
Saluki: a High-Performance Wi-Fi Sniffing Program
Keren Tan and David Kotz
Department of Computer Science

Institute for Security, Technology, and Society
Department of Computer Science, Dartmouth College

Hanover, NH, USA

Abstract—Building a campus-wide wireless LAN measurement
system faces many efficiency, scalability and security chal-
lenges. To address these challenges, we developed a distributed
Wi-Fi sniffing program called Saluki. Compared to our previous
implementation and to other available sniffing programs, Saluki
has the following advantages: (1) its small footprint makes it
suitable for a resource-constrained Linux platform, such as those
in commercial Wi-Fi access points; (2) the frame-capture rate
increased more than three-fold over tcpdump with minimal frame
loss; (3) all traffic between this sniffer and the back-end server
was secured using 128-bit encryption; and (4) the traffic load on
the backbone network was reduced to only 30% of that in our
previous implementation. In this paper, we introduce the design
and the implementation details of this high-performance sniffing
program, along with preliminary evaluation results.

I. INTRODUCTION

As enterprises increasingly depend on wireless local-area
networks (WLANs) for mission-critical applications, it is im-
portant to monitor such networks to recognize usage patterns,
diagnose malfunctions, and detect any abnormal behaviors that
would disrupt or degrade the network operation. To support
these activities, we have built a campus-wide, distributed
WLAN monitoring system, the Dartmouth Internet Security
Testbed (DIST) [1], at Dartmouth College. In this paper, we
introduce the design and implementation of a distributed,
high-performance, and secure Wi-Fi sniffing program, Saluki,1

which is a core component of the DIST system. This sniffing
program is now running on over 210 Air Monitors (AMs)
across the Dartmouth College campus to monitor WLAN
network activities.

While Saluki shares many of the same features as other pas-
sive network sniffing software tools, its design was driven by
our past experience and the special needs of the DIST project.
In the MAP project [3], the predecessor of the DIST project,
we implemented a building-wide WLAN monitoring system.
However, when we scaled the deployment from a building to
a campus, and when we needed a higher level of security, our
previously developed sniffing program no longer fit the needs.
Our new sniffing program, Saluki, was designed to address
these efficiency, scalability, and security challenges. Compared
to our previous implementation and to other available sniffing
programs, Saluki has the following advantages: (1) its small
footprint makes it suitable for a resource-constrained Linux
platform, such as those in commercial Wi-Fi access points;
(2) the frame-capture rate increased more than three-fold with

1Saluki is the name of a speedy hunting dog. As one of the earliest breeds
to diverge from wolves, it is known for its beauty, speed and endurance [2].

minimal frame loss; (3) all traffic between the sniffer and the
back-end server was secured using 128-bit encryption; and
(4) under the same frame-capture rate, the traffic load on the
backbone network was reduced to only 30% of that in our
previous implementation.

A. Passive network sniffing programs

Many passive network sniffing programs have been devel-
oped for either wired or wireless network measurement; the
best-known are tcpdump [4], Wireshark [5] and Kismet [6].
tcpdump is a command-line network sniffing and parsing
tool ported to several platforms. Wireshark is similar to tcp-
dump, but with a graphical user interface and many advanced
sorting and filtering options. tcpdump and Wireshark can
work on both wired and wireless networks. Kismet is a
sniffing program (and an intrusion-detection system) dedicated
to wireless LANs. Unlike tcpdump and Wireshark, Kismet
supports a “server/drone” configuration in which the drone
captures the wireless data and forwards it to a Kismet server
via a secondary connection, such as Ethernet. We developed a
sniffing program called dingo [7], [8] in our previous MAP
project [3]; it supports several advanced features, such as
channel sampling, data aggregation, dynamic filtering, and
refocusing. However, dingo’s performance deteriorates quickly
when dealing with high-volume traffic. Jigsaw [9] is a sniffing
program developed specifically for some Atheros chipsets that
use an old version of the madwifi driver [10]. Jigsaw patches
this specific madwifi driver to grab some statistics about
physical layer events, at the expense of loss of portability. As
with Kismet, both dingo and Jigsaw can work in a distributed
client/server mode, that is, they run on an array of remotely
deployed AMs and forward the captured traffic to central
servers.

