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Abstract rienced, careless or even malicious. Therefore, proper

In Android, communications between apps and Sysjsolation between apps and the system is essential for ro-
tem services are supported by a transaction-based Intept/Stness and security. _ _ _
Process Communication (IPC) mechanisBander, as Tq meet this requirement, apps in Andr0|q execute in
the cornerstone of this IPC mechanism, separates twgPPlication sandboxes. If an app wants to interact with
communicating parties as client and server. As with anySyStem services, it must perform Inter-Process Com-
client—server model, the server should not make any agnunications (IPC)Binder, as the cornerstone of this
sumption on the validity (sanity) of client-side transac- IPC mechanism, separates two communicating parties as
tion. To our surprise, we find this principle has fre- clientand server. Each server (i.e., system service in this
quently been overlooked in the implementation of An- cgse) exports a list of publllc APIs that clients (i.e., mo-
droid system services. In this paper, we demonstrate theile apps) can invoke. The input parameters of each API
prevalence and severity of this vulnerability surface andd© through extensive sanity checks on the client-side be-
try to answer why developers keep making this seemfore being packed into a transaction and then sent to the
ingly simple mistake. Specifically, we design and im- S€rver. An AIDL (Android Interface Description Lan-
plementBinderCracker an automatic testing framework 9u@ge) file further enforces the schema of each transac-
that supports parameter-aware fuzzing and has identHon, serving as an explicit contract between the client
fied more than 100 vulnerabilities in six major versions@nd the server. These client-side public APIs get exam-
of Android, including the latest version Android 6.0, ined and tested by thousands of participating vendors of
Marshmallow. Some of the vulnerabilities have severeAOSP (Android Open Source Project) and are believed
security implications, causing privileged code executiont© be robust.
or permanent Denial-of-Service (DoS). We analyzed the Robust public APIs and AIDL enforcement can pro-
root causes of these vulnerabilities to find that most ofl€Ct System services against erroneous input from care-
them exist because system service developers only cof€SS OF inexperienced app developers, but render ineffec-
sidered exploitations via public APIs. We thus highlight tive against developers with an adversarial mindset. This
the deficiency of testing only on client-side public APIs is because both enforcements reside in the process space
and argue for the necessity of testing and protection o®f the client (attacker) and thus can eventually be circum-
the Binder interface — the actual security boundary. vented. In other words, any system service that hinges
Specifically, we discuss the effectiveness and practicalon the validity (sanity) of client-side transaction is fun-

ity of potential countermeasures, such as precautionarfamentally vulnerable — the server should be robust on
testing and runtime diagnostic. its own. This is probably a best engineering practice for
any system that adopts a client—server model, but has sur-
prisingly been overlooked in the implementation of many
Android system services. In this paper, we conduct a
Android is the most popular smartphone OS and dOm_comprehensive study of this attack surface in Android.

inates the global market with a share of more thanSpeC'flca"y’ we answer two important questions:

829 [34]. By the end of 2015, the total number of An- 51 How prevalentis this issue in Android, a major open
droid devices surpassed 1.4 billion, and there were more  goyrce project?

than 1.6 million mobile apps available in Google Play

for download [15, 26]. The developers of these apps ar€®?2. Why are so many developers making this seemingly
not always trustworthy; many of them might be inexpe- simple mistake?

1 Introduction
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To answer these questions, we designed and implgarocess. All of these are unreliable assumptions because
mentedBinderCracker an automatic testing framework they either directly or indirectly depend on the validity of
for Android system servicesBinderCrackerautomat-  client-side transactions. Moreover, we demonstrate most
ically crawls the RPC interfaces of both Java and na-of the vulnerabilities can never be found by testing only
tive system services, and injects fuzzing transactions vipublic APls. We, therefore, highlight the deficiency of
theBinder surface. This directly challenges the robust-testing only client-side public APIs and argue for the ne-
ness of the error-handling mechanisms in the system secessity of testing and protection at the Binder surface —
vices. To increase the scale and depth of our testinghe actual security boundary.

BinderCrackersupports parameter-aware fuzzing with ~ As our findings indicate, new vulnerabilities keep on
semi-valid inputs. This requires us to record and mu-emerging, especially with releases of new Android ver-
tate existing transactions and understand their semanticsions. To address this emerging attack surface, we need
Doing this in the context of Android is challenging be- to eliminate potential vulnerabilities as early as possibl
cause a transaction may contain remote object handlea the development cycle. Specifically, we suggest the
that cannot be recorded in the form of raw bytes. More-use of various precautionary testing techniques (includ-
over, transactions frequently contain dynamic and noning BinderCrackey before each product release. This
primitive data types that are difficult to mutate in a sensi-can stop a large number of vulnerabilities from reach-
ble way. BinderCrackerovercomes these challenges by ing the end-users. In fact, many severe vulnerabilities [6,
implementing a replay engine that has in-depth under7, 27] could have been avoided, hRithderCrackeheen
standing ofBinder transactions. It utilizes the depen- deployed. We also describe how to enhance the visibility
dencies between transactions to reconstruct remote olof Binder transaction during runtime to support more
ject handles during runtime, and tracks the hierarchy ofnformative runtime diagnosis, in case some vulnerabili-
non-primitive data types to unmarshall them into primi- ties leak througiBinderCrackemnd eventually reach the
tive types. end-users.

We examined more than 2400 service APIs in 6 ma- This paper makes five main contributions by:
jor versions of Android, including the latest Android 6.0

(Marshmallow). In total, we identified more than 100 ® Conducting the first comprehensive study that as-

vulnerabilities, most of which are unfixed to date. Many
of the vulnerabilities we identified are found to be able to
crash the entire Android Runtime, while others can cause
specific system services or system apps to fail. Some vul-
nerabilities have severe security implications, and may
result in system memory corruption, privileged code ex-
ecution, targeted or permanent Denial-of-Service (DoS).
This extensive testing also demonstrates the effectigenes
of our parameter-aware fuzzing — it identified 7x more

sesses the robustness of Android system services
and unveiling an alarming perspective.

e Designing and implementiriginderCrackeran au-
tomatic testing framework that supports parameter-
aware fuzzing on thBinder surface;

e Conducting an extensive test on 6 major Android
versions and identifying 100+ vulnerabilities, some
of which have severe security implications;

vulnerabilities than simple black-box fuzzing with the
same amount of time. Furthermore, sil8ierderCracker

is parameter-aware, we can now unearth different vul-
nerabilities in the same RPC method by fuzzing different
parameters in the same transaction.

