
Keyloggers in Cybersecurity Education

Christopher A. Wood1 and Rajendra K. Raj2
1Department of Software Engineering, Rochester Institute of Technology, Rochester, New York, USA

2Department of Computer Science, Rochester Institute of Technology, Rochester, New York, USA

Abstract— Keylogger programs attempt to retrieve confi-
dential information by covertly capturing user input via
keystroke monitoring and then relaying this information to
others, often for malicious purposes. Keyloggers thus pose
a major threat to business and personal activities such as
Internet transactions, online banking, email, or chat. To deal
with such threats, not only must users be made aware about
this type of malware, but software practitioners and students
must also be educated in the design, implementation, and
monitoring of effective defenses against different keylogger
attacks.

This paper presents a case for incorporating keylog-
ging in cybersecurity education. First, the paper provides
an overview of keylogger programs, discusses keylogger
design, implementation, and usage, and presents effective
approaches to detect and prevent keylogging attacks. Second,
the paper outlines several keylogging projects that can be
incorporated into an undergraduate computing program to
educate the next generation of cybersecurity practitioners in
this important topic.

Keywords: Computer security, keylogging, rootkits, secure cod-
ing, cybersecurity education.

1. Introduction
Keylogging programs, commonly known as keyloggers,

are a type of malware that maliciously track user input
from the keyboard in an attempt to retrieve personal and
private information. Increasing computer use for common
business and personal activities using the Internet has made
effective handling of keylogging urgent [1]. Additionally, the
Internet has not only become a major conduit for placing
and distributing malicious programs, but also an aid in
their infection and execution. The enormous potential of
the Internet has therefore led to an increase in keylogging
attempts with a linear annual increase in unique keyloggers
[2].

A study of keylogging programs, along with anti-
keylogging techniques, thus should be included in cyber-
security education for several reasons. First, keyloggers
incorporate a wide array of cybersecurity issues and provide
a practical approach to understanding topics such as attacker
goals, varieties of malware and their implementation, the
role of malware in infecting and controlling a system, and
how stealth is achieved in an infected system. Second,
students will understand tools and mechanisms that aid in

the detection and prevention of keyloggers. Commercial
anti-malware programs handle common keylogging malware
fairly well as they tend to be static in nature and form,
but are not as effective in detecting state-of-the-art malware
that employ novel stealth and behavior mechanisms without
easily recognized static signatures or patterns [3]. Whether
the detection is via active system monitoring for malware
memory footprints or for keylogger-like behavior, a more
dynamic approach to detecting keyloggers is needed. In fact,
the degree of dynamism separates mediocre anti-malware
programs from effective ones. Ensuring that a security prac-
titioner learns about handling keylogging malware is thus
important in cybersecurity education.

The rest of the paper is laid out as follows. Section 2
presents the the current state of keylogging malware and
Section 3 outlines software design and implementation tech-
niques used in keylogging. Tools and techniques used to de-
tect and prevent keylogging are presented in Section 4. Based
on the authors’ experiences, Section 5 outlines appropriate
programming projects in keylogging that can be used in
university education in cybersecurity. Section 6 summarizes
the current status of this work.

2. An Overview of Keylogging
The keyboard is the primary target for keyloggers to

retrieve user input from because it is the most common
user interface with a computer. Although both hardware
and software keyloggers exist, software keyloggers are the
dominant form and thus are the focal point in this paper. For
completeness however, this paragraph mentions hardware
keyloggers as they do pose a significant security threat.
A common example of a hardware keylogger is a ”ghost”
device that may be physically attached to a target machine to
extract and store keystrokes on persistent storage within the
same device. For example, inexpensive hardware keylogging
devices such as the Spy Keylogger [4] act as a medium
between the physical keyboard USB adapter and computer’s
motherboard USB port; as the "man in the middle," the
device stealthily captures and stores all user keystrokes on its
memory. Similarly, wireless hardware keyloggers translate
and store encrypted keystoke bits sent from a wireless
keyboard to its computer. Olzak [5] provides a reasonable
starting point for additional information about hardware
keyloggers.

