James E. Harmon

Foreword by
Dylan Schiemann, co-creator of Dojo

Dojo

Using the Dojo JavaScript Library
to Build Ajax Applications

Developer’s Library

4oy,

Dojo

This page intentionally left blank

Dojo
Using the Dojo JavaScript Library
to Build Ajax Applications

James E. Harmon

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis ¢ San Francisco
New York ¢ Toronto * Montreal * London ¢ Munich ¢ Paris « Madrid
Cape Town ¢ Sydney * Tokyo ¢ Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com
For sales outside the United States please contact:

International Sales
international@pearson.com
Visit us on the Web: www.informit.com/aw
Library of Congress Cataloging-in-Publication Data
Harmon, James Earl.
Using the Dojo Javascript library to build Ajax applications / James Earl Harmon.
p. cm.
Includes index.
ISBN 0-13-235804-2 (pbk. : alk. paper) 1. Ajax (Web site development technology)
2. Java (Computer program language) |. Title.
TK5105.8885.A52H37 2008
006.7'8—dc22
2008021544
Copyright © 2009 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-132-35804-0

ISBN-10: 0-132-35804-2

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

First printing June 2008

Associate Publisher
Mark Taub

Acquisitions Editor
Debra Williams Cauley
Development Editor
Michael Thurston
Managing Editor
Kristy Hart

Project Editor
Chelsey Marti

Copy Editor

Language Logistics
Indexer

Lisa Stumpf
Proofreader

Kathy Ruiz

Technical Reviewer
Eric Foster-Johnson
Publishing Coordinator
Kim Boedigheimer

Cover Designer
Gary Adair

Senior Compositor
Gloria Schurick

www.informit.com/aw
http://www.informit.com/onlineedition

R
0’0

With Love to My Family:
Sonia, Phoebe, and Nathan

R
0’0

Contents at a Glance

Foreword xiii
Acknowledgments xv

About the Author xvi

I: A Dojo Tutorial
1 Understanding Dojo: A Tutorial 3
2 Using Dojo for Client-side Validation 25
3 Using Dojo to Work with the Server 35
4 Using Dojo Widgets 51

5 Processing Forms with Dojo 59

Il: Dojo Widgets
6 Introduction to Dojo Widgets 67
7 Dojo Form Widgets 91
8 Dojo Layout Widgets 137
9 Other Specialized Dojo Widgets 155

Ill: Dojo in Detail
10 What Is Dojo? 189
11 Technical Description of Dojo 199
12 Objects and Classes 223
13 Strings and JSON 239
14 Events and Event Handling 249
15 Ajax Remoting 259
16 Working with the DOM 277
17 Testing and Debugging 293
Index 303

Table of Contents

Foreword xiii
Acknowledgments xv

About the Author xvi

I: A Dojo Tutorial

1 Understanding Dojo: A Tutorial 3
1.1 Introduction to the Tutorial 3
1.1.1 Goals for this Tutorial 4
1.1.2 Goals for Using Dojo 4
1.2 A Standard HTML Data Entry Form 5
1.2.1 First and Last Name 6
1.2.2 User Name 7
1.2.3 Email Address 8
1.2.4 Address 8
1.2.5 State 8
1.2.6 City 10
1.2.7 Zip Code 10
1.2.8 Service Date 11
1.2.9 Comments 11
1.3 The Plan for Enhancing the Form 12
1.3.1 Including Dojo in the Form 12
1.3.2 Adding Client-side Validation 13
1.3.3 Adding Server-side Features 13
1.3.4 Using Additional Specialized Dojo Widgets
1.3.5 Processing the Form 14
1.4 Getting and Running the Source Code 14
1.5 Tutorial Step 1—Including Dojo 15
1.5.1 Download or Create the Source Files 15
1.5.2 Include the Code for the Dojo Toolkit 19
1.5.3 Include Dojo Style Sheets 20
1.5.4 Review All the Code Changes 21
1.5.5 Run the New Page 22

viii Contents

2 Using Dojo for Client-side Validation 25

2.1 Validating Form Fields 25

2.2 Tutorial Step 2—Adding Client-side Validation 26
2.2.1 Validate the First Name Field 27
2.2.2 Validating the Last Name Field 30
2.2.3 Validating the User Name Field 31
2.2.4 Validating the Email Address Field 31
2.2.5 Validating the Address Field 32
2.2.6 Validating the City Field 33
2.2.7 Validating the Zip Code Field 33

3 Using Dojo to Work with the Server 35
3.1 Adding Server-side Features 35
3.2 Tutorial Step 3a—Adding Server-side Validation 36
3.2.1 Assign Event Handler Function 36
3.2.2 Make a Call to the Server 38

3.3 Tutorial Step 3b—Retrieving Data from
the Server 43

3.3.1 Select Appropriate Widget for
the City Field 43

3.3.2 Get the Value of State and Send
to the Server 45

4 Using Dojo Widgets 51
4.1 Adding Dojo Widgets to the Page 51
4.1.1 Dijit—The Dojo Widget Module 52
4.2 Tutorial Step 4—Using Dojo Widgets 52
4.2.1 Use the Dojo DateTextBox Widget 53
4.2.2 Use the Dojo Rich Text Editor Widget 55

5 Processing Forms with Dojo 59
5.1 Using Dojo to Process Forms 59
5.2 Tutorial Step 5—Processing the Form 60
5.2.1 Creating a Dojo Form Widget 60
5.2.2 Intercept Form Submission 61
5.2.3 Check That All Form Elements Are Valid 62
5.2.4 Submitting the Form to the Server 63

6

10

Contents

Dojo Widgets

Introduction to Dojo Widgets 67

6.1 What Are Widgets? 67

6.2 What Are Dojo Widgets? 68

6.3 Components of a Dojo Widget 70
6.3.1 Widget HTML 70
6.3.2 Widget Styles 74
6.3.3 JavaScript Component of a Widget 76
6.3.4 Dojo Widget Hierarchy 78
6.3.5 Visual Overview of Dojo Widgets 83
6.3.6 Building Your Own Widgets 90

Dojo Form Widgets 91

7.1 Standard Forms and Dojo Form Widgets 91
7.1.1 The dijit.form._FormWidget Class 92

7.2 The Dojo Form Widget Explained 94

Dojo Layout Widgets 137

8.1 Understanding Page Layout 137
8.1.1 The dijit.layout._LayoutWidget Class 138
8.2 Explanation of Dojo Layout Widgets 139

Other Specialized Dojo Widgets 155
9.1 What Are Specialized Widgets? 155
9.2 Menu Widget 156

9.2.1 dijit.Menu 157

9.2.2 dijit.Menultem 157

9.2.3 dijit.MenuSeparator 157

9.2.4 dijit.PopupMenultem 158

Dojo in Detail

What Is Dojo? 189

10.1 History of JavaScript and AJAX 189
10.2 History of Dojo 191

10.3 Purpose of Dojo 191

Contents

10.4 Description of Dojo 192

10.5 What Problems Does Dojo Solve? 193
10.6 Who Should Use Dojo? 194

10.7 Licensing 195

10.8 Competitors and Alternatives 195
10.9 The Future of Dojo 197

11 Technical Description of Dojo 199
11.1 What You Get in the Dojo Download 199
11.2 Organization of Dojo Source Code 201
11.2.1 First-level Directories 201
11.2.2 Digging Deeper into the Dojo Directory 202
11.3 Dojo Modules and Features 203
11.3.1 Naming Conventions and Name Space 204
11.3.2 Dojo Base Module 205
11.3.3 Dojo Core Modules 217

12 Objects and Classes 223
12.1 Objects Explained 223
12.1.1 Creating Objects 224
12.1.2 Encapsulation 224
12.1.3 Object Templates 225
12.1.4 JavaScript Prototypes 227
12.2 Using Dojo to Work with Objects 228
12.2.1 Dojo Function: dojo.declare 229
12.3 Defining a Class 229
12.3.1 Superclasses and Inheritance 231
12.3.2 API for dojo.declare 231
12.3.3 Other Dojo Functions 233
12.3.4 Object Graphs and Dot Notation 234

13 Strings and JSON 239
13.1 Text Strings 239
13.1.1 Dojo Function: dojo.string.pad 240
13.1.2 Usage Example for dojo.string.pad 241
13.1.3 Dojo Function: dojo.string.substitute 241
13.1.4 Usage Example for dojo.string.substitute 243

14

15

16

Contents

13.2 JSON 244
13.2.1 Dojo Function: dojo.toJson 246
13.2.2 Usage Example for dojo.toJson 246
13.2.3 Dojo Function: dojo.fromJson 247

Events and Event Handling 249
14.1 Description of the Event Model 249
14.1.1 What Are Events? 250
14.1.2 Additional Dojo Events 251
14.2 Defining and Assigning Event Handlers 252

14.2.1 Using dojo.connect to Assign
Event Handlers 252

14.2.2 Usage Example for Assigning
Event Handlers 253

14.3 Representing an Event as an Object 254
14.4 Using Aspect Oriented Programming in Dojo 256

Ajax Remoting 259
15.1 Remoting 259
15.2 Review of XMLHttpRequest (or XHR for Short) 260
15.2 The dojo.xhrGet Function 261
15.3.1 Parameters in Detail 264
15.4 dojo.xhrPost 264
15.4.1 Usage Example—Error Handling 268
15.5 Working with Forms 269
15.5.1 Dojo Function dojo.formToObject 270
15.5.2 Dojo Function dojo.objectToQuery 271
15.5.3 Dojo Function dojo.formToQuery 272
15.5.4 Dojo Function dojo.formToJson 274
15.5.5 Dojo Function dojo.queryToObject 274

Working with the DOM 277
16.1 Finding Needles in the DOM Haystack 277
16.2 Dojo Query 278

16.2.1 CSS Selectors 279

16.2.2 Using Selectors in dojo.query 282

16.2.3 Using DOM Elements Found
by dojo.query 283

Xi

Xii Contents

16.3 Animation 283
16.3.1 Understanding Animation 283
16.3.2 Dojo Animation Function 285
16.3.3 Standard Animation Effects 286

17 Testing and Debugging 293

17.1 Testing 293
17.1.1 Unit Testing 294
17.1.2 DOH—The Dojo Unit Testing Framework 294
17.1.3 Other Types of Testing 298

17.2 Logging 298
17.2.1 Basic Logging 299
17.2.2 Advanced Logging 300

Index 303

Foreword

If there is one lesson to be learned from the Dojo Toolkit, it is “Be careful what you
wish for!” When we first started Dojo, we had the modest goal of creating a JavaScript
toolkit that would be useful and would prevent expert JavaScript developers from having
to reinvent the wheel. With the buzz and excitement that would soon follow with the
emergence of the term Ajax, we quickly found ourselves as the creators of a toolkit used
by thousands and thousands of developers and millions of users in a very short time.

