
Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

• 52 - Den Kernel neu kompilieren
Den SuSE Kernel neu konfigurien und kompilieren

• Pakete kernel-source , make und gcc mit YaST installieren

• In /usr/src/linux/Makefile die Variable
HIGHMEMVERSION=-4GB ändern nach
HIGHMEMVERSION=-4GBa oder so was.

• Aktuelle Kernel konfig datei kopieren
cp /boot/vmlinuz.config /usr/src/linux/.config

• Kernel compilation
cd /usr/src/linux
make xconfig (kernel konfigurien)

make dep
make clean
make bzImage
make modules
make modules_install
oder
make dep && make clean && make bzImage && make modules \
&& make modules_install

• Neue Kernel kopieren
ls -l arch/i386/boot/
cp -v arch/i386/boot/bzImage /boot/vmlinuzN

• Erzeugung von neue initrd für neue Kernel
mk_initrd -k "vmlinuzN" -i "initrdN"

• Nur für LILO
• Datei /etc/lilo.conf editieren:

#Extra Eintrgäge
label = new
root = /dev/hda6 (nur z.B. hda6)
image = /boot/vmlinuzN
initrd= /boot/initrdN

• LILO installieren:
lilo <Enter>
Added linux *
Added new
Added win

• Nur für GRUB
title linuxNew
kernel (hd0,2)/boot/vmlinuzN apm=on acpi=off apic \

root=/dev/hda3 vga=791 splash=silent showopts
initrd (hd0,2)/boot/initrdN

• Neu booten (reboot oder <Str> <Alt> <Entf>)

• Neu Kernel probieren(linuxNew wahlen)

 52_Kernel.sxw -1-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

• Linux/UNIX Kernel:
In UNIX or Linux Kernel version 1.x.x the kernel must be recompiled for new features
or device drivers.
From Linux Kernel version 2.x.x external modules can be compiled separately from
the kernel and dynamically loaded or unloaded. They are called Kernel Modules.

• Kernel options at boot time
The list of options supported by the current kernel can be found in :

/usr/src/linux/Documentation/kernel-parameters.txt.

• Kernel Modules:
The kernel modules are normally located in:

/lib/modules/kernel-version/* or
/lib/modules/$(uname -r)/* $(uname -r) = kernel version

- Modules are files with the extention '.o' eg. serial.o
- Modules can depend on other modules to be loadable. The list of modules
 dependencies is located at: /lib/modules/kernel-version/modules.dep
 This file is produced by running the command: depmod. depmod will also
 generate various map files in this directory, for use by the hotplug infrastructure.
- Modules can be loaded in 2 different ways:

- Manualy. The commands insmod and modprobe are used:
insmod modulename Loads the module without checking

for dependencies.
modprobe modulename Checks the module's dependencies.

 Loads all the dependencies if needed
and then loads the module.

- Automatically via:
- The hotplug infrastructure (see LPI-101 Hardware section)
 (for filesystems etc.)
- The devfsd daemon and an alias entry in /etc/modules.conf
 devfsd will load the module each time the device is accessed

syntax: alias /dev/devicefile modulename
eg. alias /dev/net/tun tun

- The kmod support in kernel (CONFIG_KMOD) and an alias entry
 in /etc/modules.conf. kmod uses modprobe to load modules.
 Syntax: alias DeviceInternalName modulename

alias block-major-NN[-nn] modulename
alias char-major-NN-[nn] modulename

 eg. alias eth0 8139too
alias block-major-58 lvm-mod
alias char-major-10-134 apm
alias char-major-81 bttv

 NN is The Device Major Number and the nn is the minor number.
 eg. ls -l /dev/apm_bios
 crw-rw---- 1 root root 10, 134 Jan 18 11:26 apm_bios

 Entry in modules.conf: alias char-major-10-134 apm

 52_Kernel.sxw -2-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

 To create new devices in /dev directory use the following format:
 mknod -m modes /dev/newdev {c|b} majorNr. minorNr.

 eg. mknod -m 644 /dev/ttyS4 c 4 67
or use the script MAKEDEV:
eg. cd /dev ; ./MAKEDEV ttyS

- A runlevel script. The script can issue modprobe commands when
 the system boots-up to load modules ready to use.

- Note: the file /etc/modules.conf and /etc/conf.modules are the same.
 Which filename is used varies between distributions but modules.conf is newer.

- For a module to dynamically link to the kernel, a kernel symbol table with memory
 pointers is used. Such table can be seen at /proc/ksyms.