This paper focuses on software keyloggers because they
are the dominant form of keylogging. Both inexpensive



consumer-oriented and specially-developed keylogging pro-
grams are readily available on the Internet [1]. These key-
loggers need to be adapted to each target operating system
to ensure I/O is handled appropriately. System differences
thus inevitably lead to operating system specific mechanisms
implemented in software keyloggers: use of the keyboard
state table, system routine hooks, and kernel-mode layered
drivers. Additional detail about techniques used in the de-
velopment, distribution, execution and detection of user- and
kernel-mode keyloggers, particularly on Microsoft Windows
operating systems, are presented later; in this paper, note
that a reference to Windows means a Windows NT variant.

A fundamental concept behind keyloggers and similar
malware is their pattern of attack. Most malware infections
follow a fairly standard attack pattern that involves the
sequential order of development, distribution and infection,
and execution stages. The initial phase is vital to the process
as any malware that is not yet implemented cannot be used
by an attacker. What is unique about the development stage
is that it places emphasis on how the latter stages will
be accomplished. Distribution and execution can both be
implemented as a component of the malware and therefore
are a contributing factor in its design and development.

Remote keylogger distribution is a vital step for remote
infection. Currently there are many ways to distribute key-
loggers using the Internet. A study by Provos et al. [6] shows
that there are four distinct approaches to malware placement
on the Internet for distribution:

1) Advertisements. These provide a common hosting
place for malware. As advertisements often tend to be
redirections chained together, it is possible for third-
parties to inject the location of malicious content into
one of the nodes in the chain.

2) Third-party widgets. As with advertisements, widgets
are fundamentally embedded links, often to an external
Javascript function or similar entities, that can be re-
directed to dangerous locations.

3) User contributed content. Here a typical web user
physically uploads content to a public location. If the
web master does an inadequate job of checking con-
tent legality and validity via appropriate sanitization
techniques, malicious content placement may occur.

4) Web server security mechanisms. These mechanisms
also play an important role as they can impede mal-
ware placement on web sites by controlling server
content such as HTML, Javascript, PHP (or other
scripting languages and applications), and database
contents. Therefore, an attacker who gains control of
these security mechanisms has the ability to com-
pletely control the content on the web server and use
it to her advantage.

Malware distribution is often followed by infection, which
can be accomplished through both web application exploits
and social engineering techniques. "Drive-by-downloads",

as they are called, are forms of exploitation that involve
the automatic download and execution of malicious binaries
when a user visits a dangerous remote location [6]. These are
accomplished by exploiting insecure browser vulnerabilities
using malicious code that will invoke system routines or
shell commands on the victim’s computer to initiate the
retrieval of the malware.

The other option for the attacker trying to infect a machine
that has no identifiable security vulnerabilities is to trick
the user into self-infection. In other words, the attacker will
employ what is referred to as "social engineering" [7] to
create interest in the user to perform an action that will result
in the remote retrieval of malware.

The final stage in the attack pattern is for the keylogging
malware to begin executing, and can occur in several dif-
ferent ways depending on the implementation and context
of the keylogger. However, most realistic keyloggers share
two common operations: (a) hooking into user input flow
to receive keystrokes and (b) transporting the data to a
remote location. The implementation of these operations is
discussed in the next section.

3. Design and Implementation
Keylogger design and implementation strategies are based

upon several factors: the infecting medium, the type of
target machine, the lifetime of the keylogger, and the level
of stealth and footprint left on the machine while active.
Infection mechanisms depend on the form of the keylogger.
For instance, a software keylogger targeting the user-mode
of an operating system is often injected remotely and a
hardware keylogger via physical device placement. Software
keyloggers require a well-crafted infection mechanism to
ensure proper installation, for example, a web browser
exploit. Depending on the browser being used, the attacker
can identify and exploit existing security vulnerabilities. A
typical browser exploit will utilize a client side language
like Javascript to craft and execute an attack [8]. These
local attacks generally aim to create a buffer overflow in the
browser or a related component such as a plugin to redirect
the control and data flow of the target to allow malicious
code to be executed.

