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Abstract

Keyloggers have been studied for many years, but they still pose a severe
threat to information security. Keyloggers can record highly sensitive infor-
mation, and then transfer it to remote attackers. Previous solutions suffer
from limitations in that: 1) Most methods focus on user-level keylogger de-
tection; 2) Some methods need to modify OS kernels; 3) Most methods can
be bypassed when the OS kernel is compromised. In this paper, we present
LAKEED, an online defense against the kernel-level keylogger by utilizing
the hardware assisted virtualization technology. Our system is compatible
with the commodity operating system, and it can protect the running OS
transparently. The basic idea of our approach is to isolate the target kernel
extension that may contain the keylogger from keyboard drivers’ execution
environment and then monitor their potential interactions. By comparing
the runtime information with the execution baseline that is obtained by the
offline analysis, the keylogger can be identified. The evaluation shows that
LAKEED can defeat kernel-level keyloggers effectively with low performance
overhead.
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1. Introduction

As more and more users’ privacy information gets stolen, keyloggers pose
a serious threat to information security. Once a keylogger is installed into
the end host, the keyboard activity can be maliciously captured. As a result,
the attacker can easily obtain user-sensitive information (e.g., user names and
passwords). Although keyloggers have been well studied for many years, they
are still widely used for stealing personal information in the wild. Typically,
keyloggers can be implemented as software or hardware devices [1].

Software keyloggers can be divided into two categories: user-level key-
loggers and kernel-level keyloggers. The first ones stay in the user-level, and
they utilize high-level APIs provided by the OS to intercept keystrokes. Com-
pared with the first ones, kernel-level keyloggers are more dangerous in that
they operate in higher privilege mode, which can completely control the OS
kernel code and data. Moreover, the kernel-level keylogger is difficult to be
identified for its small footprint in terms of memory and processor utilization.

To defeat keyloggers, many defense approaches have been proposed. Most
of these methods can only detect user-level keyloggers, and they cannot deal
with kernel-level keyloggers. Some methods rely on the emulation-based
techniques so they will introduce considerable performance overhead. Some
methods require some modifications to OS kernels. As a result, they may
not be applied widely.

To address the above problems, in this paper, we present the design and
implementation of LAKEED, a novel kernel-level keylogger detection system
based on the hardware assisted virtualization technology. Compared with the
previous methods, our system can be easily deployed in the real production
environment to defeat kernel-level keyloggers on-the-fly.

Our approach is motivated by the key observation: most kernel-level key-
loggers will change the working procedure of keyboard drivers. For example,
the keylogger may utilize the inline hook technique to subvert the execution
control flow of keyboard drivers. Based on this observation, we leverage the
hardware assisted virtualization technology to monitor the potential inter-
actions between keyboard drivers and a target kernel extension. For ease of
presentation, we use the terms driver, kernel extension and kernel module
interchangeably.

We have implemented a prototype of LAKEED based on a tiny hypervi-
sor. Most of the functionalities are built into the hypervisor layer. Thanks
to the late launch feature provided by the recent hardware, the hypervisor



can be loaded on-demand so that it can protect the target OS transparently.
In summary, our approach makes the following contributions:

e We propose a lightweight approach for keylogger detection. This method
can detect a keylogger in the kernel space, and prevent it from sniffing
user keystrokes.

o We leverage the hardware assisted virtualization technology to achieve
transparent kernel-level keylogger detection.

e We design and implement a prototype of LAKEED based on Windows
systems. The evaluations show that our system can detect kernel mode
keyloggers effectively.

The rest of this paper is organized as follows: Section 2 gives our security
assumption and model. Section 3 introduces the background of our approach.
The overview of our approach is in Section 4. Section 5 presents the design
and implementation of our system. Section 6 provides the evaluation of our
system. The security analysis and limitations are discussed in Section 7. The
related work is described in section 8. Finally, Section 9 makes a conclusion.