• Programs used to control modules:

Note: The modulename never contains the '.o' extention of its filename.
lsmod Lists the loaded modules. Same result as cat /proc/modules

Syntax: lsmod

insmod Loads a module (no dependency check)
Syntax: insmod modulename [module_parameters]
eg. insmod ne io=0x300 irq=5

modprobe Loads/Removes a module(with dependency check)
modprobe expects an up-to-date modules.dep file,
as generated by depmod.
Syntax: modprobe [-vcniqo] module [module_params]
eg. modprobe [-l] [-t dir.] [-a] [wildcard]

modprobe -r module1 [module2] ... (-r = remove)
Automatic try of all network card modules until success:

modprobe -t net *

rmmmod Removes a module.
Syntax: rmmod [-r] module1 [module2]

-r = Removes recursively through dependencies

depmod Determines module dependencies and writes modules.dep file.
Syntax: depmod [-abeFAn] (-n=Writes only to screen).
eg. depmod -av Checks all and writes modules.dep
Note: Run depmod -a after changes in /etc/modules.conf

modinfo Prints information about a module.
Syntax: modinfo [-adlpn] [-F field] modulename

-n = /path/filename of module's file
 -F --field Only print this field value, one per line.
 Field names:

author(-a), description(-d), license(-l),
depends,and alias.

 param(-p) : Shows which parameters are supported.
Output format of -p:
option type (valid-values) description

 Options [-adlp] are shortcuts for these above fields.

 52_Kernel.sxw -3-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

The file /etc/modules.conf (or /etc/conf.modules):

This file is used by kmod to load the right modules automatically when certain devices
are accessed or by modprobe to add needed options to modules and possibly run
certain commands before and/or after loading and/or unloading modules. It can
contain the following information:

- Module Parameters(options)
Syntax: options modulename options
eg. options ne io=0x300 irq=5

- Alias names for modules: Modules is then having 2 names.
Syntax: alias aliasname modulename
eg. alias eth0 3c509

Makes it possible to do a -------> modprobe eth0
which has the same result as --> modprobe 3c509

- Commands that should be run before and/or after a module is loaded
Syntax: pre-install modulename command

post-install modulename command
eg. post-install bttv insmod tuner

- Commands that should be run before and/or after a module is un-loaded
Syntax: pre-remove modulename command

post-remove modulename command
eg. post-remove bttv rmmod tuner

The command 'uname'
Syntax: uname options
This command is used to display information about the current system.
uname -a Shows all information in the following order:
-s, --kernel-name Print the kernel name
-n, --nodename Print the network node hostname
-r Print the current kernel release. eg.

/lib/modules/$(uname -r)/...... or
/lib/modules/`uname -r`/.......

-v, --kernel-version Print the kernel version (Build date)
-m, --machine Print the hardware machine name
-p, --processor Print the processor type
-i, --hardware-platform Print the hardware platform
-o, --operating-system Print the operating system

 52_Kernel.sxw -4-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

Configuring and compiling the KERNEL

• Pre-Requirements
- Source code installed from CD
- Kernel versions that has the second digit with an even number are
stable and the odd numbers are for the development versions (unstable)

• Kernel Source code

The kernel source code is normally located in /usr/src/linux/*.
Normally this directory is a symbolic link to /usr/src/kernelname/ directory.
It contains also all the configuration files necessary to compile the kernel.

• Configuring the kernel:

• Getting the source code and the current kernel configuration file.
The source code is normally available from the current distribution disks or
from the internet(www.kernel.org)

• Using the present kernel configuration file as a start template.
On SuSE the current kernel configuration file is located in:

/proc/config.gz
To use this file as a start template before making changes do the following:d /

usr/src/linux
zcat /proc/config.gz > .config
make oldconfig

After getting the source code installed in the system, the kernel needs to be
configured before compiling it. This configuration process wil create the
configuration file : /usr/src/linux/.config
We have the choice of using an older configuration file as a template
or create a totally new one from scratch.(not recommended)

Before issuing any commands we need to change to the source code directory:
cd /usr/src/linux

• Preparing the an old .config for a new kernel source.
Copy the old .config to /usr/src/linux/ directory and run the command:
make oldconfig
This will scan the file and add the new items that were not existing in the old
kernel but present in the new kernel.

• Configuration programs
The following 3 commands start programs that read the .config file, allow for
changing the configuration and when finished, saves the new configuration in the
same .config file, replacing the original.

make config Older questions oriented.
make menuconfig Text/Menu oriented.
make xconfig Menu/Buttons Graphic Program

Note:Because the configuration with make xconfig is not as well maintained as
the other configuration possibilities, run the command make oldconfig after
using this configuration method.

