Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson
94- Regular expressions

Table of Contents

a1 geTo [0 To1 1 o] o TP PRRT TR 2
Table of Metacharacters in Basic and Extended RES:..........ccoooeviiiiiiiiiiie e 2
2 5] oSS 2
Y 2
=T g1=] o [TTod 1] o 1[0 o OSSP PRPTP PPN 2
Normal StriNG MAICHES:......coiiiiii e 2
EMPLY StNG MALCNES .. . e e et et e e e e e e e e e e eeeernnnnes 2
10 =T 013 1] (0] 1 PSRRI 2

[oTo oz @] o1=T =110] ¢TSS 2
BaSIC regUIAr EXPIESSIONS.cvviieriiiiitieei et et e e et e e e e e e e et e ettt e et e e e e e e eaeeaaaaaeaeaeeessnesssnnnnnas 3
.. 3
SR PP 3
PP PPPPPPPRR 3

B e e e e ete e et —e e —e oo —e e e—e ot e e teeahe e e beeaheeateeaheeeateeareeaaaeeateeaareeereeans 3
LSOO 3
LSOO PPRPREE 3
OSSP 3

ettt e e e e e e e e e e e e e e e e e e ee e aaaL—————————ttt ettt eataeaeaaaaeaeaanaaanntntrrrntnrrrereeees 3
Extended Regular EXPreSSIONS........ccooi ittt e e e e e e e e e e e e as 4
S RSP S P PPRPPRPRR 4

S PP PP PRSPPI 4
PR UP P PP TPRPPPY 4
POSIX CaraCter ClaSSES.......oocuuuiiiiiiiiiiee ettt ettt s sttt e e e e e e e s s bbb e e e e e e e s e nnneees 5
= LT TSRO PPPPPPUPPPPP 5
N[0S PP PPPPRTRPPPIN 5
Backslashed CRaraCters............uuuuiiiiiiiiiiiei e e e e e e e e e e e e e eeeeeeensrnnnnns 5

94 Regular_Expressions.sxw -1

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

Introduction:
A regular expression (RE) is a string of characters of which their interpretation is
above and beyond their literal meaning. The are called Metacharacters.
The main uses for REs are text searches and string manipulation. A RE matches a
single character or a set of characters (a substring or an entire string).
There are two types of regular expressions:

- Basic (older) expresions: like the ones used by grep and sed.

- Extended expression: like the ones used by egr ep, awk, and Perl language.

Table of Metacharacters in Basic and Extended REs:

* A \< \> \b \B $ [..1 \ (..){..} + 2 |
Basic X X X X X X X X X X X W W W% W
Ext X X X X X X X X X X X X X X X

In Basic REs the metacharacters ? + { | (and) lose their special meaning;
instead use the backslashed versions\? \+ \{ \| \(and)\)
eg.\{1,5\} inBasic REs isthe same meaningas{1, 5} in Extended REs

Brief description:

Normal String matches:

. matches any single character

[abt] matches one character only: eithera or b ort and nothing else

[a-z] matches one character only: either a to z and nothing else

[*A- Z] matches one character only: any character but NOT Ato Z

(‘hal I 0) matches the word 'hallo’ as one Item (an atom). Normally used for repeats.

Empty string matches:
A matches the beginning of a line

$ matches the end of a line

\ < matches the beginning of a word

\ > matches the end of a word

\b matches either the beginning or end of a word
\B matches NOT the beginning or end of a word

Item Repetitions: (item = character or an atom) Note: use \ {...\} for grep & {....} for egrep

? The preceding item is optional and matched at most once.
* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.
{n} The preceding item is matched exactly n times.

{n,} The preceding item is matched n or more times.
{n, Mt The preceding item is matched at least n times, but not more than mtimes.

Logical Operators
| Allow to specify multiple REs that may match. OR operator.

94 Regular_Expressions.sxw - 2

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

Basic regular expressions(detailed):

(dot) matches any one character, except a newline.
eg. 13. matches 13 + at least one of any character (including a space):
1133, 11333, but not 13 (additional character missing).

(asterisk) matches any number of repeats of the character string or Atom RE
preceding it, including zero times.

eg. 1153* matches 115 + none or one or more 3's + possibly other
characters after. In this case it matches 115, 1153, 11151zF, and so forth.

(caret) matches the beginning of a line, but sometimes, depending on context,
negates the meaning of a set of characters in an RE.

egl. "Hallo matches Hal | o appearing at the beginning of a line.

eg2. [”"0-9] matches any one character that is NOT a digit from 0 to 9

(dollar sign) at the end of an RE matches the end of a line.
egl. barkl ey$ matches the word barkley at the end of a line.
eg2. "$ matches blank lines.

(escaped smaller than) matches the beginning of a word
(escaped greater than) matches the end of a word
eg. \<hall o\> matches the words hal | o du but not hal | odu

...] (brackets) enclose a set of characters to match in a single RE.

eg. [xyz] matches the char. x, y, or z.
[c-n] matches any of the char. in the range c to n.
[B-Pk-y] matches any of the char. in the ranges Bto P and kto y.
[a-z0-9] matches any lowercase letter or any digit.
[*b-d] matches all char. except those in the range b to d.
This is an instance of ~ negating or inverting the meaning
of the following RE (taking on a role similar to! in 'C’)

Combined sequences of bracketed characters match word patterns.

egl. [Yy][Ee][Ss] matches yes, Yes, YES, yEs, and so forth.
eg2. [0-9]1{1,3}\.[0-9]1{1,3}\.[0-9]1{1,3}\.[0-9]{1, 3}
Matches network IP number.
192.168. 45. 67 or12.18.149.0 etc

(backslash) escapes a special character(metacharacter), which means that

character gets interpreted literally.