In the case of any project or company that grows much faster than expected, there are
growing pains along the way. It has taken Dojo nearly 18 months to address and solve
most of the issues caused by its rapid success: performance, comprehension, ease of use,
and documentation. Open source projects are notoriously bad at both marketing and
documentation, and Dojo was initially no exception to the rule. With each release from
Dojo 0.9 to 1.1 and beyond, documentation and API viewing tools have improved sig-
nificantly and are now something we’re proud to have rather than being a blemish to the
project.

Above and beyond source code documentation, demos, and great examples is the
need for great books. When learning something new, the most difficult things to learn
are usually the questions you don’t know how to ask.The vernacular and philosophy of
Dojo is very powerful and efficient but often leaves developers new to Dojo not know-
ing where to get started. Dojo in particular and Ajax in general also have the learning
curve of basically needing to understand a wide range of technologies, from server-side
programming languages to JavaScript, CSS, HTML, and the DOM, plus the browser
quirks and inconsistencies across each. Toolkits such as Dojo go to great lengths to rescue
developers from the most common and egregious of these issues, but developers creating
something new will inevitably run into trouble along the way.

There are numerous opportunities for developers and users of Dojo to solve their
problems and get up to speed, from reading this book to online community support, and
the commercial support provided by companies such as SitePen.

Dojo has thrived and succeeded because of its transparent and open development
process. All code is licensed under the AFL and BSD, licenses which are focused on
adoption rather than control.

Contributions have been received from hundreds of individuals and from companies
such as AOL, Google, IBM, Nexaweb, Renkoo, SitePen, Sun, WaveMaker, and many
more. We have a strict but low-barrier contribution policy that requires all source code
contributions to be made through a Contributor License Agreement, ensuring that usage
of Dojo will not cause legal or IP headaches now or in the future.

And we innovate and experiment more than any other toolkit, introducing features in
DojoX that are far ahead of other toolkits.

I first met James Harmon at a conference when he was giving a talk about Dojo. The
great thing about James’ approach was that he did an amazing job of simplifying the
message. Alex Russell and I have a tendency to beat people over the head with every
feature and every possibility, whereas James was able to distill complex topics down to
easy-to-follow concepts that help people quickly get up to speed with Dojo.

This book takes the same simple approach of clearly explaining how to create web
applications and web sites with Dojo in a manner that should make it easy, even for
developers who are not JavaScript experts, to quickly get up to speed and become
effective with the Dojo Toolkit.

Dylan Schiemann
CEQO, SitePen
Cofounder, Dojo Toolkit

Acknowledgments

It seems like a ridiculous conceit to put only my name on the cover of the book. I've
learned that “it takes a village” to write a book and I'd like to acknowledge some of the
members of my village who have been so helpful with their time and encouragement.
First, thanks to my editor, Debra Williams Cauley, who began by not taking “no” for an
answer (in the nicest way, of course) and continued by expertly guiding me through the
process.

Also, thanks to Debra's team at Prentice-Hall, including those I worked with directly,
Chelsey Marti, Chrissy White, Michael Thurston, and all those who toiled behind the
scenes to get this book into the reader's hands. Eric Foster-Johnson also provided invalu-
able suggestions to the text.

No book on Dojo would have been possible without the Dojo Framework itself.
Thanks to all who've contributed to the project and provided me with help and support
along the way, including Dylan Schiemann, Alex Russell, Karl Tiedt, Adam Peller, Becky
Gibson, Sam Foster, Ben Lowery, and James Burke. And to all the other contributors too
numerous to mention that have made Dojo the great framework it is.

Also thanks to my personal network who gave lots of great advice: Ed Lance, Ted
Rafacz, Max Rahder, Steve Meshner, Bob Phifer, and Will Provost. Thanks to my techni-
cal idols, Douglas Crockford, Jesse James Garret, and the guys at Ajaxian.com who got
me interested in Ajax and JavaScript in the first place.

And special thanks to my wonderful wife, Sonia, who helped me carve out the time
to write this book. I couldn't have done it without you.Your constant support is always
an inspiration to me. I love you.

About the Author

James E. Harmon is the President and Senior Instructor at Object Training Group in
Chicago. He is an experienced developer who spent a majority of his career building
large scale online applications at Accenture and for several other Web-centric consulting
firms. He now specializes in training Java Developers to be more productive by using the
latest technologies and frameworks.

The book’s web site is http://www.ObjectTrainingGroup.com/dojobook.

http://www.ObjectTrainingGroup.com/dojobook

a H» WO N BB

A Dojo Tutorial

Understanding Dojo: A Tutorial
Using Dojo for Client-Side Validation
Using Dojo to Work with the Server
Using Dojo Widgets

Processing Forms with Dojo

This page intentionally left blank

1

Understanding Dojo:
A Tutorial

If you tell me, I'll soon forget. If you show me, I'll remember forever.

—Chinese Proverb

|n the spirit of the quote that opens this chapter, I believe that a simple demonstration
is one of the best ways to introduce a new technology. So I'm opening this book by pro-
viding a tutorial that will use the Dojo Toolkit to enhance a basic HTML form. This
chapter introduces the tutorial, which continues through Chapter 5, “Processing Forms
with Dojo,” and comprises Part I, “A Dojo Tutorial.”

1.1 Introduction to the Tutorial

Imagine that you are a web developer (which is probably not a stretch if you are reading
this book) and you are being encouraged to add some Ajax features to a site you're
working on. Maybe the originator of this request is your boss or your boss’s boss, who is
not even sure what Ajax is, let alone what kinds of features might be useful. And maybe
you're not sure yourself. Imagine that your prior experience has mostly been on the
server-side, developing in Java or some other server-side technology, and your experience
with HTML and JavaScript has been fairly limited. This is the scenario we will explore
over the next several chapters as you are introduced to the Dojo Toolkit.

To further flesh out the scenario, imagine that you've heard lots of things about how
powertful the JavaScript programming language can be and that there are a number of
JavaScript libraries and frameworks that can help you take advantage of that power.
You've decided to use the Dojo Toolkit because some of the web sites and forums that
you frequent to keep up with the ever-changing IT industry have recommended it. And
you've already selected one of the most frequently used pages in your application to be
the first candidate for being “Ajaxified.”

Chapter 1 Understanding Dojo: A Tutorial

This tutorial walks you through a number of steps to update the page with Ajax fea-
tures. We will enhance the page in a number of small ways that each address a specific
type of issue. Along the way, we’ll see the kinds of features that Ajax allows us to add to
web pages, and we’ll see exactly how to implement those features using the Dojo Toolkit.

1.1.1 Goals for this Tutorial

The primary goal of this tutorial is to show you how to use the Dojo Toolkit to intro-
duce some common Ajax features into your web pages. The tutorial provides instructions
for picking the low hanging fruit. In other words, it focuses on the features that are fairly
easy to implement and yet provide a substantial return in increased usability. This tutorial
is not meant to demonstrate every feature of Dojo, nor is it intended to exhaustively
cover the features that we implement together. You can think of this tutorial as address-
ing the first phase of web site enhancement.

Another main goal of this tutorial is to implement features in the plainest way. Although
most Dojo features can be implemented either declaratively (in HTML markup) or pro-
grammatically (using JavaScript), we’ll first focus on the declarative technique given that
most web server-side developers are more familiar with HTML markup than with
JavaScript. Of course, we will also use some JavaScript as the glue to tie things together.

1.1.2 Goals for Using Dojo

What do we hope to achieve by using Dojo? First and foremost, we expect that our
pages will be more usable. This might manifest itself in a variety of ways. The page
should be faster. It should be better looking. It should be easier to operate by the user. It
should help the user enter the required information properly, and the page should be
easier to navigate.Yet at the same time, we should not violate any of the user-interface
conventions that users have come to expect when accessing web pages. We should make
significant usability gains without sacrificing anything that the user already depends on.

How do we make these gains in usability? Dojo provides enhancements to the exist-
ing HTML form elements that provide additional functionality. These enhancements
should make the current form elements behave in more useful ways.

Performance can be improved either by making things run faster or by making things
appear to run faster. The ideal way to make a process appear faster is to have the process
run while the user is doing something else rather than just having him wait for the process
to complete. Ajax provides the ideal mechanism to support this technique. We’ll use Dojo
to allow a page to make data requests of the server asynchronously while the user is con-
tinuing to work. The page will appear to the user to be faster and more responsive.

Data validation can be improved by bringing the validation of data closer to the entry
of data. Dojo supports the ability to send small validation requests to the server without
requiring an entire form to be submitted. When appropriate, we might even want to adopt
the desktop application paradigm of validating data on a keystroke by keystroke basis.

We also expect our features to be easy to implement. We want to be able to leverage
what we know about HTML, and when we use JavaScript, the programming model should

1.2 A Standard HTML Data Entry Form

be consistent and powerful. We expect to write a lot less code than if we were developing
the functionality by writing it all ourselves. Less code means less opportunity for error. As
you learn Dojo, you can expect that what you learn will continue to be useful as you dig
turther into Dojo. And when things do become more complex, you will have tools to aid in
debugging. In short, you can expect Dojo to provide a great programming environment.

Finally, we hope to be constantly surprised by the benefits we derive from using Dojo,
obtained without any extra work on our part. For example, we expect that any features
we add will work the same regardless of what browser our users are using. And we expect
our visual elements to support Web Accessibility and Internationalization standards.

We’ve set quite a high bar for Dojo to cross over. We’re asking for a lot and not
expecting to sacrifice much to obtain it. Can Dojo really deliver? Let’s find out. We start
at the beginning by reviewing the page that will be the basis for our enhancements and
identifying the kinds of problems we hope to solve.

1.2 A Standard HTML Data Entry Form

We begin by selecting a page from our application that will be the target for our Dojo
enhancements (see Figure 1.1).This page comes from a hypothetical Customer Service
application for a nation-wide cable company and allows a customer to create an account
and to request service. The tutorial is going to be pretty vague about the operations of
our “business” because, as you probably guessed, this form is being used to highlight
some specific types of functions that many business applications possess. So, if you can
suspend your disbelief for a little while, let’s review the form.

Customer Entry Form

First / Last Name:

User Name:

Email

Address:

State:
California =
City:

Zip Code:

Service Date:

Comments:

Submit | Cancel

Figure 1.1 Standard HTML customer entry form

Chapter 1 Understanding Dojo: A Tutorial

This page has a very basic design—almost no design at all. It uses only a small bit of
styling and is about as plain as you can get.Your pages probably look much better than
this, but we start with this minimal design to keep the examples as simple as possible.

Let’s walk through each of the fields on this form and discuss the usability problems.
A discussion of how Dojo can solve these problems then follows.

1.2.1 First and Last Name

The first data entry field is used to hold the customer’ first name. Straightforward
enough, yet we already have a problem. The label for the field says “First / Last Name:”
and is followed by two text fields for input. Although the user can probably figure out
what the page is asking for, it may be more difficult to understand for screen readers,
which are used by those with visual impairment.

First / Last Name:

You could argue that from a usability perspective, this is already a bit confusing. All

the other labels on the page refer to a single text box only, while this label refers to two
text boxes. When a name is separated into two parts, should the last name be entered
before the first name, or the other way round? These are good questions, but we’ll have
to wait for the answers. Remember, we’re just identifying the problems now. We look at
solutions later in the chapter.