 52_Kernel.sxw -5-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

 The main work of kernel configuration is to decide for:
- Which features are supported in the kernel.
- Which modules will be either:

- Integreated in the kernel or
- Compiled as separate loadable modules
- Not compiled seperately and not integrated in the kernel.

• Preparing the compilation
Since 'make' doesn't compile already compiled parts of the kernel, in order to
create completely new ones, some already compiled need to be deleted by
issuing the command : make clean

Before compiling the kernel, the dependencies file need to be created.
This file is named: /usr/src/linux/.depend
The command: make dep

• Compiling the kernel
The long and complex compiling process can now start by issuing one of the
following commands:
make zimage Old command to create a small jernel which will be saved as:

/usr/src/linux/arch/i386/boot/zImage
make zdisk Old command that once compiled the kernel will be saved in a
 floppy as a boot floppy.
make bzImage New command to create a big kernel which will be saved as:

/usr/src/linux/arch/i386/boot/bzimage
make bzdisk New command that once compiled the kernel will be saved in a
 floppy as a boot floppy.

• Compiling the modules
The compiling of the modules is made by issuing the command:(also long)

make modules

• Installling the modules
Once compiled the modules need to be installed in the directory
/lib/modules/kernelversion/ by issuing the command:

make modules_install
The command depmod -a will be automatically run by this above command.
To produce a System Map file:

/sbin/depmod -ae -F System.map kernelversion

• Installing the new kernel
Once compiled the kernel and the system map file need to be copied to /boot directory
and the boot manager config. file modified to reflect the changes.
This can be achieved by issuing the following commands:
 cp /usr/src/linux/arch/i386/boot/bzimage /boot/vmlinuz
 cp /usr/src/linux/System.map /boot/System.map.$(uname -r)

The file /boot/System.map contains kernel symbols required by the modules to
ensure successful launching of kernel functions. This file depends on the current
kernel.

• The boot file initrd (Init RAM DISK)
This file is normally loaded by the boot manager and is used by the kernel to load

 52_Kernel.sxw -6-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

modules contained in it that are needed during boot time. This is the alternative to
compiling these needed modules inside the kernel.
If an initrd is needed then issuing the following command will create it:
In SuSE the file /etc/sysconfig/kernel contains the directives that are taken for
account when running this command. This is here we can enter the list of
mokdules that should be integrated in the initrd file.
mkinitrd Options-needed

If using LILO________ If using GRUB
vi /etc/lilo.conf vi /boot/grub/menu.lst
lilo

• All kernel compiling commands in short:
- Install the kernel source in /usr/src/linux/ directory
- Copy the .config file from the current kernel in /usr/src/linux/ directory
- make clean Deletes all already compiled modules from source tree
- make oldconfig Uses the current .config and creates a new one
- make xconfig or make menuconfig or make config

To configure the kernel options before compiling
- make dep Creates the dependencies file .depend
- make bzImage Compile the kernel
- make modules Compile the modules
- make modules_install

Install modules in /lib/modules/kernelversion/
- cp /usr/src/linux/arch/i386/boot/bzimage /boot/vmlinuz

Copies the kernel in the /boot directory
- cp /usr/src/linux/System.map /boot/System.map.$(uname -r)

Copies the .map file in the /boot directory
- If using an initrd file when booting: mkinitrd Options
- If using LILO: vi /etc/lilo.conf (Edit lilo.conf) then lilo
- if using GRUB: vi /boot/grub/menu.lst or

vi /boot/grub/grub.conf

• Safeguard against a non-working new kernel:
To make sure that the the old kernel is saved as an alternative to boot, in the case
of the new kernel not working, it is advisable to change the name of the older
kernel, its initrd, and System.map.$(uname -r), and its
/lib/modules/kernelversion/ directory before copying the kernel or issuing
the comand make modules_install.
An alternative menu item in the boot manager config file for being able to boot the
older kernel is also advisable.

 52_Kernel.sxw -7-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

• Modifying the Operating Voltages of a Pentium M (730) for SuSE 9.3

• Note: The following information was taken from the web site:

• Install the kernel source
• Edit the file:

/usr/src/linux/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c

• Then locate this part of the code:

Code
static int centrino_cpu_init(struct cpufreq_policy *policy)
{
 struct cpuinfo_x86 *cpu = &cpu_data[policy->cpu];
 unsigned freq;
 unsigned l, h;
 int ret;

And right before it add the following lines: (on next page)
Just cut and paste the code.

