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Abstract. Wireless sniffers are often used to monitor APs in wireless
LANs (WLANs) for network management, fault detection, traffic char-
acterization, and optimizing deployment. It is cost effective to deploy
single-radio sniffers that can monitor multiple nearby APs. However,
since nearby APs often operate on orthogonal channels, a sniffer needs
to switch among multiple channels to monitor its nearby APs. In this pa-
per, we formulate and solve two optimization problems on sniffer channel
selection. Both problems require that each AP be monitored by at least
one sniffer. In addition, one optimization problem requires minimizing
the maximum number of channels that a sniffer listens to, and the other
requires minimizing the total number of channels that the sniffers listen
to. We propose a novel LP-relaxation based algorithm, and two simple
greedy heuristics for the above two optimization problems. Through sim-
ulation, we demonstrate that all the algorithms are effective in achieving
their optimization goals, and the LP-based algorithm outperforms the
greedy heuristics.

1 Introduction

Wireless LANs (WLANs) have been widely deployed in enterprise and campus
networks. A number of studies use air sniffing as an effective technique for un-
derstanding and monitoring WLANs [11, 6, 1, 7, 2, 8]. In air sniffing, sniffers are
placed inside a WLAN, each passively listening to the air waves in its vicinity, and
collecting detailed MAC/PHY information. This detailed low-level information
provides valuable insights into the behavior of wireless medium and protocols.
It is also critical for effective monitoring and management of WLANs.

Large-scale WLAN monitoring through air sniffing, however, faces several
challenges. First, it requires a large number of sniffers, which can be costly to
deploy and difficult to manage. This problem is compounded by the fact that
APs in WLANs can operate on different channels (e.g., 802.11b/g supports 3
orthogonal channels, and 802.11a supports 13 orthogonal channels), while an air
sniffer only listens to a single channel at any point of time (multi-radio sniffers
are large and expensive to deploy [3]). Therefore, in the worst case, the required
number of sniffers can be the same as the number of APs. Secondly, the sniffers
generate a large amount of measurement data, which can be expensive to store,
transfer and process. For instance, in [2], up to 80 Mbps of traffic is generated for
monitoring an academic building, which needs to be transferred and processed
at a central server.
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To overcome the above challenges in large-scale air sniffing, [3] proposes chan-
nel sampling, where each sniffer samples the network traffic by visiting multiple
channels periodically. Using channel sampling, a sniffer can monitor multiple
nearby APs that operate on different channels, and hence less sniffers are needed.
Furthermore, the sampling of traffic leads to less amount of measurement data.
As shown in [3], channel sampling is useful for a number of applications, in-
cluding security monitoring, anomaly detection, fault diagnosis, network char-
acterization, and assistance to AP deployment. The study of [3] proposes two
sampling strategies, equal-time sampling where a sniffer spends equal amount
of time scanning each channel, and proportional sampling where the amount of
time that a sniffer spends on a channel is proportional to the amount of traffic
on that channel. These two strategies are improved in [4] where the scanning of
the sniffers are coordinated to increase the number of unique frames.

In this paper, we address an important problem in channel sampling, namely,
how to select the channels for the sniffers. Our study differs from [3, 4] in two
main aspects. First, we require each sniffer to monitor a subset of selected chan-
nels so that each AP is monitored by at least one sniffer, while [3, 4] require each
sniffer to monitor all available channels (regardless of whether the channels are
being used or not by the nearby APs). By eliminating the scanning over unused
channels, our approach provides more effective traffic sampling3. Secondly, we
formulate and solve two optimization problems on sniffer channel selection: one
minimizes the maximum number of channels that a sniffer listens to, and the
other minimizes the total number of channels that the sniffers listen to4. The
first objective is desirable because when a sniffer monitors less channels, it can
spend more time on each of these channels; the second objective is desirable
because it may reduce the number of sniffers needed (it may need less sniffers
than the first objective, see Section 4). We develop a novel LP-relaxation based
algorithm, and two simple greedy heuristic algorithms for the above two opti-
mization problems. Through simulation, we demonstrate that all the algorithms
are effective in achieving their optimization goals, and the LP-based algorithm
outperforms the greedy heuristics.