Now let’s examine the HTML markup for these fields.

<label for="firstName">First / Last Name: </label>
<input type="text" id="firstName" name="firstName" />
<input type="text" id="lastName" name="lastName" />

You might not have used the <labels> tag before, but it can be helpful for improving
your site’s accessibility for the disabled. The tag is useful to screen readers when the label
does not immediately precede the input field, such as when the label is in a different
table cell. It also makes it easier to style all the labels with a single style when using
Cascading Style Sheets (CSS). Another problem is that only one of the fields has a
<label> tag.

Both the first name and last name fields are required. However, in our standard form,
no JavaScript is being used, so how do we make the fields required? There is no HTML
tag or attribute for this, so we’ll depend on the server to do the validation. That means
the user won’t know the fields are required until after submitting the form and receiving
an error message back from the server.

How will the error messages be displayed? Let’s say that the user has entered some
data in the form and pressed the “Submit” button. The browser will make a request to
the server that will then validate the data and return the form back to the browser along
with some error messages. Hopefully the server will also send back the data that the user

1.2 A Standard HTML Data Entry Form

entered so they don’t have to re-enter it. Oftentimes, the error page will display all the
error messages near the top of the page. The page with error messages might appear as
shown in Figure 1.2.

Customer Entry Form

[You need to fix the following errors:

* First name is required
® Last name is required

First / Last Name:

Figure 1.2 Typical error messages for a form

1.2.2 User Name

Our application will allow the user to sign in and manage his or her account, so we're
asking the user to create a user name that will be used for that purpose. We ought to
provide him with some guidance for creating a proper name, but that would require us
to add quite a bit of text to the page, so we’ve decided not to. The form simply asks for
a user name and provides a text field.

User Name:

—

The HTML markup for this is quite similar to the “First / Last Name:” fields, just a
<labels and <input type="text"s tag as shown here.

<label for="userName">User Name: </labels>
<input type="text" id="userName" name="userName" size="20" />

We’ve added a little client-side validation by specifying the size="20" attribute to
ensure that the user can’t enter a name longer than 20 characters.

A problem with this field involves validation. A user would like to create a short user
name that is easy to remember, but because this is also the goal of every other user, it is
possible that the name might have already been selected. How i1s the user notified of
this? Again, validation can’t be done until the user submits the page. The server will
check the user name to see if it has already been assigned and, if so, will return a page
that redisplays the form and shows the error message (along with any additional error
messages associated with other fields). It might be helpful also to suggest some alterna-
tives to the user so that he doesn’t keep entering names that have already been taken.
These suggestions should be based on the user’s desired user name.

Chapter 1 Understanding Dojo: A Tutorial

1.2.3 Email Address

We'd like to communicate with the user through email, so we’ll ask for an address. A
simple text box will be used to let the user enter the email address.

Email:

The HTML markup is shown here and is very similar to the other text fields on the
page.

<label for="email">Email: </label>
<input type="text" id="email" name="email" size="45" />

Again, we’ve enabled some client-side validation by specifying the size of the field.
But is there a way to tell if the email address s valid? There are two types of validation
we could try. First, is the email address in the correct format? For instance, does it con-
tain the “@" symbol? Does it end with a TLD such as “.com”? Second, is it an actual
working email address? Unfortunately, there is no way to determine the latter without
actually creating and sending an email. Though this might be useful for sending the user
a password and letting her validate the user name, it is beyond the scope of what we
want this page to do. So we’ll just focus on confirming that the email address at least
appears to be formatted correctly.

1.2.4 Address

We’ll ask for the first line of the user’s home address and use a regular text box to
capture it.

Address:

The HTML is similar to the previous fields.
<label for="address">Address: </label>
<input type="text" id="address" name="address"/>

This field should contain the first line of the customer’ billing address, so we need to
make sure it is entered. It is a required field, but again we’ll have to depend on the server
to perform that validation.

1.2.5 State

We need the user’ state as part of the billing address. Because there are only a limited
number of states, we can use a <SELECT> to provide a pull-down list of states, one of
which can be chosen. A typical example of a pull-down list of states is shown in
Figure 1.3.

1.2 A Standard HTML Data Entry Form

Alabama -
Alaska

Arizona

Arkansas

Colorado

Connecticut

Delaware

Figure 1.3 Pull-down list of states

HTML provides the <SELECT> form element, which can be used to supply a list of
values. A snippet of the markup necessary to create the field is shown here.

<select name="state" >
<option value="AL">Alabama</option>
<option value="AK">Alaska</option>
<option value="AS">American Samoa</options>
<option value="AZ">Arizona</option>
. additional state values not shown ...
</select>

Because there is only a small set of values for state, they can all be shown. For this
field, validation is not a problem, but behavior is. I live in Illinois, and I make frequent
purchases on the Web, so I'm often faced with entering my billing address. When I come
to the state selection field on a form, I first type an “i”, and “Idaho” pops up on the list
because it is the first state that begins with an “i.” Fair enough—even though I don’t live
in Idaho. Next I type an “1” (a lowercase “L”), and “Louisiana” pops up. Now, many fine
people live in Louisiana, but I am not one of them. The problem is that the <SELECT>
tag interprets my typing as two distinct cases of typing the first letter of a word instead
of just one case of typing the first two characters of a single word. When I type “il”
want to see all the states that begin with the letters “il”, and only Illinois makes that cut.
Unfortunately, this just isn’t how a <SELECT> tag works—it displays “Louisiana” when I
type the “1,” assuming that I'm typing the first letter of the state again.

This isn’t always a problem. Some browser versions do work as we’d like them to
(interpreting the entire string “il” as the first characters of the state), but we need to
have consistent behavior on our page regardless of what browser the page happens to be
running in.

10 Chapter 1 Understanding Dojo: A Tutorial

1.2.6 City

This 1s another required field. We’ll use a text box to capture the value from the user.

City:

e —

The HTML will be the same as we’ve already seen for the other text fields.

<label for="city">City: </labels>
<input id="city" name="city"/>

The basic HTML form will not provide any type of validation for this field.
However, couldn’t we have presented the user with a pull-down list of valid cities like
we did for the state selection? There are only a finite number of cities for each state, but
the number isn’t small. Across the entire United States there are somewhere around
30,000 cities. So simply listing all of the values in our page would have increased the size
of the page, making it slower to load. It is also not correct to list all the cities; we must
list only the cities for the state selected by the user. We would need to create some
JavaScript logic to do that, and we’re trying to avoid JavaScript in our simple form.

The usability of the pull-down list would also be problematic. Because there are so
many cities, many of them would start with the same letter. Typing the first letter of the
city would only get the user to the beginning of a long list. The user would have to
scroll down for quite a while to reach certain values—something that would get pretty
tiresome.

1.2.7 Zip Code

Zip code is the final required field for the billing address. We'll use a text box to cap-
ture the data from the user.

Zip Code:

The HTML is the same as for the other text fields.

<label for="zipCode">Zip Code: </labels>
<input type="text" id="zipCode" name="zipCode" size="10" /></br>

Validation is required. Again, we’ll depend on the server for making sure the field has
been entered. The server will return a page containing the form, any data entered by the
user, and any validation error messages that are created. Aside from making the field
required, what other validations might be performed? Just like for the email address,
there are two types of validation. Is the data in the right form? And is the data a valid
value?

Zip codes take two forms in the United States. They can be five numeric digits long
or five digits followed by a dash and then four more digits. This means that the entered

1.2 A Standard HTML Data Entry Form

data can either be five characters long or ten characters long. HTML does provide us
with a technique for enforcing a maximum length by using the size attribute. However,
there is no way in HTML to specify a minimum length. Nor is there a way to specify
that a dash is required to separate the two parts of the long style of zip code. The server
can perform all these checks but only after the user has submitted the form.

We could go even further. Like states and cities, the U.S. has a certain finite set of zip
codes. Would we be able to list them in a <SELECT> list? And since we already know the
state and city, could we list just the zip codes that apply? That logic is actually more
complicated than you might think—some cities have multiple zip codes while some zip
codes cross over city boundaries. Also if we expand our geographic reach beyond the
boundaries of the U.S., we’ll discover additional complexities. However, we’ll stay within
the U.S. borders for the sake of keeping our tutorial fairly simple.

We’ve introduced lots of problems with this field. Remember, solutions are suggested
later in the tutorial.

1.2.8 Service Date

Our customers would also like to schedule the start of their cable service, so we pro-
vide a text box where they can enter the starting service date.

Service Date:

The HTML is the same as we have seen before for the other text fields.

<label for="serviceDate">Service Date:</label>
<input type="text" id="serviceDate" name="serviceDate" size="10"/>

What kinds of validation are required for the service date? Of course, it must be a
valid date, but what format should the date be entered in? We're not giving the user
guidance. This is clearly a problem. Beyond that, the date should be in the future and not
the past. There might even be dates that should be blocked out such as non-business
days.

Another usability problem with this field is that people can’t easily calculate future
dates. What is the date of the day two weeks from now? Do we just add 14 to the cur-
rent date? Not if the current month ends before we reach that date. And what is the date
of the first Monday three weeks from now? It can be very difficult for the user to calcu-
late dates without having a calendar available.

1.2.9 Comments

Finally we come to the last field on the form—Comments. The user can enter free-
form comments describing how she found out about our service and what kinds of
shows she likes—or anything else she might want to tell us.

11

12

Chapter 1 Understanding Dojo: A Tutorial

Comments:

This is a multi-line text box that allows the use to enter as much or as little text as
she would like. The HTML is shown here.

<label for="comments">Comments:</label>
<textarea name="comments" rows="3" cols="35" id="comments">
</textarea>

This is not a required field, so no validation is necessary. The HTML form element
<textarea> provides some basic text editing capability. It will automatically wrap words
when the user comes to the end of each line. Once the user enters more text than can
fit in the visible portion of the box, a scroll bar automatically appears on the right-hand
edge of the box to allow up and down scrolling. But that’s the extent of its features.
There are no formatting capabilities.

This completes our review of the original HTML form. Now that we’ve cataloged
the many problems with this form, we can plan our strategy for addressing them with
Dojo.

1.3 The Plan for Enhancing the Form

There is a lot of work to do to address all the problems we’ve identified. We need to
create a plan of attack, and the first task is be to organize our problems into some broad
categories. We’ll start with the simplest changes first and gradually move up to more
complicated ones. The categories are listed here. Each category will be a step of the
tutorial.

1. Including Dojo in the form
Adding client-side validation
Adding server-side features

Using additional specialized Dojo widgets

oo 2N

Processing the form

Each topic is described in more detail in the following sections.

1.3.1 Including Dojo in the Form

The first step of the tutorial shows you how to add Dojo to a web page and is contained
here in Chapter 1.

