
Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Table of Contents

COMMAND EXECUTION...2
FILENAME SUBSTITUTION..3

VARIABLES...3
VARIABLE SUBSTITUTION..3
SPECIAL PARAMETERS..4
SPECIAL VARIABLES...4
JOB CONTROL...5
QUOTING..6
OPTIONS..6

Enabling/Disabling Options...6
CONDITIONAL EXPRESSIONS..7
CONDITIONAL CONTROL COMMANDS...10
BUILTIN COMMANDS..13
RESTRICTED SHELL..14
DEBUGGING BOURNE SHELL SCRIPTS...14
FUNCTIONS..15
ALIASES..15
COMMAND SEARCH PRIORITY..16
FILES...16
SET and UNSET commands...17
REGULAR EXPRESSIONS...17
echo COMMAND:..18
PROMPT MANIPULATION...18
Job control (disown) Exercise: ...19
Bash session recording:..19
Monitoring a bash session from one or more users:...19
Bash options:...20
Command History and command line editing:...21
EXAMPLE COMMANDS..22

68_Bash_Shell_Reference.sxw - 1

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

COMMAND EXECUTION

The primary prompt ($PS1 - default $ or # for super-users) is displayed whenever the
Bourne shell is ready to read a command.
The secondary prompt ($PS2 - default >) is displayed when the command is incomplete.

Command Execution Format
command1 ; command2 execute command1 followed by command2
command & execute command asynchronously in the background
command1 | command2 pass the standard output of command1 to standard input of

command2
command1 && command2 execute command2 if and only if command1 returns zero

(successful) exit status
eg. /sbin/lsmod | grep -q ^ipw2200 && { rmmod ipw2200; modprobe ipw2200; }

command1 || command2 execute command2 if and only if command1 returns non-zero
(unsuccessful) exit status

command \ continue command onto the next line. '\' must be the last char.
if { command ; } execute command in the current shell.

eg. if { cat /etc/motd &>/dev/null ; } ; then
if (command) execute command in a subshell.

eg. if (cat /etc/motd &>/dev/null) ; then

REDIRECTING INPUT/OUTPUT

The Bourne shell provides a number of operators that can be used to manipulate
command input/output, and files.

I/O Redirection Operators

<file redirect standard input from file
>file redirect standard output to file. Create file if non-existent, else overwrite.

>>file append standard output to file; Create file if non-existent.
<&- close standard input
>&- close standard output
<&n redirect standard input from file descriptor n
>&n redirect standard output to file descriptor n
n<file redirect file descriptor n from file
&>file redirect file both stdout(1) and stderr(2) file descriptors to file

n>file redirect file descriptor n to file. Create file if non-existent, else overwrite.
n>>file redirect file descriptor n to file. Create file if non-existent.

n<&m redirect file descriptor n from file descriptor m
n>&m redirect file descriptor n to file descriptor m
n<<x redirect to file descriptor n until x is read

n<<-x same as n<<x, except ignore leading tabs

n<&- close file descriptor n for standard input

n>&- close file descriptor n for standard output
&>n redirect standard output and standard error to file descriptor n

68_Bash_Shell_Reference.sxw - 2

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

FILENAME SUBSTITUTION

File name substitution is a feature which allows special characters and patterns to substituted with
file names in the current directory, or arguments to the case and test commands.

Pattern-Matching Characters/Patterns
? match any single character
* match zero or more characters, including null
[abc] match any characters between the brackets
[x-z] match any characters in the range x to z
[a-ce-g] match any characters in the range a to c or e to g
[!abc] match any characters not between the brackets
[!x-z] match any characters not in the range x to z

. strings starting with . must be explicitly matched

VARIABLES

Variables are used by the Bourne shell to store values. Variable names can begin with an
alphabetic or underscore character, followed by one or more alphanumeric or underscore
characters. Other variable names that contain only digits or special characters are reserved for
special variables (called parameters) set directly by the Bourne shell.

Variable Assignment Format
variable=, variable="" declare variable and set it to null

variable=value assign value to variable
variable=value command Set the variable with value and run the command

VARIABLE SUBSTITUTION

Variable values can be accessed and manipulated using variable expansion. Basic expansion is
done by preceding the variable name with the $ character. Other types of expansion use default
or alternate values, assign default or alternate values, and more.

Variable Expansion Format
$variable value of variable

${variable} value of variable

${#variable} numeric length(number of chars.) of value of variable

${variable:-word} value of variable if set and not null, else print word .
If : is omitted, variable is only checked if it is set.
eg. echo ${USER:-halo} ; echo $USER

${variable:+word} value of word if variable is set and not null, else nothing is
substituted. If : is omitted, variable is only checked if it is set.
eg. echo ${USER:+halo} ; echo $USER

${variable:=word} value of variable if set and not null, else variable is set to word,
then expanded. If : is omitted, variable is only checked if it is set.

${variable:?} value of variable if set and not null, else print "variable: parameter
null or not set". If : is omitted, variable is only checked if it is set.

${variable:?word} value of variable if set and not null, else print value of word and
exit. If : is omitted, variable is only checked if it is set.

68_Bash_Shell_Reference.sxw - 3

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

SPECIAL PARAMETERS

Some special parameters are automatically set by the Bourne shell, and usually cannot be
directly set or modified. The $n can be modified by the command set aaa bbb ccc ...

$n Positional parameter n max. n=9 ($0 is the name the shell script)
${nn} Positional parameter nn (for nn>9)
$# Number of positional parameters (not including the script program)
$@, $* All positional parameters
 "$@" Same as "$1" "$2" . . . "$n"
 "$*" Same as "$1c$2c . . . $n" c = content of $IFS (default is space)
$? Exit status of the last command
$$ Process ID of the current shell
$- Current options in effect
$! Process ID of the last background command
$is Name of the curent shell (in this case 'bash')

The shift command:
The command shift moves the assignment of the positional parameters to the left.
eg. script1 aaa bbb ccc ddd
(inside the script script1) ($1 $2 $3)

echo $1 $2 $3 -------> result aaa bbb ccc

shift ($1 $2 $3)
echo $1 $2 $3 -------> result bbb ccc ddd

SPECIAL VARIABLES

There are a number of variables provided by the Bourne shell that allow you to customize
your working environment. Some are automatically set by the shell, some have a default
value if not set, while others have no value unless specifically set.