The rest of the paper is organized as follows. Section 2 describes the problem
setting. Sections 3 and 4 describe our sniffer channel selection algorithms and
their evaluation, respectively. Finally, Section 5 concludes the paper.

2 Problem setting

Consider a WLAN with a set of APs, V . Each AP uses a single radio, and
hence a single channel, at any point of time (if an AP uses multiple channels
simultaneously, we can regard it as multiple APs, each with a single channel).
Let C denote the set of channels that the APs operate on. In particular, suppose
AP v operates on channel cv, cv ∈ C. A set of sniffers, M , is spread out in the
3 One motivation of scanning all the channels in [3, 4] is that it can capture rogue APs

that operate on unused channels. Rogue APs, however, can be effectively detected
using other approaches such as [9, 10].

4 In practice, a network administrator may choose one of these two objectives based
on the goals of the WLAN monitoring.
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Fig. 1. Problem setting: a central controller controls the channels of the APs and
determines the channel assignment for the sniffers.

WLAN to monitor the APs. Let Rv denote the set of sniffers that are within
the transmission range of v (i.e., Rv is the set of sniffers that can overhear
the transmission of v when listening to channel cv), Rv ⊆ M . We assume that
|Rv| ≥ 1, i.e., at least one sniffer can monitor v, ∀v ∈ V . Each sniffer has a single
radio, and switches among multiple channels to monitor its nearby APs when
these APs operate on different channels.

We assume that the WLAN uses a centralized management architecture (as
commonly used in commercial products), where a central controller manages the
operation of the APs. We assume that the central controller knows the location
of the APs, and determines the channel for each AP. Furthermore, it knows the
location of the sniffers, and determines the set of channels that each sniffer scans
based on the locations of the APs, sniffers, and the channels of the APs. Fig. 1
illustrates the centralized management architecture. In this example, four APs,
v1, v2, v3, v4, and three sniffers, m1, m2, m3, are controlled by the centralized
controller. APs v1 and v3 operate on channel 1; APs v2 and v4 operate on
channel 2. Sniffer m1 is in the transmission ranges of v1 and v2; sniffer m2 is in
the transmission ranges of all four APs; sniffer m3 is in the transmission ranges
of v3 and v4.

Let ϕ(v) denote the set of sniffers that monitor AP v, referred to as assign-
ment to v. Correspondingly, let Cϕ(m) denote the set of channels that sniffer
m monitors. Then Cϕ(m) = {cv | m ∈ ϕ(v)}. We look at two variants of snif-
fer channel selection. Both variants require that each AP be monitored by at
least one sniffer, i.e., ϕ(v) �= ∅, ∀v ∈ V . In addition, the first variant requires
minimizing the maximum number of channels that a sniffer listens to, i.e., mini-
mizing maxm∈M |Cϕ(m)|. The second variant requires minimizing the sum of the
channels that the sniffers listen to, i.e., minimizing

∑
m∈M |Cϕ(m)|. We refer to
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these two variants as min-max and min-sum sniffer channel selection problems,
respectively.

3 Algorithms for sniffer channel selection

In this section, we develop three algorithms for sniffer channel selection. The
first algorithm is based on LP relaxation. The second and third algorithms both
use a greedy heuristic, targeting at the min-max and min-sum problem, respec-
tively. We refer to the two greedy heuristics as Greedy-max and Greedy-sum,
respectively.
3.1 LP-relaxation based algorithm

The main idea of this algorithm is as follows. We first formulate the sniffer
channel selection problem (the min-max or min-sum problem) as an integer
programming (IP) problem, and then solve its corresponding linear programming
(LP) problem (by relaxing the integer constraints). After obtaining the optimal
solution to the LP problem, we convert it to the integer solution to the original IP
problem. More specifically, let xm,c be a 0-1 random variable, xm,c = 1 denotes
that sniffer m monitors channel c; and xm,c = 0 denotes otherwise. Then the
min-max sniffer channel selection problem can be formulated as:

minimize : max
m∈M

∑

c∈C

xm,c (1)

subject to:
∑

m∈Rv

xm,cv ≥ 1, ∀v ∈ V (2)

xm,c ∈ {0, 1} (3)