We further analyzed the root causes of the identi-
fied vulnerabilities and studied 117 of them in Android
source codes. Most of them exist because the develop-
ers only considered exploitations of public APIs. There- The rest of the paper is organized as follows. Section 2
fore, many risky scenarios are assumed to be ‘unlikely’summarizes related work in the field of software testing
or even ‘impossible’ in their mindset. Here, we list three and Android security. Section 3 introdud@snder and
most common mistakes made by system service deveAIDL in Android, and describes how Android uses these
opers that contribute to a vast majority of the vulnera-to build system services. Section 4 examines the attack
bilities. First, private APIs are assumed to be unknownsurface under our investigation. Section 5 details the de-
to others, thus no sanity-check is made. Second, clientsign and implementation of an automatic testing frame-
side enforcements are assumed to be secure, so therewsrk, BinderCrackey which exposes vulnerable system
no double check of them at the server-side. Third, theservices. Section 6 describes our tests on stock Android
de-serialization process is assumed to be always undisirmware and analyzes the root causes and security impli-
turbed, hence no sanity check is conducted during thigations of the discovered vulnerabilities. Section 7 gives

e Unearthing the root causes of these vulnerabili-
ties and highlighting the necessity of protection on
Binder — the actual security boundary;

e Discussing the effectiveness and practicality of po-
tential countermeasures, such as precautionary test-
ing and runtime diagnostic techniques.



a comprehensive discussion on how to effectively elimi-fuzzing on one Android version, which is a small sub-
nate these vulnerabilities in the development cycle. Secset of our work. We regard their work as a parallel and
tion 8 discusses the long-term value and other potentiahdependent effort from an industry perspective.

uses of our work, and finally, the paper concludes with

Section 9. 3 Android IPC and Binder

2 Related Work Android executes apps and system services as different
processes and enforces isolation between them. To en-
Discussed below is related work in the field of softwareable different processes to exchange information with
testing and Android security. each other, Android provideBinder, a secure and ex-
tensible IPC mechanism. Described below are the basic
concepts in th&inder framework and an explanation
of how a typical system service is built using these basic
primitives.

Software Testing. In the software community, robust-
ness testing falls into two categoridsnctionalandex-
ceptionaltesting. Functional testing focuses on verifying
the functionality of software using expected input, while )
exceptional testing tries to apply unexpected and faulty3.1  Binder

inputs to crash the system. Numerous efforts have beep A iroid Binder provides a message-based commu-
made in the software testing community to test the ro- '

) nication channel between two processes. It consists of (i)
bustness of Andr(_)|d [1.2, 1.7’ 21,24,36]. Most of thema kernel-level driver that achieves communication across
focus on the functional testing of GUI elements [1, 2,17,

. : rocess boundaries, (iiBander library that usesoctl
21]. Some have conducted exceptional testing on th (P ndex y o¢

. . . 2 yscall to talk with the kernel-level driver, and (iii) uppe
evolvmg _pubhc APIs .[24]' In this paper, we highlight level abstracts that utilize ttBinder library. Conceptu-
the deficiency of testing only on public APls and con-

duct tional testi | legehdor-based ally, Binder takes a classical client—server architecture.
uct an exceptionaftesting on lower-ie er-base A client can send a transaction to the remote server via
RPC interfaces.

the Binder framework and then retrieves its response.
The parameters of the transaction are marshalled into a
Android Security. Android has received significantat- Parcel objectwhich is a serializable data container. The
tention from the research community as an open sourcearcel objectis sent through ti&inder driver and then
operating system [4,10, 11, 16, 23, 28, 32]. Existing An-gets delivered to the server. The server de-serializes the
droid security studies largely focus on the imperfectionparameters of thearcel object, processes the transac-
of high-level permission model [12, 13, 25], and the re-tion, and returns a response in a similar way back to the
sulting issues, such as information leakage [10], priv-client. This allows a client to achie\®emote Procedure
ilege escalation [4,28] and collusion [23]. Our work Call (RPC) and invoke methods on remote servers as if
highlights the insufficient protection of Android’s lower- they were local. Thi8inder-based RPC is one of the
level Binder-based RPC mechanism and how it affectsmost frequent forms of IPC in Android, and underpins
the robustness of system services. the implementation of most system services.

There also exist a few studies focusing on the IPC
mechanism of Android [5, 9, 19,22, 29]. However, they 3.2 AIDL
largely focus on one specific instance of Android IPC
— Intent. Since the senders and recipients of In-Many RPC systems use IDInterface Description Lan-
tents are both apps, manipulating Intents will not serveguagg to define and restrict the format of a remote in-
the purpose of exposing vulnerabilities in system servocation [22], and so does Android. The AlDArdroid
vices. Some researchers also provide recommendatiomsterface Description Languagdile allows the devel-
for hardening Android IPCs [19, 22] and point out that oper to define the RPC interface both the client and the
the key issue in Intent communication is the lack of for- server agree upon [3]. Android can automatically gener-
mal schema. We demonstrate that even for mechanisnate Stub and Proxy classes from an AIDL file and relieve
enforcing a formal schema, such as AIDL, robustness rethe developers from (re-)implementing the low-level de-
mains as a critical issue. Goegal.[14] also conducted tails to cope with nativesinder libraries. The auto-
experiments on the fuzzing @finder interface. How- generated Stub and Proxy classes will ensure that the de-
ever, they focused on implementing Proof-of-Conceptclared list of parameters will be properly serialized, sent
(PoC) exploits using identified vulnerabilities, instead received, and de-serialized. The developer only needs
of comprehensively assessing and understanding the atid provide a.aidl file and implement the correspond-
tack surface. In fact, they only tested simple black-boxing interface. In other words, the AIDL file serves as an



interface IQueueService { j— = Public APIs r==—===9
boolean add(String name); I_APP oo ___ Lsft"’_'“ie’:"i| ______
String peek();

String poll O | WifiManager | | WifiService |
String remove () ; K
(RPC) (RPC)

}

Input Parameters Input Parameters

| IwifiManager.Stub |AIDL|

read from Parcel

| libbinder.so |

Serialized Bytes

write to Parcel

I libbinder.so I

Figure 1: An example AIDL file which defines the inter-
face of a service that implements a queue.

