking. The user simply entered a maximum-size password twice so 
that it overflowed the user array into the system array, creating a pass-
word match [BISH82], a certain TC flaw. 

Incomplete case analysis leads to flaws. Either the design specification 
has not considered all the conditions of an IF-THEN-ELSE form, or the 
programmer goofed. In either event, the penetrator creates the missing 
condition and forces the code to ignore the consequences, often creat-
ing an exploitable state, a PV flaw. The IBM PSW flaw mentioned in the 
earlier section “System anomalies” is an example. 

The IBM 360 introduced the Program Status Word (PSW), which con-
tained a status condition code for the machine instructions that have 
conditional execution modes. Many programmers ignore the PSW status 
code and assume the execution result of the instruction. This is poor 
coding practice but a surprisingly frequent occurrence [BULL91]. Often 
the programmer believes that prior checks filter the conditions before 
the instruction execution and that the data cannot cause the unantici-
pated condition, thus ignoring the condition code. The penetrator must 
find an opportunity to reset the parameters after the filter checks, but 
before the conditional code execution. time-of-check-to-time-of-use 
(TOCTTOU) attacks are exactly what’s needed for penetration. 

A TOCTTOU flaw is like a dangling participle grammatical flaw in Eng-
lish. The check code is distant from the using code, enabling interven-
ing code to change the tested parameters and cause the use code to 
take incorrect, policy-violating actions (a PV flaw). The attack is a form of 
sleight of hand. The penetrator sets up a perfectly innocent and correct 
program, possibly an existing application program, and through multi-
tasking or multiprocessing, has another program modify the parameters 
during the interval between check and use. The interval may be small, 
necessitating careful timing of the attack. The flaw is both an implicit 
memory sharing error and a process synchronization problem. The solu-
tion is not to place system parameters in user memory and/or prohibit 
interruptibility of “critical region” code [LIND75, MCPH74, PHIL73]. 

Read-before-write flaws are residue control flaws. Beginning with 
TCSEC C2 class systems, all reused objects must be cleaned before re-
use. This is required as a countermeasure to the inadequate residue 
control in earlier systems. However, the flaw persists in modern dress. 
When disk files are deleted, only the name in the file catalog is erased. 
The data records are added to free storage for later allocation. To in-
crease performance, these used records are cleared on reallocation (if at 
all), not on deallocation. That means the data records contain residue 
of possibly sensitive material. If the file memory is allocated and read 
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before data is written, the residue is accessible. A policy of write-before-
read counters this flaw, but such a policy may not exist or may be poorly 
implemented. This flaw also appears with main memory allocation and 
garbage collection schemes. In one example, the relevant alphabetical 
password records were read into memory from disk for the login pass-
word compare. After the compare, the memory was left unchanged. Us-
ing other attacks, such as the array-bounds overflow described above, 
that residue memory could be read and passwords scavenged. By care-
fully stepping through the alphabet, the complete password file could be 
recreated (a TC flaw) [LIND76a]. 

Planting bogus code. The most virulent flaws are created by the pene-
trator inserting bogus code into the TCB (a TC flaw). Bogus code in-
cludes all forms of unauthorized software: Trojan horses, trap doors, 
viruses, bombs, and worms. Fundamentally, flaws that admit bogus code 
are flaws in the configuration control of the TCB. The flaw may occur 
any time throughout the life cycle of the TCB. When development tools 
are uncontrolled, bogus code can be imbedded in the tools and then 
into the TCB. Ken Thompson’s ACM Turing Lecture aptly documented 
such an attack [THOM84]. But there are easier methods — for example, 
planting bogus code in the runtime package of the most popular com-
piler and/or editor. Recent attacks on the Internet were exploitations of 
poor configuration control. Known flaws in Unix were not fixed with the 
free vendor patches. The hacker used the flaws to obtain unauthorized 
access [SPAF89a]. 

Among the more colorful attacks against human frailty in controlling 
bogus code is the Santa Claus attack. It is a classic example of an unau-
thorized code import, achieved by spoofing the human operator of a se-
cure system. A penetrator prepared an attractive program for the 
computer operator, who always ran with system privileges. The program 
printed a picture on the high-speed printer of Santa and his reindeer — 
the kind you always see posted at Christmas in and about the computer 
facility. However, there was a Trojan horse mixed in with Dancer, 
Prancer, and friends that modified the operating system to allow unde-
tected access for the interloper. Before you belittle the computer opera-
tor’s folly, consider your own use of “freeware” programs downloaded 
from your favorite bulletin board. There are as many user and operator 
spoofs as there are gullible people looking for “gain without pain.” Eter-
nal vigilance is the price of freedom from spoof attacks. Also, improved 
role-authorization controls can limit the damage propagation of such 
flaws from human foibles. 
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Penetration analysis for the 1990s and beyond 

This essay concludes with speculations on future directions of pene-
tration analysis. The assumption is that the battle between the TCB 
developer or operator and the hacker will continue unabated. Better 
legal protection for users will always trail technology, and the technol-
ogy will improve for both antagonists. It will be continuous digital elec-
tronic warfare among security measures, hacker attacks, user 
countermeasures, and security counter-countermeasures: perpetual 
offense against defense. 