Special Variables (keywords)

CDPATH search path for cd when not given a full pathname;
multiple pathnames are separated with a colon (no default)

HOME default argument for the cd command; contains the path of home directory
IFS internal field separator (default is space, tab, or newline)
LANG contains the name of the current locale
MAIL name of mail file to use if MAILPATH not set
MAILCHECK specifies how often to check for mail in $MAIL or $MAILPATH.

If set to 0, mail is checked before each prompt. (default 600 seconds)
MAILPATH contains a list of colon-separated file names that are checked for mail. File

names can be followed by a "%" and a message to display each time new
mail is received in the mail file. (no default)

PATH search path for commands; multiple pathnames are separated with a colon
(default /bin:/usr/bin:)

PS1 primary prompt string (default: $, #)
PS2 secondary prompt string (default: '>')

68_Bash_Shell_Reference.sxw - 4

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

SHACCT Contains the name of the accounting file that contains accounting records
for user shell procedures.

SHELL Pathname of the shell
TERM Specifies your terminal type: xterm=in X-window environment

 screen='konsole' in 'screen' mode linux=from tty virtual terminal
 dumb=system(eg. shell scripts executed from cron)

JOB CONTROL

Job control is a process manipulation feature found in the Bourne shell when invoked as
jsh. It allows programs to be stopped and restarted, moved between the foreground and
background, their processing status to be displayed, and more. When a program is run in
the background, a job number and process id are returned.

Job Control Commands
bg [%n] Resume current or stopped job n in the background
fg [%n] Move current or background job n into foreground
jobs [option] Display status of all jobs

-n Status since last job change
-r List of running jobs only
-s List stopped jobs only
-l display status of all jobs and their process ID's
-p display process ID's of all jobs

jobs -x command Replace job n in command with corresponding process group
id, then execute command

kill [-signal] %n Send specified signal to job n (default 15)
stop %n Stop job n
stty [-]tostop Allow/prevent background jobs from generating output
suspend Suspend execution of current shell
wait Wait for all background jobs to complete
wait %n Wait for background job n to complete
Ctl-z Stop current job
disown [option] [%n] Disown the last activated(+) background job or job %n.

A disowned job will not die when shell dies. init will be its father.
-a Disown all the background jobs
-r Disown only the running jobs
-h Disown active job (+)from shell only when shell is closed:

Job Name Format
%%, %+ current job
%n job n
%- previous job
%string job whose name begins with string
%?string job that matches part or all of string

68_Bash_Shell_Reference.sxw - 5

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

QUOTING

Quotes are used when assigning values containing whitespace or special characters, to
delimit variables, and to assign command output. They also improve readability by
separating arguments from commands.

'...' remove the special meaning of enclosed characters except '
"..." remove the special meaning of enclosed characters except $, ', and \
\c remove the special meaning of character c
`command` replace with the standard output of command . Same as $(command)

Meta-
characters in
bash:

In the open: $ & ; () { } [] * ? ! < > \
In Double Quotes " ": $! \

OPTIONS

The Bourne shell has a number of options that specify your environment and control
execution. They can be enabled/disabled with the set command or on the sh or jsh
command line. Some options are only available on invocation.

Enabling/Disabling Options

sh [-/+options] enable/disable the specified options
jsh [-/+options] enable/disable the specified options; enable job control

(see JOB CONTROL section)
set [-/+options] enable/disable the specified options (see also set)

List of Options

-a automatically export variables that are defined
-c commands read and execute commands (w/sh only)
-e exit if a command fails
-f disable file name expansion
-h remember locations of functions on definition instead of on execution

(see also hash)
-i execute in interactive mode (w/sh only)
-k put variable assignment arguments in environment
-n read commands without executing them
-p do not set effective ids to real ids
-r run a restricted shell (w/sh only)
-s read commands from standard input (w/sh only)
-t exit after reading and executing one command
-u return error on substitution of unset variables
-v display input lines as they are read
-x display commands and arguments as executed

68_Bash_Shell_Reference.sxw - 6

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

CONDITIONAL EXPRESSIONS

The test and [...] commands are used to evaluate conditional expressions with file
attributes, strings, and integers. The basic format is:

 test expression
 or
 [expression]

Where expression is the condition you are evaluating. There must be whitespace after the
opening bracket, and before the closing bracket. Whitespace must also separate the
expression arguments and operators. If the expression evaluates to true, then a zero exit
status is returned, otherwise the expression evaluates to false and a non-zero exit status is
returned.

Test File Operators
-a file True if file exists.

-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-e file True if file exists.

-f file True if file exists and is a regular file.

-g file True if file exists and is set-group-id.

-h file True if file exists and is a symbolic link.

-k file True if file exists and its ``sticky'' bit is set.

-p file True if file exists and is a named pipe (FIFO).

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-t fd True if file descriptor fd is open and refers to a terminal.

-u file True if file exists and its SUID bit is set.

-w file True if file exists and is writable.

-x file True if file exists and is executable.

-O file True if file exists and is owned by the effective UID.

-G file True if file exists and is owned by the effective GID.

-L file True if file exists and is a symbolic link.

-S file True if file exists and is a socket.

-N file True if file exists and has been modified since it was last read.

file1 -nt file2 True if file1 is newer (according to modification date) than
file2, or if file1 exists and file2 does not.

file1 -ot file2 True if file1 is older than file2, or if file2 exists and file1
does not.

68_Bash_Shell_Reference.sxw - 7

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

file1 -ef file2 True if file1 and file2 refer to the same device and inode
numbers.

-o optname True if shell option optname is enabled.
See the list of options under the description of the -o option to the
set builtin below.

