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Foreword

CRYPTOGRAPHY IS AN ANCIENT ART, well over two thousand years old. The need

to keep certain information secret has always existed, and attempts to preserve
secrets have therefore existed as well. But it is only in the last thirty years that
cryptography has developed into a science that has offered us needed security in
our daily lives. Whether we are talking about automated teller machines, cellular
telephones, Internet commerce, or computerized ignition locks on automobiles,
there is cryptography hidden within. And what is more, none of these applications
would work without cryptography!

The history of cryptography over the past thirty years is a unique success story.
The most important event was surely the discovery of public key cryptography in
the mid 1970s. It was truly a revolution: We know today that things are possible
that previously we hadn’t even dared to think about. Diffie and Hellman were
the first to formulate publicly the vision that secure communication must be
able to take place spontaneously. Earlier, it was the case that sender and receiver
had first to engage in secret communication to establish a common key. Diffie
and Hellman asked, with the naivety of youth, whether one could communicate
secretly without sharing a common secret. Their idea was that one could encrypt
information without a secret key, that is, one that no one else could know. This
idea signaled the birth of public key cryptography. That this vision was more
than just wild surmise was shown a few years later with the advent of the RSA
algorithm.

Modern cryptography has been made possible through the extraordinarily
fruitful collaboration between mathematics and computer science. Mathematics
provided the basis for the creation and analysis of algorithms. Without
mathematics, and number theory in particular, public key cryptography
would be impossible. Mathematics provides the results on the basis of which the
algorithms operate.

If the cryptographic algorithms are to be realized, then one needs procedures
that enable computation with large integers: The algorithms must not function
only in theory; they must perform to real-world specifications. That is the task of
computer science.

This book distinguishes itself from all other books on the subject in that it
makes clear this relationship between mathematics and computing. I know of no
book on cryptography that presents the mathematical basis so thoroughly while
providing such extensive practical applications, and all of this in an eminently
readable style.
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xiv

What we have here is a master writing about his subject. He knows the theory,
and he presents it clearly. He knows the applications, and he presents a host
of procedures for realizing them. He knows much, but he doesn’t write like a
know-it-all. He presents his arguments clearly, so that the reader obtains a clear
understanding. In short, this is a remarkable book.

So best wishes to the author! And above all, best wishes to you, the reader!

Albrecht Beutelspacher



Preface to the Second
American Edition

When I have to wrestle with figures, I feel I'd like to stuff myself into a hole
in the ground, so I can’t see anything. If I raise my eyes and see the sea, or a
tree, or a woman—even if she’s an old 'un—damme if all the sums and figures
don’t go to blazes. They grow wings and I have to chase "em.

—Nikos Kazanzakis, Zorba the Greek

THE SECOND AMERICAN EDITION OF this book has again been revised and enlarged.
The chapter on random number generators has been completely rewritten,
and the section on primality testing was substantially revised. The new results
of Agrawal, Kayal, and Saxena on primality tests, whose discovery in 2002 that
“PRIMES is in P” caused a sensation, are covered. The chapter on Rijndael/AES
has been relocated for a better presentation, and it is pointed out that the
standardization of Rijndael as the Advanced Encryption Standard has meanwhile
been made official by the U.S. National Institute of Standards and Technology
(NIST).

Unlike previous editions of the book, the second American edition does not
contain a CD-ROM with the source code for the programs presented. Instead,
the source code is available for download at www.apress.com in the Downloads
section.

I wish to thank the publishers and translators who have meanwhile made this
book available in Chinese, Korean, Polish, and Russian and through their careful
reading have contributed to the quality of this edition.

I again thank David Kramer for his engaging and painstaking English
translation, and Gary Cornell, of Apress, for his willingness to bring out the
second American edition.

Finally, I wish to thank Springer Science publishers, and in particular once
again Hermann Engesser, Dorothea Glausinger, and Ulrike Sricker, for their
pleasant collaboration.


http://www.apress.com

Preface to the First
American Edition

Mathematics is a misunderstood and even maligned discipline. It's not the
brute computations they drilled into us in grade school. It’s not the science
of reckoning. Mathematicians do not spend their time thinking up cleverer
ways of multiplying, faster methods of adding, better schemes for extracting
cube roots.