Once the infection mechanism has been implemented,
the keylogger designer will focus on its execution. Most
keyloggers share a common execution technique known
as hooking, though each keylogger will implement it in
a different way depending on the context for which the
keylogger is needed. The basic goal of hooking is to intercept
the normal control flow and alter information returned by
a target system routine [9]. Hooks can be implemented in
any level of the operating system for most functions, which
makes them a general technique to be utilized by keylogger
developers. This paper uses the term hooking to describe any
technique that intercepts data in an existing control flow for
malicious use.



High-level keyloggers executing in the user-mode of an
operating system are implemented using a variation of user-
mode hooks. In a Windows operating system, keystroke
events from the user are flagged through a message mech-
anism that transfers data from the keyboard device to the
window procedure that is to respond to the the keystroke.
This message mechanism can be hooked to provide an
attacker with access to these keystroke events even before
they reach the target application.

Depending on context, the keylogger being developed
can implement a global or local hook to retrieve keystroke
events. Global hooks monitor system-wide messages while
local hooks monitor application-specific messages [1]. Using
these hooked messages, the attacker can read the keystrokes
entered, modify keystroke data, and even interrupt the mes-
sage flow entirely. Typically however, keyloggers imple-
mented in this manner will only read the keystroke data and
forward the message to the next member in the chain.

Low-level kernel-mode keyloggers are typically imple-
mented as rootware [10], a combination of both rootkits and
spyware, that employ another variation of hooking. A rootkit
is a small set of programs or tools that covertly run on an
infected machine in order to provide long-term, undetected
access to the root of a system for the attacker. Stealth is
typically a high priority for a rootkit as it is intended to be
a ”permanent” modification to the operating system kernel.
Spyware is software that collects user data without the
consent of the victim [11]. Using these two terms, rootware
keyloggers are hidden software that hook into vital system
routines to collect and transport user keystrokes without
victim awareness or consent.

The kernel remains an ideal target for a rootkit to achieve
its desired level of stealth and life time. This is because once
a rootkit attains unrestricted access as a kernel component
it can modify kernel memory, objects, and modules to mask
its presence. For instance, a rootkit targeting a Windows
operating system can be implemented as a device driver that
can be dynamically loaded onto the system. From there, it
can modify entries in the linked list of EPROCESS structures
to hide running processes. Such a technique is an example
of a Direct Kernel Object Modification (DKOM) [10].

Implementing keyloggers as device drivers is another
common approach to gain privileged access to the kernel to
intercept I/O data. Most modern operating systems permit
device drivers to be chained or layered in a stack formation
to dynamically provide additional functionality to a device
or set of devices in a system. Using this approach, rootware
developers can layer their drivers on top of the device
driver stack and intercept I/O requests that pass between the
keyboard device and kernel in order to extract keystroke data
that maps to specific ASCII characters. This layered driver
approach as implemented on a Windows operating system
is depicted in Figure 1.

Once the extraction mechanism has been designed and

Figure 1: Layered device driver interception of I/O data.

implemented, the attacker needs to focus on data trans-
portation. Rootware software will typically utilize covert
channels, or concealed communication pathways, to break
through firewalls undetected in order to send data across a
network [9]. When designing a covert channel, the attacker
must aim for a minimal footprint on the system and a unique
structure [9]. A minimal footprint will allow communication
to take place while effecting as few system components
as possible, thus effectively making the channel harder to
detect as its operation is less noticeable. A unique structure
is also important when designing a covert channel because
the greater its novelty, the less likely it is to be identified by
common malware detection programs.

