
Shell Scripting with KDE dialogs
<<<
Previous Next >>>

kdialog dialog types
The password dialog is just one of the many dialogs that kdialog can provide. This section provides an
overview of each type, and describes the arguments you need to provide for each dialog type.

Basic message boxes

Basic message boxes are intended to provide status type information. There are variations to indicate the
importance of the information (information, warnings, or errors). In each case, the argument is the text to
provide, as shown in the following examples.

Example 8. Information level message box

kdialog --msgbox "Password correct.\n About to connect to server"

A typical information level message box is shown below.

Figure 3. Information level message box screenshot

Example 9. Sorry level message box

kdialog --sorry "Password incorrect.\n Will not connect to server"

A typical sorry level message box is shown below.

Figure 4. Sorry level message box screenshot

Example 10. Error level message box

kdialog --error "Server protocol error."

A typical error level message box is shown below.

Figure 5. Error level message box screenshot

The return value for these basic message boxes is zero.

While not used in these examples, you can use the --title to set the window title as well. This option can
be used with any of the dialog types.

Non-interrupting notifications

kdialog supports the concept of a popup dialog that does not grab focus, called a passive popup.

--passivepopup takes a text label to display, and a timeout. The display will be automatically removed
when the timeout (which is in seconds) has elapsed, or when the user clicks on the popup.

Example 11. --passivepopup dialog box

./kdialog --title "This is a passive popup" --passivepopup \
"It will disappear in about 10 seconds" 10

A passive popup is shown below.

Figure 6. --passivepopup dialog box screenshot

More message boxes

Sometimes you need more than the basic message box allows. Perhaps you have a potentially dangerous
action, and you need to give the user a second chance. Or perhaps you just need a decision based on some
information. kdialog provides some of the tools you might need.

A --yesno type dialog is probably the simplest of this type, as shown below. Like the simple message
boxes previously, it requires a text string, which is shown in the message box.

Example 12. --yesno message box

kdialog --title "Example YesNo dialog" --yesno "System is not \
currently connected.\n Do you want to connect now?"

A Yes/No message box is shown below.

Figure 7. --yesno message box screenshot

A variation on the --yesno dialog type is the --warningyesno, which modifies the dialog box appearance
a bit.

Example 13. --warningyesno message box

kdialog --title "Example YesNo warning dialog" --warningyesno "Are \
you sure you want to delete all that hard work?"

A Yes/No warning box is shown below.

Figure 8. --warningyesno warning screenshot

A further variation is to use a --warningcontinuecancel dialog type, which has the same usage, but has
different button labels, and may fit some situations better.

Example 14. --warningcontinuecancel message box

kdialog --title "Example ContinueCancel warning dialog" \
--warningcontinuecancel "Are you sure you want to delete all that \
hard work?"

A Continue/Cancel warning box is shown below.

Figure 9. --warningcontinuecancel warning screenshot

Another variation on the --yesno dialog type is to add a third option, as shown in the --yesnocancel
dialog type.

Example 15. --yesnocancel message box

kdialog --title "YesNoCancel dialog" --yesnocancel "About to exit.\n \
Do you want to save the file first?"

A Yes/No/Cancel message box is shown below.

Figure 10. --yesnocancel message box screenshot

There is also a --warningyesnocancel variation, as shown below.

Example 16. --warningyesnocancel message box

kdialog --title "YesNoCancel warning dialog" --warningyesnocancel \
"About to exit.\n Do you want to save the file first?"

A Yes/No/Cancel warning message box is shown below.

Figure 11. --warningyesnocancel message box screenshot

The return value ($?) from all these dialog boxes follows a common pattern. A Yes, OK or Continue
returns zero. A No returns one. A Cancel returns two.

Suppressing display of a dialog

Sometimes you will be using kdialog in a loop, or other situation where a message may be repeated.
For example, you might be iterating through a list of files, and you raise an error for each file you cannot
open because of permission problems. This can produce a really bad user experience because the error is
repeated over and over.