—Paul Hoffman, The Man Who Loved Only Numbers

THE FIRST AMERICAN EDITION IS A TRANSLATION OF the second German edition,
which has been revised and expanded from the first German edition in a number
of ways. Additional examples of cryptographic algorithms have been added,
such as the procedures of Rabin and El Gamal, and in the realization of the RSA
procedure the hash function RIPEMD-160 and formatting according to PKCS
#1 have been adopted. There is also a discussion of possible sources of error
that could lead to a weakening of the procedure. The text has been expanded
or clarified at a number of points, and errors have been corrected. Additionally,
certain didactic strategies have been strengthened, with the result that some of
the programs in the source code differ in certain details from those presented
in the book. Not all technical details are of equal importance, and the desire for
fast and efficient code is not always compatible with attractive and easy-to-read
programs.

And speaking of efficiency, in Appendix D running times are compared to
those for certain functions in the GNU Multiprecision Library. In this comparison
the FLINT/C exponentiation routine did not do at all badly. As a further extension,
Appendix F provides references to some arithmetic and number-theoretic
packages.

The software has been expanded by several functions and in places has been
significantly overhauled, and in the process a number of errors and points of
imprecision were removed. Additional test functions were developed and existing
test functions expanded. A security mode was implemented, whereby security-
critical variables in the individual functions are deleted by being overwritten. All
C and C++ functions are now clearly cited and annotated in the appendices.

Since current compilers represent varying stages of development of the C++
standard, the C++ modules of the FLINT/C package have been set up in such
a way that both traditional C++ header files of the form xxxxx.h and the new
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ANSI header files can be used. For the same reason the use of the operator new()
has been checked, as always, as to whether the null pointer is returned. This
type of error handling does not make use of the ANSI standard exceptions, but it
nonetheless functions with current compilers, while the method that conforms
to the standard, by which new() generates an error via throw(), is not universally
available.

Although the focus of this book is the fundamentals of asymmetric
cryptography, the recent nomination of Rijndael by the American National
Institute of Standards and Technology (NIST) to be the advanced encryption
standard (AES) encouraged me to include a final chapter (Chapter 11) with an
extensive description of this algorithm. I am indebted to Gary Cornell, at Apress,
for bringing up the subject and convincing me that this would be a worthwhile
complement to the topics of this book. I would like to thank Vincent Rijmen,
Antoon Bosselaers, Paulo Barreto, and Brian Gladman for their kind permission
to include the source code for their Rijndael implementations in the source code
that accompanies this book.

I wish to thank all the readers of the first edition, particularly those who
called errors to my attention, made comments, or suggested improvements. All
their communications were most welcome. As always, the author assumes all
responsibility for errors that may yet remain in the text or the software, as well as
for any new errors that may have crept in.

I offer my heartfelt thanks to Gary Cornell, at Apress, and again to Hermann
Engesser, Dorothea Glaunsinger, and Ulrike Stricker, at Springer-Verlag, for their
unstinting commitment and friendly collaboration.

I am deeply grateful to my translator, David Kramer, who has contributed
with distinguished expertise and indefatigable dedication many valuable hints,
which have been incorporated into the German edition of this book as well.

Warning

Before making use of the programs contained in this book please refer to the
manuals and technical introductions for the relevant software and computers.
Neither the author nor the publisher accepts any responsibility for losses due
to improper execution of the instructions and programs contained in this book
or due to errors in the text or in the programs that despite careful checking
may remain. The programs in the downloadable source code are protected by
copyright and may not be reproduced without permission of the publisher.
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Disclaimer

In this book frequent use is made of the term “leading zeros.” The use of this term
is in no way to be construed as alluding to any person or persons, in public or
private life, living or dead, and any such correspondence is entirely coincidental.