 52_Kernel.sxw -8-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

Code
static int centrino_target (struct cpufreq_policy *policy,
 unsigned int target_freq,
 unsigned int relation);

/************************** sysfs interface for user defined voltage table ************************/
static ssize_t show_user_voltage (struct cpufreq_policy *policy, char *buf)
{
 ssize_t bytes_written = 0;
 unsigned int cpu = policy->cpu;
 unsigned int op_index = 0;
 unsigned int voltage = 0;

 //dprintk("showing user voltage table in sysfs\n");

 while (centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_TABLE_END)
 {
 //dprintk("getting state %i \n", i);
 voltage = centrino_model[cpu]->op_points[op_index].index;
 voltage = 700 + ((voltage & 0xFF) << 4);
 //dprintk("writing voltage %i: %u mV \n", i, voltage);
 bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE, "%u",voltage);
 op_index++;
 if (centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_TABLE_END)
 bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE, ",");
 else
 bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE, "\n");
 }
 buf[PAGE_SIZE-1] = 0;
 return bytes_written;
}

static ssize_t
store_user_voltage (struct cpufreq_policy *policy, const char *buf, size_t count)
{
 unsigned int cpu;
 const char *curr_buf;
 unsigned int curr_freq;
 unsigned int op_index;
 int i;
 int isok;
 char *next_buf;
 unsigned int op_point;
 ssize_t retval;
 unsigned int voltage;

 static struct cpufreq_frequency_table **original_table = NULL;

 if (!policy)
 return -ENODEV;
 cpu = policy->cpu;
 if (!centrino_model[cpu] || !centrino_model[cpu]->op_points)
 return -ENODEV;

 if (!original_table)
 {
 original_table = kmalloc(sizeof(struct cpufreq_frequency_table *)*NR_CPUS, GFP_KERNEL);
 for (i=0; i < NR_CPUS; i++)
 {
 original_table[i] = NULL;
 }
 }

 if (!original_table[cpu])
 {
 /* Count number of frequencies and allocate memory for a copy */
 for (i=0; centrino_model[cpu]->op_points[i].frequency != CPUFREQ_TABLE_END; i++);
 /* Allocate memory to store the copy */
 original_table[cpu] = (struct cpufreq_frequency_table*) kmalloc(sizeof(struct cpufreq_frequency_table)*(i+1), GFP_KERNEL);
 /* Make copy of frequency/voltage pairs */
 for (i=0; centrino_model[cpu]->op_points[i].frequency != CPUFREQ_TABLE_END; i++)
 {
 original_table[cpu][i].frequency = centrino_model[cpu]->op_points[i].frequency;
 original_table[cpu][i].index = centrino_model[cpu]->op_points[i].index;
 }
 original_table[cpu][i].frequency = CPUFREQ_TABLE_END;
 }

 op_index = 0;
 curr_buf = buf;
 next_buf = NULL;
 isok = 1;

 while ((centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_TABLE_END)
 && (isok))
 {
 voltage = simple_strtoul(curr_buf, &next_buf, 10);
 if ((next_buf != curr_buf) && (next_buf != NULL))
 {
 if ((voltage >= 700) && (voltage<=1600))
 {
 voltage = ((voltage - 700) >> 4) & 0xFF;
 op_point = (original_table[cpu])[op_index].index;
 if (voltage <= (op_point & 0xFF))
 {
 //dprintk("setting control value %i to %04x\n", op_index, op_point);
 op_point = (op_point & 0xFFFFFF00) | voltage;
 centrino_model[cpu]->op_points[op_index].index = op_point;
 }
 else
 {
 op_point = (op_point & 0xFFFFFF00) | voltage;
 dprintk("not setting control value %i to %04x because requested voltage is not lower than the default value\n", op_index, op_point);
 //isok = 0;
 }
 }
 else
 {
 dprintk("voltage value %i is out of bounds: %u mV\n", op_index, voltage);
 isok = 0;
 }
 curr_buf = next_buf;
 if (*curr_buf==',')
 curr_buf++;
 next_buf = NULL;
 }
 else
 {
 dprintk("failed to parse voltage value %i\n", op_index);
 isok = 0;
 }
 op_index++;
 }

 if (isok)
 {
 retval = count;
 curr_freq = cpufreq_get(policy->cpu);
 centrino_target(policy, curr_freq, CPUFREQ_RELATION_L);
 }
 else
 {
 retval = -EINVAL;
 }

 return retval;
}

static struct freq_attr centrino_freq_attr_voltage_table =
{
 .attr = { .name = "voltage_table", .mode = 0644, .owner = THIS_MODULE },
 .show = show_user_voltage,
 .store = store_user_voltage,
};