The defense, developers of TCBs, are using better methods of design-
ing and implementing trusted systems. Lessons are being learned from 
past penetrations, both tests and real attacks. The generic flaws are 
leading to better understanding of security policy for confidentiality, in-
tegrity, and service availability, and of the confinement of overt and cov-
ert channels when sharing common mechanisms in trusted systems. 
This understanding is being captured in improved machine architec-
tures with segregated privilege domains or protection rings to reinforce 
security perimeters and boundary crossings. Improved hardware sup-
ports safe and rapid context switching and object virtualization. Cryptog-
raphy is playing a larger role in confidentiality, integrity, and 
authentication controls. Computers are getting faster and cheaper so 
that security mechanisms will be hardware-rich and not limit perform-
ance in secure solutions. Software is improving in quality, tools, devel-
opment environments, testing standards, and formalism. 

Applicability of FHM to ITSEC. It has been questioned whether 
penetration testing has meaning for a Target of Evaluation (TOE) of the 
European Information Technology Security Evaluation Criteria (ITSEC), 
since “penetration testing” or its equivalent never appear in the criteria 
[ITSE90]. For most of the reasons expressed earlier in this essay, pene-
tration testing will be required for ITSEC high-assurance evaluations. 
However, the ITSEC is different from the TCSEC and the TCSEC inter-
pretations. The applicability of FHM to ITSEC for the 1990s is discussed 
here. 

A TOE is either a security product or a system to be evaluated. Pene-
tration testing of a TOE is comparable in scope to penetration testing in 
accordance with the TCSEC. However, a TOE’s evaluation criteria con-
sist of two-tuples (Fi, Ej): Fi is one of 10 security functionality classes, 
and Ej is one of seven independent evaluation levels. To match the 
TCSEC classes of FHM interest, we have the two-tuples (F4, E4), (F5, E5), 
and (F5, E6), which correspond to B2, B3, and A1, respectively. The first 
five functional classes of the ITSEC, F1 through F5, match the six func-
tional classes of the TCSEC, C1 through A1, with F5 functionality the 
same for B3 and A1. 
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The seven ITSEC evaluation classes are applied to the TOE Develop-
ment Process (DP), Development Environment (DE), and Operational En-
vironment (OE), each of which is further divided as follows: 

• DP: Requirements, architectural design, detailed design, imple-
mentation. 

• DE: Configuration control, programming languages and compilers, 
developer security. 

• OE: Delivery and configuration, setup and operation. 

The ITSEC is so new there is no practical experience to draw from in 
looking at the applicability of FHM, so we look more closely at the text. 
Although penetration testing is not mentioned, testing is widely refer-
enced, particularly for the evaluator to perform “his own tests to check 
the comprehensiveness and accuracy of the sponsor testing, and also to 
address any points of apparent inconsistency or error found in the re-
sults of the sponsor’s testing” [ITSE90]. Testing for errors and vulner-
abilities is required even at evaluation class E1, retesting of corrected 
flaws is required at E3, independent vulnerability analysis is needed at 
E4, and all these requirements are cumulative with higher evaluation 
classes. These test requirements are quite similar to those addressed by 
the FHM described in this essay. 

Assurance of a TOE is divided in the ITSEC between correctness and 
effectiveness. Correctness is based on the seven evaluation classes E0 
to E6. Effectiveness of a TOE involves a number of considerations: the 
suitability of the security functionality for the proposed environment, 
analogous to the TCSEC environment guidelines [CSC85]; whether the 
functionality yields a sound security architecture; ease of use of security 
functions; assessment of the security vulnerabilities during develop-
ment and operation; and the strength of the security mechanisms to 
resist attack. All these items are “generators” in FHM (see the earlier 
section “Flaw generation”). 