A kernel-level keylogger will need to use kernel sockets
and networking routines to accomplish its networking goal.
On the other hand, a user-level keylogger can avoid the com-
plexity of kernel-level networking by implementing a covert
channel using language supported networking capabilities or
operating system routines. However, in terms of effectiveness
and visibility, kernel-level channels are less susceptible to
detection if implemented correctly and thus merit further
study. Hoglund and Butler [9] provide additional information
pertaining to the development of kernel-level covert chan-
nels.

4. Detection and Prevention
So far this paper explored keyloggers from a black hat

viewpoint, that is, the design, implementation, and use of
keyloggers. This section addresses a major goal of cyberse-
curity education, which is to train students in becoming white
hat hackers, i.e., practitioners who can identify a security



weakness and help software system developers fix breaches
before malware is able to take advantage of the system. A
study of keylogger detection and prevention is thus critical
for white hat hackers: detection focuses on identifying a
keylogger that has already infected a system for it to be
removed appropriately while prevention focuses on denying
keyloggers any access to a system.

Malware detection is often viewed as being static or
dynamic. Static detection involves signature-based pattern
recognition while dynamic detection involves behavioral-
and operational-based monitoring. Static detection requires
malware detection software to monitor a system for recog-
nizable malicious signatures or checksums. These signatures
are essentially sequences of machine instructions that cor-
respond to suspicious activity performed by a program on
the host machine [12]. There are two significant but related
problems with this technique: (a) the malware detection
program needs to be constantly updated with new malware
definitions and (b) no protection is provided against malware
whose signature is not present in the repository. This is
highly relevant to keylogging malware because they typically
do not have a unique signature. Therefore, dynamic detection
techniques must be employed to detect keylogging malware.

Behavioral-based detection techniques monitor the system
for suspicious behavior that may be implemented by a
keylogger, such as system file modifications or I/O data
tampering. However, due to the differences in keylogger
behavior and implementation techniques, existing solutions
for dynamic detection have had mixed success. For example,
Aslam et al. [13] describe an anti-hook shield that oper-
ates by flagging programs that hook system routines often
targeted by keyloggers; this approach, however, also flags
programs that hook the same system routines legitimately.

An interesting example of dynamic malware detection is
the layered-architecture, behavior-based, malware detector
proposed and evaluated by Martignoni et al. [14]. This model
addresses the semantic gap between high-level behavior
descriptions and their low-level computer representations,
and succeeds largely due to the unique layered architectural
approach to modeling the semantic gap via a hierarchical
structure to translate high-level behaviors to low-level ma-
chine instructions. This modeling scheme allows this detec-
tor to input suspicious behavior mechanisms for use with
a system-wide process execution monitor to flag suspicious
activity if a process’s activity closely matches the behavior
specification.

Tainted data analysis is another useful detection mecha-
nism that is specifically targeted towards kernel-level key-
loggers. It has been observed that a majority of kernel-
level keyloggers modify the normal flow of data of a
keyboard driver or driver stack in order to extract and
transmit keystroke data. Therefore, the extraction of user
keystroke data occurs while data is being moved along
the chain of keyboard device drivers in the kernel. The

detection mechanism implemented by Le et al. [15] uses
this observation by monitoring user keystroke data only as
it moves along the chain of keyboard drivers. This is done by
first tainting or marking user keystroke data when it comes
to the base keyboard driver and monitoring it as it moves
along the chain. If at any point a driver in that chain attempts
to modify the data and pass it along, it will be marked. This
allows any suspicious modification behavior to be flagged
by the operating system and can help accurately identify the
driver that performed the modification.