Dojo is a library of functions that we can access either programmatically or declara-
tively. We use it programmatically by writing JavaScript, which makes calls to Dojo func-
tions, or declaratively by calling Dojo using HTML markup. But before we can make

1.3 The Plan for Enhancing the Form

any calls to Dojo, we must make it available to our page. In other words, we must
include Dojo in our web page. This step alone won’t implement any of the many fea-
tures available to us, but without it, we can’t use Dojo at all.

1.3.2 Adding Client-side Validation

The second step of the tutorial focuses on client-side validation and is contained in
Chapter 2, “Using Dojo for Client-side Validation.”

Many of the usability problems we identified were things that could be solved by
providing some validation in the browser. In this step we only address the validation that
doesn’t require communication with the server. Some developers might not even consid-
er these features to be Ajax because there is no server request created. But that would
not be quite accurate. After all, Ajax is a two-sided coin. One side is certainly asynchro-
nous server communication without a page refresh, but the other side of the coin is all
the interactivity and eye candy available by using JavaScript to manipulate the display.

One of the problems we solve in this step is the validation of required data. Rather
than submit the form and asking the server to check that a required field has been
entered, we use JavaScript to test for data before submitting the form. This will make the
application seem faster because the user won't have to wait for a server response to find
out about bad data.

1.3.3 Adding Server-side Features

The third step of the tutorial focuses on the classic definition Ajax—making calls to the
server without refreshing the page that the user is working on. This topic is covered in
Chapter 3, “Using Dojo to Work with the Server.”

Some of the other problems with our form were caused by forcing a page submit to
validate certain kinds of data. For example, the user name needs to be validated against
existing user names on the server. There is no way to avoid checking the server—that’s
where the data is. But we don’t have to request a whole new page. We can create an Ajax
request just to check the user name, and the server will return just the validation infor-
mation, not an entire new page. This will be quicker and won't interrupt the user’s flow.

We’ll also make requests to the server to get data based on values entered by the user.
For instance, we can go get a list of cities from the server based on the state selected
from the pull-down list. This step will require some additional scripts on the server to
allow it to respond to these Ajax requests. I've created some simple JavaServer Page (JSP)
scripts on the server to allow the examples to work. The scripts are over-simplified but
serve the purpose of demonstrating the features that are discussed in the tutorial.

1.3.4 Using Additional Specialized Dojo Widgets

The fourth step of the tutorial demonstrates some of Dojo’s powerful widgets and is
contained in Chapter 4, “Using Dojo Widgets.”

13

14

Chapter 1 Understanding Dojo: A Tutorial

Eye candy is the term some designers use to describe cool visual eftects. Drag—and-
drop in Google Maps is at least partly an eye candy feature. Not only does Dojo allow us
to enhance existing HTML form elements, but it also provides entire new visual ele-
ments called widgets, which provide new form elements not available in HTML. For
example, one of the problems with service date was that the user really needs to see a
calendar to pick the date. We can add the Dojo Date Picker widget, which causes a cal-
endar to display right on the page. We can also replace the simple <textareas> element
with a full-blown rich text editor widget.

1.3.5 Processing the Form

The fifth and final step of the tutorial demonstrates form processing and submission and
is discussed in Chapter 5.

The final step of the tutorial deals with treating the form elements as an integrated
whole. We look at how to verify that all the client-side validations have been performed
before the form is submitted, and we see how to submit the form. I hate to ruin the end
of the movie, but here goes (spoiler alert): Dojo will submit the form data as through it
were a regular HTML form. In other words, we won’t have to modify the component
on the server that processes the form data. The server won’t even know that the form
has been “Dojo-ized.” That will save us some work on the server.

1.4 Getting and Running the Source Code

Each step in the tutorial is fully described in this book. However, you might want to
play along at home. All the source code required for the tutorial is available at the web
site for the book, which includes starting code for each step along with the final code
for each step.You can download the starting code and make the changes yourself—or
just download the final code for each step and run it.

You can use whatever editor you like to modify the code. For some of the steps, you
do not even need a web server. However, this is a web application, so some of the fea-
tures do require a server. I've created some server components using Java Server Pages
(JSPs). These server components are sufficient only to run the examples and are not sug-
gested or recommended for production systems use.

To run the server code you need a web server that provides a JSP container. I'd rec-
ommend Tomcat, available at the Apache Software Foundation web site.! Tomcat is free.
However, any web server which supports JSPs will do. The web site for the book also
provides support for running the code along with corrections to the book’ text. Please

check out the website and feel free to contact me.?

1 You can download the Tomcat web server from the following address: http://tomcat.apache.org/.
2 The web site for this book can be found at the following URL:
http://www.objecttraininggroup.com/dojobook.

http://tomcat.apache.org/
http://www.objecttraininggroup.com/dojobook

1.5 Tutorial Step 1—Including Dojo

1.5 Tutorial Step 1—Including Dojo

The purpose of the first step of this tutorial is to make the Dojo Toolkit functions avail-
able to our web page. For now, we can think of Dojo as a JavaScript file that must be
included on our page (and on each page that will use Dojo). This is a simplification.
The Dojo Toolkit actually consists of many files organized in a directory structure. We
explore that in later chapters, but for now we can pretend that Dojo is just a single
JavaScript file.

We include Dojo in our page using the same technique that we would use to include
any JavaScript source file. We will use the <scripts> tag, which is explained in more
detail shortly.

1.5.1 Download or Create the Source Files

Before we can modify the form to include a <scripts> tag, we must first create the
form. Just in case any problems have been identified since this book was published, you
might want to check the book’s website. You can also download the source files there.
You’ll need two files: “form.html” and “form.css.” The source code for each file is also
included here in the text.

Following is the code for the form itself. This file should be named “form.html.”

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>
<!— Dojo Tutorial - Step 1 (form.html) —>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Customer Entry Form</title>
<!— CSS —>
<link rel="stylesheet" href="form.css" type="text/css" />
</head>
<body>

<div class="formContainer"s>
<form action="submit.jsp" method="get" name="custForm">

<div class="formTitle">Customer Entry Form</divs

<div class="formRow">

<label for="firstName">First / Last Name: </label>
<input type="text" id="firstName" name="firstName" />
<input type="text" id="lastName" name="lastName" />

</div>

15

16

Chapter 1 Understanding Dojo: A Tutorial

<div class="formRow">

<label for="userName">User Name: </label>

<input type="text" id="userName" name="userName" size="20" />
</div>

<div class="formRow">

<label for="email">Email: </label>

<input type="text" id="email" name="email" size="35" />
</div>

<div class="formRow">

<label for="address">Address: </label>

<input type="text" id="address" name="address" size="32"/>
</div>

<div class="formRow">
<label for="state"sState:</label>
<select name="state" >
<option value="AL">Alabama</option>
<option value="AK">Alaska</option>
<option value="AZ">Arizona</option>
<option value="AR">Arkansas</option>
<option value="CA" selected="selected">California</options>
<option value="CO">Colorado</option>
<option value="CT">Connecticut</option>
<option value="DE">Delaware</options>
<option value="DC">District of Columbia</option>
<option value="FL">Florida</option>
<option value="GA">Georgia</options>
<option value="HI">Hawaii</options
<option value="ID">Idaho</option>
<option value="IL">Illinois</option>
<option value="IN">Indiana</option>
<option value="IA">Iowa</option>
<option value="KS">Kansas</options>
<option value="KY">Kentucky</options
<option value="LA">Louisiana</option>
<option value="ME">Maine</option>
<option value="MD">Maryland</options>
<option value="MA">Massachusetts</option>
<option value="MI">Michigan</options>
<option value="MN">Minnesota</option>
<option value="MS">Mississippi</option>
<option value="MO">Missouri</options>
<option value="MT">Montana</options>
<option value="NE">Nebraska</option>
<option value="NV">Nevada</options>

1.5 Tutorial Step 1—Including Dojo

<option value="NH">New Hampshire</option>
<option value="NJ">New Jersey</option>
<option value="NM">New Mexico</option>
<option value="NY">New York</option>
<option value="NC">North Carolina</options>
<option value="ND">North Dakota</options
<option value="OH">Ohio</option>
<option value="OK">Oklahoma</options>
<option value="OR">Oregon</options>
<option value="PA">Pennsylvania</options>
<option value="PR">Puerto Rico</options>
<option value="RI">Rhode Island</options
<option value="SC">South Carolina</options
<option value="SD">South Dakota</options>
<option value="TN">Tennessee</options>
<option value="TX">Texas</option>
<option value="UT">Utah</option>
<option value="VT">Vermont</options
<option value="VA">Virginia</options
<option value="WA">Washington</options>
<option value="WV'">West Virginia</option>
<option value="WI">Wisconsin</options>
<option value="WY">Wyoming</options>
</select>

</div>

<div class="formRow">
<label for="city">City: </label>
<input id="city" name="city"/>

</div>

<div class="formRow">

<label for="zipCode">Zip Code: </label>

<input type="text" id="zipCode" name="zipCode" size="10" />
</div>

<div class="formRow">

<label for="serviceDate">Start Service:</label>

<input type="text" id="serviceDate" name="serviceDate" size="10"/>
</div>

<div class="formRow">

<label for="comments">Comments:</label>

<textarea name="comments" rows="3" cols="35" id="comments">
</textareas>

</div>

17

Chapter 1 Understanding Dojo: A Tutorial

<input type="submit" value="Submit" id="submit" />
<input type="reset" id="reset" value="Cancel" />

</form>
</div>

</body>

</html>

This form refers to a CSS file that can provide some simple styling. This CSS file, which

should be named “form.css,” follows.

/*_____________________
File : form.css
Description : Dojo Tutorial

Last Updated : March 1, 2008

*/

.formContainer {
margin: 2px auto;
background: #DBE4FF;
width: 500px;
border-width: 1px;
border-style: solid;
border-color: purple;
padding: 10px;

.formTitle {
font-size:24px; font-weight:bold;
padding: 10px;

form {
margin-top: 5px;
width: 480px;

}

.formRow {

position:relative;
padding: 4px 0.75em 2px 1l0em;

.formRow label {
position: absolute;
left: 0.75em;

1.5 Tutorial Step 1—Including Dojo

float: none;
width: 10em;
display:block;
margin: 0;

1.5.2 Include the Code for the Dojo Toolkit

Now we need to add a reference to the Dojo Toolkit to our page. Usually we would do
this by downloading the source from the Dojo web site and putting it on our own site
then linking to it. But one of the goals of this tutorial is to be as simple as possible, so
we’re going to take advantage of a cool technique for referencing the Dojo source files
on the Internet without requiring us to have the source on our own web server.

AOL provides a facility it calls the Content Delivery Network (CDN), which is a
“worldwide geographic edge caching” mechanism for the Internet. This allows super fast
delivery of files to web users from AOL servers that are geographically close to them.
The files are also compressed, which further improves the download speeds. AOL has
generously made this facility available to developers and end users. For more information
on the AOL CDN and Dojo, visit http://dev.aol.com/dojo.

So we can just provide a link to the Dojo files on AOL CDN and do not need to
download them to our site at all. Include the following code in the <head> tag in
“form.html.” Please put this below the ending </head> tag so your code is consistent
with the rest of the tutorial.