B. DIST

Table I compares our new sniffing program with the above-
mentioned programs. In this table, Saluki provides the most
complete feature set; these features were chosen to address the
efficiency, scalability and security challenges we encountered
in building the DIST system. Although designed for wireless
sniffing, Saluki can also support wired network measurement.

DIST is one of the largest wireless network measurement
systems installed for research: 210 AMs deployed, 10 build-
ings covered and more than 5,000 wireless network users
monitored. Based on our preliminary measurements, more than
3.5 terabytes of frame headers will be captured by 210 AMs

WiNMee 2010

591



TABLE I
COMPARISON OF PASSIVE NETWORK SNIFFING PROGRAM

tcpdump Wireshark Kismet dingo Jigsaw Saluki

Features

wired/wireless network Both Both Wireless Wireless Wireless Both
client/server mode No No Yes Yes Yes Yes
data aggregation No No No Yes Yes Yes
data encryption No No No Yes No Yes
data compression No No No No Yes Yes
Wi-Fi channel sampling No No Yes Yes No Yes

Supported platform Unix,
Linux,
Windows

Unix,
Linux,
Windows

Linux Linux Linux
(some
Atheros
chipsets)

Linux

each day. We use the Aruba AP70 [11] (flashed with OpenWrt
Linux [12])2 as our AM’s hardware platform. The advantage
of the Aruba AP70 is that it fully complies with IEEE 802.3af
standard for Power over Ethernet (simplifying installation),
provides diverse interfaces (USB, serial, and Ethernet), and has
a compatible appearance to other devices in our deployment
environment. Because the Aruba AP70 was originally designed
to be a commercial AP (Access Point) instead of a wireless
AM, its processing capability is limited; indeed, just to put it
in context, even smart phones have more memory and CPU
power, as shown in Table II.

Because DIST is distributed across campus, Saluki works
in a client/server mode: a front end runs on the remote AM,
capturing and forwarding traffic to our servers via the campus
backbone network. Two concerns drove many design deci-
sions. First, since DIST is monitoring Dartmouth’s production
wireless network, the collected traces may contain sensitive
information related to human privacy, such as MAC/IP address
and TCP/UDP payloads. There is a risk that an adversary could
intercept the traffic between the AM and server and jeopardize
user privacy. To protect privacy, we limit what we capture and
we encrypt all the traffic between the AMs and the server.
Second, the DIST servers are located in the computer science
department. Since these servers share a 1Gbps link with more
than 200 other machines in the department, 3.5 terabytes per
day through this link will negatively affect other machines’
network performance. To efficiently use the bandwidth, we
must use data compression to alleviate the pressure on the
shared link.

Given that the Aruba AP70 is a resource-constrained hard-
ware platform (Table II), our sniffing program faces great
challenges in supporting encryption, compression, and traffic
forwarding functions while maintaining high sniffing perfor-
mance.

II. APPROACH

We took a divide-and-conquer approach in designing and
implementing Saluki. In this section, we present it in the same
manner.

2Saluki does not depend on a particular Linux kernel or OpenWrt distribu-
tion.

TABLE II
COMPARISON OF ARUBA AP70 TO OTHER PLATFORMS

Aruba
AP70

Linksys
WRT54GL [13]

iPhone
3Gs [14]

CPU 266MHz
MIPS 4Kc

200MHz
MIPS

600MHz
ARM

Memory (RAM) 28MB 16MB 256MB
Storage 8MB 4MB 16/32GB

A. Capture interface

We use a raw socket with PACKET MMAP enabled as
the capture interface. The raw socket lets us bypass the
protocol stacks (the link layer and above) inside the Linux
kernel, and the PACKET MMAP provides an efficient way for
communication between the kernel space and the user space.
We adopted this interface instead of using the popular libpcap
library [4] for efficiency reasons. The advantage of libpcap
is that it provides a portable and architecture-independent
interface for packet capture on several operating systems.
Since we plan only to support the Linux operating system,
this extra level of abstraction was unnecessary and indeed cost
precious memory space and CPU time on the Aruba AP70.