The normal KDE way to deal with this is to allow the user to suppress the display of a message in the
future by selecting a checkbox, and kdialog allows you to do this with the --dontagain option. This
option takes a file name and an entry name, and if the user selects the checkbox, then an entry is written
to the specified file, with the specified entry name.

As an example, consider an information level message box for display of a file missing message.

Example 17. Information level message box, with --dontagain

kdialog --dontagain myscript:nofilemsg --msgbox "File not found."

A typical information level message box, with --dontagain is shown below.

Figure 12. Information level message box, with --dontagain, screenshot

As noted above, an entry is written to a file when the user selects the checkbox.

Example 18. --dontagain file listing

$ cat ~/.kde/share/config/myscript
[Notification Messages]
nofilemsg=false

The effect of this entry is to suppress future display of dialogs using that filename, entry tuple (in the
example above, this means myscript:nofilemsg. This will take effect across all KDE applications,
so be careful of the filename you use.

User Input dialogs

There are two basic free-form user input dialog types - the --inputbox type and the --password type. The
password dialog was covered in depth in a previous section - see the Section called kdialog Usage .

The --inputbox dialog type requires at least one parameter, which is used as the text in the dialog box.

Example 19. --inputbox dialog box

kdialog --title "Input dialog" --inputbox "What name would you like to
use"

An input dialog box is shown below.

Figure 13. --inputbox dialog box screenshot

Sometimes you want to provide a default text string in the input dialog. You can do this by providing that
string as the optional second parameter, as shown below:

Example 20. --inputbox dialog box with default parameter

kdialog --title "Input dialog" --inputbox "What name would you like to
use" "default Name"

An input dialog box with initial default text is shown below.

Figure 14. --inputbox dialog box screenshot showing default text

The return value depends on the button used. OK returns zero. Cancel returns one.

The string that is entered (or modified / accepted if default text is used) is returned on standard output. If
the user chooses Cancel, no output is sent.

Displaying files

A common requirement for shell scripts is the ability to display a file. kdialog supports this with the --
textbox dialog type. This dialog type has one mandatory parameter, which is the name of the file to be
displayed. There are also two optional parameters which specify the width and height of the dialog box in
pixels. If these are not specified, 100 pixels by 100 pixels is used.

Example 21. --textbox dialog box

kdialog --textbox Makefile

Figure 15. --textbox dialog box

Example 22. --textbox dialog box with dimensions

kdialog --textbox Makefile 440 200

Figure 16. --textbox dialog box with dimensions

Menu and selection dialogs

This section covers simple menus, checklists, radio buttons and combo-boxes. These are typically used
for providing a choice of options.

The menu is used to select one of a range of options. Each option is defined using two arguments, which
you might like to think of as a key and a label. An example of the usage is shown below.

Example 23. --menu dialog box

kdialog --menu "Select a language:" a "American English" b French d "Oz' English"

Figure 17. --menu dialog box

If you select the first option (in this case American English and press OK, then kdialog will send
the associated key (in this case the letter a) to standard output. Note that the keys do not need to be lower
case letters - you can equally use numbers, upper case letters, strings or the contents of shell variables.

As with the other examples we've seen, the return value depends on the button used. OK returns zero.
Cancel returns one.

A checklist is similar to a menu, except that the user can select more than one option. In addition, a
reasonable set of default selections can be provided. To do this, each option is defined using three
arguments, which you might like to think of as a key, a label and a default state. An example of the usage
is shown below.

Example 24. --checklist dialog box

kdialog --checklist "Select languages:" 1 "American English" off \
2 French on 3 "Oz' English" off

Figure 18. --checklist dialog box

Clearly the result can contain more than one string, since the user can select more than one label. By
default, the results are returned on a single line, however you can use the --separate-output to get a
carriage return between each result. These two cases are shown in the example below, where all of the
options were selected in each case.

