30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation
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Fundamental developments in feedforward artificial neural net-
works from the past thirty years are reviewed. The central theme of
this paper is a description of the history, origination, operating
characteristics, and basic theory of several supervised neural net-
work training algorithms including the Perceptron rule, the LMS
algorithm, three Madaline rules, and the backpropagation tech-
nique. These methods were developed independently, but with
the perspective of history they can all be related to each other. The
concept underlying these algorithms is the “minimal disturbance
principle,” which suggests that during training it is advisable to
inject new information into a network in a manner that disturbs
stored information to the smallest extent possible.

. INTRODUCTION

This year marks the 30th anniversary of the Perceptron
rule and the LMS algorithm, two early rules for training
adaptive elements. Both algorithms were first published in
1960. In the years following these discoveries, many new
techniques have been developed in the field of neural net-
works, and the discipline is growing rapidly. One early
developmentwas Steinbuch’s Learning Matrix [1], a pattern
recognition machine based on linear discriminant func-
tions. At the same time, Widrow and his students devised
Madaline Rule | (MRI), the earliest popular learning rule for
neural networks with multiple adaptive elements[2]. Other
early work included the “mode-seeking” technique of
Stark, Okajima, and Whipple [3]. This was probably the first
example of competitive learning in the literature, though
itcould be argued that earlier work by Rosenblatton “spon-
taneous learning” [4], [5] deserves this distinction. Further
pioneering work on competitive learning and self-organi-
zation was performed in the 1970s by von der Malsburg [6]
and Grossberg [7]. Fukushima explored related ideas with
his biologically inspired Cognitron and Neocognitron
models [8], [9].
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Widrow devised a reinforcement learning algorithm
called ““punish/reward” or “‘bootstrapping’’ [10], [11] in the
mid-1960s. This can be used to solve problems when uncer-
tainty about the error signal causes supervised training
methods to be impractical. A related reinforcement learn-
ing approach was later explored in a classic paper by Barto,
Sutton, and Anderson on the ““credit assignment’” problem
[12]. Barto et al.’s technique is also somewhat reminiscent
of Albus’s adaptive CMAC, a distributed table-look-up sys-
tem based on models of human memory [13], [14].

In the 1970s Grossberg developed his Adaptive Reso-
nance Theory (ART), a number of novel hypotheses about
the underlying principles governing biological neural sys-
tems [15]. These ideas served as the basis for later work by
Carpenter and Grossberg involving three classes of ART
architectures: ART 1[16], ART 2 [17], and ART 3 [18]. These
are self-organizing neural implementations of pattern clus-
tering algorithms. Other important theory on self-organiz-
ing systems was pioneered by Kohonen with his work on
feature maps [19], [20].

In the early 1980s, Hopfield and others introduced outer
product rules as well as equivalent approaches based on
the early work of Hebb [21] for training a class of recurrent
(signal feedback) networks now called Hopfield models [22],
{23]. More recently, Kosko extended some of the ideas of
Hopfield and Grossberg to develop his adaptive Bidirec-
tional Associative Memory (BAM) [24], a network model
employing differential as well as Hebbian and competitive
learning laws. Other significant models from the past de-
cade include probabilistic ones such as Hinton, Sejnowski,
and Ackley’s Boltzmann Machine [25], [26] which, to over-
simplify, is a Hopfield model that settles into solutions by
a simulated annealing process governed by Boltzmann sta-
tistics. The Boltzmann Machine is trained by a clever two-
phase Hebbian-based technique.

While these developments were taking place, adaptive
systems research at Stanford traveled an independent path.
After devising their Madaline | rule, Widrow and his stu-
dents developed uses for the Adaline and Madaline. Early
applications included, among others, speech and pattern
recognition [27], weather forecasting [28], and adaptive con-
trols [29]. Work then switched to adaptive filtering and
adaptive signal processing [30] after attempts to develop
learning rules for networks with multiple adaptive layers
were unsuccessful. Adaptive signal processing proved to
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The most noteworthy feature of the CYC project, from my point of view, is its extreme faith in the
power of explicit symbolic representation: its faith in the internalization of structures built in the im
of strings of words in a public language. The CYC representation language encodes information i
(“frames") such as the following:

Missouri

Capital: (Jefferson City)

Residents: (Andy, Pepa, Beth)
State of: (United States of America)

The example is simplified, but the basic structure is always the same. The unit has "slots" (the thr
subheadings above), and each slot has as its value a list of entities. Slots can reference other uni
example, the "residents" slot can act as a pointer to another unit containing still more information,
so on and so on). This apparatus of units and slots is augmented by a more powerful language (t
Constraint language) that allows the expression of more complex logical relationships, such as "F
items, if the item is an X then it has property Y." Reasoning in CYC can also exploit any of severs
simple inference types. The basic idea, however, is to let the encoded knowledge do almost all th
and to keep inference and control structure simple and within the bounds of current technology. C
creators, Douglas Lenat and Edward Feigenbaum
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(1992, p. 192), argue that the bottleneck for adaptive intelligence is knowledge, not inference or c

The CYC knowledge base attempts to make explicit all the little things we know about our world
usually wouldn't bother to say. CYC thus aims to encode items of knowledge we all have but seld
rehearse—items such as the following (ibid., p. 197):

Most cars today are riding on four tires.
If you fall asleep while driving, your car will start to head out of your lane pretty soon.
If something big is between you and the thing you want, you probably will have to go around it.

By explicitly encoding a large fraction of this "consensus reality knowledge," CYC is supposed to
a level of understanding that will allow it to respond with genuine intelligence. It is even hoped the
CYC will use analogical reasoning to deal sensibly with novel situations by finding partial parallels
elsewhere in its vast knowledge base.
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Fig. 33. Learning rules.

backpropagation algorithm. Fig. 33 categorizes the learning
rules that have been studied.

Although these algorithms have been presented as estab-
lished learning rules, one should not gain the impression
that they are perfect and frozen for all time. Variations are
possible for every one of them. They should be regarded
as substrates upon which to build new and better rules.
There is a tremendous amount of invention waiting “in the
wings.”” We look forward to the next 30 years.
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