In the Linux kernel, PACKET MMAP is specifically de-
signed to facilitate the network traffic capturing task. Without
this socket interface, capturing each network packet requires
a system call. PACKET MMAP minimizes the number of
system calls by implementing a configurable circular buffer
between the user and the kernel space, and thus capturing a
packet in the user space becomes a simple read operation on
the shared circular buffer.

The raw PACKET socket (with PACKET MMAP) turned
out to be a highly efficient capture interface on the AP70’s
wireless NIC. In one test run (simply capturing frames and
counting, nothing else), this interface was able to capture 7,063
frames per second with 25%-35% CPU usage and 3.3% frame
loss. As a comparison, when we ran tcpdump with libpcap
0.9.8 under the same traffic load, it made the system freeze.

It is worth noting that since version 1.0.0 (released in
2008) libpcap has added partial support for PACKET MMAP,
although useful parameters to configure the circular buffer are
not exposed to library users, and (as of this writing) it has not
been ported to the Aruba AP70.

592



TABLE III
UDP THROUGHPUT FOR DIFFERENT DATAGRAM SIZE

Datagram size (bytes) Throughput (KBps)
10 44.8
50 222.9
100 443.9
200 879.8

1000 4155.6
1500 5326.7
2500 7443.3
3000 7875.5

TABLE IV
DIST COMBO FRAME HEADER DEFINITION

Size Meaning
ver 16 bits combo frame format version number
amid 16 bits which AM sent out this combo frame
seqn 16 bits combo frame sequence number
frn 16 bits number of frames inside this combo frame
dsz 32 bits size of uncompressed data in bytes
mgc 32 bits magic number to check frame corruption

B. Data aggregation

Saluki uses UDP packets to forward the captured traffic back
to our central servers. We observed that if we pack only one
frame in each UDP packet, the 100Mbps Ethernet connection
on the Aruba AP70 could not keep up when there was a
high volume of wireless traffic. We measured the maximum
throughput under different UDP datagram sizes as shown in
Table III. We can see that small UDP packets degrade the
Ethernet throughput greatly. Given that small frames, like a
14-byte ACK frame, are widely used in the IEEE 802.11
MAC layer, it is much more efficient to aggregate multiple
frames and then send them as a “combo” frame. A DIST
combo frame has two sections: the header section and the
data section. The header section contains meta information
about this combo frame as listed in Table IV, and the data
section holds multiple captured frames. When a new frame is
captured, Saluki appends the frame size and the frame content
to the DIST combo frame’s data section.

It is worth noting that there is a trade-off between the
size of the combo frame and the frame-receipt delay at
the server side. While a bigger combo frame will use the
Ethernet connection more efficiently, bigger is not always
better, especially for time-critical applications, like wireless-
network intrusion detection. For this reason, we defined two
adjustable criteria to decide when a combo frame should be
sent: when the payload size of a combo frame exceeds a
size threshold, or when the time difference between the first
enclosed IEEE 802.11 frames and the current system clock
exceeds a time threshold. In our current implementation we
set these two parameters to 14KB and 1 second, respectively.3

3In this paper, 1KB = 1024 bytes, 1Kb = 1024 bits, 1B = 1 byte = 8 bits,
and 1b = 1 bit. 1KBps = 1024 bytes per second, and 1Mbps = 1024× 1024
bits per second.