Test String Operators
-n string True if length of string is not zero
-z string True if length of string is zero
string True if string is not set to null
string1 = string2

string1 == string2

True if string1 is equal to string2

“ “ “ “ “ “ “ “
string1 != string2 True if string1 is not equal to string2
string1 < string2 True if string1 sorts before string2 lexicographically in

the current locale.
string1 > string2 True if string1 sorts after string2 lexicographically in the

current locale.
string = pattern True if string matches pattern
string != pattern True if string does not match pattern

Test Integer Operators
exp1 -eq exp2 True if exp1 is equal to exp2 eg. ["$#" -eq 4]
exp1 -ne exp2 True if exp1 is not equal to exp2 eg. test "$#" -ne 3
exp1 -le exp2 True if exp1 is less than or equal to exp2
exp1 -lt exp2 True if exp1 is less than exp2
exp1 -ge exp2 True if exp1 is greater than or equal to exp2
exp1 -gt exp2 True if exp1 is greater than exp2

Other test Operators
! exp True if the given expression is false eg. [! -r /etc/motd]
exp1 -a exp2 True if both exp1 and exp2 evaluate to true (see example below)
exp1 -o exp2 True if either exp1 or exp2 evaluate to true
\(exp \) True if exp is true; used to group expressions

(\ used to escape parentheses) Use space

eg : ["$A" = "$B" -a \("$C" = "$D" -a "$E" = "$F" \)]

 ^ ^ ^ ^ ^
Note: always use a space between the [] \(\) and the
 expressions like seen in the above example pointed by '^'.

Example of logical AND of commands
if (cat /etc/motd &>/dev/null && cat /etc/fstab
&>/dev/null) ; then echo "all OK" ; fi

Example of logical OR of commands
if (cat /etc/motd &>/dev/null || cat /etc/fstab
&>/dev/null) ; then echo "all OK" ; fi

68_Bash_Shell_Reference.sxw - 8

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Arithmetic Operators (let)
let can also be replaced by $[...] eg. B=$[$A/4]
var++ Variable increment eg. let A++ increment $A
var-- Variable decrement eg. let A-- decrement $A
+ - Unary minus and plus eg. let B=-$A B=B-A
** Exponentiation eg. let B="$A**2" B=A^2
* / Multiplication, division, eg. let B="$A*3" B=Ax3
% Division remainder eg. let B=$A%3 B=A/3
+ - addition, subtraction eg. let B=$A+2 B=A+2
<< >> Bitwise shifting eg. let B="$A<<3" B=A left shift 3 bits
& bitwise AND eg. let B="$A&14" B=A AND 14(bin)
^ bitwise exclusive OR eg. let B="$A^14" B=A XOR 14(bin)
| bitwise OR eg. let B="$A|14" B=A OR 14(bin)
(...) Expression grouping eg. let B="($A-5)*3" B=(A-5)x3

Assignment operations (the result goes into the original variable)
=n Change of value of Variable to n eg. A=50
+=n Add value of n to Variable eg. let A+=1 A=A+1
-=n Substract value of n from Variable eg. let A-=1 A=A-1
=n Multiply Variable by n (inside " ") eg. let "A=3" A=Ax3
/=n Divide Variable by n eg. let A/=4 A=A/4
%=n Remainder of Variable divided by n eg. let A%=3 A=Remainder A/3
<<= Bitwise shift to the left (inside " ") eg. let "A<<=3" A=A left shift 3 bits
>>= Bitwise shift to the right (inside " ")eg.let "A>>=3" A=A right shift 3 bits
&= Bitwise AND (inside " ") eg. let "A&=14" A=A and 14 (Bitwise)
^= Bitwise exclusive OR eg. let A^=14 A=A XOR 14(bin)
|= Bitwise OR (inside " ") eg. let "A|=14" A=A OR 14(bin)

Sample Integer Expression Assignments with let
Assignment Value

let x= $x

x++ x=x+1

x-- x=x-1

1+4 5

"1 + 4" 5

"(2+3) * 5" 25 (5 *5) expression in parentheses is processed first
"2 + 3 * 5" 17 2 + (3 *5) (* is processed first)
"17 / 3" 5

"17 % 3" 2 17 / 3 = 5 remainder = 2
"1<<4" 16 00000001 shifted left 4 bits = 00010000 (16)
"48>>3" 6 00110000 shifted right 3 bits = 00000110 (6)
"17 & 3" 1

"17 | 3" 19

"17 ^ 3" 18
• Other integer operators

expr var1 + var2 eg. A=2; B=5; C=$(expr $A + $B); or C=$[$A+$B]

68_Bash_Shell_Reference.sxw - 9

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

CONDITIONAL CONTROL COMMANDS

------for-------
for variable in word1 word2 . . . wordn
do

 commands
done

Executes commands once for each word, setting variable to successive words each
time.

for ((var=; $var<=limitvalue; var++))
do

commands
done

Executes commands for each loop where var is an integer variable which is set initially
with initialvalue, is incremented of '1' at each loop(var++) and will keep looping until
var has exceeded the limitvalue.
eg1. for ((i=100; $i>=10; i=i-5)) (from 100 to 10(included) step -5)
eg.2 for ((i=1; $i<=10; i++))

do
echo "Value of \$i is $i"

done
Loops 10 times. For the initial loop the nalues of $i is '1'. At each subsequent loop the
value of $i is incremented. The loop is not any more executed when the value of $i is
higher than 10.

for variable
do

 commands
done

Execute commands once for each positional parameter, setting variable to successive
positional parameters each time.

------until------
until command1 or
until test
do

 commands
done

Execute commands until command1 returns a zero exit status

------while------
while command1 or
while test
do

 commands
done

Execute commands while command1 returns a zero exit status.