Preface to the First
German Edition

Mathematics is the queen of the sciences, and number theory is the queen
of mathematics. Frequently, she deigns to assist astronomy and other of the
natural sciences, but primacy is due her under all circumstances.

—Carl Friedrich Gauss

WHY DO WE NEED A book on cryptography whose principal focus is the arithmetic
of whole numbers—the integers—and its application to computer programming?
Is this not a rather insignificant subject in comparison to the important problems
with which computer science generally involves itself? So long as one confines
oneself to the range of numbers that can be represented by the standard
numerical types of a programming language, arithmetic is a rather simple affair,
and the familiar arithmetic operations make their traditional appearances in
programs accompanied by the familiar symbols +, —, /, *.

But if one requires results whose length far exceeds what can be expressed
in 16 or 32 bits, then the situation begins to get interesting. Even the basic
arithmetic operations are no longer available for such numbers, and one gets
nowhere without first investing considerable effort in solving problems that
never even seemed like problems before. Anyone who investigates problems in
number theory, whether professionally or as a hobby, in particular the topic of
contemporary cryptography, is familiar with such issues: The techniques of doing
arithmetic that we learned in school now demand renewed attention, and we find
ourselves sometimes dealing with incredibly involved processes.

The reader who wishes to develop programs in these areas and is not inclined
to reinvent the wheel will find included with this book a suite of functions that
will serve as an extension of C and C++ for calculating with large integers. We
are not talking about “toy” examples that say, “this is how it works in principle,”
but a complete collection of functions and methods that satisfy the professional
requirements of stability, performance, and a sound theoretical basis.

Making the connection between theory and practice is the goal of this
book, that is, to close the gap between the theoretical literature and practical
programming problems. In the chapters ahead we shall develop step by step the
fundamental calculational principles for large natural numbers, arithmetic in
finite rings and fields, and the more complex functions of elementary number
theory, and we shall elucidate the many and various possibilities for applying

Xxiii
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these principles to modern cryptography. The mathematical fundamentals
will be explained to the extent necessary for understanding the programs that
are presented here, and for those interested in pursuing these matters further
there are extensive references to the literature. The functions that we develop
will then be brought together and extensively tested, resulting in a useful and
comprehensive programming interface.

Beginning with the representation of large numbers, in the following
chapters we shall first deal with the fundamentals of computation. For addition,
subtraction, multiplication, and division of large numbers we shall create
powerful basic functions. Building on these, we shall explain modular arithmetic
in residue classes and implement the relevant operations in library functions.
A separate chapter is devoted to the time-intensive process of exponentiation,
where we develop and program various specialized algorithms for a number of
applications in modular arithmetic.

After extensive preparation, which includes input and output of large
numbers and their conversion into various bases, we study algorithms of
elementary number theory using the basic arithmetic functions, and we then
develop programs, beginning with the calculation of the greatest common divisor
of large numbers. We shall then move on to such problems as calculating the
Legendre and Jacobi symbols, and inverses and square roots in finite rings,
and we shall also become familiar with the Chinese remainder theorem and its
applications.

In connection with this we shall go into some detail about the principles of
identifying large prime numbers, and we shall program a powerful multistage
primality test.

A further chapter is devoted to the generation of large random numbers,
in which a cryptographically useful bit generator is developed and tested with
respect to its statistical properties.

To end the first part we shall concern ourselves with testing arithmetic
and other functions. To do this we shall derive special test methods from the
mathematical rules of arithmetic, and we shall consider the implementation of
efficient external tools.

The subject of the second part is the step-by-step construction of the C++
class LINT (Large INTegers), in the course of which we shall embed the C
functions of the first part into the syntax and semantics of the object-oriented
programming language C++. We shall put particular weight on formatted input
and output of LINT objects with flexible stream functions and manipulators, as
well as error handling with exceptions. The elegance with which algorithms can
be formulated in C++ is particularly impressive when the boundaries between
standard types and large numbers as LINT objects begin to dissolve, resulting in
the syntactic closeness to the implemented algorithms and in great clarity and
transparency.
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Finally, we shall demonstrate the application of the methods we have
developed by implementing an extensive RSA cryptosystem for encryption and
the creation of digital signatures. In the process we shall explain the theory of
the RSA procedure and its operation as the most prominent representative of
asymmetric cryptosystems, and in a self-contained example we shall develop
an extensible kernel for applications of this ultramodern cryptographic process
according to the object-oriented principles of the programming language C++.