1
1
1
1
1
1 |IWiﬁManager.Stub.Proxy| AIDL |
1
1
1
1
: Serialized Bytes

Y
| Binder Driver (Kernel) |

explicit contract between client and server. This enforce-
ment makes th®inder framework extensible, usable, Figure 2:How does an app communicate with a system ser-
and robust. Fig. 1 shows an example AIDL file that de-Vice usingBinder-based RPC (using Wi-Fi service as an ex-

fines the interface of a service that implements a queue @mMple)? The red shaded region represents the codes that need
to be provided/implemented by the service developer.

3.3 System Service

e Each parameter of the RPC interface should be
properly checked: the server should only accept a
transaction if all of its parameters are valid.

We now describe how the low-level concepts in the
Binder framework are structured to deliver a sys-
tem service, using Wi-Fi service as an example. To

implement the Wi-Fi service, system developers only To guarantee these properties, Android adopts an
need to define its interfaces as an AIDL description,A|DL enforcement and conducts extensive testings on
and then implement the corresponding server-side logigublic APIs. AIDL serves as an explicit contract between
(WwifiService)and client-side wrappeW{fiManager)  the server and the client. It defines the RPC interfaces a
(see Fig. 2). The serialization, transmission, and deservice trying to provide. A system service developer
serialization of the interface parameters are handled by¥an work on top of an AIDL interface and leave the seri-
the codes automatically generated from the AIDL file. 3jization, transmission and de-serialization to be hahdle
Specifically, when the client invokes some RPC methodhytomatically by the codes generated from the AIDL file.
in the client-side wrappeifiManager, the Proxy class  Bygs in the codes that are manually written by the devel-
IWifiManager.Stub.ProxyWwil marshalltheinputpa- oper are eliminated further by testing on public APIs and
rameters in @arcel object and send it across the pro- feedbacks from thousands of vendors and hundreds of
cess boundary via thBinder driver. TheBinder li-  mjllions of users. Thanks to these mechanisms, Android

brary at the server-side will then unmarshall the paramseryices, especially the widely-used and well-maintained
eters and invoke thenTransact function in the Stub  gystem services, could be made robust.

C|aSSIWifiManager.Stub. This eVentua”y invokes the However’ when the client is malicious and try|ng
service logic programmed itifiService. Fig. 2 pro-  tg sabotage system services intentionally, these mecha-

vides a clear illustration of the entire process. nisms cannot be counted on as a secure measure. This
is because both enforcements reside in the process space
4 The Attack Surface of the client (attacker), thus can eventually be circum-

vented. Specifically, although AIDL enforcement and
The Binder framework separates two communicating Public API testing consolidate the upper and middle lay-
parties as client and server. In the most common sceers of the program stack, the service APIs (RPC inter-
nario, the client is a user-level app and the server is daces) are still directly exposed in the low-layer of the
system service. As with any client—server model, thestack — theBinder driver. By directly injecting faulty
server should never trust the client. In the particular caséransactions into thBinder driver, an attacker can cir-
of Android which uses thBinder framework to build a cumvent these existing protections in the upper layers
light-weight RPC mechanism, the following two impor- and directly confront the server-side exception handling
tant properties have to be guaranteed. mechanisms. Fig. 3 gives an illustrative view of this at-
tack surface.
e The RPC interfaces in both client and server sides Ideally, this should not affect the robustness of system
should be consistent: they should expect the samservices. The server-side codes should be robust on its
list of input and return parameters. own without making any assumption on the client-side



Directly Inject

Call Public APIs Faulty Transaction struct binder_transaction_data {
x \/ union {
size_t handle; // (1) .target service
- - void *ptr;
I Attacker | [ Sanity Check }target;

— = - - [ U U

void *cookie;

unsigned int code; // (2).RPC method
unsigned int flags;

pid_t sender_pid;

| WifiManager |

AIDL Enforcement

1 1
1 1
1 1
1 1
! ! Crash uid_t sender_euid;
1 . .
! |IWiﬁManager.Stub.Proxy|AIDL| ’ size_t data_size;
1 ! i ize:
. size_t offsets_size;
1 .
r
1 1 | System Service | union {t t {
— | L e e = = struc
: I libbinder.so I(— ! A
1 1 binder_uintptr_t buffer;
\ binder_uintptr_t offsets;
| Binder Driver (Kernel) | } ptr;
__u8 buf[8];

} data; // (3).transactional data

Figure 3: By injecting faulty transactions via thBinder };
driver, an attacker can bypass the protections in the upyer |
ers of the program stack, and directly confront the seridsa-s
exception handling mechanisms.

Figure 4: The data struct sent through tBeénder diver via
transactions. This is probably a best engineering pract-he,i“tl Iilbc call. This struct pontains three important piec;es
tice for any system that adopts a client—server modelgflnformatlon we need to modify to send a fuzzing transactio
However, we found this principle frequently overlooked
in the implementation of Android system services, thus . .
motivating us to perform a comprehensive study of thiss'1 BinderCracker: An Overview
attack surface. Specifically, we want to answer two ques- .
tions: (1) how prevalent is this issue in Android, a major To fuzz a system serch,mdngrack_ermust be able to
open source project? and (2) why are so many develop§end ma}l—formatted transactions to it. The attack surfac_e
ers making this seemingly simple mistake? we use is fuqdamental — the client can se_nd any arbi-

trary transaction to the server because the client has com-
plete control over its own process space, and can thus by-
pass any client-side enforcement. This can be achieved
4.1 Attack Model by either taking advantage of hidden Android APIs or hi-
acking the libc call that underpins tBénder communi-

In this paper, we assume the adversary is a malicious ap] ation library. Both of these techniques can be achieved

developer trying to sa}botage system SErvices. The a n user-level without extending the Android system [35].
versary may mount this attack for various malicious pur-