2. Security Assumption and Threat Model

Our defense method against kernel-level keyloggers is based on three se-
curity assumptions. First, we assume that the target operating system runs
on the hardware that supports hardware assisted virtualization. Moreover,
we assume the keyboard is connected to the host computer via PS/2 port.
Our second assumption is that our hypervisor is trusted thanks to its small
TCB. Third, we assume the keylogger resides in one of the existing kernel
modules. For example, a device driver developed by the third party may
contain the keylogger functionality to monitor keyboard activity.

Our threat model allows the keylogger to access the data and code regions
of all kernel components with full privilege. To get the keyboard input data,
the keylogger can either hijack the keyboard drivers’ execution, or access the
keyboard buffer directly. Under this model, the attacker is powerful enough
to capture user keystrokes in the kernel space.
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Figure 1: Overview of LAKEED functionalities

3. Background

Before introducing our method, it is necessary to present the general
working flow of a keyboard in a Windows system. In general, the working
procedure of the keyboard in Windows can be summarized as follows:

1) When a user presses or releases a key on the keyboard, it gener-
ates a hardware interrupt. 2) The CPU calls the Interrupt Service Rou-
tine (ISR) (i.e., I8042KeyboardInterruptService) inside the i8042prt driv-
er to handle the interrupt. 3) The i8042prt driver reads the input da-
ta located in the keyboard controller. 4) After the driver finishes its ur-
gent task, it puts the other non-urgent task, referring to Deferred Proce-
dure Call (DPC), into a kernel callback queue. 5) The OS kernel executes
the DPC so that the function I8042KeyboardIsrDpc inside the i8042prt
driver gets invoked. 6) The i8042prt driver executes the callback function
KeyboardClassServiceCallback, which is registered by the kbdclass driver.
7) The raw input thread in the user space send an IRP (I/O Request Pack-
age) read request to the keyboard driver. 8) The kbdclass driver extracts
the read request from the raw input thread, and then invokes the function
KeyboardClassRead to obtain the pressed key information. 9) The kbdclass
driver returns the keyboard data to the raw input thread.

In addition, we need to introduce some background of Intel VT (Virtu-
alization Technology) that our system relies on. Intel VT defines two new
processor modes, called VMX root mode and VMX non-root mode. The hy-
pervisor runs in VMX root mode, while the guest OS runs in VMX non-root
mode. Intel VT supports a special feature, called late launching of VMX
modes. This feature allows us to launch a hypervisor on the live system
on-the-fly. When the hypervisor is launched, certain events (e.g., privilege

instructions) cause the processor mode to transfer from VMX root mode to
VMX non-root mode, which is called VMEXxit.



4. Overview of Our Approach

The goal of LAKEED is to build a system that can detect a kernel-level
keylogger and prevent it from stealing keyboard data. Different from previ-
ous detection systems, our approach exploits the hardware assisted virtual-
ization technology to defeat the keylogger. The basic idea of our approach
is to leverage the hypervisor’s higher privilege to monitor the execution of a
kernel extension (that may contain the keylogger functionality) along with
the keyboard drivers’ execution. By comparing the runtime information with
the normal execution profile, our system could judge whether the target ex-
tension contains the functionality to collect keyboard data.

As shown in the Figure 1, LAKEED achieves the keylogger detection
in two key stages: offline analysis and online detection. In the first stage,
LAKEED leverages the hardware assisted paging to transparently isolate
keyboard drivers from the OS kernel in a clean execution environment. By
doing so, we can ensure that the driver’s code cannot be executed during the
OS kernel’s execution; while the OS kernel’s code cannot be accessed during
the driver’s execution. As a result, our system could capture the execution
transfers between the keyboard drivers and OS kernel. By recording the
invocation entry points of keyboard drivers as well as the associated call
stacks, we obtain the normal execution profile for the keyboard.