68_Bash_Shell_Reference.sxw - 10

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Example of reading a file which has a fixed number of columns(6):
while read dev mountpt fs options dump fsck; do

echo dev mountpt fs options dump fsck
done </etc/fstab

or

Creating a list of empty directories
find $StartDir -type d >/tmp/dirlist
while { read dir ; }; do
 if ! (ls -1 "$dir"| egrep -v "^\.$|^\.\.$" &>/dev/null); then
 echo "$dir"
 fi
done < /tmp/dirlist

------if------
if command1 or
if (command1) or
if { command1 ; } ;then

 commands
fi

Execute commands if command1 returns a zero exit status.
Command in (...) are executed in a forked shell, commands in { ... ; } are
executed in the same shell. The ; at the end of commands, the spaces between { } and
the commands are important.

if test_expression ; then

 commands
fi

Execute commands if test_expression is true (returns a zero exit status).
test_expression is in format test expression or is enclosed in [expression].
It uses the format listed in page 8 & 9.

if command1 ; then

 commands2
else

 commands3
fi

Execute commands2 if commands1 returns a zero exit status, otherwise execute
commands3.

if command1

then
 commands

elif command2 ; then
 commands

. . .
elif commandn ; then

68_Bash_Shell_Reference.sxw - 11

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

 commands
else

 commands
fi

Ifcommand1 returns a zero exit status, or command2 returns a zero exit status, or
commandn returns a zero exit status, then execute the commands corresponding to the
if/elif that returned a zero exit status. Otherwise, if all the if/elif commands return
a non-zero exit status, execute the commands between else and fi.
Extra if examples:

eg1. if [“$#” -eq 2]
 or if test “$#” -eq 2

eg2. if [! -f $AA -a -f $BB]; then mv $AA $BB; fi

eg3: Logical AND of commands
if (cat /etc/motd &>/dev/null && cat /etc/fstab &>/dev/null); then

echo "all OK"
fi

eg4: Logical OR of commands
if (cat /etc/motd &>/dev/null || cat /etc/fstab &>/dev/null); then

echo "all OK"
fi

------case------
case value in

 pattern1) commands1 ;;
 pattern2) commands2 ;;
 . . .
 patternn) commandsn ;;

esac

Execute commandsx associated with the pattern that matches value; patterns can
contain the special filename substitution characters like *, ?, and []. Multiple patterns
can be given but must be separated with a '|' character.

--------Interrupting Loops------

for, while, or until loops can be interrupted by break or continue commands.

break command transfers the control to the command after the done command,
terminating the execution of the loop.

continue command transfers control to the done command, which continues execution
of the loop.

68_Bash_Shell_Reference.sxw - 12

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

BUILTIN COMMANDS

: null command; returns zero exit status
. file read and execute commands from file in current shell
begin comments; terminate with a newline
alias [alias=...] Displays or defines aliases
break exit from current for, until, or while loop
break n exit from nth enclosing for, until, or while loop
continue jumps to the next done statement in a for, until, or while loop
cd dir change current directory(pwd) to dir diretory

If dir not specified, change directory to $HOME.
echo args Display args
env Displays all environment variables and functions tagged for export.
eval command evaluate command and execute the result .

eg. L="l" ; eval $L"s" Runs ls command
exec command replace current process with command
exit exit from current program with the exit status of the last command. If

given at the command prompt, terminate the login shell.
exit n exit from the current program with exit status n
export display a list of exported variables
export var export variable var
getopts parse positional parameters and options
hash display a list of hashed commands
hash commands remember locations of commands by putting them in the hash table
hash -r remove all commands from the hash table
hash -r cmd remove command(cmd) from the hash table
newgrp change the group-id to the default group-id
newgrp gid change group id to gid
pwd display the pathname of the current directory
read varlist read a line from standard input; assign each word on the line to each

variable. Words delimited with $IFS.
readonly display a list of readonly variables
readonly var set variable var to be readonly
return exit from a function with return status of the last command
return n exit from a function with return status n
set display a list of current variables and their values, including functions
set args set positional parameters to args
set -args set positional parameters that begin with '-'
set [options] enable/disable options (see OPTIONS section)
shift shift positional parameters once to the left
shift n shift positional parameters n times to the left
test expr. evaluate expr. (see CONDITIONAL EXPRESSIONS section)
times Show total user & system time for current shell and its child

processes

68_Bash_Shell_Reference.sxw - 13

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

trap display list of current traps
trap commands
signals

execute commands when signals are received

Trap "" signals ignore signals
trap signals,
trap -signals

reset traps to their default values

trap commands 0 execute commands on exit from the shell
type command display information and location for command
ulimit [type]
[options] n

set a resource limit to n. If n is not given, the specified resource limit
is displayed. If no option is given, the file size limit (-f) is displayed.
If no type is given, both limits are set, or soft limit is displayed;

type -H hard limit
-S soft limit

options -a displays all current resource limits
-c n set core dump size limit to n 512-byte blocks
-d n set data area size limit to n kilobytes
-f n set child process file write limit to n 512-byte blocks (default)

-m n set physical memory size limit to n kilobytes
-s n set stack area size limit to n kilobytes
-t n set process time limit to n seconds
-vn set virtual memory size to n kilobytes

umask display current file creation mask value
umask mask set default file creation mask to octal mask
unset variable remove definition of variable
wait [n] wait for execution (see JOB CONTROL section)

RESTRICTED SHELL

Running the restricted shell rsh is equivalent to sh, except the following are not allowed:
- changing directories
- setting the value of PATH or specifying the path of a command
- running command of which their names contain one or more '/'
- and redirecting output with '>' or '>>'.

DEBUGGING BOURNE SHELL SCRIPTS

The Bourne shell provides a number of options that are useful in debugging scripts:
-n causes commands to be read without being executed and is used to check for

syntax errors.
-v option causes the input to displayed as it is read.
-x option causes commands in Bourne shell scripts to be displayed as they are
 executed. This is the most useful, general debugging option.

For example, tscript could be run in trace mode if invoked: sh -x tscript

68_Bash_Shell_Reference.sxw - 14

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

FUNCTIONS

- They are normally used like fast local mini-scripts within a shell which need to be
 called more than once within the interactive shell or script.

- Variables can be passed-on to functions and will be recognized as $1 $2 $3 etc.
 In fact the following variables are local within a function:

$1 - $9 Positional parameters
$# Number of positional parameters
$* "$1 $2 $3 ..."
$@ "$1" "$2" "$3" ...