Basically,BinderCrackeiis manipulating (either directl
poses, such as launching a Denial-of-Service (DoS) at y P 9 y

tack. achievi vileaed cod i . A svst or indirectly) abinder_transaction_data Struct sent
ack, achieving privileged code execution, €tC. A SySleMy, ypapspger driver. This data struct contains three im-

service can be generic, existing in Android frameworkportantpieces of information we need to modify to send a

base, or vendor-specific, introduced by_dgwce IT‘"’mu‘c"’lcfuzzing transaction and has the format as shown in Fig. 4.
turers. The attacker has no root permission and cannot ) - . )
The target.handle field specifies the service this

penetrate the security of OS kernel. oS : o
transaction is sent to. Thede field represents a specific
RPC method we want to fuzz. Thrta struct contains
. . . the serialized bytes of the list of parameters for the RPC
5 Automatic Vulnerability Discovery method, which is inherently Barcel object.Parcel is
a container class that provides a convenient set of seri-
To answer the questions raised above, we design and inalization and de-serialization methods for different data
plement an automatic testing framewdBknderCrackey  types. Both the client and the server work directly with
that can effectively unearth vulnerabilities in system ser this Parcel object to send and receive the input param-
vices. To the best of our knowledgBinderCrackeris  eters. Later in this section, we will elaborate on how to
the first tool that supports parameter-aware fuzzing ormodify the handle and code variables to redirect the
theBinder surface. transaction to a specific RPC method of a specified ser-



vice, and how to fuzz thearcel object to facilitate test-
ing with different policies.

5.2 Transaction Redirection

There is a one-to-one mapping from thendle vari-

able in thebinder_transaction data object to sys- Figure 5: When fuzzing a transaction, we need to replay the

tem service. This mapping is created during runtimesupporting transactions according to their relative oidehe

and maintained by thBinder driver. Since the client dependency graph. This way, all the remote Obj.eCtS thisran
has no control over th@inder driver, it cannot get action requires will be reconstructed during runtime.
this mapping directly. For system services that are stat-
ically _cached_, we can get thgm indirect_ly by queryingnow the RPC interfaces.
a static service manager which has a fixethdle of
0. This service manager is a centralized controller for
service registry and will be started before any other serParameter-Aware Fuzzing. To increase the scale and
vices. By sending a service interface descriptor (suctflepth of testingBinderCrackersupports fuzzing with
as android.os.IWindowManager) to the service manage§emi—valid transactions. A transaction is said tsbmi-
it will return an IBinder object which contains the valid if all of the parameters it contains are valid ex-
handle for the specified service. For system servicesCept for one. Semi-valid transactions can dive deeper
that are dynamically allocated, we can retrieve theminto the program structure without being early rejected,
by recursively replaying the supporting transactions thathus is able to reveal more in-depth vulnerabilities. To
generate these services. We will elaborate this later whelest with semi-valid transactions, we need to first record
discussing transaction fuzzing. valid (seed) transactions, and then mutate the parame-
After getting thehandle of a system service, we ters in each transaction. This requirB'B_1derCracker
need to further specify thecode variable in the O be parameter-aware and is C_hall_englng for two rea-
binder_transaction data object. Each code repre- SONS. First, recording a transaction is challenging when
sents a different RPC method defined in the AIDL file. the transaction involves remote objects that cannot be
This mapping can be found in the Stub files which arefecorded as raw bytes. In this scenario, valut_as in the
automatically generated from the AIDL file. Thede raw bytes are merely handles to the remote objects a}nd
variable typically ranges from 1 to the total number of P&come meaningless once out of the current execution
methods declared in the AIDL file. For native system CONtext. Second, mutating a transaction is challenging
services that are not implemented in Java, this mappin/hen the transaction contains dynamic or non-primitive
is directly coded in either the source files or the headeflata types. Since the internal structure of this data type
files. Therefore, we scan both the AIDL files and the na-iS Unknown, we do not know how to mutate it in a sensi-
tive source codes of Android to construct the mappingP!€ way. For example, many RPC interfaces takeent

between transaction codes and RPC methods. as an input parameter. As a non-primitive data type, an
Intent may contain arbitrary types of primitive types

) ) (i.e., Int, String, Double), depending on what has
5.3 Transaction Fuzzing been put into it during runtime. Next, we will detail how

After being able to redirect 8inder transaction to a we overcome these technical challenges.

chosen RPC method of a chosen system service, the

next step is to manipulate the transaction data and creafRemote Object. In Android, more than 14% of RPC
faulty transactions that are unlikely to occur in normal methods and 37% of user-level RPC calls involve a re-
circumstances. Here, we take three widely-used fuzzingnote object. The most frequent form of a remote object
policies: sending empty transaction, random transacis anIBinder object, which is widely-used for register-
tions, and semi-valid transactions. The first two poli-ing and invoking remote callbacks. Recording the raw
cies are easy to implement because it is agnostic of thbytes of these objects won’t work since they are merely
RPC method we target — we only need to fill the trans-object handles. We overcome this challenge by main-
action with either NULL values or randomly generated taining a dependency graph among transactions. When
bytes. The last policy, however, requires us to underrecording each transaction, we iterate through the list of
stand the semantics of a transaction to fuzz each paranmemote objects it takes as input and generates as output.
eter individually. Next, we explain hoBinderCracker Then, we construct a dependency graph that records how
supports parameter-aware fuzzing with semi-valid transdynamic IBinders are produced and consumed. Be-
actions and why it is challenging even when we alreadyfore trying to replay a transaction, we need to execute



| Intent |
| | [ | I [ [ I I I I T
| String | | Uri | | String | Int |ComponentName| | Int || Rect | | Int | Int Int | Int | | Bundle |

T T T T I I

|Int| |Int|||nt|| Bytes |
Figure 6: The internal type structure of a non-primitive data typetent, generated by recording the de-serialization process
of each non-primitive type. Note that this type structureéysamic — it depends on what has been put into Ihisent during
runtime.

Int Int Int

Transaction | .| Dependency | | Reptay [ river erate semi-valid fuzzing transactions. Specifically, i fo
Parser Checker Engine lows the process illustrated in Fig. 7. For each seed trans-
) i X s A A action we want to fuzz, we first parse the raw bytes of
1 y | ¥ i 1 the transaction and unmarshall non-primitive data types
Transaction Records Store IBinder Cache into an array of primitive types (step 1). This utilizes the
type hierarchy recorded with the seed transaction. Then,

we check the dependency of the transaction (step 2) and
retrieve all the supporting transactions (steps 3, 4). This
step utilizes the dependency graph recorded with the seed
transaction. After that, we need to replay the supporting
transactions (step 5) to generate and cache the remote

der in the dependency graph (see Fig. 5). This way, alfBinder object handles (sFeps_G, 7). _Finally, the fuzzer
the remote objects this transaction requires will be recon° ! st.art to generate Se”?""a"d fuzzing trans_actlons by
structed and cached beforehand. A similar technique igutatmg each parameter in the seed transaction (steps 8,
also used to generate the handle of dynamically gene ).

ated system services.