Next, LAKEED enters the online detection stage. Similar to the first
stage, the target kernel extension is isolated from keyboard drivers. Based
on the hardware assisted paging, the hypervisor creates three protection do-
mains for the keyboard drivers and the target extension. These protection
domains have the same memory mapping, but different access permissions.
In this way, the hypervisor can monitor the invocations of the kernel exten-
sion (or driver) and the associated call stacks. If this runtime information
does not match with the normal execution profile, it indicates that the target
extension may contain the keylogger functionality.

To prevent the keylogger from stealing the keyboard data, we propose
a defensive technique to protect the user input. Specifically, we exploit the
hypervisor’s higher privilege to intercept the keystroke first, and then transfer
the input data to the protected user process directly.

5. Design and Implementation

We have developed LAKEED, a prototype based on the Hyperdbg [2]
(a tiny hypervisor) to demonstrate our approach. As Figure 2 shows, most
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Figure 2: The LAKEED Architecture.

components reside in the hypervisor level, including Policy, Enforcer, and
Monitor. The Policy component stores the normal execution profile of key-
board drivers. The role of the Enforcer is to isolate the keyboard drivers
and kernel extension in different protection domains. The monitor is used to
trap and analyze the execution of the kernel extension and keyboard drivers.
There is only one component, called Controller, locating in the user level.
This component is applied to specify the target kernel extension to be mon-
itored. Moreover, the Controller is responsible for transferring the execution
profile to the hypervisor. To protect the Controller from being tampered by
kernel-level attacks, the latest hypervisor-based methods [3, 4] can provide
the required protection.

In general, the workflow of LAKEED can be summarized as follows: First,
the Controller transfers the execution profile to the Policy. Then, the En-
forcer is notified to isolate the target kernel extension from the keyboard
driver. After that, the Monitor traps and analyzes execution transfer be-
tween the kernel extension and keyboard drivers. If the kernel extension’s
runtime behavior affects the keyboard driver’s execution, the Monitor will
generate a keylogger alert.

5.1. Eaxtension Identification

To identify the target kernel extension, a traditional method is to utilize
the kernel module’s information inside the OS kernel. For example, this
method first finds the global head of the module list whose virtual address
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Figure 3: The workflow of extension identification

can be pre-determined. Next, it walks the module list to locate the module
descriptor. By reading the descriptor, it can gather the module’s name, the
base address as well as the module’s size. Unfortunately, recent study [5]
shows that advanced attackers may manipulate the module’s descriptor to
mislead the security software. Consequently, we cannot rely on the descriptor
information to identify the memory region of the target kernel extension in
some cases.

To address these problems, we propose a signature-based approach to
identify the kernel module from the kernel memory. Specifically, we first
parse the PE file of the kernel module to locate and analyze the text section.
Then, we compute the checksum of this section as the signature. To make
the signature robust and small, we only choose a very small part of the text
section as the computing target. With the computed checksum, we scan the
kernel memory to locate the kernel extension.

To access the kernel memory, the hypervisor needs to traverse the page
tables and then map the physical pages into its own address space. Before
calculating the checksum in the memory, we should first locate the appro-
priate address whose memory content should contain the function prologue
instructions (i.e., push ebp, mov ebp, esp). Next, we compare the checksum
with the memory content. If it matches, the memory region of the kernel
extension can be easily located. Particularly, the locating method is based
on our three observations: 1) The virtual address of a kernel extension is
always contiguous and page-aligned; 2) The code section of this kernel ex-
tension resides in the first memory page; 3) The kernel extension usually does
not contain self-modifying code. Relying on the first page that includes the
target checksum and the PE file size of the kernel extension, we can identify
the specific memory pages where the kernel extension is located.



On the other hand, if the checksum does not match, the hypervisor will
scan the next memory page for the extension identification. The basic work-
flow of extension identification is illustrated in Figure 3.