<script type="text/javascript"
src="http://o.aolcdn.com/dojo/1.1.0/dojo/dojo.xd.js"
djConfig="parseOnLoad: true"s></scripts>

There are a few caveats. The link provided in the code was for the current version of
Dojo at the time this book was published. A more recent version may be available for
you. If you choose to use a later version, check this book’s web site to see if the source
code has changed.

You don’t have to use the AOL CDN.You can download Dojo to your own server.
This might be a preferable approach, especially during development. It allows you to
look at the Dojo source code and to work offline in case you don’t have an Internet
connection.

Downloading Dojo is easy. You simply point your browser to Dojo’s web site,
http://www.dojotoolkit.org, and look for the download link. The download page con-
tains links to the current version and to older versions. While new versions might pro-
vide you with additional features, they might not necessarily work with the source code
for this tutorial. Just check this book’s web site for updates.

If you choose to download Dojo, the <script> tag for the link will be different. The
following code snippet assumes that you have downloaded the Dojo zip file and
unzipped it to the same directory as your form.

19

http://dev.aol.com/dojo
http://www.dojotoolkit.org

20

Chapter 1 Understanding Dojo: A Tutorial

<script type="text/javascript"
src="dojo-release-1.1.0/dojo/dojo.js"
djConfig="parseOnLoad: true"s></scripts>

The attribute djConfig="parseOnLoad: true” tells Dojo to search the HTML on
your page for any Dojo widgets you may have added. For this to work, we need to
include the Dojo parser. This is accomplished by adding some JavaScript code to our
page. Include the following code in the <head> tag after the <scripts> tag that linked
to Dojo.

<script type="text/javascript"s
dojo.require ("dojo.parser");
</script>

NOTE

This is important—the preceding code containing “dojo.require” must follow the link to
Dojo, not precede it.

1.5.3 Include Dojo Style Sheets

Throughout the tutorial, we add various Dojo widgets to our page. The “look” of the
Dojo widgets is defined through styles specified on a few style sheets that must be added
to our page. The Dojo team has separated the “look” of the widgets into separate style
sheets. This is an outstanding feature of Dojo widgets. It means that you can easily style
the widgets to match the look of your website by overriding the default styles. You're
not limited to whatever out-of-the-box style that the widgets come with.

The first style sheet, “dojo.css,” overrides some of the styles of standard HTML page
elements such as <body>, <divs, and <forms.There are just a few styles, and they’re
meant to set the style to a plain vanilla look.

The next file, “tundra.css,” defines the style for components of many of the standard
Dojo widgets. The “tundra” theme is one of the three built-in themes available in Dojo.
Why the name tundra? A tundra is the cold, treeless area just below the icecap of the
arctic regions. It consists of the permanently frozen subsoil populated with mosses and
small shrubs. Dojo’s “tundra” theme is meant to be reminiscent of that barren landscape
and provides a minimal palette for the widgets. The “noir” theme is darker (“noir” is a
genre of film that emphasizes starkness and often is filmed in black and white). And the
“soria” theme is brighter (Soria is a city in the sunny north-central region of Spain).

Add the following code to the <head> section of the page to style our widgets and
provide the Dojo tundra theme. Order is not important.

1.5 Tutorial Step 1—Including Dojo

<style type="text/css">
@import "http://o.aolcdn.com/dojo/1.1.0/dojo/resources/dojo.css";
@import
"http://o.aolcdn.com/dojo/1.1.0/dijit/themes/tundra/tundra.css";
</style>

The code just given only makes the styles available to the page. Now we must actually
apply the theme to the page by adding a class attribute to the <body> tag as the code
that follows demonstrates.

<body class="tundra">

1.5.4 Review All the Code Changes

We’ve made quite a number of changes to the page, and it might be a little confusing as
to exactly what the page should now look like. Following is a new listing of the top part
of the page so that you can see all the changes.

<!— Dojo Tutorial - Step 1 (form.html) —>

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>
<!— Dojo Tutorial - Step 1 (form.html) —>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Customer Entry Form</title>

<!—= CSS —>
<link rel="stylesheet" href="../form.css" type="text/css" />
<!— CSS —>

<style type="text/css">

@import "../dojo-release-1.1.0/dojo/resources/dojo.css";
@import "../dojo-release-1.1.0/dijit/themes/tundra/tundra.css";
</style>
<link rel="stylesheet" href="../form.css" type="text/css" />

<script type="text/javascript"
src="../dojo-release-1.1.0/dojo/dojo.js.uncompressed.js"
djConfig="isDebug: true, debugAtAllCosts: true"s></scripts>

<script type="text/javascript"s

21

22

Chapter 1 Understanding Dojo: A Tutorial
dojo.require ("dojo.parser") ;

</script>

</head>

<body class="tundra">

Once all these changes are made, we can run the new page to see what it looks like.

1.5.5 Run the New Page

The new page appears as shown in Figure 1.4.

Customer Entry Form

First / Last Name:

User Name:

Email:

I
Address:
I

State:

California =
City:
Zip Code:

Senvice Date:

Comments:

Submit| Cancel

Figure 1.4 HTML Customer Entry Form with link to Dojo

Hopefully you’re not too disappointed—the page appears to look almost the same as
the original form. There are some subtle style changes, though, such as the font for the
labels and form title—but nothing dramatic. That is ok. We really haven’t started using
Dojo yet. We’ve just made it available to our page. In the next chapter, we continue on
with step 2 of the tutorial where we implement the client-side validations, which is
when we start to see some exciting stuff.

1.5 Tutorial Step 1—Including Dojo

Summary
We explored Dojo by starting a tutorial that will demonstrate some of its basic features.
The tutorial consists of five steps:

Step 1—Including Dojo (Chapter 1)

Step 2—Adding client-side validation (Chapter 2)

Step 3—Adding server-side features (Chapter 3)

Step 4—Using additional specialized Dojo widgets (Chapter 4)

Step 5—Processing the form (Chapter 5)

We started out by implementing step 1 of the tutorial in this chapter by placing references
to Dojo within our HTML page.

The next chapter continues the tutorial. Now that we’ve made Dojo available to our
page, we can start to use it to do some client-side validation on our text fields.

23

This page intentionally left blank

2

Using Dojo for Client-side
Validation

1o err is human...

—Alexander Pope (1688—1744)

We all make mistakes, so input forms must anticipate that users will inadvertently
enter bad data. Identifying and correcting these mistakes is an important job of an
HTML form, and this chapter describes Dojo features that allow you to easily add vali-
dation.

2.1 Validating Form Fields

Validating input data on web pages is usually a function performed by the server. The
web page allows the user to enter data, and when the Submit button is pressed, the
browser wraps up the data into an HTTP request and sends it to the server. The server
checks each data field to make sure it is valid, and if any problems are found, a new form
along with error messages is sent back to the browser. Wouldn't it be much more useful
if problems could be detected in the browser before a server request is made? This
approach would provide two primary advantages. It would lighten the load on the serv-
er, and, more importantly, it would notify the user of a problem with a data field almost
immediately after he or she entered the bad data. This supports the truism that errors are
cheapest to fix the closer the detection is to the original creation of the error. For exam-
ple, if there is a problem with a zip code field and the user is notified just after he enters
the bad zip code, then he is still thinking about zip code and can easily make the correc-
tion. If the user isn’t notified until the server response comes back, he’s already stopped

26

Chapter 2 Using Dojo for Client-side Validation

thinking about zip code—his mind has moved on to other concerns. This problem of
context switching is especially difficult when the server returns errors for many different
fields.

How can we drive validation closer to the entry of the data? There are two primary
techniques available. The first technique involves trying to prevent the error from being
entered at all. For example, if the form requires the user to enter a field that must con-
tain a numeric value of a certain length, we can use the size attribute available in
HTML to specify the maximum amount of characters the user can enter. So the user is
prevented by the browser from entering more characters than are allowed. Following is
an example from our form for the zip code field.

<label for="zipCode">Zip Code: </label>
<input type="text" id="zipCode" name="zipCode" size="10" />

This initial validation markup gives us more optimism than is deserved. We might be
hoping for many other attributes to provide some kind of client-side validation.
Unfortunately, the size attribute is basically the extent of HTML-based validation tech-
niques. There are no markup tags or attributes for minimum size or for data type. Nor is
there a way in HTML to designate that a field is required.

That brings us to the second type of validation available to us in the browser. We can
use JavaScript. Given the power of JavaScript, the sky is the limit in terms of types of
validations we can perform. We can trigger a JavaScript function to run after the user
enters a field, and that function can check to see if data is entered, check for a minimum
or maximum length, or even perform sophisticated pattern matching using regular
expressions.

Problem solved, correct? Not quite. The problem with depending on JavaScript as our
validation technique is that we have to write lots of code to implement the checks.
JavaScript code is required to perform the validation. Other JavaScript code tells the vali-
dation when to run. And even more JavaScript code is needed to display the error mes-
sages back to the user. Code, code, and more code. Suddenly, this approach doesn’t seem
as desirable anymore.

But this is where Dojo can come to the rescue. In this part of the tutorial, we explore
how Dojo can help us with validation by combining the two techniques we’ve dis-
cussed. In other words, we’ll be able to turn on validation by using simple HTML
markup, but we’ll let Dojo provide the complex JavaScript code automatically. Let’s get
started.

2.2 Tutorial Step 2—Adding Client-side
Validation

In this step of the tutorial, we use Dojo to provide basic client-side validations. We look
at a number of useful techniques within the context of making real enhancements to our
form. One by one, we examine the fields that these techniques are appropriate for.

2.2 Tutorial Step 2—Adding Client-side Validation

2.2.1 Validate the First Name Field

Let’s look at the “First Name” field first. What are the validations that we need to apply?
The data on this form feeds into our billing system, so the customer’s name is very
important—the field must be required. Are there any other validations? Not only do we
want to get the data, but also we’d like it to be in a consistent format. Possibly the data
should be stored in all capital letters. Or maybe we want to ensure that the data is not in
all capitals. Let’s choose the latter—but we’ll still want to make sure that at least the first
letter is capitalized. As in many of the issues related to validation, things are more com-
plicated then they might first appear. For example, are we allowing enough room to
enter long names? Will single-word names such as “Bono” be allowed? For our purposes,
we’ll keep it simple.

We turn on validation by using special attribute values in the HTML markup for
these fields. The following code will add validation to the fields.

<label for="firstName">First Name: </label>
<input type="text" id="firstName" name="firstName"

dojoType="dijit.form.ValidationTextBox"
required="true"

propercase="true"

promptMessage="Enter first name."
invalidMessage="First name is required."
trim="true"

/>

The code is formatted to be more readable by using line breaks. To summarize what has
happened: All we’ve done is add some new attributes to the <input> tag for the field.
Each of the new attributes affects the validation in some way.