Figure 7: How does BinderCracker generate semi-valid
fuzzing transactions from seed transactions.

the supporting transactions according to their relative or

5.4 Server Exceptions

Non-primitive Data Types. In Android, more than After sending a faulty transaction to a remote service,
48% of the RPC methods involve non-primitive data there are a few possible responses from the server-side.
types_ Since we do not know their internal type Struc-FirSt, the server deteCtS the input iS inVaIid a.nd I‘eje(EtS th
tures, we cannot effectively fuzz it. We solve this prob- fransaction, writing art1legalArgumentException

lem by instrumenting the (de-)serialization functions in message back to the client. Second, the server accepts
the Parcel class. During the recording process of the the argument and starts the transaction, but encounters
seed transaction, when the client de-serializes each inpihexpected states or behaviors and catches some type
parameter from th@arcel Object (the transaction)’ we of RuntimeException. Th|rd, the server doesn’t catch
also record its hierarchical meta-data by recording theSome bizarre scenarios, causes a Fatal Exception and
orders of the function invocations. This way, we know crashes itself. In this paper, we focus on the last type
how to unmarshall every non-primitive data types andof responses, as it is most critical and has disastrous con-
can decompose a seed transaction into an array of prinRequences.

itive types. We then iterate through this list and mutate Depending on the implementation of the system ser-
each unmarshalled primitive types. For numerical types/ice, the exception can be in the Java layer or in the
such as Integer, we may add or substrate a small deltaative codes. A complete crash report consists of error
from the current value or change it to Integer.MAX, O or messages, recorded states of the registers, stack traces
Integer.MIN; for literal types such as String, we may ran-and a memory dump. This information, especially the
domly mutate the bytes contained in the String or insertack traces, is helpful for locating the bugs in the source
special characters at certain locations. Fig. 6 illusgrate codes.

the internal type structure of a non-primitive data type,

Intent, generated by recording its de-serialization pro-g  Testing Results and Analysis

cess.

In summary,BinderCrackermaintains both the type Our automatic testing toolBinderCracker is used to
hierarchy and dependency graph when recording a seddst and identify vulnerable Android system services.
transaction. These information capture the semantic an@e summarize the vulnerabilities identified across mul-
context of each transaction and h&mderCrackemgen-  tiple Android versions, explain their security implica-



Version APl Market Device Build # Level  Exception Type Count

41.1 16 9.0%  Galaxy Note2 JROO03C NullPointerException 13
4.2.2 17 12.2% Galaxy S4 JDQ39 StackOverflowError 4
4.4.2 19 36.1% Galaxy S4 KOT49H UnsatisfiedLinkError 2
5.0.1 21 16.9% Nexus 5 LRX22C Java ArraylndexOutOfBoundsException 2
5.1.0 22 15.7% Nexus 5 LMY47I OutOfResourcesException 1
6.0.0 23 0.7% Nexus 5 MRA58K OutOfMemaoryError 1
StringIndexOutOfBoundsException 1
Figure 8:The list of Android versions we tested usiBaqder- IOException 1
Cracker SEGV_.MAPPER 26
Native SI_TKILL 2
SEGV_ACCERR 1

tions, and analyze how they survived a major open+igure 9: List of exceptions occurred in a comprehensive
source project like Android. black-box fuzzing test.

6.1 Setups
] ] ) On average, each version of Android we tested contains

We tested 6 major versions of Android: 4.1 (Jelly- 15 yyinerabilities. The latest version of Android (6.0)
Bean), 4.2 (JellyBean), 4.4 (Kitkat), 5.0 (Lollipop), i contains 5 vulnerabilities, 2 of which are new. 8
5.1 (Lollipop) and 6.0 (Marshmallow). All our exper- ot of the 54 vulnerabilities can crash the entire Android
iments are conducted by runnignderCrackeron of-  pyniime (system servers), 13 can crash media servers,
ficial firmwares from major device manufacturers. An 414 13 can cause crash of other system services and apps.
official firmware went through extensive testing by the \jost of the identified bugs are due to accessing invalid
vendors and is believed to be ready for a public releasénemory addresses. We also found other causes of a crash
Each firmware is tested in the initial state, right after itis g ,ch as StackOverflow. Fig. 9 list all the exception types
installed. We didn’tinstall any third-party app or change gnq the number of their occurrences discovered in our
any configuration except for turning on the adb debug+agt.
ging option, ruling out the influence of external factors.  Ngte that new vulnerabilities have been kept emerg-
Fig. 8 lists the detailed information of all the firmwares ing on this attack surface whenever there is a major up-
we tested. . ~ grade of Android version. We also noticed almost all of

An RPC method is found to beulnerableif testing it the yulnerabilities are found within the first few fuzzing
resulted in a fatal exception, crashing part of, or the enyansactions, which means that a longer fuzzing time did
tire Android Runtime. _ Each unique crash report (stackn ot |ead to the discovery of new bugs. This suggests the
traces) under an RPC interface is further referred to as afhefficiency of black-box fuzzing, probably due to the
individual vulnerability For each vulnerability reported extremely large fuzzing space. As we will show later,
here, we followed the process of: 1) identify it on an offi- nore vulnerabilities are expected if more semantically-
cial ROM, 2) manually confirm that it can be reproduced, vich fuzzing techniques are used.
and 3) inspect the source codes for a root cause analysis.