 52_Kernel.sxw -9-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

Then locate these lines:

Code
static struct freq_attr* centrino_attr[] = {
 &cpufreq_freq_attr_scaling_available_freqs,
 NULL,
};

And replace them by these ones:

Code
static struct freq_attr* centrino_attr[] = {
 &cpufreq_freq_attr_scaling_available_freqs,
 ¢rino_freq_attr_voltage_table,
 NULL,
};

That's it. Rebuild your kernel, install it and reboot.

Getting the current voltage settings

To get the current voltage read the content of the file voltage_table in /
sys/devices/system/cpu/cpu0/cpufreq. The content of this file is the list of all the voltages
currently stored in the CPU frequency table, in mV. There is one value for each entry in the
frequency table of the cpu.

Sample reading of current settings
quasar b12 # cat /
sys/devices/system/cpu/cpu0/cpufreq/voltage_table
1356,1356,1356,1356,1356,1356,1356,1244,1116,988

The sample above is on a MSI S260 laptop with a 1.6 GHz Pentium M 730. The first 7
duplicated value are for 1.6 GHz. The next values are for 1.3 GHz, 1 GHz and 800 MHz.
Depending on your CPU and laptop model your mileage may vary.

Changing the voltage setings

To change the current voltage settings write the content of the file voltage_table in
/sys/devices/system/cpu/cpu0/cpufreq. You need to use the same format as what
you get when reading the file (same number of values separated by "," on one single line")

Be carefull when doing this. There are some protections in the code to block you from setting
voltage values that are greater than the default settings. But if you set values that are too low
your CPU will freeze and you will have to reboot your computer.

Sample modification of voltages
echo "1084,1084,1084,1084,1084,1084,1084,988,908,860" >
 /sys/devices/system/cpu/cpu0/cpufreq/voltage_table

The sample above is on a MSI S260 laptop with a 1.6 GHz Pentium M 730. The first 7
duplicated value are for 1.6 GHz. The next values are for 1.3 GHz, 1 GHz and 800 MHz.
Depending on your CPU and laptop model your mileage may vary.

 52_Kernel.sxw -10-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

After changing the values you can read the file again to check that all your settings have
been taken into account. If you don't get the same thing as what your have writen in the file
have a look at dmesg. If you have enabled cpufreq debug messages in your kernel you will
see errors like the following that will give you a hint on what you did wrong:

Sample error codes
speedstep-centrino: voltage value 0 is out of bounds: 1724 mV
speedstep-centrino: not setting control value 1 to 0c36 because requested voltage is not lower than the default value
speedstep-centrino: failed to parse voltage value 2

It may also be that the voltages have been rounded to a 16 mV multiple.

Finding the best voltage settings

Smallest voltages before the CPU freeze

If you are not affraid to crash your system a few times you can quickly find the lowest
voltages that your CPU can acheive using the following procedure:

1. Set your CPU to the first frequency you want to test using the userspace governor
2. Run the voltage-ramp-down script (the script is at the end of this page)
3. Wait until your system freeze
4. Write down the voltage value of the current frequency that was displayed just before

the last "OK"
5. Reboot
6. If you want to crash your system again set your CPU frequency to the next frequency

and go back to step 2

If you are lucky your CPU will be able to run at ist lowest frequency using 700 mV.

It is strongly recommended to perform this procedure in console mode with the minimum
sofware running (shut down all the services you can).

Also it not recommended to do this if you do not have a journalized file system. And even
with that there are still chances that your file system gets corrupted if you have application
writing to the disk

Note that the voltages you will find with this method are not safe. You CPU is most likely to
make calculation errors with these settings or even to freeze after a few minutes. But it will
quickly give you a good starting point to find the best settings (see next chapter)

The table below shows the voltage values that have been found by some users of this
method:

Who CPU
600
MHz

800 MHz 1 GHz 1.2 GHz 1.33 GHz 1.4 GHz 1.6 GHz 1.8 GHz 2 GHz 2.2 GHz

Michel P-M 730 - 700 mV 748 mV - 828 mV - 908 mV - - -
pumpkin0 P-M 725 - 716 mV 798 mV 860 mV - 956 mV 1036 mV - - -