- The Positional parameter $0 and all other variables stay global within the shell
 unless the command local VariableName is given within the function.
 Within a function, the variable FUNCNAME is used instead of the $0.

- Global shell or exported variables can be changed within the function.

- Functions do not return variables except for the return number,
 eg. return 5. return command will also terminate the function immediately.
 The return number can then be read as a normal exit code using the $?.

- In scripts normally functions are included at the top so that they are read in first.

- Environment functions can be put into a file and read in with the '.' command.

- Functions may be recursive. No limit is imposed on the number of recursive calls.

- Functions can be exported, using the command: export -f FunctionName

- Function syntax:
FunctionName() { or function FunctionName {

commands ; commands ;

} }

- The command: unset -f FunctionName Deletes an existing function.

ALIASES

- Aliases are normally used to create command shortcuts(short names).
- Aliases are NOT exportable: not passed-on to sub-shells or child process.
- Aliases are not recognized in scripts.
- An alias can call another alias within the command.

eg. alias li="ls -l"; alias al="li -a" : al calls the alias 'li'
- Parameters added to alias will be added at the end of the real command.
- The parameters variables ($1, $2, $3 ...etc.) cannot be used within aliasses.
- Aliases are often defined in a file run within a script
 (eg. ~/.bashrc or ~/.profile) with the dot '.' command.

- Alias commands:
 alias AliasName="command(s)..." Sets a new alias value
 eg. alias cp="cp -i"replaces the original command cp with cp -i for
 interactive copying.(asks before overwriting files)
 unalias AliasName Un-sets(deletes) the alias.
 alias Displays all the current shell aliases.

68_Bash_Shell_Reference.sxw - 15

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

COMMAND SEARCH PRIORITY

When a command is run, bash tries to find the command in the following sequence:
- Aliases
- Functions
- Built-in commands
- PATH

the first command found is the one which is run.
To force using a builtin command instead of an alias or a function (in the case the

 same command name exists as alias or function), use the command builtin.
eg. builtin cat /etc/fstab

FILES

Files read Interactive-login Bash
(eg. bash --login or su - username or from login program)

/etc/profile Executed first from interactive login shell. It contains system-wide
environment settings. If existent, it is read in and executed before
$HOME/.profile.

/etc/bash.bashrc Executed first from interactive login shell. (SuSE 9.2 and up use it)
Same purpose as /etc/profile

~/.bash_profile Individual users shell settings.
If exist is executed after /etc/profile.

~/.bash_login Executed if ~/.bash_profile doesn't exist.
~/.profile Executed if ~/.bash_login or ~/.bash_profile doesn't exist.

Interactive NON-Login Bash
(eg. su username or bash -c cmd)

~/.bashrc The only script executed when started.
And inherits from parent bash environment.

BASH_ENV

ENV

NON-Interactive NON-Login Bash(forked when scripts are run)

No above scripts are executed but inherits env. from parent.
Reads file in the variable BASH_ENV.
Reads file in the variable ENV if BASH_ENV doesn't exist.

Extra files
/etc/inputrc System readline initialization file

~/.inputrc Individual readline initialization file

~/.bash_logout Executed when a login shell exits.

68_Bash_Shell_Reference.sxw - 16

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

SET and UNSET commands

 set
Syntax: set [--abefhkmnptuvxBCHP] [-o option] [arg ...]
The set command is used to:
- Set bash operating attributes(using options)
- To assign values to positional parameters: eg.
 set -a Automatically mark variables and functions which are modified

or created for export to the environment of subsequent commands.
 set aaa bbb ccc

Assigns the value aaa to $1, bbb to $2 and ccc to $3.
 unset

Syntax: unset [-fv] [name ...]

 For each name, remove the corresponding variable or function.
Each unset variable or function is removed from the environment passed to

 subsequent commands. If any of RANDOM, SECONDS, LINENO, HISTCMD,
 FUNCNAME, GROUPS, DIRSTACK are unset, they lose their special
 properties, even if they are subsequently reset.

The exit status is true unless a name does not exist or is readonly.

-v If no options are supplied, or the -v option is given, each name refers to a
 shell variable.

Read-only variables may not be unset.

-f Each name refers to a shell function, and the function definition is removed.

 eg. unset DISPLAY : Deletes the variable DISPLAY
unset -f startx : Deletes the function startx

REGULAR EXPRESSIONS

c non-special character c
\c special character c
^ beginning of line
$ end of line
. any single character
[abc] any character a, b, or c
[a-c] any character in range a through c
[^abc] any character except a, b, or c
[^a-c] any character except characters in a-c
\n nth \(...\) match (grep only)
rexp* zero or more occurrences of rexp
rexp+ one or more occurrences of rexp
rexp? zero or one occurrence of rexp
rexp1 |
rexp2

regular expressions rexp1 or rexp2

\(rexp\) tagged regular expression rexp (grep)
(rexp) regular expression rexp (egrep)

68_Bash_Shell_Reference.sxw - 17

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

echo COMMAND:

echo -e "...\a..." Alert (bell) --Note: only in Virtual Terminal(not in xterm)
"" "" "...\b..." Backspace
"" "" "...\c..." Suppress trailing new line
"" "" "...\f..." Form Feed
"" "" "...\n..." New Line echo -e "\012"
"" "" "...\r..." Carriage Return
"" "" "...\t..." Horizontal Tab echo -e "\011"
"" "" "...\v..." Vertical Tab
"" "" "...\\..." Litteral Baskslash \
"" "" "...\'..." Single quote
"" "" "...\nnn..." The eight-bit character whose value is the octal

value nnn (one to three digits)
"" "" "...\xHH..." The eight-bit character whose value is the hexadecimal

value HH (one or two hex digits)
"" "" "...\cx..." A <Control-x> character

PROMPT MANIPULATION

The shell PROMPT display can be modified by changing the value of the PS1 variable to
any desired text. The following special character combinations(\x) introduces the
corresponding entry into the PROMPT as well.