C. Data compression

The DIST combo frame increases Saluki’s network effi-
ciency, but we need to do better. To more efficiently use
the bandwidth on the backbone network, we compress a
combo frame before sending it. Given the Aruba AP70’s
limited processing power, instead of pursuing the maximum
compression ratio, we aimed to find a lossless compressor that
has a good balance between processing speed and compression
ratio.

After some background study, we focused on two variants of
the Lempel-Ziv (LZ) compression method [15]: QuickLZ [16]
and FastLZ [17]. Compared to the standard LZ compressor,
these two variants trade compression ratio in favor of speed.
It is important to note that a compressor’s performance (com-
pression ratio and speed) may vary when dealing with different
data. We chose QuickLZ because it had a more consistent
performance on our captured network data. In our experiments,
a 14KB combo frame was compressed to 2.8-3.6KB by
QuickLZ. The use of compressed combo frames saved more
than 70% of the load on the backbone network, compared with
sending individual uncompressed frame headers in each UDP
packet.

D. Data encryption

As a basic security measure to protect the privacy of the
network users whose traffic we capture, we encrypted all traffic
between each AM and the central servers.

Encryption ciphers can be classified into two categories
based on their operation mode: block ciphers and stream
ciphers. A block cipher operates on data blocks, usually of
fixed size, and a stream cipher operates on a continuous stream
of data. We chose a stream cipher over a block cipher for two
reasons: speed and security. First, a stream cipher generally
will be much faster than a block cipher. Second, when using
the same encryption key, there is a strict one-to-one mapping
between the plaintext and the ciphertext for a block cipher,
whereas there is no such one-to-one mapping for a stream
cipher [18]. For DIST, this property of block ciphers could
be a potential security flaw, because all possible values in
many fields of Radiotap header and IEEE 802.11 header can
be easily enumerated, and thus a block cipher may facilitate
attacks by providing a much smaller search space than a stream
cipher.

We evaluated all stream ciphers from the eSTREAM
project [19] and the SNOW 2.0 cipher [20]. The best two
ciphers were Rabbit and SNOW 2.0. Both support 128-bit
encryption.

We evaluated an assembly-language implementation of the
Rabbit cipher optimized for the MIPS 4Kc processor, whereas
SNOW 2.0 is implemented in the C language and was not
specifically optimized for this processor. Since our goal was
to transmit the protected data most efficiently, we tried the
ciphers both without compression and in combination with
compression. We observed the following.

1. For stream ciphers, Rabbit emerged as a winner on the
Aruba AP70, surpassing SNOW 2.0. When executing 5000

593



Linux Kernel

Capture Frames Append to DIST 
combo frame

Seal, compress 
and encrypt 
DIST combo 

frame

Send DIST 
combo frame to 

server

Schedule 
sniffing activity

A

Remote Server

Remote Server

Ring Buffer

Ring Buffer

A

Thread 1

Thread 3

Thread 2

Fig. 1. The Saluki architecture.

loops on 14KB data, Rabbit took 5.33–5.55 seconds, whereas
SNOW 2.0 took 7.42–7.73 seconds.

2. Adding compression decreases the total processing time,
because there were fewer bytes to encrypt. In effect, compres-
sion was computationally “free”.

Securely transmitting 5000 14KB combo frames (each
combo frame may contain tens to hundreds of captured Radio-
tap and IEEE 802.11 frames) to a DIST server took 6.2–6.4
seconds, which encompassed two operations: encryption and
UDP forwarding. The load on the network averaged 14KB
per combo frame. If we compressed these combo frames
first, however, handling them took less time, namely 5.3–5.4
seconds for three operations: compression + encryption +
UDP forwarding. The required network bandwidth was also
reduced by more than 70% (from 14KB per combo frame
to 2.8-3.4KB per combo frame). This result illustrates that
an efficient compression not only saves network bandwidth,
but also reduces CPU time needed for encryption and UDP
forwarding. If needed, we could set the size of the uncom-
pressed DIST combo frame to be larger than 14KB. Although
this change may improve the network throughput (Table III),
it comes at the expense of increased delay at the server side
(Section II-B).