Many of the dynamic detection mechanisms being re-
searched, implemented, and tested are still in the prototype
stage, and therefore not included in commercial malware
detection programs. The typical computer user has to rely
on existing tools and anti-malware programs to help detect
keyloggers on their machines. For instance, RootkitRevealer
[16] is an advanced rootkit detection program that helps
with detection, but finds it difficult to identify rootkits that
hide their presence in the system by modifying privileged
operating system data or memory. Other anti-malware pro-
grams such as Norton from Symantec and McAfee provide
malware detection services that differ based on the level of
support paid by the consumer. Most of these tools rely on
signature-based detection, and struggle with detecting unique
keyloggers. Therefore, a proactive approach is needed to stop
keyloggers before they infect a system.

Efforts to prevent keyloggers or any type of malware
lie in threat mitigation tools that detect and stop malware
before the malware can impact its targets. Such tools include
antivirus software, intrusion prevention systems, firewalls
and routers, and even application settings [3]. Figure 2
depicts the layering of such tools in an attempt to protect
the host machines from malware infection.

Figure 2: Layering of threat mitigation tools to prevent
malware infection.

Antivirus software is perhaps the most commonly used
form of malware prevention as it performs a wide array
of mitigation tasks including, but not limited to, critical
system component scanning, real-time activity monitoring
for suspicious behavior, file scanning, and network filtering.

Intrusion prevention systems (IPS) come in network- and
host-based forms depending on the medium used by the
malware to be stopped. Network-based IPS perform packet
sniffing and analyze network traffic to identify and stop
suspicious activity at its root [3]. Typical network-based IPS



tend to be inline, thus effectively making them behave like
a network firewall. The prevention techniques utilized by
IPS products typically consist of a combination of attack
signatures and analysis of network and application protocols,
which essentially means that they scan network activity for
previously observed malicious behavior to identify poten-
tially dangerous malware. Similarly, host-based IPS products
monitor host activities such as network traffic, system logs,
running processes, and system and application configuration
changes to prevent keylogger infection [3].

The outermost level of prevention involves the use of
network firewalls and routers to permit or deny network
traffic to a local machine based on a defined rule set.
Routers typically offer less robust prevention capabilities
than firewalls because they restrict access based on a broad
set of rules. Tasks such as ingress and egress filtering are
often performed by routers to help lighten the workload
of firewalls that exist underneath the router [3]. Much like
IPS products, firewalls come in both network- and host-
based forms, depending on the usage context. Network-
based firewalls are devices employed around the perimeter
of a network to impede external threats, whereas a host-
based firewall is software set up on a single host to monitor
the network traffic of that same machine [3]. Network-
based firewalls are designed using several different preven-
tion mechanisms, such as deny by default rulesets, ingress
and egress filtering, and network address translation. Host-
based firewalls use similar rulesets when determining the
validity of network traffic but also incorporate application-
specific settings, antivirus software, and intrusion prevention
mechanisms to help decrease infection.

Applications that operate using incoming or outgoing
network traffic are potential gateways for infection, and need
to be monitored to ensure that they prevent unauthorized
machine access. If applications are configured to emphasize
security over functionality, the likelihood of infection de-
creases substantially, but there are obvious limits on how
much functionality can be eliminated. For instance, having
an e-mail client block attachments that are of a certain
extension (such as .bat) or filter spam messages greatly
decreases the chance that an infection is spread through these
media. Web browsing applications can also help impede
malware infection by filtering web site content to legitimate
data.

Finally, when keylogger detection and prevention tech-
niques are inadequate in terms of capability or performance,
user applications can simply avoid keyboard input by using
alternatives for user input. A simple alternative is the use
of automatic form fillers for web browsers; not needing
to type in sensitive information each time a specific web
page is visited reduces the leaking of private data. Another
alternative is to use a different input mechanism; for exam-
ple, audio input and appropriate speech recognition software
could effectively foil a running keylogger.

5. Sample Keylogging Projects
This section proposes a set of projects to permit the hands-

on design and development of both keylogging programs and
anti-keylogging programs. These projects were originally
developed as exercises in an independent study course taken
by the first author, and are currently being adapted for use
in courses such as Secure Coding taught by the second
author. The outlined projects may also be useful in courses
in Computer Security or Network Security.