Notice the following line of code from the preceding example:

dojoType="dijit.form.ValidationTextBox"

This attribute is not a standard HTML <inputs> tag attribute. Depending on which
editor you are using to modify the file, it may even be highlighted as an error. The
dojoType attribute is only meaningful to the Dojo parser, which was referenced in step
1. Remember the code we needed to include the parser? It is shown here:

dojo.require ("dojo.parser") ;

The parser reads through the HTML and looks for any tag that contains dojoType as
one of its attributes. Then the magic happens. The parser replaces the element with the
Dojo widget specified by dojoType. In this case, the widget
dijit.form.ValidationTextBox is substituted for the Document Object Model
(DOM) element created from the <inputs> tag.

27

28

Chapter 2 Using Dojo for Client-side Validation

How does Dojo know what to replace the tag with? That is determined by the spe-
cific widget. Each widget behaves a little differently, HTML markup and JavaScript code
is associated with the widget in its definition, and that is how Dojo knows what to
replace the original element with—which brings us to the missing piece of the puzzle.
We need to tell Dojo to include the code for the widget by specifying the widget in
JavaScript. To do that, we include the following JavaScript code after the link to Dojo
and after the reference to the Dojo parser.

dojo.require ("dijit.form.vValidationTextBox") ;

Notice that the name of the widget specified as the value for the dojoType attribute
is the same as the argument for the dojo.require call. This is the linkage that allows
Dojo to associate the HTML markup with the JavaScript code for that widget.

To emphasize this process, let’s review the HTML markup specified in the original
page and then compare it to the HTML markup after the parser runs. To see the original
markup, we merely have to view the source of the file form.html. Seeing the new
markup is a bit harder. The browser converts the original HTML into a DOM tree rep-
resenting the various tags. The Dojo parser modifies the DOM elements using
JavaScript, but the original source for the page is untouched. We need some tool that
will convert the DOM (the browser’ internal representation of the page) back into
HTML for our review. The Firefox browser provides a DOM Inspector to do just that.
An excellent add-on to Firefox, called Firebug, also allows the DOM to be inspected.
Firebug also provides a number of excellent tools for developing web pages such as its
DOM inspection capabilities we can use to inspect the DOM after the Dojo parser has
run—so we can see exactly what it does. But before we see how the DOM changes, let’s
first review the original <inputs tag for the first name field.

<input
type="text"
id="firstName"
size="20"
dojoType="dijit.form.ValidationTextBox"
required="true"
propercase="true"
promptMessage="Enter first name."
invalidMessage="First name is required."
trim="true"

/>

The code has been reformatted to make it more readable by adding some line breaks.
The attributes from dojoType through trim are not valid HTML attributes. They are
meaningful only to the Dojo parser and drive some features of the Dojo widget they
pertain to. Now let’s see what the HTML looks like after the parser runs.

2.2 Tutorial Step 2—Adding Client-side Validation

<input
type="text"
tabindex="0"
maxlength="999999"
size="20"
class="dijitInputField dijitInputFieldvalidationError dijitFormWidget"
name="firstName"
id="firstName"
autocomplete="off"
style=""
value=""
disabled="false"

widgetid="firstName"
dojoattachevent="onfocus, onkeyup, onkeypress: onKeyPress"
dojoattachpoint="textbox, focusNode"

invalid="true"

valuenow=""

/>

The preceding code has also been reformatted for readability, adding line breaks and
changing the order of the attributes a little. Notice that a number of valid HTML attrib-
utes have been added to the <input> DOM element such as tabindex, class, auto-
complete, and disabled. And additionally, a number of Dojo-only attributes have been
added such as widgetid, dojoattachevent, dojoattachpoint, invalid, and val-
uenow. We look at these in more detail in Part II, “Dojo Widgets,” but for now it’s
enough just to point out that the parser is rewriting our HTML. The parser is doing
even more work that we can see here. It is associating various event handler functions to
events that might occur on this DOM element. For instance, when the user enters or
changes the value in the field, Dojo functions get called, which perform validation. And
Dojo even creates objects that correspond to the HTML tags. We can’t tell that this is
happening just from seeing the HTML markup, but behind the scenes, that is exactly
what Dojo is doing.

Let’s review the other special Dojo attributes. Each Dojo widget has a set of proper-
ties that control its behavior. These properties are set by various Dojo widget attribute
values.

= The required="true” attribute setting tells Dojo that this field must be entered.

» The propercase="true” attribute setting tells Dojo to reformat the field value
entered by the user. In this case, the setting for propercase tells Dojo to make
sure that the first letter is capitalized and subsequent letters are in lowercase. In
other words, Dojo will put the entered value into the format for a typical proper
noun.

29

30 Chapter 2 Using Dojo for Client-side Validation

= The promptMessage="Enter first name.” attribute setting tells Dojo to dis-
play a message next to the field to instruct the user on what kind of data can be
entered into the field. The prompt message displays while the field is in focus.

= The invalidMessage="First name is required.” attribute setting causes
Dojo to display a message next to the field if it fails the validation. In our case, if
the user does not enter a value, then a message will appear.

= The trim="true” attribute setting tells Dojo to remove any leading or trailing
spaces from the entered value before sending it to the server.

Now let’s run the page and see how it behaves. Because this is the first field on the
page, the field gets focus, and the cursor immediately is placed on the input area for the
“First Name” field.

First / Last Name:

'l_ Enter first name.

Notice that we get a message box that says “Enter first name.” Dojo calls this a Tool Tip,
and it has dynamic behavior. It is only displayed when the field has focus (the cursor is
in the field), and once the field loses focus, the message disappears. The message appears
on top of any visible element below it, so there is no need to leave room for it when
designing your page.

Try entering different values in the field and then press <tab> to leave the field. For
example, enter “ joe *“ and watch it be transformed into “Joe” with leading and trailing
spaces removed and the first letter of the name capitalized.

NOTE:

You might not agree with the various validations | have chosen. For example, one early
review of this text pointed out that “LaToya” would be a hard name to validate. You could
probably make a case for different validations, and | could probably agree with you. But I've
chosen the ones | have not only to represent my example application, but also to highlight
certain Dojo features—so I’'m sticking to them!

2.2.2 Validating the Last Name Field

The last name field has the same validations as the first name field does. There is
nothing extra to do for this field and nothing new to learn. Just replace the <input> tag
for Last Name with the following code.

<input type="text" id="lastName" name="lastName"
dojoType="dijit.form.ValidationTextBox"
required="true"
propercase="true"
promptMessage="Enter last name."

2.2 Tutorial Step 2—Adding Client-side Validation

invalidMessage="Last name is required."
trim="true"

/>

2.2.3 Validating the User Name Field

We are going to allow the user to manage his or her own account information in our
application. To provide some security we need the user to make up a user name that he
or she can use later to sign on to the system. This field will be required, and we’d like it
to always be entered in lowercase. To validate this field, we’ll use the same Dojo widget
that we’ve already used, dijit.form.vValidationTextBox, but we’ll use a new attrib-
ute called lowercase to force the transformation of the entered data into all lowercase
letters.

There are some additional validations we’d like to do on this field. For instance, is this
user name already assigned to someone else? We could check the server for existing val-
ues. However, because this validation requires interaction with the server, we’ll save it for
step 3 of the tutorial and focus on only the client-side validation right now.

The following HTML markup is needed to enable validation for this field.

<input type="text" id="userName" name="userName"
dojoType="dijit.form.ValidationTextBox"
required="true"
promptMessage="Enter user name."
trim="true"
lowercase="true"

/>

2.2.4 Validating the Email Address Field

We need to communicate with our customers so we’ll get their email addresses. This
will be a required field. We’ll also make it all lowercase for consistency. In addition, we’d
like to make sure that the value entered in this field is also in the correct format for an
email address. There is no way to know if it is a working email until we actually try to
send something to it, but at least we can make sure that it contains a “@” character and
appears to reference a valid domain.

How can we specify the desired format? By using a specialized pattern matching lan-
guage known as regular expressions, we can specify a pattern of characters to check the value
against. We need to build a regular expression to validate for email addresses. At this point
in our discussions, let’s not go on a long detour to discuss the building of these expressions.

NOTE:

Some great information on building regular expressions can be found at the Mozilla
Developer Center at http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:
Global_Objects:RegExp.

31

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp

32

Chapter 2 Using Dojo for Client-side Validation

The following is regular expression that can be used to validate most formats of email
addresses—most because it is surprisingly difficult to validate for all possible email
addresses. This is because of some of the unusual variations such as domains longer than
four characters such as “.museum” or addresses consisting of a sub-domain. But the fol-
lowing regular expression will work for most.

[\b[A-Z0-9._ %+-1+@[A-20-9.-1+\.[A-2]1{2,4}\b]+

NOTE:

For more information on validating email addresses, the following link will get you to a Dojo
Forum article describing a regular expression for email: http://dojotoolkit.org/forum/dijit-
dijit-0-9/dijit-support/text-validation.

The validationTextBox contains a special property for validating against regular
expressions. The attribute to use is regExp—just specify the regular expression as its
value. Replace the <input> tag for email with the following code in “form.html” to
specify validation for the email address field.

<input type="text" id="email" name="email" size="30"
dojoType="dijit.form.ValidationTextBox"
required="true"
regExp="\b[a-zA-Z0-9. %-]+@[a-zA-Z0-9.-]+\. [a-zA-Z]{2,4}\b"
promptMessage="Enter email address."
invalidMessage="Invalid Email Address."
trim="true"
/>
Validating email addresses is a really interesting subject. There are quite a few variants
to the simple name@company . com format that we often see. For a really thorough dis-
cussion of email, you should review the RFC rules. The following link will get you to
the Wikipedia page that describes email, from which you can link to the official RFC
documents: http://en.wikipedia.org/wiki/E-mail_address.

2.2.5 Validating the Address Field

The address field will contain the first line of the user’s mailing address. We’ll make it
required. We will use the validationTextBox, and we have seen all of the attributes
already. Replace the <input> tag for address with the following code.

<input type="text" id="address" name="address" size="30"
dojoType="dijit.form.ValidationTextBox"
required="true"
promptMessage="Enter address."
invalidMessage="Address is required."
trim="true"

/>

http://dojotoolkit.org/forum/dijit-dijit-0-9/dijit-support/text-validation
http://dojotoolkit.org/forum/dijit-dijit-0-9/dijit-support/text-validation
http://en.wikipedia.org/wiki/E-mail_address

2.2 Tutorial Step 2—Adding Client-side Validation

There are many additional validations that can be performed on address data, the
most important being to ensure that the address is an actual address. Standard abbrevia-
tions such as “St” for “Street” could also be allowed. These additional validations could
be done by a number of web services available from the U.S. Postal Service, but that is
really outside the scope of this tutorial.

2.2.6 Validating the City Field

The city field will contain the value for the city in the user’s mailing address. We’ll make
it required. We will use the ValidationTextBox. Replace the <inputs tag for address
with the following code.