E. Multithreading

So far we have introduced four core components of the
Saluki sniffing program: capture interface, data aggregation,
compression, and encryption. The final important task is to as-
semble them efficiently. Each of these components is relatively
self-contained and can work independently from other compo-
nents. For example, capturing frames from the Wi-Fi interface
and forwarding DIST combo frames via Ethernet are I/O-
intensive operations, while data compression and encryption
are CPU-intensive operations. This observation inspired us
to fit these components into a multithreading pipeline. We
experimented with several schemes about which component
should go to which thread, and Figure 1 shows the final and
optimal configuration.

From Figure 1, we can see that Saluki has three threads.
Thread 1 and Thread 2 are in charge of data capturing,
processing, and forwarding. Thread 3 is the control thread
that deals with scheduling and channel-hopping tasks (as in
dingo [7], [8]). Two ring buffers are used in this program.
The top ring buffer is responsible for mapping the captured
frames from kernel space to user space and is emptied by
Thread 1. The second ring buffer connects Thread 1 with
Thread 2. From the perspective of multithreaded programming,
the communication through these two ring buffers follows the
classic writer/reader programming model.

Instead of putting compression, encryption and UDP for-
warding all in Thread 2, we had planned to divide them
between two threads: compression and encryption in one
thread, and UDP forwarding in another. In the test run, we
observed that Thread 1 and Thread 2 had similar CPU usage.
Due to this observation, we did not split Thread 2 further.

III. EVALUATION

In this section, we evaluate Saluki in terms of memory
usage, CPU usage, frame-capture rate, and frame-loss ratio.
Because tcpdump, Kismet and dingo are all built on libpcap,
and tcpdump is the simplest (and should also be the fastest)
among them, we used tcpdump as the baseline for comparison.
To release tcpdump’s maximum potential [21], we let it output
to /dev/null instead of the screen or a file4. We set the capture
size for tcpdump and Saluki to 192 bytes.

We set up two laptops (each a Thinkpad T42 with 1.6GHz
Pentium M CPU and 1.5GB RAM) to act as the IEEE 802.11g
Access Point and the client respectively. These two laptops
were placed about 2 meters (6 feet) from each other, and one
Aruba AP70 sniffer was placed halfway between them. We
used Iperf [22] as the traffic generator running on two laptops.

A. Memory usage

We used the Linux command “top” to query memory usage.
During execution, Saluki occupied 660KB RAM, and tcpdump
used 740KB RAM. Note that, since tcpdump is dynamically
linked with libpcap, its actual memory usage was larger than
740KB if the memory used by libpcap were counted. Of the
660KB RAM consumed by Saluki, much of it was allocated to
various buffers for better performance. For example, the size of
the second ring buffer (connecting Thread 1 and Thread 2) was
about 90KB, and the size of the compression and encryption
buffers were about 30KB each. If needed, one can reduce
Saluki’s memory usage by shrinking these buffers.

B. Capture performance

Figures 2, 3 and 4 show the performance in terms of frame-
capture rate, frame-loss ratio and CPU usage. The frame-
capture rate measures the speed that a sniffing program cap-
tures frames in the unit of frames per second (fps). The frame-
loss ratio is the ratio of the number of lost frames reported by
the OS kernel to the sum of the number of captured frames

4That is, tcpdump -i ath0 -n -s 192 -w /dev/null

594



10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Iperf UDP bandwidth setting (Mbps)

F
ra

m
e

−
c
a

p
tu

re
 r

a
te

 (
fp

s
)

 

 

Saluki, 500B datagram

tcpdump, 500B datagram

Saluki, 1000B datagram

tcpdump, 1000B datagram

Fig. 2. Comparison of frame-capture rate.