A high-level outline of these projects is presented here,
with additional details available in an online appendix at an
authors-maintained website [17].

Project 0: Legal and Ethical Issues
Although issues of laws and ethics in the development,

usage, detection and prevention of keyloggers are beyond
the scope of this paper, these issues are a critical aspect of a
programming course in keylogging [18]. So before students
commence work on programming projects in keylogging, en-
suring that students are unambiguously aware of applicable
legal and ethical issues.

This non-programming project, therefore, provided stu-
dents with the opportunity to explore legal and ethical issues
and discuss them in class. Case studies from recent newspa-
per or online headlines will be used to drive this project. For
example, keylogger programs and keylogger hardware can
be legally developed in many jurisdictions across the world,
and even sold legally; the usage of these programs, however,
raises issues both of legality and ethics. For example, is it
acceptable for a parent to monitor their children’s activities
online? On the other hand, Is it acceptable for an employer
to monitor an employee’s activities when at work or at home
using employer equipment?

In this project, students will explore a recent example of
keylogging exploit, write an essay on the legality and ethics
involved in the exploit, and engage in a class discussion of
these issues.

Project 1: Virtual Machines and Device Drivers
This programming project introduces students to virtual

machines and device drivers to prepare them for rootkits and
keyloggers. To utilize project time effectively, students will
be assigned prior readings on virtual machines, appropriate
debuggers and driver loaders, and the Microsoft Windows
driver kits and build environments. Ideally the instructor in
a formal course offering can substitute some activities via
class demonstrations and lectures.

Student activities in this project include:
• Creation of a VMWare virtual machine.
• Inspection of the code and available documentation to

understand the design and implementation details of the
device drivers.

• Use keyboard input and a kernel-mode debugging tool.



Project 2: Introduction to Rootkits
This project focuses on helping students understand the

basic operation of a keylogging rootkit via tracing and
analyzing kernel-mode debug print statements. Based on
our experience, the Klog rootkit by Clandestiny [19] seems
appropriate for first time malware developers because it
shows both how to implement a rootkit as a Windows device
driver via detailed documentation and how to layer drivers
on top of device driver stacks [9].

Student activities in this project include:
• Creation of a VMWare virtual machine.
• Inspection of code and available documentation to un-

derstand the rootkit design and implementation details.
• Building and loading the Klog rootkit onto a virtual

machine.
• Testing the rootkit using keyboard input and a kernel-

mode debugging tool.
Students will also appreciate the issues and complexity

in keylogger implementation, and will begin to visualize
potential keylogger detection and prevention mechanisms,
and why these may potentially be hard to implement.

Project 3: Linux Keylogger Implementation
This project reinforces basic understanding of keylogger

implementation by utilizing a partially implemented Linux
keylogger and allowing students gain experience working
with Linux I/O ports, process and memory management
routines, and file I/O using the C programming language.
More specifically, students explore the implementation of
a modified but functional version of LKL GNU/Linux key-
logger [20], understand Linux system routine calls necessary
to perform keylogger-related actions, and load and test the
keylogger.

Student activities in this project include:
• Exploring the LKL keylogger via a guided step-by-step

walkthrough of the program.
• Filling in new code segments into the provided scaf-

folding structure as directed.
• Reflecting on their achieved understanding of this Linux

keylogger.
In summary, this project introduces students to keylogger

development on Linux. Although the Klog and LKL key-
loggers share fundamental concepts, students learn that the
implementation details are substantially different depending
on the target machine and execution mode.

Project 4: Networked Keylogger
Keyloggers typically use a client-server model for network

communication for some needed functionality. An attacker
runs a remote server to accept incoming connections with
the keylogger client that then takes the responsibility to
transmit data to the server for persistent storage. In this
project, students implement a server program that accepts

remote data from a keylogger and writes this data locally to
a file.