Similarly, the min-sum problem can be formulated as an IP problem by simply
replacing the objective function (1) with

minimize :
∑

m∈M

∑

c∈C

xm,c (4)

We relax the integer constraint on xm,c, and let ym,c ∈ [0, 1] be the relaxed
value of xm,c. The original IP problems then become LP problems, which can be
solved easily. After solving for ym,c ∈ [0, 1], consider an AP v ∈ V and the values
of ym,cv for m ∈ Rv (i.e., the sniffers in the transmission range of v). We round
ym,c to obtain xm,cv as follows. Since an AP only needs to be monitored by one
sniffer, we choose one monitor, m′, that is closest to 1 among ym,cv , ∀m ∈ Rv

(i.e., it satisfies ym′,cv = maxm∈Rv ym,cv), and set xm′,cv to 1.
Algorithm 1 summarizes this LP-relaxation based algorithm. Line 1 solves the

LP problem (for the min-max or min-sum objective function) to obtain ym,c ∈
[0, 1], ∀m ∈ M, ∀c ∈ C. Line 2 initializes xm,c to zero, ∀m ∈ M, ∀c ∈ C. The
algorithm then considers all the APs. For an AP v ∈ V , if one monitor, m ∈ Rv,
is already assigned to monitor v’s channel, cv, we simply assign m to monitor
v; otherwise, we set xm′,cv to 1 where m′ satisfies that ym′,cv = maxm∈Rv ym,cv .
In the rest of the paper, when this LP-relaxation based algorithm solves the
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Algorithm 1 LP-relaxation based sniffer channel assignment
1: Solve the LP program (objective function (1) for min-max problem; objective func-

tion (4) for min-sum problem) to obtain ym,c,∀m ∈ M,∀c ∈ C
2: xm,c = 0,∀m ∈ M,∀c ∈ C.
3: Cϕ(m) = ∅
4: for all v ∈ V do
5: if ∃m ∈ Rv s.t. xm,cv = 1 then
6: ϕ(v) = {m}
7: else
8: m′ = arg max

m∈Rv

ym,cv

9: xm′,cv = 1
10: Cm′ = Cm′ ∪ {cv}
11: ϕ(v) = {m′}
12: end if
13: end for
14: Return(ϕ,Cϕ)

min-max LP problem, we refer to it as LP-max ; otherwise (i.e., it solves the
min-sum LP problem), we refer to it as LP-sum.

We now illustrate this LP-relaxation based algorithm using the example in
Fig. 1. Solving the min-max LP problem, we have ym1,1 = 0, ym1,2 = 1, ym2,1 =
1, ym2,2 = 0, ym3,1 = 0, and ym3,2 = 2. After the LP rounding, we have Cϕ(m1) =
{2}, Cϕ(m2) = {1}, and Cϕ(m3) = {2}, leading to a solution of 1 for the
min-max problem. Solving the min-sum LP problem, we have ym1,1 = ym1,2 =
0, ym2,1 = ym2,2 = 1, and ym3,1 = ym3,2 = 0. After the LP rounding, we have
Cϕ(m1) = ∅, Cϕ(m2) = {1, 2}, and Cϕ(m3) = ∅, leading to a solution of 2 for
the min-sum problem.