10 15 20 25 30

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Iperf UDP bandwidth setting (Mbps)

F
ra

m
e

−
lo

s
s
 r

a
ti
o

 

 

Saluki, 500B datagram

tcpdump, 500B datagram

Saluki, 1000B datagram

tcpdump, 1000B datagram

Fig. 3. Comparison of frame-loss ratio.

and lost frames. Since Saluki is a multithreaded program, its
CPU usage in Figure 4 is the sum of all its threads’ usage.

We used Iperf to generate UDP traffic with 500B and 1000B
datagrams under four UDP bandwidth settings: 10Mbps,
15Mbps, 20Mbps, 25Mbps and 30Mbps. Each experiment
setting ran for 200 seconds. Two things are worth noting.
First, these five bandwidth settings are the parameters we gave
to Iperf; however, in reality, the actual bandwidth could be
a bit lower than the setting. Second, for a given bandwidth
setting, Iperf must generate many more small-size packets than
large ones to achieve that bandwidth. Due to the limited CPU
power on the laptop, we could not generate enough 500B UDP
packets to reach 30Mbps. Thus we did not provide a result for
this setting.

10 15 20 25 30
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Iperf UDP bandwidth setting (Mbps)

C
P

U
 u

s
a

g
e

 

 

Saluki, 500B datagram

tcpdump, 500B datagram

Saluki, 1000B datagram

tcpdump, 1000B datagram

Fig. 4. Comparison of CPU usage.

Figure 2 shows that Saluki captured frames much faster
than tcpdump under all settings even though Saluki needed to
complete much more work (data compression, data encryp-
tion, and UDP forwarding) than tcpdump. Saluki’s advantage
became more obvious when dealing with high-speed traffic.
When Saluki captured 5,488 frames per second, tcpdump only
captured 1,802 frames per second. In this case, Saluki captured
more than three times as many frames as tcpdump did.

Figure 3 demonstrates that Saluki’s frame-loss ratio was sig-
nificantly lower than tcpdump’s. For UDP traffic with 1000B
datagrams, Saluki’s frame-loss ratio was nearly always zero
(except for 0.028% under 30Mbps), while tcpdump could lose
around 40% of frames. For UDP traffic with 500B datagrams,
the disparity was more obvious (8.6% vs. 67.4% in the worst
case here).

Here is an interesting phenomenon: by comparing “tcp-
dump, 1000B datagram” to “tcpdump, 500B datagram” in
Figure 2, we can see that tcpdump usually captured 500B
frames at a lower rate than it captured 1000B frames, even
though Iperf sent them at a higher rate. In Figure 3 one can see
that tcpdump lost a much higher fraction of 500B frames. Our
hypothesis is that tcpdump dropped many “half-processed”
frames when new frames came in.

Figure 4 summarizes Saluki and tcpdump’s CPU usage.
When there was not too much traffic, their CPU usages
were comparable. When traffic volume was high, Saluki’s
CPU usage was higher than tcpdump’s. Considering Saluki
captured more than three times as many frames and included
other work, this amount of increased CPU usage, however, is
reasonable.

IV. SUMMARY

We introduce Saluki, a high-performance and secure
Wi-Fi sniffing program. Its design was driven by our past
experience and the special needs of a large-scale wireless

595



network measurement system. Compared to our previous im-
plementation and to other available sniffing programs, Saluki
has the following advantages: (1) its small footprint makes
it suitable for a resource-constrained Linux platform, such as
those in commercial Wi-Fi access points; (2) the frame-capture
rate increased more than three-fold with minimal frame loss;
(3) all traffic between the sniffer and the back-end server
was secured using 128-bit encryption; and (4) under the same
frame-capture rate, the traffic load on the backbone network
was reduced to only 30% of that in our previous implementa-
tion. Saluki’s source code will be released at CRAWDAD [23]
in the future.

ACKNOWLEDGMENTS

We thank Bennet Vance and Chris McDonald for their help
and valuable suggestions, and the anonymous reviewers for
their helpful feedback. This paper results from a research
program in the Institute for Security, Technology, and Society
(ISTS), supported by the U.S. Department of Homeland Secu-
rity under Grant Award Number 2006-CS-001-000001 and by
the NetSANI project at Dartmouth College, funded by Award
CNS-0831409 from the National Science Foundation. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the U.S. Department of Homeland Security or the National
Science Foundation.