5.2. Extension Isolation

To isolate the target kernel extension® from kernel space, we utilize Intel’s
Extended Page Tables (EPT) technology. When this feature is enabled, the
hardware MMU will maintain additional page tables, called EPTs. These
tables are used to carry out translation of Guest Physical Address (GPA) used
in a VM to Host Physical Addresses (HPA) of the real hardware. Specifically,
the EPT has 4 paging structures, including namely PML4 (Page Map Level 4
Table), PDPT (Page Directory Pointer Table), PD (Page Directory), and PT
(Page Table). To allocate memory for these paging structures, we leverage
Windows non-paged pool allocation. By manipulating the access rights of
the EPTs, the hypervisor can run the target extension and keyboard drivers
in different execution environments.

Since Windows systems mainly utilize two kernel modules to drive a key-
board, we need to maintain 3 separate EPTs for the two keyboard drivers
and the target kernel extension. All these EPTs have the same memory
mapping, but with different access permissions.

Before setting the memory permissions, we first apply the method (men-
tioned in Section 5.1) to locate the memory area in which the kernel extension
and keyboard drivers reside. To set the memory access rights in EPT, we
need to traverse the paging structures to modify the permission bits in the
associated page table entries. Once the different memory permissions are set,
we can divide the kernel address space into three separate address spaces,
which is shown in Figure 4.

In the target kernel extension space, the target extension can only access
its own memory region, and cannot access the code and data region of the
keyboard drivers. In the keyboard driver spaces, both of the two drivers can
access each other’s data region, in addition to its own code and data regions.
However, the drivers’ code permissions are mutually exclusive, and they are
not allowed to access the code and data regions of the target kernel extension.

Initially, all of the three kernel extensions are marked as non-executable
in the EPTs. In this way, when one of these kernel extensions is invoked by

! According to the driver signature, administrators can specify which kernel extension
is the monitoring target
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Figure 4: Memory protections in the target extension and keyboard driver address space.

the OS kernel, it will trigger an EPT violation due to the memory protection.
Then, we need to remark the associated memory area as executable in the
original EPT to continue the kernel execution. Next, when an EPT violation
is triggered again, we do not remark the memory permissions, but just change
the value of the EPT base pointer to another EPT root that defines another
set of access rights. Since switching the address space will flush the TLB, the
system performance should be affected due to the TLB misses. To address
this problem, we make use of Intel’s Virtual Processor Identifiers (VPID)
technology [6] to avoid the TLB flush. For each invocation of one kernel
extension, only one EPT is active.

It is worth noting that we make some reverse engineering efforts to lo-
cate the keyboard buffers and set their memory permissions. Specifically, we
first utilize the signature-based method [7] to locate KiInitialPCR, the Ker-
nel Processor Control Region (KPCR) for the processor 0. Traversing from
KiInitialPCR, we can find the Object Manager Namespace Directory (OM-
ND), which provide a path to the driver object i8042prt. Based on the driver
object, we get a pointer to a device object. Furthermore, the object contains
a pointer to the Device Extension structure. By analyzing this structure,
we obtain the address of the keyboard buffer (i.e., PKEYBOARD_INPUT_DATA).
Similarly, we make use of the KPCR to identify the keyboard buffer inside
the kbdclass driver. Then, we set the associated access rights in the EPT to
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Figure 5: Keylogger detection baseline.

isolate the keyboard buffer from the target kernel extension.

5.3. Keylogger Detection

After the extension isolation is performed, we leverage the underlying hy-
pervisor to trap and analyze the invocation of the kernel extension. Before
detecting the anomaly invocation, we need to generate a execution baseline
for the working procedure of keyboard drivers. To this end, we apply a
dynamic analysis method to record the invocation information of keyboard
drivers in a clean Windows system. Similar to the extension isolation, we first
manipulate two exclusive EPTs for two keyboard drivers in the hypervisor.
Next, we utilize the hypervisor’s higher privilege to capture the normal in-
vocation of one kernel module that causes an EPT violation. Figure 5 shows
the execution baseline of keyboard drivers.