We now present an approximation-ratio result for the LP-relaxation based
algorithm.
Theorem 1 LP-max is an O(r)-approximation algorithm for the min-max snif-
fer channel selection problem, and LP-sum is an O(r)-approximation algorithm
for the min-sum problem, where r = maxv∈V |Rv|, i.e., r is the maximum number
of sniffers that are in the transmission range of an AP.
Proof. Consider an arbitrary AP, v, and a sniffer m ∈ Rv. Our LP rounding
guarantees that xm,cv ≤ rym,cv . This can be shown by considering the following
two cases. When ym,cv = maxm∈Rv ym,cv , by our LP rounding, xm,cv = 1, and we
have xm,cv ≤ rym,cv (since ym,cv ≥ 1/r). When ym,cv �= maxm∈Rv ym,cv , by our
LP rounding, xm,cv = 0 ≤ rym,cv . Since the above AP, v, is chosen arbitrarily,
we have ∑

c∈C

xm,c ≤ r
∑

c∈C

ym,c, ∀m ∈ M.

Let n∗
m represent the optimal solution to the min-max sniffer channel selection

problem. We have

max
m∈M

∑

c∈C

xm,c ≤ r(max
m∈M

∑

c∈C

ym,c) ≤ rn∗
m. (5)
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The second inequality above is because the LP provides a lower bound to the
original problem. From (5), LP-max is an O(r)-approximation algorithm for the
min-max sniffer channel selection problem. Similarly, let n∗

s represent the optimal
solution to the min-sum problem. We have

∑

m∈M

∑

c∈C

xm,c ≤ r(
∑

m∈M

∑

c∈C

ym,c) ≤ rn∗
s. (6)

Hence LP-sum is an O(r)-approximation algorithm for the min-sum problem.

3.2 Greedy-max algorithm

Algorithm 2 Greedy-max
1: ϕ(v) = {m | m ∈ Rv},∀v ∈ V
2: Cϕ(m) = ∅, Vm,c = ∅, ∀m ∈ M, c ∈ C
3: for all v ∈ V do
4: for all m ∈ M do
5: if m ∈ Rv then
6: Cϕ(m) = Cϕ(m) ∪ {cv}, Vm,cv = Vm,cv ∪ {v}
7: end if
8: end for
9: end for

10: repeat
11: M ′ = ∅
12: for all m ∈ M do
13: if ∃c ∈ Cϕ(m) s.t. ∀v ∈ Vm,c, |ϕ(v)| ≥ 2 then
14: M ′ = M ′ ∪ m
15: end if
16: end for
17: if M ′ �= ∅ then
18: Let m be a monitor in M ′ that monitors the largest number of channels
19: Cϕ(m)′ = {c | c ∈ Cϕ(m), |ϕ(v)| ≥ 2,∀v ∈ Vm,c}
20: Pick c ∈ Cϕ(m)′ that has the smallest |Vm,c|
21: Cϕ(m) = Cϕ(m) \ {c}
22: ϕ(v) = ϕ(v) \ {m}, ∀v ∈ Vm,c

23: Vm,c = ∅
24: end if
25: until M ′ is empty
26: Return(ϕ,Cϕ)

Greedy-max heuristic is designed for the min-max objective. Its main idea
is as follows. Initially, a sniffer, m, is assigned to monitor an AP, v, as long as
m is in the transmission range of v. The algorithm then runs in iterations. In
each iteration, it finds the sniffer with the maximum number of channels and
removes one channel from this sniffer when feasible (i.e., while still satisfying
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the monitoring constraints). The iteration stops when none of the sniffers can
remove any channel.

Algorithm 2 summarizes this algorithm. Line 1 initializes ϕ(v) to be the set
of sniffers that are in the transmission range of v, ∀v ∈ V . Let Vm,c denote
the set of APs that sniffer m monitors on channel c. Lines 2-9 initialize Cϕ(m)
and Vm,c, ∀m ∈ M, c ∈ C. In each iteration (lines 11-23), let M ′ record the
set of sniffers that can remove at least one channel. It then picks a sniffer, m,
that monitors the maximum number of channels from M ′. Afterwards, it finds
a channel, c, that can be removed and removes it from Cϕ(m) (if multiple such
channels exist, it chooses to remove the channel with the smallest number of
APs, see line 20). Last, line 22 removes m from the assignment of all the APs in
Vm,c (since m does not monitor channel c any more).

When using this algorithm to solve the example in Fig. 1, we have Cϕ(m1) =
{2}, Cϕ(m2) = {1}, Cϕ(m3) = {2}, leading to a solution of 1 for the min-max
problem, and a solution of 3 for the min-sum problem.