REFERENCES

[1] S. Bratus, D. Kotz, K. Tan, W. Taylor, A. Shubina, B. Vance, and
M. E. Locasto, “Dartmouth Internet Security Testbed (DIST): building a
campus-wide wireless testbed,” in Proceedings of the Workshop on Cy-
ber Security Experimentation and Test (CSET). USENIX Association,
August 2009.

[2] “Saluki,” 2010. Available online: http://en.wikipedia.org/wiki/Saluki
[3] Y. Sheng, G. Chen, H. Yin, K. Tan, U. Deshpande, B. Vance, D. Kotz,

A. Campbell, C. McDonald, T. Henderson, and J. Wright, “MAP: A
scalable monitoring system for dependable 802.11 wireless networks,”
IEEE Wireless Communications, vol. 15, no. 5, pp. 10–18, October 2008.
DOI 10.1109/MWC.2008.4653127

[4] “tcpdump/libpcap public repository,” 2010. Available online: http:
//www.tcpdump.org

[5] “Wireshark,” 2010. Available online: http://www.wireshark.org
[6] “Kismet,” 2010. Available online: http://www.kismetwireless.net
[7] U. Deshpande, C. McDonald, and D. Kotz, “Refocusing in 802.11

wireless measurement,” in Proceedings of the Passive and Active Mea-
surement Conference (PAM 2008), ser. Lecture Notes in Computer
Science, vol. 4979. Springer-Verlag, April 2008, pp. 142–151. DOI
10.1007/978-3-540-79232-1 15

[8] ——, “Coordinated sampling to improve the efficiency of wireless
network monitoring,” in Proceedings of the Fifteenth IEEE International
Conference on Networks (ICON). IEEE Computer Society Press,
November 2007, pp. 353–358. DOI 10.1109/ICON.2007.4444112

[9] Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker, and
S. Savage, “Jigsaw: solving the puzzle of enterprise 802.11 analysis,”
SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, pp. 39–50, 2006.
DOI 10.1145/1151659.1159920

[10] “MadWifi Project,” 2010. Available online: http://madwifi-project.org
[11] “Aruba Networks Air Monitors,” 2010. Available online: http:

//www.arubanetworks.com
[12] “OpenWrt,” 2010. Available online: http://openwrt.org
[13] “Linksys WRT54G series,” 2010. Available online: http://en.wikipedia.

org/wiki/Linksys WRT54G series
[14] “Apple iPhone technical specification,” 2010. Available online:

http://www.apple.com/iphone/specs.html

[15] T. A. Welch, “A technique for high-performance data compression,”
Computer, vol. 17, no. 6, pp. 8–19, 1984. DOI 10.1109/MC.1984.
1659158

[16] “QuickLZ,” 2010. Available online: http://www.quicklz.com
[17] “FastLZ,” 2010. Available online: http://www.fastlz.org
[18] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman

& Hall/CRC, 2007.
[19] M. Robshaw, “The eSTREAM project,” in New Stream Cipher Designs:

The eSTREAM Finalists. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 1–6. DOI 10.1007/978-3-540-68351-3 1

[20] P. Ekdahl and T. Johansson, “A new version of the stream cipher
SNOW,” in Revised Papers from the 9th Annual International Workshop
on Selected Areas in Cryptography (SAC). London, UK: Springer-
Verlag, 2003, pp. 47–61.

[21] “libpcap with MMAP,” 2010. Available online: http://public.lanl.gov/
cpw/

[22] “Iperf,” 2010. Available online: http://sourceforge.net/projects/iperf/
[23] “Community Resource for Archiving Wireless Data At Dartmouth

(CRAWDAD),” 2010. Available online: http://www.crawdad.org/

596