\a a bell character.
\d the date, in "Weekday Month Date" format (e.g., "Tue May 26").
\e an escape character.
\h the hostname, up to the first '.'
\H the hostname.
\n newline.
\s the name of the shell, the basename of $0 (the portion following the final slash).
\t the time, in 24-hour HH:MM:SS format.
\T the time, in 12-hour HH:MM:SS format.
\@ the time, in 12-hour am/pm format.
\v the version of Bash (e.g., 2.00)
\V the release of Bash, version + patchlevel (e.g., 2.00.0)
\w the current working directory.
\W the basename of $PWD.
\u your username.
\! the history number of this command.
\# the command number of this command.
\$ if the effective UID is 0, #, otherwise $.
\nnn the character corresponding to the octal number nnn.
\\ a backslash.
\[begin a sequence of non-printing characters.

This could be used to embed a terminal control sequence into the prompt.
\] end a sequence of non-printing characters.
eg. PS1=\u@\h:\w > Could display a prompt as follows:

mario@topserver:/root >

68_Bash_Shell_Reference.sxw - 18

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Job control (disown) Exercise:

• - Start xterm and in this xterm start another xterm (xterm &)
- close first xterm.....the second is not closed.

• - Start xterm
- in xterm start wterm in background (wterm &)
- Close xterm.....the wterm is also closed (owned by xterm)

• - Start xterm
- in xterm start wterm (wterm &)
- in xterm > jobsshows the background job
- in xterm > disown the last active job is disowned
- Close xterm.....the wterm is NOT closed.

Bash session recording:

A bash session(commands and results) can be recorded into a file by entering the
command 'script filename' before starting to record . A new shell will then start
and all the commands typed and their results will be saved into the file filename.
To stop the recording of the session, compose the <Ctgrl-D> key combination.

Monitoring a bash session from one or more users:

This above method can also be used for monitoring/teaching purposes if other users
read live this recorded file using the command tail -f filename. There will be a
1 second time delay between the original and the file read.
Another variation of this technique is to send the output of script into a pipe and to
read it from one user only via the cat command.
eg.
IN THE ORIGINAL TERMINAL:
mkfifo /tmp/session
script /tmp/session
start typing commands
................
<Ctgrl-D> to terminate script

IN THE LISTENING TERMINAL:
cat /tmp/session

Note: If in the original terminal mc is started, then some strange display of mc will
occur in the listening terminal unless the dimensions and fonts are the same as the
original terminal.

68_Bash_Shell_Reference.sxw - 19

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Bash options:

Bash can be started with different options which alter the way bash works.

SHELLOPTS Environment variabble storing the current bash options
set -o option Command used to turn a current bash option ON.
set +o option Command used to turn a current bash option OFF.

eg.1
set -o emacs Sets the emacs editing keys/commands:default
set -o vi Sets the vi editing keys/commands

eg.2 set -o noclobber
Prevents commands from overwriting files when redirections (>) are used.
eg.
set -o noclobber (or set -C)
touch xxxlog
ls /home > xxxlog
bash: xxxlog: cannot overwrite existing file
ls /home >| xxlog (>| can override the overwriting restrictions)

eg.3 set -x
Sets bash in debugging mode. It will display the commands as they are
really executed by bash after bash has done its first scanning of the
command. This first scanning of the command is normally done to allow bash
to expand the file globing characters.

68_Bash_Shell_Reference.sxw - 20

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Command History and command line editing:

Command history navigation:

set +o history Turns history recording OFF
set -o history Turns history recording ON
$HISTFILE Variable containing the history file name.

Normally ~/.bash_history
$HISTFILESIZE Variable containing the maximum number of commands

the history file can contain. Default=500
$HISTSIZE Variable containing the maximum number of commands

in history. Default=500
history Displays the whole history
history 10 Displays the last 10 lines of history
fc -l -10 Displays the last 10 lines of history
fc -l Pattern Search the history for Pattern & display the result
<Ctrl>-r Reverse search in history
history -c Clears the whole history

!! Most recent command
!n Command n in the history
!-n Backwards command n in history
! string Last recent command starting with string
!? string Last recent command containing with string
^string1^string2

Quick substitution string1 to string2
<Ctrl>-p Previous Line in history (also up-arrow)
<Ctrl>-n Next Line in history (also down arrow)
<Alt>-< Go to beginning of History
<Alt>-> Go to end of History

Command Line Editing commands (E-macs editing cmds -readline library)

<Ctrl>-l Clear screen
<Ctrl>-b Back one character (also left arrow)
<Ctrl>-f Foreward one character (also right arrow)
<Ctrl>-a Go to beginning of line (also Pos1 key)
<Ctrl>-e Go to end of line (also Ende key)
<Ctrl>-k Delete text from cursor to end of line
<Ctrl>-d Delete a character on the right (or under cursor)
<Alt>-d Delete from crursor to end of current word
<Ctrl>-y Paste text previously cut (deleted)

68_Bash_Shell_Reference.sxw - 21

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

EXAMPLE COMMANDS

Execute multiple commands on one line
 pwd ; ls tmp ; echo "Hello world"
Run the find command in the background
 find . -name tmp.out -print &
Connect the output of who to grep
 who | grep fred
Talk to fred if he is logged on
 { who | grep fred ; } && talk fred
Send ls output to ls.out
 ls > ls.out
Append output of ls to ls.out
 ls >> ls.out
Send invite.txt to dick, jane, and spot
 mail dick jane spot < invite.txt
Send the standard error of xsend to stderr.out
 xsend file 2>stderr.out
List file names that begin with z
 ls z*
List two, three, and four character file names
 ls ?? ??? ????
List file names that begin with a, b, or c
 ls [a-c]*
List file names that do not end with .c
 ls *[!.c]
Set NU to the number of users that are logged on
 NU=`who | wc -l` or NU=$(who | wc -l)
Set TOTAL to the sum of 4 + 3
 TOTAL=`expr 4 + 3` or TOTAL=$[4+3]
Set and export the variable LBIN
 LBIN=/usr/lbin; export LBIN
Unset variable LBIN
 unset LBIN
Set SYS to the Operating System Name if not set, then display its value
 echo ${SYS:=`uname -o`}
Display an error message if XBIN is not set
 : $X{BIN:?}
Display $HOME set to /home/anatole
 echo '$HOME set to' $HOME
Display the value of $TERM
 echo $TERM
Bring background job 3 into the foreground
 fg %3
Stop the find job
 stop %find
Display the number of positional parameters
 echo "There are $# positional parameters"