<input type="text" id="city" name="city" size="30"
dojoType="dijit.form.ValidationTextBox"
required="true"
promptMessage="Enter city."
invalidMessage="City is required."
trim="true"

/>

2.2.7 Validating the Zip Code Field

The zip code field is part of the mailing address and is required. There are some addi-
tional validations we can apply. Our hypothetical company is a U.S. corporation and only
provides service to U.S. customers, so we’ll limit our address to valid U.S. addresses,
which means that the zip code must be in one of two forms. Either it is a 5-digit num-
ber, or it is a 5-digit number followed by a dash and then followed by a 4-digit number.
If we can come up with a regular expression to test for either format, then we’re golden!

Replace the <inputs tag for zip code with the following to enable Dojo validation
for this field.

<input type="text" id="zipCode" name="address" size="30"
dojoType="dijit.form.ValidationTextBox"
trim="true"
required="true"
regExp="\d{5} ([\-1\d{4}) 28"
maxlength="10"
promptMessage="Enter zip code."
invalidMessage="Invalid zip code (NNNNN) or (NNNNN-NNNN)."

/>

An interesting feature of the preceding code is that we’ve got two overlapping valida-
tions. The maxlength attribute prevents the value from being over 10 digits, but so does
that regular expression. What are the implications of this? One could argue that it is inef-
ficient because both validations will be executed. But they each operate difterently on
the page, which might justify using both. If the user tries to enter a zip code that is 12

33

34

Chapter 2 Using Dojo for Client-side Validation

digits long, he will be notified as he tries to type the eleventh digit, rather than after typ-
ing all 12 digits and pressing tab to leave the field. By using both techniques, the error is
detected sooner.

NOTE:

This chapter has stopped short of describing validations for the “Start Service” and
“Comments” fields. This is because we will use more advanced Dojo widgets to validate
these fields, which are described in Chapter 4, “Using Dojo Widgets.”

Summary
The Dojo widget dijit.form.ValidationTextBox provides many common client-side
validations. Include the ValidationTextBox by referencing it in the <input > tag for the
field that needs the validation.

dojoType="dijit.form.ValidationTextBox"
Remember to tell the page that it needs the JavaScript code for the widget by coding a call
to the require method somewhere after the call to the Dojo parser.
dojo.require("widget dijit.form.ValidationTextBox");

Additional attributes in the <input> tag specify behavior for the VvalidationTextBox. A
few are listed here:

require="true" makes the field required.

trim="true" removes leading blanks.

lowercase="true" converts field to all lower case letters.
We’ve now completed step 2 of the tutorial. The changes we’ve implemented have added
client-side validation to our form. We were able to add validation almost exclusively through
modifying the HTML—only a small amount of JavaScript was necessary to include the Dojo
validation code. Client-side validation is an extremely powerful capability and makes our
page much more usable. Yet by using Dojo, we obtain this power without the corresponding
cost of writing a lot of JavaScript.

In this chapter we've focused on functionality that doesn’t require a call to the server.
In the next chapter the server will play a role. We’ll make calls to the server using the
XMLHt tpRequest to get data and perform validations. Now that’s Ajax!

3

Using Dojo to Work
with the Server

You're gonna have to serve somebody.

—DBob Dylan

This chapter describes how we can use Dojo to communicate with a server. Two of the
primary purposes that the server can fill are to run processes and provide data. Examples
of both of these are provided in this part of the tutorial.

3.1 Adding Server-side Features

Although Dojo calls itself a JavaScript library, it is often categorized as an Ajax library
instead. Though the characterization might not be accurate, it is understandable. Because
there is no “International Organization For the Definition of Ajax,” the term has been
used in a variety of ways. In general, it’s used to refer to web pages that access the server
without benefit of a full page refresh and that perform some snazzy manipulation of the
DOM to make the site more interactive than stodgy old HTML alone can. But still, for
some, we're only using real Ajax when we'’re making server requests.

This chapter deals with making Ajax requests of the server. We examine two kinds of
requests. The first type of request is to ask the server to perform some processing. In this
case, we'll ask the server to validate user name. The second type of request is to ask the
server to provide some data, which we will then add to the DOM so it is visible to the
user. Our data request will be for a list of cities in a given state.

36 Chapter 3 Using Dojo to Work with the Server

NOTE

There are two primary reasons for communicating with the server: (1) to perform validation
and (2) to get data. This part of the tutorial is split into two steps to correspond to each of
these reasons for using the server. The first step, 3a, describes server-side validation. The
second step, 3b, describes getting data from the server.

3.2 Tutorial Step 3a—Adding Server-side
Validation

In this step of the tutorial we use the server to validate some data entered by the user. A
number of interesting questions are addressed. How do we capture the data? At which
point should the server request be made? What should the application do while waiting
for the server to return? How should the server response be handled? As simple as this
scenario might appear, it does introduce a few complexities. Dojo provides flexibility in
coding for these issues, and some common patterns and best practices will emerge.

We can validate that a user name entered by the user is not already assigned to anoth-
er customer. Many applications allow a user to specify a name by which they are known
to the application. This user name allows the user to login to the application to do things
like edit his or her account or see transaction history. The user name must be unique for
each user across the entire system; therefore, it requires server-side validation to ensure
that it hasn’t been assigned to another user. The use case for this scenario might seem
rather simple, but still it introduces some interesting complexities.

3.2.1 Assign Event Handler Function

The process begins with the user entering a desired user name. The user types the char-
acters and at some point is finished. But how do we really know that the user is done
entering data? Is it when the individual stops typing? If so, how long does the applica-
tion wait before deciding that the user is done? We could even perform the validation
after each keystroke. However, this approach has a number of drawbacks. The load on the
server would be needlessly increased. And the user might be subjected to a flurry of
messages describing the intermediate validations. It would be more useful to perform the
validation just once, when the user has completed entry of the data.

A Dbetter approach might be to wait until the user exits the field by pressing the Tab
key or even the Enter key. The problem with pressing Enter is that the browser might
interpret this as a form submission (the default behavior for a standard HTML form). By
pressing the Tab key or using the mouse to place the cursor into another field, the user
would be signaling that he is done entering the user name field and wishes to enter data
for a new field. We’ll use this condition as the right time for the validation to be per-
formed.

Now we need to translate the logical event we wish to capture (the user exiting the
field) into an actual event monitored by the browser. JavaScript provides us with two
possible candidate events, onblur and onchange.The onblur event is triggered when

3.2 Tutorial Step 3a—Adding Server-side Validation

the focus leaves the field, which normally means that the user has pressed the tab key to
move to the next field or used the mouse to click on another field. The onchange event
does almost the same thing. The difference is that if the data did not change, onblur
would still be called anyway, but onchange would not. The first time the user enters this
field, the difference is moot. But if the cursor passes through the field again without the
user changing the data, then the event will be triggered again, and an unnecessary call
will be made to the server. So the most efficient event to use would be onchange. We
need to create a function that will handle the onChange event and we need to call that
function when the event occurs.

At this point we need to discuss the difference between regular JavaScript events and
Dojo events. JavaScript provides a way to assign an event handler (function) to an event
on a DOM element. The code that follows presents an example of this by setting the
onChange attribute to a value of userNameOnChange (). This will cause the
userNameOnChange function to execute when the browser detects that the value of the
field has been changed.

<input
type="text"
id="userName"
name="userName"
size="20"
dojoType="dijit.form.ValidationTextBox"
onchange="userNameOnChange () "

/>
The same technique using Dojo appears in the following code.
<input
type="text"

id="userName"

name="userName"

size="20"
dojoType="dijit.form.ValidationTextBox"
onChange="userNameOnChange"

/>

Notice that we are not using the standard function calling syntax in the second
example. In other words, Dojo uses a reference to the function, not a call to the function.
We can tell this because the first example uses double parentheses at the end of the func-
tion name, while the second example does not. Another difference is that the attribute
has a different case—although the spelling is the same, the “C” in the second example is
capitalized. As you might guess, Dojo is intercepting the browser events and calling its
own events. We go into more detail on exactly what Dojo is doing in Part II, “Dojo
Widgets.” But for now, we only have to recognize that Dojo has a slightly difterent syn-
tax than regular JavaScript for specifying event handler functions.

37

38

Chapter 3 Using Dojo to Work with the Server

Let’s put the handler function into a completely separate JavaScript file. This isn’t nec-
essary but will allow us to keep our JavaScript separate from the original HTML file and
will make our code easier to read. Create a new JavaScript file called
“userNameValidation.js” with a function called userNameonChange. The following code
contains the contents of our new JavaScript file. We enhance it as we progress through
this step of the tutorial.

// define function to be called when username is entered
function userNameOnChange () {
return;

}

We also need to reference the JavaScript file in our page, so we’ll have to add a new
<scripts> tag to our HTML page to include the new file. The code the follows should
be placed in “form.html.” The order isn’t important, but to facilitate good organization
of our code, we should put it after the <scripts> tag for including Dojo.

<script type="text/javascript" src="validateUserName.js">
</scripts>

The first thing you might notice is that the onChange function is called when the
form is first displayed, even before the user has entered any data in the field. The field
doesn’t even have focus yet. This is because the default behavior for a form widget (of
which our widget is a subclass) calls the onChange function when it first sets the value
of the element. So we’ll want to remember to skip our validation if there is no data in
the form vyet, as is shown in the following code. The additional code has been bolded for
emphasis.

// define function to be called when username is entered
function userNameOnChange () {
var userName = document.getElementById("userName").value;

if (userName == "v) {

console.log("userName is empty");
return;

return;

}

Notice that we are using the console. log function to display messages in a special
browser console that is separate from the web page. Logging is a useful technique during
development so that we can see what the program is doing without having to use
JavaScript alert boxes or write to the web page itself. We dig deeper into debugging in
Dojo in Chapter 17, “Testing and Debugging.”

3.2.2 Make a Call to the Server

We’ve placed the hook into the page so that when the user enters or changes the value
of the user name, our handler function will run. But our function is merely a stub—it

3.2 Tutorial Step 3a—Adding Server-side Validation

doesn’t really do anything. Now, let’s flesh out the function and do the work that needs
to be done. We need to perform the following steps:

1. Get the data entered by the user.
2. Send the data to the server along with a request for the server to validate it.

3. Handle the response from the server.

Additionally, we’ll need to handle the response on the server and then process the
results that come back from the server but that can wait a bit. Let’s concern ourselves
with that at a later stage and start with getting the data.