We shall round all of this off with a glimpse of further possible extensions
of the software library. As a small highlight at the end we shall present four
functions in 80x86 assembly language for multiplication and division, which will
improve the performance of our software. Appendix D contains a table of typical
calculation times with and without the assembler supplement.

All readers of this book are heartily invited to join me on this path, or
perhaps—depending on individual interest—to focus on particular sections or
chapters and try out the functions presented there. The author hopes that it will
not be taken amiss that he refers to his readers, together with himself, as “we.” He
hopes thereby to encourage them to take an active role in this journey through a
cutting-edge area of mathematics and computer science, to figure things out for
themselves and take from this book what is of greatest benefit. As for the software,
let the reader not be lacking in ambition to extend the scope or speed of one or
more functions through new implementations.

I wish to thank Springer-Verlag and particularly Hermann Engesser, Dorothea
Glaunsinger, and Ulrike Stricker for their interest in the publication of this book
and for their friendly and active collaboration. The manuscript was reviewed
by Jorn Garbers, Josef von Helden, Brigitte Nebelung, Johannes Ueberberg, and
Helga Welschenbach. I offer them my heartfelt thanks for their critical suggestions
and improvements, and above all for their care and patience. If despite all of our
efforts some errors remain in the text or in the software, the author alone bears
the responsibility. I am extremely grateful to my friends and colleagues Robert
Hammelrath, Franz-Peter Heider, Detlef Kraus, and Brigitte Nebelung for their
insights into the connections between mathematics and computer science over
many years of collaboration that have meant a great deal to me.



Part I

Arithmetic and
Number Theory in C

How necessary arithmetic and the entire art of mathematics are can be easily
measured, in that nothing can be created that is not connected with precise
number and measurement, and no independent art can exist without its
measures and proportions.

—Adam Ries: Book of Calculation, 1574

Typographical rules for manipulating numerals are actually arithmetical
rules for operating on numbers.

—D. R. Hofstadter: Godel, Escher, Bach: An Eternal Golden Braid

The human brain would no longer be burdened with anything that needed to
be calculated! Gifted people would again be able to think instead of scribbling
numbers.

—Sten Nadolny: The Discovery of Slowness, trans. Ralph Freedman



CHAPTER 1

Introduction

God created the integers. All the rest is the work of man.

—Leopold Kronecker

If you look at zero you see nothing; but look through it and you will see the
world.

—Robert Kaplan, The Nothing That Is: A Natural History of Zero

TO BE INVOLVED WITH MODERN cryptography is to dive willy-nilly into number
theory, that is, the study of the natural numbers, one of the most beautiful areas
of mathematics. However, we have no intention of becoming deep-sea divers who
raise sunken treasure from the mathematical ocean floor, which in any case is
unnecessary for cryptographic applications. Our goals are much more modest.
On the other hand, there is no limit to the depth of involvement of number theory
with cryptography, and many significant mathematicians have made important
contributions to this area.

The roots of number theory reach back to antiquity. The Pythagoreans—the
Greek mathematician and philosopher Pythagoras and his school—were already
deeply involved in the sixth century B.C.E. with relations among the integers,
and they achieved significant mathematical results, for example the famed
Pythagorean theorem, which is a part of every school child’s education. With
religious zeal they took the position that all numbers should be commensurate
with the natural numbers, and they found themselves on the horns of a serious
dilemma when they discovered the existence of “irrational” numbers such as V2,
which cannot be expressed as the quotient of two integers. This discovery threw
the world view of the Pythagoreans into disarray, to the extent that they sought
to suppress knowledge of the irrational numbers, a futile form of behavior oft
repeated throughout human history.