For vendor-specific vulnerabilities of which source codes . |
are not available, such as many of the customized systelﬁ'3 Parameter-aware Fuzzing Results

services provided by Samsung, we only record the stacky increase the effectiveness of our testirgjnder-
trace. Cracker supports parameter-ware fuzzing with semi-
valid transactions. Generating semi-valid transactions
requires recording and mutating of existing valid trans-
actions. Here, we collected more than one million valid
We conducted a comprehensive black-box fuzzing testransactions by running 30 popular apps in two latest An-
on 6 major versions of Android. Specifically, we exam- droid versions (Android 5.1 and Android 6.0). Based on
ined more than 98 generic system services (by Googlethis seed dataset, we performed a semi-valid fuzzing test
and 72 vendor-specific services (by Samsung), whiclon more than 445 RPC methods of 78 system services.
covers more than 2400 low-level RPC methods. For eaciNote that we only tested the RPC methods that appeared
method, we sent either an empty transaction or a transadn our seed dataset, which is a subset of all available RPC
tion filled with random bytes. In total, we identified 54 methods. To increase the coverage of the seed dataset,
vulnerabilities, 39 of which are found in generic systemone can increase the duration of data collection or incor-
services, and 15 are found in vendor-specific servicegporate other data sources, such as the unit test cases for

6.2 Black-box Fuzzing Results



each system service.
We found that semi-valid fuzzing can significantly in{| android .widget .RemoteViews

crease the scale and the depth of our testing. In total, ) )
private RemoteViews (Parcel parcel,

identified 89 vulnerabilities in Android 5.1 and Android BitmapCache bitmapCache) {
6.0 which is 7x more than simple fuzzing. Compare
to the vulnerabilities identified using simple fuzzing int mode = parcel.readInt ();

the vulnerabilities exposed by semi-valid fuzzing ar
more interesting and have severer security implicatio
(to be discussed later). Moreover, since semi-val if (mode == MODE_NORMAL) {

fuzzing is parameter-aware, we can expose different v b ooise 1
else

nerabilities in the same RPC method by fuzzing dif // recursively calls itself
ferent parameters in the same API. For example, | nL = new RemoteViews (parcel,
fuzzing different variables contained in thatent pa- mBitmapCache);
rameter,BinderCrackeridentified more than 20 vulner- // rTecursively calls itself
abilities in a single RPC methodtartActivity in mBTim;PgZZthTmehews (parcel,
ActivityManagerService. Semi-valid testing also fa- .

cilitates the process of identifying the corresponding by ¥

in the source codes since we now know which input p

rameter results in the crash. Later, we will summariz| ;

the root causes of all identified vulnerabilities (in bot

simple and semi-valid fuzzing).

6.4 Root Cause Analysis Figure 10: The constructor of th@emoteView class con-

. . tains aloophole which can caus8tackOverflow exception.
The direct causes of crashes are uncaught exceptiorspecifically, a bad recursion will occur if the input Pardajiest
such aflullPointerException Of SEGV_MAPPER, but  follows a certain pattern.

the fundamental cause behind them is deeper. For each

crashed system service of which source codes are avail-

able, we looked into the source codes and analyzed thihe public APIl, no matter how comprehensive they are.
root causes of the vulnerabilities. Specifically, we are in-For example, th&Bluetooth service provides a method
terested in why these vulnerabilities survived in a majorcalled registerAppConfiguration. All of the pa-
open source project like Android. In summary, we foundrameters of this RPC method are directly exposed via a
that most of the vulnerabilities we identified are very public API and there are multiple layers of sanity check
likely to have been overlooked by system service develaround this interface. Therefore, if there is an erroneous
opers. A likely explanation is many system developersnput from the public API, the client will throw an ex-
only considered exploitation of public APIs, thus directly ception and crash without even sending the transaction to
injecting faulty transactions to ttBinder driver creates the server side. However, using our approach, an attack
many scenarios that are believed to be ‘unlikely’ or ‘im- transaction is directly injected to tiBender driver with-
possible’ in their mindset. Here, we highlight some of out even going through these client-side checks. This
the new attack vectors identified by our approach whichsuggests that the server should always double-check in-
contribute to most of the vulnerabilities we identified.  put parameters on its own.

First, an attacker can manipulate RPC parameters Third, an attacker can exploit the serialization pro-
even if they are not directly exposed via public APIs. cess of certain data types and create inputs that are haz-
For exampleTAudioFlinger provides an RPC method ardous at the server side. For examplegoteViewis a
REGISTER_CLIENT. This method is only implicitly Parcelable object that represents a group of hierarchical
called in the Android middleware and is never exposedviews. It contains a loophole in its de-serialization mod-
via public interfaces. Therefore, the developers of thisule which can cause &tackOverflow exception. As
system service may not expect an arbitrary input fromshown in Fig. 10, a bad recursion will occur if the input
this RPC method and didn’t perform a proper check ofParcel object follows a certain pattern. By directly ma-
the input parameters. In our test, sending a list of nullnipulating the serialized bytes of the Parcel sent via the
parameters via thBinder driver can easily crash this Binder driver, this loophole can be triggered and crash
service. This suggests that developers should not ovethe server. This suggests that RPC methods with serial-
look RPC interfaces that are private or hidden. izable inputs require special attention and sanity check is

Second, an attacker can bypass sanity checks arouralso essential in the de-serializaiton process.
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Figure 11:Many of the vulnerabilities we identified are found to be afdlerash the entire Android Runtime (systeerver),
while others can cause specific system services (mediasengystem apps (nfc, contacts, etc) to fail.