3.2.2.1 Get the Data Entered by the User

Dojo provides a number of techniques for getting the value of entered data from a
widget. But to understand them, it might be helpful to remind ourselves of how we can
get data from form fields without Dojo, just using plain old JavaScript and the DOM.
The DOM automatically builds references to form elements, and we can use that to get
a value.

var userName = document.form.custForm.userName.value

Another technique is to use the id property of the DOM elements to find the correct
form element. Of course, this will only work if we’ve assigned id properties to the ele-
ments (as we have in our form).

var username = document.getElementById("userName").value

Dojo provides some additional techniques. The DOM gives us a single object to get data
from—the object corresponding to the DOM element for the field. But when using
Dojo, there are two possible objects we could use to get the value. The first object is the
DOM element, as with plain old JavaScript, but Dojo provides a shortcut for referencing
that object. Notice the dojo.byId function in the following code.

var username = dojo.byId("username").value

The second object that Dojo provides is one that is not part of the DOM. It is a separate
object that contains additional properties and functions that don’t exist in the DOM ele-
ment—the Dojo widget object. Every Dojo widget object corresponds to a set of DOM
elements that describe that widget. We need a different Dojo function to access the
widget object.

var userName = dijit.byId("userName") .getValue ()

Notice in the preceding code that we are referencing a different namespace (that is,
dijit.byId, not dojo.byId). The function dojo.byId returns a reference to a DOM
element. The function dijit.byId returns a reference to the “shadow” object corre-
sponding to each Dojo widget.

Alright already! We’ve got lots of ways to get the data. Which one should we use? “In
for a penny, in for a pound,” as Ben Franklin use to say. Because we’re using Dojo, let’s
really use it. We’ll write our code against the Dojo object whenever possible so we’ll use

39

40

Chapter 3 Using Dojo to Work with the Server

the last version discussed—getting the value from the Dojo widget object using the
dijit.byId function.

Let’s add the new code to our userNameOnChange function. We'll replace the exist-
ing code that assigns userName. The new code is bolded.

// define function to be called when username is entered
function userNameOnChange () {
var userName = dijit.byId("userName").getValue();

if (userName == "") {

console.log("userName is empty");
return;

}

return;

3.2.2.2 Send the Data to the Server

Now we’ll send the data to the server. We need to use the xmlHttpRequest (XHR)
object. But rather than use it directly, we’ll take advantage of the function wrapper pro-
vided by Dojo. By using the dojo.getXhr function, we’ll be using the XHR object
indirectly and letting Dojo handle the housekeeping for us. Our code will be simpler
that way.

// define function to be called when username is entered
function userNameOnChange () {
var userName = dijit.byId("userName").getValue();
if (userName == "") {
console.log("userName is empty");
return;

dojo.xhrGet ({
url: "validateUserName.jsp?userName=" + userName,
handleAs: "json",
handle: userNameValidationHandler
i
}

The dojo.xhrGet function has a very interesting signature. It takes a single object as
an argument, but that object might have a number of properties. And it is specifically
which properties we set and their assigned values that determine how the XHR call is
made. We go into much greater detail in Chapter 15, “Ajax Remoting,” but let’s take a
cursory look at the function now. It might be helpful at this juncture to remind our-
selves of how we would use the XHR directly using JavaScript.

var xhr = new XMLHttpRequest () ;
xhr.open ("GET", "validateUserName. jsp?userName=" + userName) ;
xhr.onreadystatechange = function() {userNameValidationHandler;}

3.2 Tutorial Step 3a—Adding Server-side Validation

How does our call to dojo.xhrGet differ from the standard usage for XHR? First,
and most obviously, we aren’t creating a new XHR object. The new object does get cre-
ated eventually—somewhere deep in the internals of Dojo (actually not that deep but
more on that later). But we have a simpler syntax using an existing Dojo function.

Second, rather that pass the HTTP message type as a parameter, it is built into the
name of the function. To do an HTTP GET, we use dojo.xhrGet, while to do a POST
we use dojo.xhrPost instead.

Third, and finally, we pass the callback function, userNamevalidationHandler, as a
property of our argument object, not by setting an XHR property. There are some bene-
fits that aren’t obvious from viewing this code. When using XHR directly, our callback
method has to test the state and status properties of the XHR object before it can
safely execute the handler code. When using dojo.xhrGet, Dojo will perform the
checks before calling our handler, allowing us to write simple handler code. The less
code we write, the less the potential for error. That’s a good thing, as Martha Stewart
might say.

3.2.2.3 Handle the Response from the Server

The server receives our request, processes it, and returns the response back to the brows-
er. The browser executes a callback function internal to Dojo. Dojo, in turn, calls the
function that we specified as the callback, userNamevalidationHandler, in the
dojo.xhrGet function call. All we have to do is code that function. What must this
function do? At a minimum, it should display an error message stating that someone else
has already taken the user name. The following code will display an error message.

function userNameValidationHandler (response) {

// Clear any error messages that may have been displayed
dijit.byId("userName").displayMessage();

if (!response.valid) {

var errorMessage = "User name already taken";
// Display error message as tooltip next to field
dijit.byId("userName") .displayMessage (errorMessage) ;

}

Note that we’re making sure to clear the error message first. This is necessary to get rid
of the error message if the user is entering this field a second time after having failed to
enter a valid user name the first time.

There is at least one thorny issue left. What if the call to the server to validate user
name takes a long time—maybe 20 seconds or more? The user might already be enter-
ing the next field. We don’t want to interrupt what the person is doing by switching
focus back to the user name field. But what will they think when an error message sud-
denly appears next to a field they aren’t even working on? We could block the user from
working while the validation is being done by making the XHR call synchronous, but

41

42

Chapter 3 Using Dojo to Work with the Server

that could also be frustrating for the user. We’ll discuss this issue further in Part IT when
we explore Dojo widgets in more detail.

Our example rests on the assumption that the server can validate the user name. To
do that we're traveling past the boundaries of Dojo. We assume that there is some
resource on the server called “validateUserName.jsp.” This resource takes the user name
as a parameter and returns a JavaScript Object Notation (JSON) string, defining an
object with a property called valid that might either be true or false. Dojo doesn’t care
how you write this resource or what kind of server it is running on, just so long as the
server can talk HTTP. Following is a simple JSP page that would validate the user name
with a hard coded check to see if the value is “olduser.” As long as it isn’t, then the user
name would be considered valid. This will allow our example to work, but obviously the
server program should be more sophisticated.

<%@ page contentType="text/plain"%$>

o\°

<

try {
System.out.println("UserName : " +
request .getParameter ("userName")) ;
if (request.getParameter ("userName").equals("olduser")) ({
out.println("{valid: false}");
System.out.println("To Browser : false");
} else {

out.println("{valid: true}");
System.out.println("To Browser : true");

} catch (Exception ex) {
out.println(ex.getMessage()) ;
ex.printStackTrace() ;

o\
Vv

The code will return the following JSON string for invalid user names.

{valid: false}

And for valid user names, the following JSON string will be returned instead.

{valid: true}

You might be wondering how our page can receive JSON and yet never have to
convert it to an object. In our callback function we are able to use the object by refer-
encing response.valid. We're taking advantage of some Dojo magic. By specifying the
handleAs property and giving it a value of json, we are telling Dojo to expect to
receive a JSON string from the server and to create the object from the JSON string
and pass it to our callback method. Now that really saves us some coding!

3.3 Tutorial Step 3b—Retrieving Data from the Server

3.3 Tutorial Step 3b—Retrieving Data from the
Server

In this step of the tutorial we use the server to return some data back to the browser. We
need to send a state value to the server so that it can determine the cities within that
state. The server will send back the cities, and then we’ll populate the city select list. The
user will be able to select a city from the newly populated pull-down select list. This
approach will work most of the time, but there is a small problem. There are a lot of
cities in the U.S., and it is just possible that we’ve missed one or that a new one has been
incorporated. Therefore, it would be useful to allow the user to type the value of a city
just in case it isn’t in our list. The regular HTML <select> doesn’t allow for this but,
fortunately, the Dojo version does.

Let’s summarize the steps.

1. Select the appropriate Dojo widget to replace the HTML <selects for city.

2. Get the value of state and send it to the server.

3. Process the response from the server

Now let’s drill into the details for each of these steps.

3.3.1 Select Appropriate Widget for the City Field

In the original HTML form for entering customer information, the “City” field is a
textbox in which the user can enter the city by typing it in. Some city names can be
rather long and require a lot of typing, making the entry time consuming and prone to
spelling errors. We could improve the user interface by providing an auto suggest facility
that would list the cities corresponding to the letters typed by the user. For example, if
the user typed “ch,” they would be presented with a list of cities beginning with those
two letters as shown in the following example.

City:

Se-mpai o]
| Champaign

| Chicago

Figure 3.1 Proposed City Section

An additional refinement would be to list only the cities of the state the user selected
from the “State” field. Shall we congratulate ourselves on such a wonderful solution?
Well, let’s not throw a party quite yet. After all, there is no standard HTML widget that
provides the features we so ardently seek. Luckily, we are using Dojo, which just happens
to have a widget called the ComboBox that contains just the features we are looking for.

Let’s replace the standard textbox for city with the Dojo ComboBox. We must make
sure that the code for the widget is included by using the dojo.require statement.
Add the following code to the <scripts> tag containing the other require statements.

43

44 Chapter 3 Using Dojo to Work with the Server

dojo.require ("dijit.form.ComboBox") ;

Then the Dojo widget must be attached to the DOM by adding the dojoType
attribute to the <inputs tag for the “City” field. The following code shows how to
replace the standard textbox with the new Dojo widget. The new code is in bold.

<input type="text" id="city" name="city" title="city"
dojoType="dijit.form.ComboBox"
autoComplete="true"
forcevValidOption="false"

/>

The dojoType attribute tells the Dojo parser to attach the widget to the DOM. The
autoComplete attribute tells the widget to automatically include the full text for the
first matching value based on the characters entered by the user. So if the user enters
“ch,” and the first matching city is “Chicago,” then the user can leave the field, and the
widget will assign the entire city name to the field value. This saves the user significant
typing, especially for long city names.

The forcevalidOption attribute setting of false allows the user to enter a value
that isn’t included in the select list. This behavior is quite different from a regular select
list, which only allows the user to select one of the listed values. If you want that behav-
ior, simply set the forcevValidOption attribute to true. However, in this case, we get
some useful functionality setting it to false because it is possible that the user’ city is not
in our list.

The Dojo ComboBox widget is a great replacement for the standard <select> list. So
why not use it for the “State” field also? Let’s do that! We’ll just make a few changes.
Because the list of possible states is well-known, we’ll force the user to select one from
the list rather than being able to enter a new one. This will require setting the
forcevValidOption attribute to true.This widget also provides a neat technique for
entering data, which solves a problem we’ve already discussed. When you type the letters
“11” in the standard <select> list, the state of “Louisiana” is selected because most
browsers treat each letter as the first letter of the state, even though you would have
already typed an “1” Instead, the Dojo ComboBox uses the entire string to properly select
the intended state of Illinois.

Following is the code to replace the standard select list for state with the new Dojo
widget. The new code is in bold.

<input type="text" id="state" name="state" title="state"
dojoType="dijit.form.ComboBox"
autoComplete="true"
forcevValidOption="true"

/>

3.3 Tutorial Step 3b—Retrieving Data from the Server

3.3.2 Get the Value of State and Send to the Server

Now that we’ve got the appropriate widgets for both state and city, we need to focus on
getting the correct data. As we’ve discussed already, we could pre-populate the city list
with all the possible cities in the U.S. The problem is that there are nearly 30,000 of
them, and loading them all would make our page unnecessarily large. The better
approach is