3.3 Greedy-sum algorithm

Algorithm 3 Greedy-sum
1: Cϕ(m) = ∅, Vm,c = ∅, ∀m ∈ M, c ∈ C
2: for all v ∈ V do
3: for all m ∈ M do
4: if m ∈ Rv then
5: Vm,cv = Vm,cv ∪ {v}
6: end if
7: end for
8: end for
9: V ′ = V

10: repeat
11: pick m, c such that |Vm,c| = maxm′∈M,c′∈C |Vm′,c′ |
12: ϕ(v) = {m},∀v ∈ Vm,c

13: Cϕ(m) = Cϕ(m) ∪ {c}
14: Vm′,c = Vm′,c \ Vm,c,∀m′ ∈ M
15: V ′ = V ′ \ Vm,c

16: until V ′ is empty
17: Return(ϕ,Cϕ)

Greedy-sum heuristic is designed for the min-sum objective. It models the
sniffer channel selection problem as a minimum set covering problem: we map
each sniffer to |C| virtual sniffers, each monitoring one channel in C, then the
min-sum problem is equivalent to finding the minimum number of virtual sniffers
so that all APs are monitored and the number of virtual sniffers (and hence the
sum of the channels used by all the sniffers) is minimized. Many algorithms
have been proposed for the minimum set covering problem. Greedy-sum follows
a greedy algorithm for minimum set covering problem [5]. It runs in iterations.
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In each iteration, it picks a sniffer and channel pair that monitors the maximum
number of APs. The iteration stops when all the APs are monitored.

Algorithm 3 summarizes this algorithm (we used a similar algorithm for
scheduling sniffers to detect rogue APs in [10]). Let Vm,c denote the set of APs
that sniffer m monitors on channel c. Line 1 initializes Cϕ(m) to be an empty
set, and lines 1-8 initialize Vm,c, ∀m ∈ M, c ∈ C. Line 9 initializes, V ′, the
set of APs that are not monitored by a sniffer, to V . The algorithm then run in
iterations until V ′ is empty. Using a greedy strategy, line 11 chooses the monitor,
m, and the channel, c, such that |Vm,c| = maxm′∈M,c′∈C |Vm′,c′ | (if multiple such
sniffers exist, we choose the one with the minimum |Cϕ(m)|). Line 12 assigns
m to all the APs in Vm,c; and line 13 adds channel, c, into Cϕ(m). Afterwards,
since the APs in Vm,c have already been monitored, line 14 removes Vm,c from
Vm′,c, ∀m′ ∈ M , and line 15 removes Vm,c from V ′.

Following the results in [5], the approximation ratio of Greedy-sum is Hd for
the min-sum problem, where Hd =

∑d
i=1 1/i is the d-th harmonic number, and

d is the maximum number of APs that a sniffer can monitor in its neighborhood.
When using this algorithm to solve the example in Fig. 1, we have Cϕ(m1) =

∅, Cϕ(m2) = {1, 2}, Cϕ(m3) = ∅, leading to a solution of 2 for the min-sum
problem, and a solution of 2 for the min-max problem.

4 Performance evaluation

Our performance evaluation uses an empirical dataset that contains both the
coordinates and channels for the APs deployed at Dartmouth campus. We con-
sider two 500 m × 500 m areas in this data set: one has approximately 400 APs,
and the other has approximately 200 APs. These APs use both 802.11b/g and
802.11a, and operate on 12 orthogonal 2.4GHz/5GHz channels. The transmission
range of each AP is set to 100 m.

To systematically evaluate the performance of our algorithms, for each area
we consider, we generate 10, 000 topologies by virtually placing sniffers uniformly
randomly into the area. The number of sniffers is randomly chosen from 1 to
the number of APs. For each topology, we obtain a pair (na, ns), where na is
the number of APs that can be monitored by at least one sniffer, and ns is the
number of sniffers that can monitor at least one AP (i.e., sniffers that within
the transmission range of at least one AP). Therefore na and ns can be smaller
than the number of APs and sniffers in the area, respectively). We refer to the
ratio, ns/na, as sniffer density.