In summary, most of the vulnerabilities originate from vice/app is broken, but cannot tell who crashed it. We
unreliable assumptions on the transactions from thevill discuss more about the attack attribution process in
client-side. This suggests that there is a misconceptiothe next section.
of where the security boundary is for Android system Some of the vulnerabilities we discovered can cause
services — while many may assume the security boundmore serious security problems. We found that in sev-
ary is at the client-side public APIs, the actual secu-eral RPC methods, the server-side fails to check po-
rity boundary can only stand behind tBénder driver.  tential Integer overflows. This may lead to disastrous
Therefore, we advocate the importance of pure servereonsequences when exploited by an experience attacker.
side error handling, and highlight the necessity of directFor example, iNlGraphicBufferProducer an Integer
Binder-level testing on RPC interfaces of remote ser-overflow exists such that when a n@ativeHandle is
vices. created, the server will malloc smaller memory than it ac-
tually requested (see Fig. 12). Subsequent writes to this
data struct will corrupt the heap on the server-side. This
vulnerability has been demonstrated to be able to achieve
Most of the vulnerabilities we discovered can be used trivileged code execution, and insert any arbitrary code
launch a Denial-Of-Service (DoS) attack. Some of theminto system_server [6]. We also found a vulnerabil-
are found to be able to crash the entire Android Runtimejty in IContentService that can lead to a infinite boot-
while others can cause specific system services or sy$eop, which can only be resolved by factory recovery or
tem apps to fail. Fig. 11 shows the distribution of the flushing a new ROM. This is also classified as High risk
affected services (apps). When launching a DoS attackiccording to the official specification of Android severity
the attacker can trigger a crash either consistently or onljevels [30].
under certain conditions, for example, when a competi- Besides RPC methods that are not well-implemented,
tor's app is running. This can create the impression thatve also discovered RPC methods that are not properly
the competitor's app is buggy and unusable. We evemprotected by existing Permission models. In official
identified multiple vulnerabilities (in the de-serialimat ~ ROMs of Samsung Galaxy 4 (Android 4.2.2 and Android
process ofintent) that can cause targeted crash of al-4.4.2), an attacker can reboot the device by directly send-
most any system/user-level apps, without crashing théng a transaction t®ackageManagerService via the
entire system. Specifically, an attacker can craft an IntenBinder driver without requiring the REBOOT permis-
that contains a mal-formatéhndle object and send to sion. This is critical since REBOOT is a sensitive per-
the target app. This will cause a crash during the demission only granted to system apps. The other service
serialization process of timtent object before the tar- is ICoverManager, a customized service from Sam-
get app can conduct any sanity check. Moreover, it carsung. An attacker can invoke a certain RPC method of
be very challenging to identify the attacker app underICoverManager and block the entire screen with a pop-
these scenarios because the OS only knows which seup blank Activity. The blank Activity cannot be revoked

6.5 Security Implications
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No Source Codes

native_handle_t* native_handle_create(int
numFds , int numInts)
{
// numFds & numInts are not checked!
native_handle_t* h = malloc(
+ sizeof (int)* (numFds+numInts));

Fixed

h->version = sizeof(native_handle_t); Unfixed Disappeared
h->numFds = numFds;
h->numInts = numInts;

return h; . . . .
3 Figure 13:Number of the vulnerabilities that are fixed, disap-

peared and unfixed.

_ there are still 87 vulnerabilities left unfixed. Fig. 13 il-
Figure 12:The constructor of theative handle has an In- |ystrates the proportion of vulnerabilities that are fixed,
teger Overflow vulnerability that can cause a heap corraptio disappeared and unfixed. We have already submitted all

on the server-side. This can lead to privileged code exetuti ,fived vulnerabilities to AOSP by the time of this sub-
IN system_server. mission

using any virtual or physical button and the only exitis 7 Defenses
restarting the device.
As our testing results demonstrated, new vulnerabilities
6.6 Vulnerabilities: Fixed and Unfixed emerge whenever there is amajor upgrade of the Android
code base. This is because, considering the code size of
We examine how many of the vulnerabilities remain un-Android, it is almost impossible to prevent the develop-
fixed and are potentially zero-day when they are founders from writing buggy codes. Therefore, the only solu-
Our analysis is based on the public changes of the sourd#n is to eliminate potential bugs as early as possible in
codes across different Android versions and revisionsthe development cycle. To this end, we discuss potential
We skip the 15 vulnerabilities in vendor-specific systemdefense mechanisms and summarize them into two cat-
services and 7 in generic system services due to the uregories: (1) precautionary testing, exposing vulnerabili
availability of source codes. Note that not all genericties before releasing the new ROM; (2) runtime defense,
system services are open source, especially when it is relefending against potential bugs after the ROM has been
lated to decryption/encryption or interactions with OEM deployed. Next, we will go through several potential de-
hardware. fense mechanisms in each category and discuss whether
Of the 117 analyzed vulnerabilities in Android code it is applicable or practical for our problem. Then, we
bases, only 18 have been fixed by adding additional sardemonstrate how to enhance the visibility of ongoing at-
ity checks of input parameters. Another 12 vulnera-tacks by enabling runtime diagnosticRinder transac-
bilities ‘disappeared’ during several major Android ver- tions.
sion upgrades either because 1) the corresponding source
codes (or API) have been deleted; or 2) new updates iFy_l Precautionary Testing
other parts of the source codes accidentally bypass the
vulnerable source codes. For example, some crashes dBefore releasing a new ROM, developers can conduct
caused by a recursive call in tRemoteView class (see precautionary testing. The defense can be done early, in
Fig. 10). Similar crashes disappeared after Android 5.0the development phase of each system service, or later,
We looked in the source codes and found this is not beafter the entire ROM gets built.
cause the bug has been fixed, but because in new versionsAndroid has already adopted a static code analysis
of Android a faulty transaction will create an additional tool, 1int, to check potential bugs and optimizations
Exception before it reaches the vulnerable codes. Théor correctness, security, performance, usability, acces
additional Exception is properly caught and accidentallysibility and internationalization [18]. Specificallyint
avoids the fatal crash caused by the real vulnerabilityprovides a feature that supports inspection with annota-
We do not consider this as a ‘fix’ since an attacker cartions. This allows the developer to add metadata tags
still recreate the crash by manually crafting a transactiorto variables, parameters and return values. For ex-
which bypass the new code updates. As of this writing,ample, the developer can mark an input parameter as
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@NonNull, indicating that it cannot bBull, or mark it  of course, build a very conservative blacklist-based sys-
as@IntRange (from=0,to=255), enforcing that it can tem and hard-coding rules of each potential vulnerability
only be within a given range. Thehjint automatically in the database. However, this seems unnecessary, espe-
analyzes the source codes and prompts potential violazially when Android nowadays supports directly pushing
tions. This can be extended to support inspections ofecurity updates (patches) to devices of end-users.
RPC interfaces, allowing developers to explicitly declare  An alternative solution is to diagnose, instead of pre-
the constraints for each RPC input parameter. This wayyent. It would be helpful if we can provide more visi-
many potential bugs can be eliminated during the develbility of how malicious transactions actually undermine
opment phase. This defense is practical and comprehen: device. Even though this cannot stop the single de-
sive but requires system developers to specify the metarice from being attacked, we can still utilize the collected
data tags for each RPC interface. statistics to develop in-time security patches, benefiting
We can also conduct precautionary testing during runthe vast majority of end-users. According to our expe-
time after the ROM has been built. Our systéBinder-  rience in bug-hunting process (in Section 6), improve-
Cracker, itself is effective in identifying vulnerabilities ments on the following two aspects can effectively in-
and can be used as an automatic testing tool. By fuzzingrease the visibility oBinder transactions.
various system services with different policies, a large
_number of vulnerabilities can be eliminated before reac_:r_1-Construct IPC Graph.
ing the end-users. Actually, many severe vulnerabili-
ties [6, 7, 27] could have been avoidediinderCracker

