
Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

12- File system and access rights

• File properties under Linux vs. Other systems

• File types
 (-) Regular files......(s) is unknow to me till now (eg. /dev/gpmctl)
 (l) Symbolic Links (eg. /sbin/init.d/rc2.d......all files)
 (d) Directories and sub-directories
 (b) Block Device Files (eg. /dev/hda1...)
 (c) Character Device Files (eg. /dev/tty1....)
 (p) FIFO Named pipes (eg. /dev/log, /dev/xconsole)
 (s) Sockets

Note. The file names and directory names that starts with a Dot (.) are hidden
from display by certain programs like ls etc.

• Files and directories access rights
Access rights are restrictions applied on the content each file or directory.
It doesn't restrict deletion of the file or directory. Only their parent directories access
rights controls that.

• Changing the files access rights
chmod [ugoa][+=-][rwx stXugo] or [0000 to 7777] file
examples:

chmod u+w,g-x,o=wx file1
chmod 750 file2
chmod 4755 program1 (SUID=ON)
chmod u+s,g+s,o+t program2 SUID=ON,SGID=ON,StickyBit=ON)
chmod -R u=rwX,g=rX,o=rX dir1 Recursive 755 for directories.

and 644 for files.

• Directories access rights
- The read(r) without the search(x) access rights for directories makes no
 sense and the read bit is ignored.

- Any file (belonging to the user or not) under a directory set to write access to
 everybody can be erased by anybody.

Extra access rights user group others

SUID
(s)

SGID
(s)

Sticky
Bit(t) r w x r w x r w x

4 2 1 4 2 1 4 2 1 4 2 1

– SUID and SGID for programs (-rwsrwsrwx)(-rwSrwSrwx)
– SUID=ON: Effective user is owner of the program(w/SUID) started
– SGID=ON: Effective group is the group of the program(w/SGID) started

– SGID for Directories
Forces the subdirectories and files created in it, to have the same group as the
directory. Independent of the user's group creating it.

12_File_Access_Rights.sxw-1-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

– Sticky Bit for Directories :
Sets the rights to erase files only to their owner even if the directory is set
to write for everybody. The sticky bit on /temp prevents that users
processes erase files belonging to other users.
Note 1: Normally any file (belonging to the user or not) under a directory
set to write access to group or others can be erased by users.
Note2: The owner of the directory can still erase any file even if the
sticky bit is set.

• Sticky Bit for programs :
– Allows an already run program to get stored in the ram (buffers) till the

system goes down.
Advantage: Fast load of program.
Disadvantage: Uses lots of RAM

• Command :
chmod o+t (sets the sticky bit)

result= (-rwxrwxrwt) or (-rwxrwxrwT)
chmod u+t (sets the SUID)

result= (-rwsrwxrwt) or (-rwSrwxrwT)
chmod u+t (sets the SGID)

result= (-rwxrwsrwt) or (-rwxrwSrwT)
Note: When adding a sticky-bit to a file/dir with an x for Others,
the sticky-bit is displayed a t otherwise as T if the x was not present.
The same applies to SUID and SGID (-rwSrwSrwT)

• Attributes(chattr & lsattr) for ext2/ext3 only...so far

- Setting a directory or file to `append-only' attribute.
• Command : chattr +a filename or directoryname
• User must not necessarily be root
• A file with this attribute may be appended to, but may not be

deleted,and the existing contents of the file may not be overwritten. If a
directory has this attribute, any files or directories within it may be
modified as normal, but no files may be deleted.

- Setting a directory or file to `immutable' attribute.
• Command : chattr +i filename or directoryname
• User must be ´root´
• A file or directory with this attribute may not be modified, deleted,

renamed, or (hard) linked

• Display Attributes of files and directories
To list the (special) attributes of files and dirs. use the command
lsattr

12_File_Access_Rights.sxw-2-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

• Attributes list:

A Atime record is not modified. Prevents too much disk
 access for laptops. Still in testing mode

a Sets it to append mode only (can not erase it)
Only root can set this attribute

c The kernel compresses this file before storing
The kernel decompresses it when reading it.
NOT Implemented yet by kernel

d Will not be backed-up by the program "dump"

i Cannot be modified
Cannot be erased
Cannot be renamed
Cannot be made a link to
Only root can change this attribute

s When this file is erased, its used blocks are written
with '0' to prevent recovery at a later date.