Specifically, when a user presses or releases a key, the ISR function
18042KeyboardInterruptService inside the i8042prt driver is invoked first
(step a). Then, this driver queues the DPC function I18042KeyboardIsrDpc.
Next, the system calls the DPC, which in turn invokes the callback function
KeyboardClassServiceCallback inside the kbdclass driver (step b). After
the callback function finishes its operation, it returns the kernel execution
to the i8042prt driver (step ¢). After that, the kbdclass driver is invoked to
handle the IRP read request (step d). Compered with the entire working
procedure of keyboard drivers, the execution baseline exhibits the intrinsic
features when the keyboard drivers work in different protection domains.
In addition to record the invocation entry points, we also log the call stack
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information during dynamic analysis. This information can reflect the execu-
tion transfers inside the OS kernel. With the invocation entry point and the
call stack information as a baseline, the hypervisor can detect the abnormal
invocation of a kernel extension during the working procedure of keyboard
drivers.

To our knowledge, there are two types of kernel-level keylogger: the code-
based [8] and the data-based [9]. The first one hooks specific system calls
or driver functions to capture user keystrokes. The second one does not
make any kernel code modification, but use a heuristic method to access the
keyboard buffer directly.

For the code-based keylogger, it hijacks the normal execution of keyboard
drivers. As a result, the keylogger’s execution will be inlined into the key-
board driver invocations. To judge whether the target extension’s execution
is inlined into the drivers’, we compare the runtime execution information
(e.g., the driver invocation trace) with the detection baseline. If it matches
(when the target extension’s invocation information is removed), we think
the target extension’s function does not interleave with the keyboard drivers’.
Otherwise, the extension may contain the keylogger functionality.

For the data-based keylogger, it may not be invoked during the working
procedure of keyboard drivers. Thanks to our extension isolation, the target
kernel extension cannot access the keyboard buffer when it is executed. If
the keyboard buffer is accessed during the kernel extension’s execution, we
believe that this extension would probably sniffer user keystrokes.

5.4. Keylogger Defense

To prevent the kernel-level keylogger from sniffing keystrokes, we propose
an anti-keylogger method based on the virtualization technology. The general
defense architecture is shown in the Figure 6.

Different from the keylogger detection, the hypervisor should first in-
tercept each keystroke before it is sent to the OS. For this purpose, the
hypervisor should be configured to trap external interrupts. In specific, the
external-interrupt exiting field of VM-Execution Control in VMCS should be
set to 1. To determine whether the interrupt is generated by the keyboard,
the hypervisor should look up the IOAPIC redirection table to get the in-
terrupt number. After that, the hypervisor will further judge whether the
target process is protected according to the pre-defined process ID, which can
be obtained from the process descriptor. To locate the process descriptor,
we need to first find the head of the descriptor list, and then traverse the list

11



User

|
OS Kkernel

hypervisor

A
|

keyboard

Figure 6: Keylogger defense architecture.

according to the cr3 register value. If the target process is not protected, the
hypervisor will inject the interrupt event into the OS. After that, the OS will
turn to handle this keyboard interrupt. If the target process is protected, the
hypervisor will not transfer the keystroke event to the guest OS but store it
temporarily in the hypervisor space.

To access the keystroke, the protected process needs to invoke a hypercall,
which enables a user program to communicate with a hypervisor directly.
Particularly, the hypercall should contain 3 parameters, including the service
number, the virtual address of a buffer (inside the protected process), and the
buffer size. The first parameter is a unique identifier to allow the hypervisor
know that the protected process will begin to receive user input from the
keyboard. Since adversaries may figure out the service number to abuse
the hypercall, we should keep the service number random. To deal with
this problem, we can leverage the online patching provided by hypervisor to
change the user code and the corresponding hypercall handler dynamically.
The second and third parameters are used for recording keystrokes into a
user buffer.