In the case of an attack on the
Binder interface, the victim is the recipient of the trans-

) X action while the attacker is the sender. Under most cir-
had been deployed. Note that the effectivenesiinder- ., \qtances; there will only be visible consequences (i.e.,
Crackerdepends on the quality and coverage of the S'ee‘grashes) on the server side while the attacker stays in the

transactions. Besides collecting execution traces of ist. This makes it difficult to conduct attack attribution,

large number of apps, another potential way of gener'especially when an attack is mounted via a chain of trans-

ating a comprehensive seed dataset is to incorporate theuinng across multiple processes. To enhance the visi-
functional unit tests of each system service. bility of attacks in this process, we can instrument each
system service to maintain the senders of recent trans-
7.2 Runtime Defense actions. Each transaction represents an edge in the IPC
graph, linking apps and system services. Any user-level
It will be helpful if Android can provide some real-time app that is linkable to the victim system service is a po-
defense against potential vulnerabilities even after theential initiator of the attack. Similar techniques have
ROM has been deployed on end-users’ devices. Hereyeen proven to be effective in improving the visibility of
we focus on specific defenses on #imder layer, ex-  remote systems [8].
cluding generic defenses such as Address Space Layout
Randomization (ASLR), SELinux, etc. They have been , . . . .
aintain Transaction Schema. Even if we know

extensively discussed in other literature [20, 31, 33] an which transaction causes a crash, it is often challeng-

are not specific to our scenario. There are two poteni—n to identify the corresponding vulnerability, espelgial
tial defenses one can provide on thismder surface dur- 9 P 9 Y, €sp

ing runtime: (i) intrusion detection/prevention, idetif when the bug is non-trivial. The most frequent obstacle
9 i b - 1dey is lack of visibility of the transaction schema. A transac-

ing and rejecting transactions that are malicious, and (ii)[ion contains only raw bytes and may be unmarshalled in
intrusion diagnostics, making an attack visible after the

. any arbitrary way. It is extremely tedious to anatomize a
transaction has already caused some damage. . ; ) . o
To brovide runtime intrusion prevention. one needs totransactlon and verify that it actually contains an invalid
erfolrom some tvoe of abnormeglit detection on incom parameter causing a specific vulnerability. We propose
ﬁ\ transactionsypThis works b e>)</aminin the inbut pa to maintain transaction schema at runtime when the sys-
9 : y 9 PUt Pa~o ) service parses a transaction (similar to Fig. 6). If the

rqmeters of valid/invalid RF.)C Invocations :_:md CharaCte.r'server experiences some exception, the recorded schema
izing the rules or boundaries. However, in our case, i

. . ; . RNi” be attached with the crash report to provide more
is not practical for the following reasons. FirBtinder

. : informative feedback.
transactions occur at a very high frequency but a mo-

bile device is itself constrained in energy and compu-

tation power. Second, parametersBinder transac- 8 Discussion

tions are very diverse, codependent, and evolving dy-

namically during runtime, and hence clear boundaries o©Our work has lasting values beyond the vulnerabilities
rules may not exist. Third, end-users are not likely towe presented in this paper. First, we comprehensively
endure even the smallest false-positive rate. One camgssessed a risky attack surface that has long been over-
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looked by the system developers of Android. As our ex-interface — the actual security boundary. Several poten-
perimental results demonstrated, new vulnerabilities aréial defenses as well as their practicality have been dis-

still emerging on this attack surface aBéhderCracker

cussed to help eliminate vulnerabilities as early as possi-

can help eliminate potential vulnerabilities in future re- ble in the development cycle.

leases of Android.

Second, the lessons learned can transcend to Othﬁeferences

platforms facing similar issues, such as vehicular sys-

tems (CAN buses and ECUs), wearable devices, etc. Wg1] AmALFITANO, D., FASOLINO, A. R., AND TRAMONTANA, P.

highlight that, although many systems adopt a client—
server model in the design of their internal system com-
ponents, they rarely follow the security standards of a

real client—server model as in a networked environment. 2

In many scenarios, a component may fall into the wrong
hands and create serious security threats.

Third, our parameter-aware fuzzing is generic and not
limited to system services. In fact, it also works for ser-

vices exported by user-level apps. For example, apps likel
Facebook also host service in its own process space an?4]

export it to other apps. By performing fuzzing on this
interface, more app-level vulnerabilities are expected to

be unearthed. We didn’t discuss it here mainly because[s]

source codes of app-level services are mostly unavail-
able. Therefore, it is difficult for us to analyze the root
causes and security implications of the identified vulner-
abilities.

. o
For two reasons, we test each firmware in its initial
state: right after it has been flushed, without installing [7;

third-party apps, inserting SIM cards, or connecting to

WiFi. First, we want to exclude vulnerabilities caused [8]

by external factors that may not be reproducible. Sec-
ond, we want to rule out the possibility that our fuzzing

tests would negatively affect cellular providers or Inter- [

net services, for the sake of responsible research. All
of the vulnerabilities we identified have been reported to
AOSP. Part of the vulnerabilities have been accepted and

will be patched in future versions of Android, while the [10]

rest are still under review. In this paper, we have only
revealed details about the vulnerabilities that have been
confirmed so far.

9 Conclusion

In this paper, we have conducted a field study accessing

the robustness of Android system services. Specifically{12]

we have designed and implementthderCrackey an

automatic testing framework that can help expose vul-
nerable system services by fuzzing tBénder inter-

face. BinderCrackersupports parameter-aware fuzzing
and identified more than 100 vulnerabilities in 6 major
versions of Android. We summarized these vulnerabil-
ities, explained their security implications and analyzed

their root causes. Based on our observation, we highL14]

lighted the deficiency of testing only on client-side public
APIs and advocated testing and protection aBth&ler
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