68_Bash_Shell_Reference.sxw - 22

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Display the value of positional parameter 2
 echo $2
Display all information about current jobs
 jobs -l
Terminate job 5
 kill %5
Increment variable X
 X=`expr $X + 1` or let X++ or X=$[$X+1]
Set variable X to 20 modulo 5
 X=`expr 20 % 5`
Set diagnostic mode
 set -x
Run the dbscript in noexec mode
 sh -n dbscript
Check for new mail every 2 minutes
 MAILCHECK=120; export MAILCHECK
Set the primary prompt string PS1
 PS1='Good morning!'; export PS1
Check if VAR is set to null
 [-z "$VAR"] && echo "VAR is set to null"
Check if VAR is set to ABC
 ["$VAR" = ABC]
Check if xfile is empty
 test ! -s xfile
Check if tmp is a directory
 [-d tmp]
Check if file is readable and writable
 test -r file -a -w file
Display an error message, then beep(doesn't work inside xterm)
 echo "Unexpected error!\007"
Display a message on standard error
 echo "This is going to stderr" >&2
Display a prompt and read the reply into ANSWER
 echo "Enter response: \c"; read ANSWER
or echo -n "Enter response: "; read ANSWER
Create a function md that creates a directory and cd's to it
 md() { mkdir $1 && cd $1 ; pwd ; }
Set a trap to ignore signals 2 and 3
 trap "" 2 3
Set X to 1 and make it readonly
 X=1 ; readonly X
Set VAR to 1 and export it
 VAR=1 ; export VAR or export VAR=1
Set the positional parameters to A B C
 set A B C
Set the file size creation limit to 1000 blocks
 ulimit 1000
Disable core dumps
 ulimit -c 0

68_Bash_Shell_Reference.sxw - 23

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Add group write permission to the file creation mask
 umask 013
Display the first and third fields from file
 awk '{print $1, $3}' filename
or sed 's/ */ /' filename | cut -d" " -f1,3
Display the first seven characters of each line in tfile
 cut -c1-7 tfile
Display the first and third fields from the /etc/passwd file
 cut -f1,3 -d":" /etc/passwd
Display lines in names that begin with A, B, C, or Z
 egrep '[A-C,Z]*' names
Display lines from dict that contain four character words
 egrep '....' dict
Display password entries for users with the Korn shell
 grep ":/bin/ksh$" /etc/passwd
Display number of lines(-c) in ufile that contain unix ; ignore case(-i)
 grep -ci 'unix' ufile
Display the lengths of field 1 from file
 nawk'{TMP=length($1);print $TMP}' file
Display the first 10 lines of tfile
 nawk '{for (i=1; i<10; i++) printf "%s\n", getline}' tfile
or head tfile
List the contents of the current directory in three columns
 ls | paste d" " - - -
Sort the /etc/passwd file by group id in numerical order(-n).
 sort -t":" -n +3 -4 /etc/passwd
or sort -t":" -nk4 /etc/passwd
Translate lower case letters in file to upper case
 cat file | tr a-z A-Z
Display adjacent duplicate lines in file
 uniq -d file
Display the numbers of lines in file
 wc -l file
Display the number of .c files in the current directory
 ls *.c | wc -l
Substitutes all instances of '/' in a variable to '\/'.
 Preparing for use in a sed command.
 variable2=$(echo $variable | sed 's/\//\\\//g')
Display file with all occurrences of The substituted with A
 sed 's/The/A/g' file
Display your user name only
 id | sed 's/).*//' | sed 's/.*(//'
Display file with lines that contain unix deleted
 sed '/unix/d' file
Display the first 75 lines of file
 sed 75q file or head -n75 file
--

68_Bash_Shell_Reference.sxw - 24

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

ANSI/VT100 Terminal Control

Many computer terminals and terminal emulators support color and cursor control through
a system of escape sequences. One such standard is commonly referred to as ANSI
Color. Several terminal specifications are based on the ANSI color standard, including
VT100.

The following is a partial listing of the VT100 control set.

\033 represents the ANSI "escape" character, 0x1B. Bracketed tags represent modifiable
decimal parameters; eg. {ROW} would be replaced by a row number.

Device Status

The following codes are used for reporting terminal/display settings, and vary depending
on the implementation:
Query Device Code echo -e \033[c

• Requests a Report Device Code response from the device.

Report Device Code echo -e \033[{code}0c

• Generated by the device in response to Query Device Code request.

Query Device Status echo -e \033[5n

• Requests a Report Device Status response from the device.

Report Device OK echo -e \033[0n

• Generated by the device in response to a Query Device Status request;
indicates that device is functioning correctly.

Report Device Failure echo -e \033[3n

• Generated by the device in response to a Query Device Status request;
indicates that device is functioning improperly.

Query Cursor Position echo -e \033[6n

• Requests a Report Cursor Position response from the device.

Report Cursor Position echo -e \033[{ROW};{COLUMN}R

• Generated by the device in response to a Query Cursor Position request;
reports current cursor position.

Terminal Setup

The h and l codes are used for setting terminal/display mode, and vary depending on the
implementation. Line Wrap is one of the few setup codes that tend to be used consistently:
Reset Device echo -e \033c

68_Bash_Shell_Reference.sxw - 25

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

• Reset all terminal settings to default.

Enable Line Wrap echo -e \033[7h

• Text wraps to next line if longer than the length of the display area.

Disable Line Wrap echo -e \033[7l

• Disables line wrapping.

Fonts

Some terminals support multiple fonts: normal/bold, swiss/italic, etc. There are a variety of
special codes for certain terminals; the following are fairly standard:
Font Set G0 echo -e \033(

• Set default font.

Font Set G1 echo -e \033)

• Set alternate font.

