
Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

94- Regular expressions

Table of Contents

Introduction:..2
Table of Metacharacters in Basic and Extended REs:..2

Basic..2
Ext..2

Brief description:...2
Normal String matches:...2
Empty string matches:...2
Item Repetitions:..2
Logical Operators...2

Basic regular expressions..3
. ...3
* ...3
^..3
$..3
\<..3
\>..3
[...]..3
\..3

Extended Regular Expressions..4
(...)..4
{...}..4
?...4
+...4
|..4

POSIX Character Classes..5
[:class:]...5
Notes:...5

Backslashed characters...5

94_Regular_Expressions.sxw - 1

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

Introduction:
A regular expression (RE) is a string of characters of which their interpretation is
above and beyond their literal meaning. The are called Metacharacters.
The main uses for REs are text searches and string manipulation. A RE matches a
single character or a set of characters (a substring or an entire string).
There are two types of regular expressions:

- Basic (older) expresions: like the ones used by grep and sed.
- Extended expression: like the ones used by egrep, awk, and Perl language.

Table of Metacharacters in Basic and Extended REs:
. * ^ \< \> \b \B $ [..] \ (..) {..} + ? |

Basic x x x x x x x x x x \x \x \x \x \x
Ext x x x x x x x x x x x x x x x

In Basic REs the metacharacters ? + { | (and) lose their special meaning;
instead use the backslashed versions \? \+ \{ \| \(and \)
eg. \{1,5\} in Basic REs is the same meaning as {1,5} in Extended REs

Brief description:
Normal String matches:
. matches any single character
[abt] matches one character only: either a or b or t and nothing else
[a-z] matches one character only: either a to z and nothing else
[^A-Z] matches one character only: any character but NOT A to Z
(hallo)matches the word 'hallo' as one Item (an atom). Normally used for repeats.

Empty string matches:
^ matches the beginning of a line
$ matches the end of a line
\< matches the beginning of a word
\> matches the end of a word
\b matches either the beginning or end of a word
\B matches NOT the beginning or end of a word

Item Repetitions: (item = character or an atom) Note: use \{....\} for grep & {....} for egrep
? The preceding item is optional and matched at most once.
* The preceding item will be matched zero or more times.
+ The preceding item will be matched one or more times.
{n} The preceding item is matched exactly n times.
{n,} The preceding item is matched n or more times.
{n,m} The preceding item is matched at least n times, but not more than m times.

Logical Operators
| Allow to specify multiple REs that may match. OR operator.

94_Regular_Expressions.sxw - 2

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

Basic regular expressions(detailed):

. (dot) matches any one character, except a newline.
eg. 13. matches 13 + at least one of any character (including a space):

1133, 11333, but not 13 (additional character missing).

* (asterisk) matches any number of repeats of the character string or Atom RE
 preceding it, including zero times.

eg. 1153* matches 115 + none or one or more 3's + possibly other
 characters after. In this case it matches 115, 1153, 11151zF, and so forth.

^ (caret) matches the beginning of a line, but sometimes, depending on context,
 negates the meaning of a set of characters in an RE.

eg1. ^Hallo matches Hallo appearing at the beginning of a line.
eg2. [^0-9] matches any one character that is NOT a digit from 0 to 9

$ (dollar sign) at the end of an RE matches the end of a line.
eg1. barkley$ matches the word barkley at the end of a line.
eg2. ^$ matches blank lines.

\< (escaped smaller than) matches the beginning of a word
\> (escaped greater than) matches the end of a word

eg. \<hallo\> matches the words hallo du but not hallodu

[...] (brackets) enclose a set of characters to match in a single RE.
eg. [xyz] matches the char. x, y, or z.

[c-n] matches any of the char. in the range c to n.
[B-Pk-y] matches any of the char. in the ranges B to P and k to y.

 [a-z0-9] matches any lowercase letter or any digit.
[^b-d] matches all char. except those in the range b to d.

This is an instance of ^ negating or inverting the meaning
 of the following RE (taking on a role similar to ! in 'C')
Combined sequences of bracketed characters match word patterns.

eg1. [Yy][Ee][Ss] matches yes, Yes, YES, yEs, and so forth.
eg2. [0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}

Matches network IP number.
192.168.45.67 or 12.18.149.0 etc

\ (backslash) escapes a special character(metacharacter), which means that
 character gets interpreted literally.

Theses characters and then said to be 'escaped'
eg1. \$ reverts back to its literal meaning of "$", rather than its RE

 meaning of end of line.
eg2. \\ has the literal meaning of "\"

94_Regular_Expressions.sxw - 3

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

Extended Regular Expressions. Used in egrep, awk, and Perl language:

(...) (parenteses) Declares its content as an 'Atom'. An atom is considered as
one unit only, just like a single character. Normally used to match repeats.

eg. H(allo)* matches H, Hallo, Halloallo, Halloalloallo ect.