Fig. 2 shows the results for the area with 400 APs (the results for the area
with 200 APs are similar). Fig. 2(a) plots the maximum number of channels
that a sniffer monitors. The results of the two algorithms that target at this
optimization goal (i.e., LP-max and Greedy-max) are plotted in the figure. For
comparison, we also plot the results under Greedy-sum. The x-axis of the fig-
ure represents sniffer density, i.e., ns/na. The results are aggregated over a bin
size of 0.1, i.e., the result under ns/na = x is the average of all the topologies
with ns/na ∈ (x− 0.1, x]. We observe that for all three algorithms, as expected,
the maximum number of channels used by the sniffers reduces as the sniffer
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Fig. 2. Results for 400 APs: (a) maximum number of channels that a sniffer monitors,
(b) average number of channels that a sniffer monitors, and (c) fraction of sniffers that
are used for monitoring.

density increases. Furthermore, Greedy-max slightly outperforms LP-max, and
both Greedy-max and LP-max outperform Greedy-sum. We also observe a di-
minishing gain from increasing the density of sniffers: the maximum number
of channels decreases dramatically first and then less dramatically afterwards.
Fig. 2(b) plots the average number of channels that a sniffer monitors. The re-
sults of the two algorithms that target at this optimization goal (i.e., LP-sum
and Greedy-sum) are plotted in the figure. For comparison, we also plot the
results under Greedy-max. We observe that all three algorithms lead to similar
performance, and LP-sum slightly outperforms the other two. Again, we observe
a diminishing gain from increasing the density of sniffers.

For all the algorithms, the channel assignment solution may not assign a
sniffer to monitor any AP (even though the sniffer is in the transmission range
of some APs and can be used to monitor these APs). Fig. 2(c) plots the fraction of
sniffers that are used (i.e., monitor at least one AP) for various sniffer densities
under all the four algorithms. We observe that, for the same sniffer density,
the LP-based algorithms require less sniffers than the greedy heuristics: LP-
sum requires significantly less sniffers than Greedy-sum, and LP-max requires
significantly less sniffers than Greedy-max (particularly for low sniffer densities).
We also observe that the min-sum problem tends to require less sniffers than the
min-max problem (e.g., the fraction of used sniffers is the lowest under LP-
sum, much lower than that under LP-max). This is not very surprising since
the channel assignment in the min-max problem needs to be balanced (for the
min-max goal), while the min-sum problem does not have this requirement.

Last, combining the results in Figures 2(a),(b), and (c), we conclude that
the LP-based algorithms outperform the two greedy heuristics since for both the
min-max and min-sum problems, LP-max and LP-sum achieve similar objec-
tive values as their greedy counterparts, while using much less sniffers. We also
observe that, when deploying sniffers at appropriate positions, the LP-based al-
gorithms only require a small number of sniffers to achieve most of the gains. For
instance, for the min-max problem, LP-max leads to a maximum of 3 channels
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over all sniffers when the number of sniffers is only 12% of the number of APs
(this can be seen from Figures 2(a) and (c), which show that when the sniffer
density is 0.3, the maximum number of channels is 3, and only 40% of the snif-
fers are used). For the min-sum problem, LP-sum only requires the number of
sniffers to be as low as 6% of the number of APs (this can be seen from Fig. 2(c):
for a sniffer density of 0.1, 0.2, and 0.3, the fraction of used sniffers is around
0.6, 0.3 and 0.2, respectively).
5 Conclusions

In this paper, we studied sniffer channel selection for monitoring WLANs. In par-
ticular, we formulated min-max and min-sum sniffer channel selection problems,
and proposed a novel LP-relaxation based algorithm, and two simple greedy
heuristic algorithms to solve them. Through simulation, we demonstrated that
all the algorithms are effective in achieving their optimization goals, and the
LP-based algorithm outperforms the greedy heuristics.
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