Cursor Control

Cursor Home echo -e \033[{ROW};{COLUMN}H

• Sets the cursor position where subsequent text will begin. If no row/column
parameters are provided (ie. echo -e \033[H), the cursor will move to the home
position, at the upper left of the screen.

Cursor Up echo -e \033[{COUNT}A

• Moves the cursor up by COUNT rows; the default count is 1.

Cursor Down echo -e \033[{COUNT}B

• Moves the cursor down by COUNT rows; the default count is 1.

Cursor Forward echo -e \033[{COUNT}C

• Moves the cursor forward by COUNT columns; the default count is 1.

Force Cursor Position echo -e \033[{ROW};{COLUMN}f

• Identical to Cursor Home.

Save Cursor echo -e \033[s

• Save current cursor position.

Unsave Cursor echo -e \033[u

• Restores cursor position after a Save Cursor.

Save Cursor & Attrs echo -e \0337

68_Bash_Shell_Reference.sxw - 26

, 03/02/05
<!--- <PRE>Echo Cursor Key		<ESC>[1h</PRE>
Echo cursor key escapes to application.
<P>

<PRE>Set ANSI Mode		<ESC>[2h</PRE>
Set ANSI compatibility.
<P>

<PRE>132 Column Mode		<ESC>[3h</PRE>
Set display to 132 columns.
<P>

<PRE>Set Smooth Scrolling	<ESC>[4h</PRE>
Scroll display smoothly.
<P>

<PRE>Set Reverse Video	<ESC>[5h</PRE>
Reverse foreground/background.
<P>

<PRE>Set Relative Origin	<ESC>[6h</PRE>
Cursor positioning is relative to scrollable area.
<P>
--->

, 03/02/05
<!--- <PRE>Font Set UK G0		<ESC>[(A</PRE>
Set default UK font.
<P>
<PRE>Font Set UK G1		<ESC>[)A</PRE>
Set alternate UK font.
<P>
<PRE>Font Set US G0		<ESC>[(B</PRE>
Set default UK font.
<P>
<PRE>Font Set US G1		<ESC>[)B</PRE>
Set alternate UK font.
<P>
--->

, 03/02/05
<!--- <PRE>Set Newline Mode 	<ESC>[20h</PRE>
Echo cursor key escapes to application.
<P>

<PRE>Set Newline Mode 	<ESC>[20h</PRE>
Echo cursor key escapes to application.
<P>
--->

, 03/02/05
<!--- <PRE>Enable Auto-repeat	<ESC>[8h</PRE>
Holding keys down cause multiple characters to be sent to the application.
<P>

<PRE>Enable Interlace Mode	<ESC>[9h</PRE>
Echo cursor key escapes to application.
<P>
--->

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

• Save current cursor position.

Restore Cursor & Attrs echo -e \0338

• Restores cursor position after a Save Cursor.

Scrolling

Scroll Screen echo -e \033[r

• Enable scrolling for entire display.

Scroll Screen echo -e \033[{start};{end}r

• Enable scrolling from row {start} to row {end}.

Scroll Down echo -e \033D

• Scroll display down one line.

Scroll Up echo -e \033M

• Scroll display up one line.

Tab Control

Set Tab echo -e \033

• Sets a tab at the current position.

Clear Tab echo -e \033[g

• Clears tab at the current position.

Clear All Tabs echo -e \033[3g

• Clears all tabs.

Erasing Text

Erase End of Line echo -e \033[K

• Erases from the current cursor position to the end of the current line.

Erase Start of Line echo -e \033[1K

• Erases from the current cursor position to the start of the current line.

Erase Line echo -e \033[2K

• Erases the entire current line.

Erase Down echo -e \033[J

• Erases the screen from the current line down to the bottom of the screen.

68_Bash_Shell_Reference.sxw - 27

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

Erase Up echo -e \033[1J

• Erases the screen from the current line up to the top of the screen.

Erase Screen echo -e \033[2J

• Erases the screen with the background color and moves the cursor to home.

Printing

Some terminals support local printing:
Print Screen echo -e \033[i

• Print the current screen.

Print Line echo -e \033[1i

• Print the current line.

Stop Print Log echo -e \033[4i

• Disable log.

Start Print Log echo -e \033[5i

• Start log; all received text is echoed to a printer.

Define Key

Set Key Definition echo -e \033[{key};"{string}"p

• Associates a string of text to a keyboard key. {key} indicates the key by its ASCII
value in decimal.

Set Display Attributes

Set Attribute Mode echo -e \033[{attr1};...;{attrn}m

• Sets multiple display attribute settings. The following lists standard attributes:
0 Reset all attributes
1 Bright
2 Dim
4 Underscore
5 Blink
7 Reverse
8 Hidden

 Foreground Colors
30 Black
31 Red
32 Green
33 Yellow
34 Blue

68_Bash_Shell_Reference.sxw - 28

Linux-Kurs Themen – Bash Shell Reference- Feb 5, 2006 Michel Bisson

35 Magenta
36 Cyan
37 White

 Background Colors
40 Black
41 Red
42 Green
43 Yellow
44 Blue
45 Magenta
46 Cyan
47 White

68_Bash_Shell_Reference.sxw - 29

	COMMAND EXECUTION
	FILENAME SUBSTITUTION

	VARIABLES
	VARIABLE SUBSTITUTION
	SPECIAL PARAMETERS
	SPECIAL VARIABLES
	JOB CONTROL
	QUOTING
	OPTIONS
	Enabling/Disabling Options

	CONDITIONAL EXPRESSIONS
	CONDITIONAL CONTROL COMMANDS
	BUILTIN COMMANDS
	RESTRICTED SHELL
	DEBUGGING BOURNE SHELL SCRIPTS
	FUNCTIONS
	ALIASES
	COMMAND SEARCH PRIORITY
	FILES
	SET and UNSET commands
	REGULAR EXPRESSIONS
	echo COMMAND:
	PROMPT MANIPULATION
	Job control (disown) Exercise:
	Bash session recording:
	Monitoring a bash session from one or more users:
	Bash options:
	Command History and command line editing:
	EXAMPLE COMMANDS