S Any change to this file will be immediately written on
the disk instead of in the file system buffer.
(equivalent to 'sync' mount option)

u When this file is deleted, its content is saved. It can
therefore be undeleted later.
NOT implemented yet by kernel.

• umask for new files an directories

Alows to control which access rights will be given to newly created files or
directories:
New files access rights = 666 !| umask (!|=Logical NOR)
New directories access rights = 777 !| umask

• Examples:
 666 access rights 777
umask New files New Directories
 022 -rw-r--r-- -rwxr-xr-x
 135 -rw-r---w- -rw-r---w-
 216 -r--rw---- -r-xrw---x

• Directories access rights
- Read and Search combination (r-x)
- normally any file (belonging to the user or not) under a directory set to write access
to group or others can be erased by users

12_File_Access_Rights.sxw-3-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

chown : Change user and group ownership of a file or directory
IMPORTANT:

root is the only user allowed to change ownership(chown) of files or directories.
Syntax: chown [options] [user][:group] filename

chown [options] [user][:group] dirname

eg.
 chown user:group filename Change user and group ownership of file
or " user " Change user ownership of file
or " user. " Change user and his group ownership of file
or " user: " " " "
or " .group " Change group ownership of file

Important Options:(from man page)

-R --recursive Recursive:affect all the files and directories inside directory trees

--dereference affect the referent of each symbolic link, rather than the symbolic link
 itself.

-h, --no-dereference
affect symbolic links instead of any referenced file. (available only on

 systems that can change the ownership of a symlink)

--from=CURRENT_OWNER:CURRENT_GROUP
change the owner and/or group of each file only if its current owner

 and/or group match those specified here.
Either may be omitted, in which case a match is not required for the

 omitted attribute.

-f, --silent, --quiet suppress most error messages

-c, --changes like verbose but report only when a change is made

--reference=RFILE use RFILE's owner and group rather than the specified
OWNER:GROUP values.

-v, --verbose output a diagnostic for every file processed

12_File_Access_Rights.sxw-4-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

chgrp : Change group ownership of a file or directrory

syntax: chgrp [options] newgroup filename

eg. chgrp -R ftp /srv/www
Changes recursively all the files and directories inside the dir. /srv/www
to be owned by group ftp

chgrp -R --reference=/home/hans /srv/ftp
Changes recursively the group ownership of all the files and directories
contained in /srv/ftp to the group owning the directory /home/hans

options:

-R, --recursive operate on files and directories recursively

--dereference affect the referent of each symbolic link, rather than the
 symbolic link itself

-h, --no-dereference
affect symbolic links instead of any referenced file (available

 only on systems that can change the ownership of a symlink)

-f, --silent, --quiet suppress most error messages

--reference=RFILE use RFILE's group rather than the specified GROUP value

-v, --verbose output a diagnostic for every file processed

-c, --changes like verbose but report only when a change is made

12_File_Access_Rights.sxw-5-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

Übung(20):

(20) chmod & chown
cd ~
ls -l
YasT - Administration des Systems -> Benutzerverwaltung
otto, password otto 2x, F4,
rainer, Gruppe F3 nogroup, password rainer 2x, F4, F10 <Esc> <Esc>
neuer xterm:

xterm -sb -rightbar -T rainer -bg lightcyan -e su -l rainer &
password:

neuer xterm: xterm -sb -rightbar -T otto -e su -l otto &
password:
cd ~ !!!
mkdir dir_a ! als otto: Verzechnis dir_a & Datei file_a kreieren
cd dir_a
cp ../.bashrc file_a
ls -l

rainer: ls -l /home/otto/ ! Fehlermeldung rainer darf dieses Verz. nicht ansehen
ls -l

als otto: cd /home
chmod g+rx otto ! die Gruppe darf es anschauen

als rainer: ls -l /home/otto/ ! Fehlermeldung: rainer ist nicht in der
Gruppe users

als eigenen Benutzer: ls -l /home/otto/ -in der Gruppe users is alles ok
als otto: chmod o=rx,g=r otto ! = setzen, das x von g ist weg
ls -l
chmod 755 otto ! alle darfen das Verzeichnis otto lesen

als rainer: ls-l /home/otto ! naless i.o.
cp ~/.bashrc /home/otto/dir_a/file_b ! Fehler: rainer darf bei
 otto nicht schreiben

als otto: cd ~/dir_a
chmod a+x file_a ! die Datei file_a wird ausführbar=script (Farbe
rot)
ls -l