Student activities in this project include:
• Diagramming the client-server model needed in this

project, depicting the relationships and operations of
each module in the model.

• Building a server program by first understanding the
basics of UNIX networking using C.

• Addition of code needed to the existing keylogger to
establish a connection with the server and send data
across this connection for storage.

In summary, this project introduces students to keylogger
network communication, understand covert channel imple-
mentation, and help them gain invaluable insights into key-
logger detection and prevention.

Project 5: Kernel-Level Covert Channel
A realistic keylogger will utilize a form of covert channel

to send data across a network, whether it is through a
new protocol or applying clever stealth techniques such as
steganography. This project involves kernel development on
Microsoft Windows operating systems to implement a basic
covert channel by extending the Klog rootkit functionality
to send data to a remote location for storage instead of the
local host machine.

The goal is to get students thinking about kernel-level
networking complexity and the abundance of communication
possibilities. The approach that is used throughout the fol-
lowing exercises makes use of the Transport Driver Interface
(TDI) in order to add networking functionality to the rootkit.

Student activities in this project include:
• Study of kernel-level networking techniques via as-

signed readings.
• Filling in new code segments to complete the partially

implemented networking scaffold provided.
• Testing of the networked Klog rootkit using multiple

clients and a server machine to gauge the effectiveness
of the implemented covert channel, and document their
findings.

In summary, this project makes students understand the
networking complexity inherent in a real-world networked
keylogger. Lightweight and stealthy networking techniques
are difficult to implement depending on the target system.
By allowing students to work with both user- and kernel-
mode network communication they will gain a better under-
standing of the challenges faced by both the attackers and
defenders when dealing with networked keyloggers.

Project 6: Detecting Keyloggers
This final project will focus on dynamic detection tech-

niques that are aimed at detecting keyloggers installed on
a system. A wide variety of detection mechanisms and
techniques that are being researched, tested, and used in



actual anti-malware programs. Students will therefore be
required to take a step back from programming projects and
approach the problem of detecting keyloggers and similar
malware from a higher-level using the experiences gained
from the previous projects.

In this non-programming project, students will have the
opportunity to explore the different detection mechanisms
that are documented for keyloggers through a series of
directed research-based literature surveys.

Student activities in this project include:
• Exploring a multitude of keylogger detection mecha-

nisms.
• Critically analyzing a single detection mechanism and

reporting on the findings.
• Presenting their findings in class.
In summary, this project permits students to build upon

their malware development experiences and apply their
knowledge to conduct a critical assessment of malware
detection and prevention techniques.

The above collection of projects will provide students with
the background needed to understand and deal with state-
of-the-art keyloggers as they cover a wide range of related
topics in keylogger design and implementation including
legal and ethical issues, actual coding, and current practice
in this area. These projects are also motivational because
they provide a hands-on introduction to programs vital for
software security. In short, a study of keyloggers is indeed
a useful component of a modern cybersecurity education.

6. Final Remarks
This paper examined the current state of keyloggers and

how they can play an invaluable role in cybersecurity edu-
cation. We explored hardware and software keyloggers and
examined techniques to defend against keyloggers. Finally,
a set of programming projects for incorporating keyloggers
in cybersecurity education was presented.

These projects are currently being re-worked for use in
a course on Secure Coding to be offered at RIT in the fall
of 2010. The final projects used in this course, and their
efficacy will be reported in a future paper.

Acknowledgment
The first author was supported by internal grants from the

Honors Program at the Rochester Institute of Technology.
Projects described in this paper utilized the physical security
laboratory maintained by the Department of Computer Sci-
ence, as well as the virtual machine laboratory developed by
the Department of Networking, Security, and System Admin-
istration, and operated by RIT’s Information & Technology

Services division. Thanks are also due to Minseok Kwon for
providing feedback on earlier drafts of this paper.