Theses characters and then said to be 'escaped’

egl. \'$ reverts back to its literal meaning of "$", rather than its RE
meaning of end of line.

eg2. \\ has the literal meaning of "\ "

94 Regular_Expressions.sxw - 3

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson
Extended Regular Expressions. Used in egr ep, awk, and Perl language:
(...) (parenteses) Declares its content as an '‘Atom'. An atom is considered as

one unit only, just like a single character. Normally used to match repeats.
eg. H(allo)* matches H, Hal | o, Hal | oal | o, Hal | oal | cal | 0 ect.

{...} (curlybrackets) indicate the number of occurrences of a preceding RE to
match. In Basic REs it is necessary to escape(\) the curly brackets since
they have only their literal character meaning otherwise. eg.\{. . .\}

Maxi mal M ni mal Al | owed Range

{n, m} {n, mp? Must occur at least n times and max m times
{n,} {n,}? Must occur at least n times

{n} {n}? Must match exactly n times

* *? 0 or more times (same as {0, })

+ +7? 1 or more times (same as {1, })

? 27 O or 1time (same as{0, 1})

eg.[0-9] {5} matches at least five consecutive digits:
(characters in the range of O to 9).
ie. 13649, 897507, 9866554 but not 1457b9654

Curly brackets are not available as an RE in the "classic" version of awnk.
However, gawk has the -re i nterval option that permits them
(without being escaped).

eg. echo 2222 | gawk -re interval '/2{3}/' 2222

? (question mark)matches zero or one of the previous character or atom.
It is generally used for matching single characters.
egl. Hel ?0 matches a 3 or 4 character word like Heo and Hel o
but not Hel | o
eg2. H(allo)?du matches Hdu, Hal | odu, but not Hal | ot du
+ (plus) matches one or more of the previous character or atom.
It serves a role similar to the * , but does not match zero occurrences.
egl. hal +o Matches hal o or hal I I | | o but not hao

eg2. H(all)+o Matcheshall o or Hallall o butnot Ho

GNU versions of sed and awk can use "+", but it needs to be escaped.

egs. echo alllb | sed -ne '/al\+b/p’
echo alllb | grep 'al\+b'
echo alllb | gawk '/al+b/’

All of above are equivalent.

(logical OR) matches multiple REs in a logical OR fashion.
eg. hall o | beybey Matches either hal | o or beybey or both strings.

94 Regular_Expressions.sxw -4

Linux-Kurs Themen - Regular Expressions - 10 June 2003

Michel Bisson

POSIX Character Classes.

[[:
[[:

,_”_”_”_|
p— p— p— p—

,_”_”_|
p— p— p—

class:]]
al num]]

: space: |]

supper:]]
cxdigit:]]

Notes:
POSIX character classes generally require quoting or double brackets [[]] .

e

g.

This is an alternate method of specifying a range of char. to match.
Matches alphabetic or numeric characters.

This is equivalent to [A- Za- z0- 9] .

Matches alphabetic characters. This is equivalent to[A- Za- z] .
Matches a space or an horizontal tab.

Matches control characters. Ctrl-a to Ctrl-z

Matches any punctuation: all printable chararcters

except 0- 9, A- Z, a- z or space

ie. °1"8PUR/ ()= "\}][{~+-*# _.,:;| <>

Matches (decimal) digits. This is equivalentto[0- 9] .

(graphic printable characters). Matches characters in the range of
ASCII 33-126. This is the same as[: pri nt:], below, but
excluding the space character.

Matches lowercase alphabetic characters. Equivalent to[a- z] .
(printable characters). Matches characters in the range of

ASCII 32-126. Same as|[: gr aph:], above, but adding the space.
matches whitespace characters (space and horizontal tab).
matches uppercase alphabetic characters. Equivalent to[A- Z] .
matches hexadecimal digits. This is equivalent to [0- 9A- Fa- f]

grep [[:digit:]] test.file

abc=723

These character classes may even be used with globbing, to a limited extent.

e

g Is -l

FW-TWT--

?[[:digit:]][[:digit:]]?
1 bozo bozo 0 Aug 21 14:47 a33b

Backslashed characters

A backslashed letter matches a special character or character class:

Co
\a

\b
\n
\'r
\ t
\ f
\e
\d
\D

de

Matches

Alarm (beep)

Space Character

Newline

Carriage return
Tab

Formfeed

Escape

A digit, same as [0-9]

A nondigit

94 Regular_Expressions.sxw -5

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

Code Matches

\'w A word character (alphanumeric), same as [a-zA-Z 0-9]
\W A nonword character

\'s A whitespace character, same as [\t\n\r\f]

\'S A non-whitespace character

Note that \w matches a character of a word, not a whole word. Use \w+ to match a
word.

A backslashed single-digit number matches whatever the corresponding
parentheses actually matched (except that \ 0 matches a null character). This is
called a backreference to a substring. A backslashed multi-digit number such as
\ 10 will be considered a backreference if the pattern contains at least that many
substrings prior to it, and the number does not start with a 0. Pairs of parentheses
are numbered by counting left parentheses from the left.

A backslashed two- or three-digit octal number such as \ 033 matches the
character with the specified value, unless it would be interpreted as a
backreference.

A backslashed x followed by one or two hexadecimal digits, such as \x7f,
matches the character having that hexadecimal value.

A backslashed c followed by a single character, such as \ cD, matches the
corresponding control character.

Any other backslashed character matches that character.

Any character not mentioned above matches itself.

94 Regular_Expressions.sxw - 6