(4=s set user ID on execution, 2=s set group ID on execution, 1=t set sticky bit)
sticky bit = angeheftet
chmod 4755 file_a ! -rwsr-xr-x
chmod 6755 file_a ! -rwsr-sr-x
chmod 7755 file_a ! -rwsr-sr-t
--

12_File_Access_Rights.sxw-6-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

chown Benutzer.Gruppe Datei

als otto: chown eigenen Benutzer file_a ! Fehlermeldung
su + password
chown eigenen Benutzer file_a
ls -l
exit, bin wieder otto

als eigenen Benutzer:
rm /home/otto/dir_1/file_a ! Fehlermeldung

als otto:
chmod g+w ~/dir_a

als eigenen Benutzer:
rm /home/otto/dir_1/file_a ! diesesmal ist alles i.o.

su + password ! die Gruppe ändern
cd /home
chown .users rainer
ls -l
chown .nogroup rainer
exit

12_File_Access_Rights.sxw-7-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

chattr
NAME
 chattr - change file attributes on a Linux second extended
 file system

SYNOPSIS
 chattr [-RV] [-v version] [mode] files...

DESCRIPTION
 chattr changes the file attributes on a Linux second
 extended file system.

 The format of a symbolic mode is +-=[ASacdisu].

 The operator `+' causes the selected attributes to be
 added to the existing attributes of the files; `-' causes
 them to be removed; and `=' causes them to be the only
 attributes that the files have.

 The letters `ASacdisu' select the new attributes for the
 files: don't update atime (A), synchronous updates (S),
 append only (a), compressed (c), immutable (i), no dump
 (d), secure deletion (s), and undeletable (u).

OPTIONS
 -R Recursively change attributes of directories and
 their contents. Symbolic links encountered during
 recursive directory traversals are ignored.

 -V Be verbose with chattr's output and print the pro
 gram version.

 -v version
 Set the filesystem version.

ATTRIBUTES
 When a file with the 'A' attribute set is modified, its
 atime record is not modified. This avoids a certain
 amount of disk I/O for laptop systems.

 A file with the `a' attribute set can only be open in
 append mode for writing. Only the superuser can set or
 clear this attribute.
 A file with the `c' attribute set is automatically com
 pressed on the disk by the kernel. A read from this file
 returns uncompressed data. A write to this file compresses
 data before storing them on the disk.

 A file with the `d' attribute set is not candidate for
 backup when the dump(8) program is run.

 A file with the `i' attribute cannot be modified: it can
 not be deleted or renamed, no link can be created to this
 file and no data can be written to the file. Only the
 superuser can set or clear this attribute.

12_File_Access_Rights.sxw-8-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

 When a file with the `s' attribute set is deleted, its
 blocks are zeroed and written back to the disk.

 When a file with the `S' attribute set is modified, the
 changes are written synchronously on the disk; this is
 equivalent to the `sync' mount option applied to a subset
 of the files.

 When a file with the `u' attribute set is deleted, its
 contents are saved. This allows the user to ask for its
 undeletion.

AUTHOR
 chattr was written by Remy Card <card@masi.ibp.fr>, the
 developer and maintainer of the ext2 fs.

BUGS AND LIMITATIONS
 As of ext2 fs 0.5a, the `c' and `u' attribute are not hon
 oured by the kernel code. As of the Linux 2.0 kernel, the
 'A' attribute is not yet supported by the kernel code.
 (The noatime code is still in testing.)

 These attributes will be implemented in a future ext2 fs
 version.

AVAILABILITY
 chattr is part of the e2fsprogs package and is available
 for anonymous ftp from tsx-11.mit.edu in /pub/linux/pack
 ages/ext2fs.