{...} (curly brackets) indicate the number of occurrences of a preceding RE to
match. In Basic REs it is necessary to escape(\) the curly brackets since
they have only their literal character meaning otherwise. eg. \{...\}

Maximal Minimal Allowed Range
{n,m} {n,m}? Must occur at least n times and max m times
{n,} {n,}? Must occur at least n times
{n} {n}? Must match exactly n times
* *? 0 or more times (same as {0,})
+ +? 1 or more times (same as {1,})
? ?? 0 or 1 time (same as {0,1})

eg. [0-9]{5} matches at least five consecutive digits:
(characters in the range of 0 to 9).
ie. 13649, 897507, 9866554 but not 1457b9654

Curly brackets are not available as an RE in the "classic" version of awk.
However, gawk has the -re interval option that permits them
(without being escaped).
eg. echo 2222 | gawk -re interval '/2{3}/' 2222

? (question mark)matches zero or one of the previous character or atom.
It is generally used for matching single characters.

eg1. Hel?o matches a 3 or 4 character word like Heo and Helo
 but not Hello

eg2. H(allo)?du matches Hdu, Hallodu, but not Hallotdu

+ (plus) matches one or more of the previous character or atom.

It serves a role similar to the *, but does not match zero occurrences.
eg1. hal+o Matches hallo or halllllo but not hao
eg2. H(all)+o Matches hallo or Hallallo but not Ho

GNU versions of sed and awk can use "+", but it needs to be escaped.
egs. echo a111b | sed -ne '/a1\+b/p'

echo a111b | grep 'a1\+b'
echo a111b | gawk '/a1+b/'

All of above are equivalent.

| (logical OR) matches multiple REs in a logical OR fashion.
eg. hallo | beybey Matches either hallo or beybey or both strings.

94_Regular_Expressions.sxw - 4

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

POSIX Character Classes.

[[:class:]] This is an alternate method of specifying a range of char. to match.
[[:alnum:]] Matches alphabetic or numeric characters.

This is equivalent to [A-Za-z0-9].
[[:alpha:]] Matches alphabetic characters. This is equivalent to [A-Za-z].
[[:blank:]] Matches a space or an horizontal tab.
[[:cntrl:]] Matches control characters. Ctrl-a to Ctrl-z
[[:punct:]] Matches any punctuation: all printable chararcters

except 0-9, A-Z, a-z or space
ie. °!"§$%&/()=?`´\}][{~+-*#'_.,:;|<>

[[:digit:]] Matches (decimal) digits. This is equivalent to [0-9].
[[:graph:]] (graphic printable characters). Matches characters in the range of

ASCII 33-126. This is the same as [:print:], below, but
 excluding the space character.
[[:lower:]] Matches lowercase alphabetic characters. Equivalent to [a-z].
[[:print:]] (printable characters). Matches characters in the range of

ASCII 32-126. Same as [:graph:], above, but adding the space.
[[:space:]] matches whitespace characters (space and horizontal tab).
[[:upper:]] matches uppercase alphabetic characters. Equivalent to [A-Z].
[[:xdigit:]] matches hexadecimal digits. This is equivalent to [0-9A-Fa-f]

Notes:
• POSIX character classes generally require quoting or double brackets [[]].

eg. grep [[:digit:]] test.file
abc=723

• These character classes may even be used with globbing, to a limited extent.
eg. ls -l ?[[:digit:]][[:digit:]]?

rw-rw-r-- 1 bozo bozo 0 Aug 21 14:47 a33b

Backslashed characters

A backslashed letter matches a special character or character class:

Code Matches

\a Alarm (beep)

\b Space Character

\n Newline

\r Carriage return

\t Tab

\f Formfeed

\e Escape

\d A digit, same as [0-9]

\D A nondigit

94_Regular_Expressions.sxw - 5

Linux-Kurs Themen - Regular Expressions - 10 June 2003 Michel Bisson

Code Matches

\w A word character (alphanumeric), same as [a-zA-Z_0-9]

\W A nonword character

\s A whitespace character, same as [\t\n\r\f]

\S A non-whitespace character

Note that \w matches a character of a word, not a whole word. Use \w+ to match a
word.

• A backslashed single-digit number matches whatever the corresponding
parentheses actually matched (except that \0 matches a null character). This is
called a backreference to a substring. A backslashed multi-digit number such as
\10 will be considered a backreference if the pattern contains at least that many
substrings prior to it, and the number does not start with a 0. Pairs of parentheses
are numbered by counting left parentheses from the left.

• A backslashed two- or three-digit octal number such as \033 matches the
character with the specified value, unless it would be interpreted as a
backreference.

• A backslashed x followed by one or two hexadecimal digits, such as \x7f,
matches the character having that hexadecimal value.

• A backslashed c followed by a single character, such as \cD, matches the
corresponding control character.

• Any other backslashed character matches that character.

• Any character not mentioned above matches itself.

94_Regular_Expressions.sxw - 6