You? P-M ? ? mV ? mV ? mV ? mV ? mV ? mV ? mV ? mV ? mV ? mV

ToDo: Add samples of min voltages of other people with same and different Pentium M
model

 52_Kernel.sxw -11-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

Safe voltages

ToDo: add procedure to find safe voltages settings using a tool like mprime

The table below shows the voltage values that are considered safe by some people that
have undervolted their CPU:

Who CPU 600 MHz 800 MHz 1 GHz 1.1 GHz 1.2 GHz 1.33 GHz 1.4 GHz 1.6 GHz 1.8 GHz 2 GHz

rschwarze P-M 710 700 mV 700 mV 780 mV 812 mV 860 mV - 940 mV - - -

bdz P-M 730 - 700 mV 764 mV - - 860 mV - 956 mV - -

dgaffuri P-M 750 700 mV 700 mV 764 mV - 844 mV - 924 mV 1004 mV 1084 mV 1196 mV

pumpkin0 P-M 725 700 mV 748 mV 828 mV - 892 mV - 988 mV 1100 mV - -

You? P-M ? ? mV ? mV ? mV ? mV ? mV ? mV ? mV ? mV ? mV ? mV

ToDo: Add samples safe voltages of other people with same and different Pentium M model

Some handy scripts

As lowering the voltage is likely to crash the system it is safer to perform the tests in console
mode to minimize the risks of file system corruption. (Using a journalized file system is also a
good idea)

To perform tests in console mode you may want to use some scripts to help you change the
voltages and monitor the CPU temperature and the current drawned from the battery. This
chater contains some very basic sample scripts you may want to use

Finding the lowest voltages before the CPU freeze

This script automatically decreases the voltages settings by 16 mV every 2 seconds until the
CPU freeze or the minimum value of 700 mV is reached.

Use with caution. It will crash your system!

voltage-ramp-down.sh

 52_Kernel.sxw -12-

Linux-Kurs - Kernel - 29 October 2003 Michel Bisson

#!/bin/bash

Min voltage value
Voltages will not be set below than this value
Vmin=700

Delay before assuming hat the new voltage is ok and trying the new one (in seconds)
Period=2

while [0]; do
 # Get current votages
 CurVoltages=$(cat /sys/devices/system/cpu/cpu0/cpufreq/voltage_table \
 | cut -d"," --output-delimiter=" " --fields=1-)
 NewVoltages=""

 # Compute new voltages as current - 16 mV
 for V in $CurVoltages; do
 V=$(($V - 16))
 # Ensure that voltage is not below min value
 if [$V -lt $Vmin]
 then
 V=$Vmin
 fi
 NewVoltages="$NewVoltages,$V"
 done

 # Display current settings from the sysfs file
 echo " "
 echo "Current settings: "$(cat /sys/devices/system/cpu/cpu0/cpufreq/voltage_table)

 # Display the new settings that we are going to write to the sysfs file
 echo "Requested settings: $NewVoltages"

 # Force the kernel to write its buffers to the hard disk
 # to reduce the risks of file system corruption in case of CPU freeze
 sync

 # Apply new settings
 echo "$NewVoltages" > /sys/devices/system/cpu/cpu0/cpufreq/voltage_table

 # wait some time to see if the CPU freezes
 sleep $Period

 echo OK
done

Script for Displaying the CPU Frequency, Throttle, Temperature and Voltage
every second.

#!/bin/bash

Name: cpustat
Purpose: Displays every second the CPU Speed, CPU Throttle State, CPU
temperature, CPU Voltage
Syntax: cpustat
Note: It only runs with the patched Kernel Module speedstep-centrino
#--

watch -tn1 'Freq=$(cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq);
echo "Frequency: $Freq";echo "Throttling: $(grep *T[0-7]: /
proc/acpi/processor/CPU0/throttling|cut -d: -f2|tr -d " ")"; echo "Temperature:
$(acpi -t -B | cut -d" " -f9| cut -d. -f1) °C" ; Table=$(cat /
sys/devices/system/cpu/cpu0/cpufreq/voltage_table);echo -n "Voltage: ";V1=$
(echo $Table | cut -d, -f4);V2=$(echo $Table | cut -d, -f3);V3=$(echo $Table |
cut -d, -f2);V4=$(echo $Table | cut -d, -f1);case $Freq in 800000) echo $V1
mv; ;; 1067000) echo $V2 mv; ;; 1333000) echo $V3 mv; ;; 1600000) echo $V4 mv; ;;
esac'

 52_Kernel.sxw -13-