SEE ALSO
 lsattr(1)

12_File_Access_Rights.sxw-9-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

ACL (Access Control List)

The ACL is an extention of the regular file/directory access rights.
Access Control Lists are a feature of the Linux kernel and are currently supported by
ReiserFS, Ext2, Ext3, JFS, and XFS.The regular UNIX access permissions for a specific
file or directory stay active for the owner,group,others, while other sets of permissions are
given by means of ACLs, to give special access rights to specific users or groups for the
same file or directory. Think of file/directory access permissions like this:
Regular access rights are the rule and the ACLs are the exceptions to the rule.
Note: The ACL mechanism needs to be enabled for a filesystem before being able to
change it or use it. It is done by adding the mount option acl.
eg. mount -o defaults,acl,usr_xattr -t ext3 /dev/hda3 /home
It can also be introduced as mount option in /etc/fstab

ACL Terms
Access ACL
The access rights of a file or a directory defined by its regular permissions and the
Extended ACL.

Default ACL (only for directories)
The access rights from which the files and directories will inherit when created

 within the directory.

Minimum ACL or Regular permissions
The minimum ACL is in fact the regular access rights applied to a file or a directory
for the owner, the owning group and others.

Extended ACLs

The extended ACLs are extra ACLs entries made to extend the regular permissions.
Each ACL for an a specific file or directory consists of a set of entries defining each
different permission for either a user or a group.
An ACL entry contains: - a type (user or group)

- a name of the user or the group concerned
- a set of permissions for the user or the group concerned

eg. user:bob:r-x (type=user, name=bob, permissions=r-x)
Note1: When we list the ACLs the regular permissions are also displayed.

 For these permissions the qualifier for the group or users is empty.
Note2: There is no need to assign any ACL entry for 'other' since it is already

assigned using the regular access permissions.

Listing the ACL for a file or directory
Syntax: getfacl filename

getfacl dirname

The regular access rights will be displayed in the form of:
eg. user::rwx

group::r--
other::r--

The extended ACLs (if existing) will then be displayed in the form of:
eg. user:marie:rwx

group:admin:r--

12_File_Access_Rights.sxw-10-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

The mask value
The mask is the representation of the maximum access permissions possible for all
the groups assigned in the ACL and the regular group access permissions of a file or
directory. This mask does nothing else than informing us how the group permission
will look when we do an ls -l of the file or directory.
In fact this mask is calculated by the ACL mechanism and is simply the regular group
permissions and the Extended ACL group permissions bitwise 'OR'ed together.
This calculation of the mask can be avoided by adding the option -n.

Note: If the file or directory ACL has a mask calculated, then the group access rights
shown by the command ls -l will be the mask value. It does not reflect the real
permissions of the owning group. It only reflects the maximum possible permissions
of the owning groups because it considers also the groups permissions of the
extended ACL.

eg1. if regular is rw- and Extended ACL is r-- then the mask is rw-
eg2: if regular is r-- and Extended ACL is rwx then the mask is rwx

Adding/Changing an ACL for a file or directory
Syntax: setfacl -m u:username:perm,g:groupname:perm filename/dir

eg1: setfacl -m u:marie:rw- /var/db/data1
eg2: setfacl -m u:paul:rw-,g:admin:rw- /data/marlo/

Note1: The indication that a file or a directory has extended ACL assigned, is done
by a '+' at the end of the normal access rights displayed by ls -l command.
eg: ls -l /var/db/data1
-rw-rwxr--+ 1 joe video 0 2004-11-02 22:43 /var/db/data

Note2: The regular permissions can be changed using the regular chmod command
or the setfacl.
eg. setfacl -m u::rw- file does the same as chmod u=rw file

Examples:

Granting an additional user read access
setfacl -m u:lisa:r file

Revoking write access from all groups and all named users
(using the effective rights mask)

setfacl -m m::rx file

Removing a named group entry from a file's ACL
setfacl -x g:staff file

Copying the ACL of one file to another
getfacl file1 | setfacl --set-file=- file2

Copying the access ACL into the Default ACL
getfacl -a dir | setfacl -d -M- dir

12_File_Access_Rights.sxw-11-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

Default ACL
Default ACLs can only be applied to directories. The default ACL defines the access
permissions all files or subdirectories under this directory inherit when they are
created. A default ACL affects subdirectories as well as files.

Basically, the permissions in a default ACL are handed down in two ways:

• A subdirectory inherits the default ACL of the parent directory
- as its own access ACL.
- as its own default ACL

• A file inherits the default ACL of the parent directory
- as its own access ACL

Default ACL vs. umask value

Normally the umask value controls the permissions of a newly created file or
subdirectory. If a Default ACL is defined for a parent directory, it is this Default ACL
that controls the permissions of a newly created file or subdirectory. The umask
value has no more effect on these permissions.