To facilitate our implementation, users are required to press the F9 key
twice to notify the beginning and end of user input. To retrieve keyboard
scan code in PS/2 keyboards, the hypervisor can read the 0x60 1/O port
directly. After the keyboard data is read, the OS kernel cannot fetch it any
more thanks to the hardware feature. To prevent the kernel-level keylog-
gers from accessing the user buffer that contains the keystrokes, we leverage
the hardware assisted paging to set the associated memory permission non-
readable. By doing so, the user buffer cannot be accessed by any kernel

12



component when the protected process is executed.

6. Evaluation

In this section, we evaluate both the detection effectiveness and the per-
formance of LAKEED. All the experiments are carried out on a Dell Pow-
erEdge T410 work station with one 2.13G Intel Xeon E5606 CPU and 4 GB
memory.

6.1. Effectiveness

We evaluate the effectiveness of LAKEED for kernel-level keylogger de-
tection with six real-world instances and three synthetic examples, which is
shown in Table 1. In the first two examples, both of them are attached to
the keyboard drivers to catch keyboard read requests. The third one mod-
ifies the IOAPIC redirection table to capture keystrokes. The fourth one is
a commercial keylogger, which is mainly implemented by a driver (i.e., n-
wlnk2k.sys). The fifth one is a filter driver that is attached to the kbdclass
driver. The sixth one is a driver that hooks the IDT (Interrupt Descriptor
Table) for keystroke sniffing.

To implement the keylogger Hook-kbdclass, we utilize the inline hook
technique to hijack the function KeyboardClassServiceCallback inside the
kbdclass driver. Similarly, we exploit a function pointer located in the
i8042prt driver to change its execution control flow for recording the key-
board data. Keylogger-1 is a data-based keylogger developed by our lab. To
sniffer user keystrokes, this keylogger does not need to change the kernel code
and kernel control data, but access the keyboard buffer directly. The experi-
ments show that all these kernel-level keyloggers are successfully detected by
our system.

To analyze our detection procedure, Figure 7 shows two case studies
of kernel-level keyloggers which violate the execution baseline. The grey
sections illustrate the abnormal invocation of the kernel module. In Fig-
ure 7 (a), since the keylogger Hook-kbdclass hijacks the callback function
KeyboardClassServiceCallback registered by the kbdclass driver, this ker-
nel extension will be invoked when the i8042prt driver executes the callback
function. After the kernel extension finishes its operations, it returns the
execution back to the kbdclass driver. Thanks to our memory isolation,
both of the two execution transfers will trigger two EPT violations so that
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Table 1: Effectiveness of LAKEED
’ Kernel-level keylogger \ Detection ‘

Klog [10] Yes
Ctrl2cap [11] Yes
Ps2intcap Yes

Elite keylogger [12] Yes
KDL 1.0.3 Yes
bhwin_keysniff Yes
Hook-kbdclass (synthetic) Yes
Hook-i8042prt (synthetic) Yes
Keylogger-1 (synthetic) Yes

the hypervisor can capture and identify the abnormal events for keylogger
detection.

In Figure 7 (b), the keylogger ctrl2cap.sys hijacks the IRP function in-
side the kbdclass driver to dispatch the IRP_MJ_READ request. As a result,
this kernel extension will be executed when the IRP dispatch function is in-
voked. In particular, since this keylogger register a callback function in the
IRP dispatch routine, this registered function will be invoked when the IRP
request is fully served. After that, the keylogger invokes the kernel function
IoCallDriver to transfer the execution control back to the kdbclass driver.
After the driver finishes its task, the execution is transferred back to the
keylogger again. Similarly, these operations trigger the EPT violations due
to our memory isolation. Then, by comparing the runtime execution profile
with the detection baseline, the keylogger is identified successfully.

To evaluate the effectiveness of our approach for the keylogger defense,
we develop a custom application to invoke hypercalls for retrieving keystroke
information from the hypervisor. Meanwhile, we install a kernel-level key-
logger for sniffing keystrokes. The experiments show that the hypervisor can
capture all the keystrokes that are then transferred to the target application
correctly. However, the keylogger does not get any keystroke information for
the target application.