The FHM depends on discovering failures in the evidence implication 
chain, starting with a security policy (see the earlier section “Evidence 
implication chain”). The application of FHM to a TOE would require a 
similar procedure. A TOE has a hierarchy of security policies: a System 
Security Policy (SSP), a System Electronic Information Security Policy 
(SEISP), and a Security Policy Model (SPM), corresponding to security ob-
jectives, detailed security enforcement mechanisms, and a semiformal 
policy model, respectively. These policies are tied to the functional 
classes and form the basis for the correctness criteria for testing. To-
gether with the evaluation classes, an evidence implication chain is 
formed for a specific TOE, and FHM can be successfully applied. 

In conclusion, FHM should be equally as applicable to ITSEC as to 
TCSEC/TNI/TDI evaluations. Under both sets of criteria, the most sig-
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nificant open question is: How are evaluators to judge the security of a 
system composed of individually evaluated components? The compos-
ability controversy is beyond the scope of this essay. However, FHM is 
applicable to such composed systems and may be part of the contro-
versy’s resolution. 

Formal methods of penetration testing. Formal methods use rigor-
ous mathematical specifications of the TCB design (that is, FTLS), as-
sumptions, initial conditions, and correctness criteria. Formal tools take 
these specifications and generate correctness theorems and proofs of 
the theorems and the design they portray. It is hoped that these formal 
methods can achieve similar success at the level of code proofs. A new 
form of penetration analysis is in progress with new TCB designs — rig-
orous formal models of the TCB. These models describe the TCB behav-
ior as state machines, state-transition rules, security invariants, initial 
conditions, and theorems that must be proven. Penetration analysis is 
almost inseparable from the formal design process, producing conjec-
tures of flaws with the model and trying to prove them as theorems. 
This is a rigorous extension of FHM. If successful, the correctness proof 
versus flaw conjecture proof becomes part of the design process and un-
covers problems early in the design, enabling iterative redesign — unlike 
FHM, which often comes too late in the development cycle to permit 
more than hack-and-patch. 

Recent work by Gupta and Gligor suggests a theory of penetration-
resistant systems. They claim their method is “a systematic approach to 
penetration analysis” that “enables the verification of penetration-
resistance properties, and is amenable to automation” [GUPTA91, 
GUPTA92]. They specify a formal set of design properties that character-
ize resistance to penetration in the same framework used to specify the 
security policy enforcement model — a set of design properties, a set of 
machine states, state invariants, and a set of rules for analysis of pene-
tration vulnerability. Five penetration-resistance properties are de-
scribed: 

1. system isolation (tamperproofness), 
2. system noncircumventability (no bypass), 
3. consistency of system global variables and objects, 
4. timing consistency of condition (validation) checks, and 
5. elimination of undesirable system/user dependencies. 

Gupta and Gligor contend system flaws “are caused by incorrect im-
plementation of the penetration-resistance properties [that] can be 
identified in system (e.g., TCB) source code as patterns of incor-
rect/absent validation-check statements or integrated flows that violate 
the intended design or code specifications.” They further illustrate how 
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the model can be used to implement automated tools for penetration 
analysis. They describe an Automated Penetration Analysis (APA) tool 
and their experiments with it on Secure Xenix source code. Early re-
sults from this work indicate that penetration resistance depends on 
many properties beyond the reference monitor, including the develop-
ment and programming environment, which is characterized as the evi-
dence implication chain earlier in this essay. Although limited only to 
software analysis of attacks on the TCB from untrusted user code and 
leaving significant other system avenues for attack, the work may pave 
the way for new approaches to building and testing trusted systems and 
tip the balance in favor of the “good guys.” 

Automated aids. Earlier, in the infancy of penetration testing, it was 
believed that flaws would fall into recognizable patterns, and tools could 
be built to seek out these generic patterns during penetration testing 
[ABBO76, CARL75, HOLL74, TRAT76]. Unfortunately, the large number 
of different processors, operating systems, and programming languages 
used to build TCBs, with their different syntax and semantics, made it 
difficult and impractical to apply such pattern-matching tools to pene-
tration testing. It is costly to port or reimplement the tools for each new 
environment and different programming language. Also, the flaw pat-
terns tended to be system specific. 

As modern secure systems focus on a few operating system standards 
(for example, Unix and MS-DOS) and fewer programming languages (Ada 
and C), and more mature expert systems become available, future pene-
tration testing tool initiatives to capture flaw patterns may be more suc-
cessful. A few specific examples of this trend are beginning to appear: 
antivirus tools for the popular workstations and PCs; Unix security test 
tools [FARM90a, MUFF4a]; intrusion detection monitors [DENN86, 
SMAH88, BAUE88, DIAS91, LUNT92, WINK92]; and formal specification 
proof tools [KEMM86], flow analyzers [ECKM87, KRAM83], and symbolic 
execution tools [ECKM85, WHEE92]. 
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