Example 25. --checklist dialog box

$ kdialog --checklist "Select languages:" 1 "American English" off \
2 French on 3 "Oz' English" off
"1" "2" "3"
$ kdialog --separate-output --checklist "Select languages:" \
1 "American English" off 2 French on 3 "Oz' English" off
1
2
3

As for the menu example, the return value depends on the button used. OK returns zero. Cancel returns
one.

The radiolist is very similar to the checklist, except that the user can only select one of the options. An
example is shown below:

Example 26. --checklist dialog box

$ kdialog --radiolist "Select a default language:" 1 "American \
English" off 2 French on 3 "Oz' English" off

Figure 19. --checklist dialog box

Note that if you try to turn on more than one option by default, only the last option turned on will be
selected. If you don't turn on any of the options, and the user doesn't select any, kdialog will raise an
assertion, so don't do this.

A combo-box is slightly different to the previous menu options, in that it doesn't use keys, but instead
just returns the selected text. An example is shown below:

Example 27. --combobox dialog box

$ kdialog --combobox "Select a flavour:" "Vanilla" "Chocolate" "Strawberry" "Fudge"
Chocolate

Figure 20. --combobox dialog box

File selection dialogs

This section covers dialogs to select files to open and save. These dialogs access the power of the
underlying KDE dialogs, including advanced filtering techniques and can provide either paths or URLs.

The dialog to select a file to open is invoked with --getopenfilename or --getopenurl. These two
commands are used in the same way - only the format of the result changes, so every example shown
here can be applied for either format. You have to specify a starting directory, and can optionally provide
a filter. Here is a simple example that doesn't provide any filtering, and accesses the current directory:

Example 28. --getopenfilename dialog box

kdialog --getopenfilename .

Figure 21. --getopenfilename dialog box

As for previous examples, the return value depends on the button used. OK returns zero. Cancel returns
one.

As mentioned previously, the result format varies between the two variations. This is shown below, in
each case selecting the same file:

Example 29. --getopenfilename dialog box

[bradh@rachel kdialog]$ kdialog --getopenfilename .
/home/bradh/coding/cvs-vers/kde-head/kdebase/kdialog/Makefile.am
[bradh@rachel kdialog]$ kdialog --getopenurl .
file:/home/bradh/coding/cvs-vers/kde-head/kdebase/kdialog/Makefile.am

Note that the user can only select an existing file with these options.

When you doing a lot of opening of files, it can be useful to open the dialog in the directory that was
navigated to last time. While you can potentially do this by extracting the directory from the filename,
you can use a special KDE feature based on labels, as shown below:

Example 30. --getopenfilename dialog box with directory support

kdialog --getopenfilename :label1
kdialog --getopenfilename :label1

Each time you use the same label (with the colon notation), the last used directory will be used as the
starting directory. This will normally improve the user experience. If that label hasn't been used before,
the user's home directory will be used.

Note that the colon notation selects the last used directory for that label for the kdialog application. If
you use two colons instead of one, the labelling scope becomes global and applies to all applications.
This global scope is rarely what you want, and is mentioned only for completeness.

Since not all files are applicable, it can be useful to restrict the files displayed. This is done using the
optional filter argument. The best way to do this is with MIME types, as shown below:

Example 31. --getopenfilename dialog box with MIME filter

kdialog --getopenfilename ~/doco/ethereal-userguide "image/png text/html text/plain"

Figure 22. --getopenfilename dialog box with MIME filter

If it isn't possible to use MIME types, you can specify a range of wildcards and an optional label, as
shown below:

Example 32. --getopenfilename dialog box with wildcard filter

kdialog --getopenfilename . "*.cpp *.cc *.c |C and C++ Source Files"

Figure 23. --getopenfilename dialog box with wildcard filter

The --getsavefilename and --getsaveurl commands are directly analogous to the file opening dialogs. A
simple example is shown below:

Example 33. --getsavefilename dialog box

kdialog --getsavefilename .

Figure 24. --getsavefilename dialog box

Unlike the file opening dialogs, the file saving dialogs allow to user to specify a filename that doesn't yet
exist.