6.2. Performance overhead

To measure the application level overhead, we test several application
benchmarks in the protected system where the MinGW and MSYS facilities
are installed. For each benchmark, we isolate one relevant kernel extension

14
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Figure 7: Keylogger detection examples.

from the protection domains of keyboard drivers. In the first two benchmark-
s, our target kernel extension is the ntfs file system module (i.e., ntfs.sys).
To test the first benchmark, we decompress the standard Linux kernel source
package (i.e., linux-2.6.24.tar.gz) using the tar program from the MSYS. For
the second application test, we use the MinGW to compile the latest Hy-
perdbg [2] with the default configuration. In the third benchmark, we make
use of the cp program from the MSYS to copy a 57695KB file into a USB
disk. Before conducting this test, the USB driver (i.e., usbstor.sys) is isolated
from the keyboard drivers. In the next two benchmarks, our target kernel
module is the tepip driver (i.e., tepip.sys). To carry out these tests, we first
install an Apache web server in the protected system. Then, we utilize the
ApacheBench program to measure the average response time and the transfer
rate of this Server. More precisely, the ApacheBench is configured to set up
6 concurrent clients with each generating 30 requests to the Apache server
that serves a 2568KB html webpage. In the final benchmark, our target k-
ernel extension is a custom driver (i.e., crypt_file.sys) for file encryption. To
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Table 2: Running overhead of LAKEED

Target kernel Native LAKEED Add-on
Benchmark .
extension performance | performance | overhead
Kernel Nitfs.sys 329110ms 345296ms 4.92%
decompression
Hyperdbg
: Ntfs.sys 13843ms 14328ms 3.50%
build
Copy file Usbstor.sys 3180Kb/s 3035Kb/s 4.78%
ApacheBench .
transfor rato Tepip.sys 1845Kb/s 1776Kb/s 3.89%
ApacheBepch Tcpip.sys 1391ms 1428ms 2.66%
response time
b Crypt_file.sys |  673235ms 707682ms 5.12%
encryption time

conduct the test, we measure the execution time for this driver to encrypt
a 97.2 MB file. To figure out the add-on overhead, we also carry out these
experiments in the native system.

Table 2 shows the results of our user-level benchmarks. The second col-
umn shows the target isolated kernel extension. The third column shows the
performance of the native system without virtualization, while the fourth
column shows the performance of the protected system with our detection
enabled. The last column presents the add-on performance overhead. From
Table 2, we can see that the overhead introduced by LAKEED is minimal.
In general, the performance overhead relies on the virtualization cost. In
addition to intercepting the sensitive events that cause VMExit uncondition-
ally, the hypervisor should trap external interrupts so that it can capture the
keystroke before the OS kernel.

Besides application level benchmarks, we also carry out a micro-benchmark
to evaluate the performance overhead of invoking keyboard drivers. For this
purpose, we implement a simple device driver that filters the kbdclass driver
to intercept the IRP_MJ READ request. In particular, this driver registers a
callback function that will be invoked when the IRP is severed. The driver
figures out the tick count for keyboard drivers to handle the IRP_MJ READ
request. When a user presses and releases a key, the keyboard drivers spend
12 tick counts to process the IRP in the native system; while it takes 16 tick
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counts for the keyboard drivers to handle the IRP in the protected system.
The add-on performance cost is 4 CPU ticks.

In addition, we implement a custom driver to hook the IRP dispatch
function in the kbdclass driver. Then, we calculate the execution time of the
dispatch function. In the native system, it takes 8 CPU ticks to complete
the operation. In our protected system, the function spends 13 CPU ticks to
finish its execution. The add-on overhead is 5 CPU ticks.

The performance experiments indicate that our protection mechanism
introduces very small performance cost if the target kernel extension does
not need to interact with the keyboard drivers. However, the performance
overhead will be higher when the target extension interacts with the key-
board drivers frequently. The main reason for this overhead is that since
the keyboard drivers are isolated from the target extension address space,
the underlying hypervisor needs to change the current active EPT for the
interactions between the target extension and keyboard drivers.