Assigning Default ACL to a Directory
The following command assigns the Default ACL to a directory:
setfacl -d -m group:djungle:r-x mydir

The option -d of the setfacl command prompts setfacl to perform the following
modifications (option -m) in the Default ACL.
The result would be the following (by issuing the getfacl command)

getfacl mydir

file: mydir
owner: tux
group: project3
user::rwx
user:jane:rwx

group::r-x
group:djungle:rwx

mask::rwx

other::---

default:user::rwx
default:group::r-x
default:group:djungle:r-x
default:mask::r-x
default:other::---

getfacl returns both the access ACL and the default ACL. All lines that begin with
default are the default ACL. Although you merely executed the setfacl command
with an entry for the djungle group for the default ACL, setfacl automatically
copied all other entries from the access ACL to form a valid default ACL.

Default ACLs do not have a direct effect on access permissions of the directory,
they only come into play when files or subdirectories are created within it.
When handing down the permissions, only the default ACL of the parent directory

12_File_Access_Rights.sxw-12-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

is taken into consideration, not the access permissions of the parent directory.

12_File_Access_Rights.sxw-13-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

Results of creating files or subdirectories within this directory:
Created subdirectories:

- Regular permissions and extended ACL inherit from the Default ACL
 permissions of the parent directory.
- Default ACL inherit from the Default ACL of the parent directory.

Created files:
- Regular permissions and extended ACL inherit from the Default ACL
 permissions of the parent directory.

Example:
mkdir acltest
ls -ld acltest

drwxr-xr-x 2 michel video 4096 2004-11-10 22:57 acltest

Setting the directory Default ACL
setfacl -d -m group:users:rwx acltest
ls -ld acltest

drwxr-xr-x+ 3 michel video 4096 2004-11-10 23:03 acltest

getfacl acltest
file: acltest
owner: michel
group: video
user::rwx
group::r-x
other::r-x
default:user::rwx
default:group::r-x
default:group:users:rwx
default:mask::rwx
default:other::r-x

Creating a subdirectory within it:
mkdir acltest/testdir
ls -ld acltest/testdir

drwxrwxr-x+ 2 michel video 4096 2004-11-10 23:02 acltest/testdir

getfacl acltest/testdir
file: acltest/testdir
owner: michel
group: video
user::rwx
group::r-x
group:users:rwx
mask::rwx
other::r-x
default:user::rwx
default:group::r-x
default:group:users:rwx
default:mask::rwx
default:other::r-x

Creating a file within it:
touch acltest/file1
ls -l acltest/file1

-rw-rw-r--+ 1 michel video 0 2004-11-10 23:03 acltest/file1
getfacl acltest/file1

file: acltest/file1
owner: michel
group: video

12_File_Access_Rights.sxw-14-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

user::rw-
group::r-x #effective:r-- (Because it is a file the X is taken out)
group:users:rwx #effective:rw- “” “” “” “”
mask::rw-
other::r--

12_File_Access_Rights.sxw-15-

Linux-Kurs Themen - File Access Rights - 10 Movember 2004 Michel Bisson

Deleting all Extended ACL of a file or directory
Syntax: setfacl -b filename or setfacl -b dirname

Deleting a default ACL of a file or directory
Syntax: setfacl -k filename or setfacl -k dirname

Saving ACLs of a full directory and subdirectories on file.
Syntax: getfacl -R /dirname > ACLFile

Recovering ACLs from a file.
Syntax: setfacl --restore=ACLFile
Restores a permission backup created by above getfacl -R or similar.
All permissions of a complete directory subtree are restored using this mechanism.
If the input contains owner comments or group comments, and setfacl is run by
root, then the owner and owning group of all files are restored as well.
This option cannot be mixed with other options except --test.

Order of which ACL is being applied
As a basic rule, the ACL entries are examined in the following sequence: owner,
named user, owning group or named group, and other.

Do man setfacl or man acl
to get more options and informations on ACLs or visit:
http://sdb.suse.de/en/sdb/html/81_acl.html
http://acl.bestbits.at/

12_File_Access_Rights.sxw-16-