As for the file opening dialogs, the file saving dialogs allow use of the colon notation, and also allow
filtering using MIME types and wildcards, as shown below:

Example 34. --getsavefilename dialog box with filter

kdialog --getsavefilename :label1 "*.cpp *.cc *.c |C and C++ Source Files"

Sometimes you don't want to specify a filename, but instead need a directory. While you can specify a
"inode/directory" filter to a file open dialog, it is sometimes better to use the --getexistingdirectory
type, as shown below:

Example 35. --getexistingdirectory dialog box

kdialog --getexistingdirectory .

Figure 25. --getexistingdirectory dialog box

--getexistingdirectory does not provide any filtering, but it does provide the same starting directory
options, including the colon notation.

Progress Dialogs

A progress bar dialog is a useful GUI element when you have a process that will take a long time, and
you want to reassure the user that things are happening correctly, rather than having the user believe that
the machine may have locked up. If you ever find yourself thinking about writing an information dialog
that says something like "..., this may take a while", it may be appropriate to use a progress bar dialog.

Because you need to make the progress bar change, you can't use kdialog in the normal way. Instead,
you set up the dialog, and use the dcop to make the required changes.

A simple use of the --progressbar command is shown below. Because it is fairly long, I've numbered the
lines. The numbers aren't part of the script you would type in - they are purely for reference in the
explanation.

Example 36. --progressbar dialog box example

 1 dcopRef=`kdialog --progressbar "Initialising" 4`
 2 dcop $dcopRef setProgress 1
 3 dcop $dcopRef setLabel "Thinking really hard"
 4 sleep 2
 5 dcop $dcopRef setProgress 2
 6 sleep 2
 7 dcop $dcopRef setLabel "Thinking some more"
 8 dcop $dcopRef setProgress 3
 9 sleep 2
 10 dcop $dcopRef setProgress 4
 11 sleep 2
 12 dcop $dcopRef close

I'll work through each line in turn. Line 1 runs kdialog, with an initial label of Initialising, and
a progress bar with four elements. We capture the return value in a variable (which can be named just
about anything - I chose dcopRef) for later use with the dcop command. Line 2 sets the bar to one stage
along, and line 3 changes the label to Thinking really hard. Line 4 is just a delay (which would
be when your script would perform the first part of the lengthy task in a real application). Line 5 then
increases the progress bar, followed by another delay (representing more processing) in line 6. Line 7
changes the label, while lines 8 through 11 further increase the progress bar over a few seconds. Line 12
closes the progress bar dialog - without this, it will remain displayed. If you'd prefer that the progress bar
dialog closed as soon as the bar gets to 100%, you can use the setAutoClose true argument to dcop.

If a task is taking a very long time, the user may decide that it is better cancelled. kdialog can assist
with this too, as shown in the example below.

Example 37. --progressbar dialog box example, with Cancel

 1 dcopRef=`./kdialog --progressbar "Press Cancel at Any time" 10`
 2 dcop $dcopRef showCancelButton true

 3 until test "true" == `dcop $dcopRef wasCancelled`; do
 4 sleep 1
 5 inc=$((`dcop $dcopRef progress` + 1))
 6 dcop $dcopRef setProgress $inc;
 7 done

 8 dcop $dcopRef close

As in the previous example, the first line executes kdialog with some initial text, this time with 10
segments; and again we capture the return value in a variable for later use with dcop. Line 2 turns on the
display of the Cancel button, which is off by default.

Lines 3 through 7 are a loop. Line three runs dcop to check if the Cancel button has been pressed, and if
it hasn't been pressed yet, runs line 4 through 6. Line 4 is again a delay, representing processing in a real
application. Line 5 runs dcop to get the current progress bar setting, and adds one to the count (I could
have just kept a counter variable, but this approach shows another dcop usage). Line 6 then sets the
progress bar to the incremented value. Line 8 closes the progress bar dialog if the Cancel button has been
pressed.

<<< Previous Home Next >>>
kdialog Usage Copyright and License