7. Discussion and Limitations

In this section, we discuss several issues related to our system. First,
since the target kernel extension should be specified by administrators, it
may take some human efforts for keylogger detection. To address this issue,
the whitelisting approach based on trust computing [13] could be used to
limit the number of potential target extension. Moreover, the whitelisting
approach can be applied to filter the false positive.

Second, LAKEED is limited to detecting the keylogger based on Return-
Oriented Programming (ROP), which does not introduce new code but lever-
ages control of the call stack to execute the existing code. However, the
ROP-based keylogger is not common in the real world.

Finally, our current implementation mainly focuses on detecting the key-
loggers based on the PS/2 keyboard. Nevertheless, by isolating the USB
related kernel extensions and building a associated execution profile, our
method can also be applied to defeat the keyloggers based on the USB key-
board. Moreover, our solution is applicable to other operating systems. (e.g.,
Linux).

8. Related Work

Stefano et al. [14] introduce a keylogger detection technique based on
fine-grained profiling of memory write patterns. Although this technique
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can be transparently deployed online, it cannot be applied to defeat kernel-
level keyloggers. Peter and Glenn [15] propose a hypervisor based mitigation
technique for keylogger spyware attacks. This technique requires deploying
two virtual machines, which include the trusted VM and the untrusted VM.
Most of tasks are performed in the untrusted VM, while any keyboard ac-
tivity can only happen in the trusted VM. As a result, this method may
not be applied to protect the pre-installed OS. HookScout [16] introduces
a binary-centric method to detect the hooks inside the kernel memory. By
monitoring these hooks, HookScout can detect the keyloggers that exploit
the function pointers inside keyboard drivers. However, this method is lim-
ited to detect the data-based keyloggers. Duy Le et al. [17] propose a novel
method based on the dynamic taint analysis technique [18] to detect kernel-
level keyloggers. Since this method relies on a emulator to track the data
flow of a keyboard driver, it imposes considerable performance overhead.
Chaoting Xuan et al. [19] propose an on-demand emulation-based method
for shepherding loadable kernel modules. By specifying a group of securi-
ty policies for confidentiality-violation rootkits, this approach can identify
kernel-level keyloggers effectively. Nevertheless, it may introduce significan-
t performance cost for the emulation. Jesus Navarro et al. [20] propose a
Virtualization-Aware method to mitigate kernel-level keyloggers. Since this
method requires modifying the existing OS kernel, it cannot be applied to
protect the commodity OS. Recently, Fengwei Zhang et al. [21] present a
framework to secure password-based logins on commodity OS by leveraging
CPU System Management Mode. Unfortunately, this method cannot defend
against the keyloggers that read the keyboard buffer directly to obtain the
keystrokes using DMA. Yueqiang Cheng et al. [22] present a fine-grained
I/O protection framework based on cryptographic and virtualization tech-
niques. Compared with this method, our approach has three advantages: 1)
lightweight, 2) on-the-fly protection, and 3) no modification to the target OS.
Gabor Pek et al. [23] propose a virtualization-based protection system to de-
tect unknown malware on live systems. Different from our work, this system
focuses on user-level protection, and it cannot handle kernel-level malware.

9. Conclusion

In this paper, we present LAKEED, a lightweight kernel mode keylogger
detection system based on the virtualization technology. We exploit the late
launch feature provided by recent hardware so that our detection mechanism
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can be added on-demand. Moreover, we utilize the hardware assisted paging
to isolate the target kernel extension and keyboard drivers in different pro-
tection domains. By monitoring the potential execution transfers between
the protection domains, the keylogger behaviour can be identified. Our e-
valuations show that LAKEED can detect the keylogger functionality in the
kernel extension and prevent it from recording user keystrokes.
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