References
[1] S. Sagiroglu and G. Canbek, “Keyloggers,” IEEE Technology and

Society Magazine, vol. 28, no. 3, pp. 10 –17, fall 2009.
[2] A. Emigh, “The crimeware landscape: Malware, phishing, identity

theft and beyond,” A Joint Report of the US Department of Homeland
Security — SRI International Identity Theft Technology Council, the
Anti-Phishing Working Group, October 2006.

[3] P. Mell, K. Kent, and J. Nusbaum, “Guide to malware incident preven-
tion and handling,” National Institute of Standards and Technology,
Gaithersburg, MD, Tech. Rep. 800-83, November 2005.

[4] ThinkGeek.com, “Spy keylogger,” 2010 (accessed May 8, 2010), http:
//www.thinkgeek.com/gadgets/security/c49f/.

[5] T. Olzak, “Keystroke logging (keylogging),” Adventures in Security,
April 2008 (accessed May 8, 2010), http://adventuresinsecurity.com/
images/Keystroke_Logging.pdf.

[6] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu, “The ghost in the browser analysis of web-based
malware,” in HotBots’07: Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets. Berkeley, CA,
USA: USENIX Association, 2007, pp. 4–4.

[7] T. Thornburgh, “Social engineering: the ’dark art’,” in InfoSecCD ’04:
Proceedings of the 1st annual conference on Information security
curriculum development. Kennesaw, Georgia: ACM, 2004.

[8] S. Shah, “Browser exploits - attacks and defense,” London, 2008
(accessed May 8, 2010), http://eusecwest.com/esw08/esw08-shah.pdf.

[9] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, 2005.

[10] J. Butler, B. Arbaugh, and N. Petroni, “Rˆ2: The exponen-
tial growth of rootkit techniques,” in BlackHat USA 2006, 2006
(accessed May 8, 2010), http://www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Butler.pdf.

[11] Symantec Corporation, “Viruses and risks,” April 2010, http://www.
symantec.com/norton/security_response/index.jsp.

[12] M. Baig and W. Mahmood, “A robust technique of anti key-logging
using key-logging mechanism,” in IEEE-IES Digital EcoSystems and
Technologies Conference, 2007, February 2007, pp. 314 –318.

[13] M. Aslam, R. N. Idrees, M. M. Baig, and M. A. Arshad, “Anti-
hook shield against the software key loggers,” in Proceedings of the
National Conference of Emerging Technologies, 2004.

[14] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell,
“A layered architecture for detecting malicious behaviors,” in RAID
’08: Proceedings of the 11th international symposium on Recent
Advances in Intrusion Detection. Heidelberg: Springer-Verlag, 2008.

[15] D. Le, C. Yue, T. Smart, and H. Wang, “Detecting kernel level
keyloggers through dynamic taint analysis,” College of William &
Mary, Department of Computer Science, Williamsburg, VA, Tech.
Rep. WM-CS-2008-05, May 2008.

[16] B. Cogswell and M. Russinovich, “Rootkitrevealer v1.71,” 2006 (ac-
cessed May 8, 2010), http://technet.microsoft.com/en-us/sysinternals/
bb897445.aspx.

[17] C. Wood and R. K. Raj, “Sample keylogging programming
projects,” 2010 (accessed May 8, 2010), http://www.cs.rit.edu/~rkr/
keylogger2010.

[18] B. Whitty, “The ethics of key loggers,” Article on Technibble.com,
June 2007 (accessed May 8, 2010), http://www.technibble.com/
the-ethics-of-key-loggers/.

[19] J. Todd, “Clandestine file system driver,” 2005 (accessed May 8,
2010), http://www.rootkit.com/newsread.php?newsid=386.

[20] LKL, “Linux keylogger,” 2010 (accessed May 8, 2010), http://
sourceforge.net/projects/lkl/.