Two of the oldest number-theoretic algorithms, which have been passed
down to us from the Greek mathematicians Euclid (third century B.C.E.) and
Eratosthenes (276-195 B.C.E.), are closely related to the most contemporary
encryption algorithms that we use every day to secure communication across
the Internet. The “Euclidean algorithm” and the “sieve of Eratosthenes” are both
quite up-to-date for our work, and we shall discuss their theory and application
in Sections 10.1 and 10.5 of this book.



Chapter 1

Among the most important founders of modern number theory are to be
counted Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783), Adrien
Marie Legendre (1752-1833), Carl Friedrich Gauss (1777-1855), and Ernst Eduard
Kummer (1810-1893). Their work forms the basis for the modern development of
this area of mathematics and in particular the interesting application areas such as
cryptography, with its asymmetric procedures for encryption and the generation
of digital signatures (cf. Chapter 17). We could mention many more names of
important contributors to this field, who continue to this day to be involved in
often dramatic developments in number theory, and to those interested in a
thrilling account of the history of number theory and its protagonists, I heartily
recommend the book Fermat'’s Last Theorem, by Simon Singh.

Considering that already as children we learned counting as something to be
taken for granted and that we were readily convinced of such facts as that two
plus two equals four, we must turn to surprisingly abstract thought constructs
to derive the theoretical justification for such assertions. For example, set theory
allows us to derive the existence and arithmetic of the natural numbers from
(almost) nothing. This “almost nothing” is the empty (or null) set & := { },
that is, the set that has no elements. If we consider the empty set to correspond
to the number 0, then we are able to construct additional sets as follows. The
successor 07 of 0 is associated with the set 07 := {0} = { & }, which contains
a single element, namely the null set. We give the successor of 0 the name 1, and
for this set as well we can determine a successor, namely 17 := { &, { @} }.
The successor of 1, which contains 0 and 1 as its elements, is given the name 2.
The sets thus constructed, which we have rashly given the names 0, 1, and 2, we
identify—not surprisingly—with the well-known natural numbers 0, 1, and 2.

This principle of construction, which to every number = associates a
successor ' := 2 U { z } by adjoining z to the previous set, can be continued to
produce additional numbers. Each number thus constructed, with the exception
of 0, is itself a set whose elements constitute its predecessors. Only 0 has no
predecessor. To ensure that this process continues ad infinitum, set theory
formulates a special rule, called the axiom of infinity: There exists a set that
contains 0 as well as the successor of every element that it contains.

From this postulated existence of (at least) one so-called successor set, which,
beginning with 0, contains all successors, set theory derives the existence of a
minimal successor set N, which is itself a subset of every successor set. This
minimal and thus uniquely determined successor set N is called the set of natural
numbers, in which we expressly include zero as an element.'

It was not decisive for this choice that according to standard DIN 5473 zero belongs to the
natural numbers. From the point of view of computer science, however, it is practical to begin
counting at zero instead of 1, which is indicative of the important role played by zero as the
neutral element for addition (additive identity).
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The natural numbers can be characterized by means of the axioms of
Giuseppe Peano (1858-1932), which coincide with our intuitive understanding of
the natural numbers:

(I) The successors of two unequal natural numbers are unequal: From n. # m
it follows that n * m™T, forall n,m € N.

(I) Every natural number, with the exception of 0, has a predecessor:

Nt =N\{0}.

(I) The principle of complete induction: 1f S C N,0 € S, and n € S always
implynt € S, then S = N.

The principle of complete induction makes it possible to derive the arithmetic
operations with natural numbers in which we are interested. The fundamental
operations of addition and multiplication can be defined recursively as follows.
We begin with addition:

For every natural number n € N there exists a function s,, from N to N such
that

i) sn(0) =mn,
i) sn(z7) = (sn(x))" for all natural numbers z € N.

The value of the function s, (x) is called the sumn + = of n and x.

The existence of such functions s, for all natural numbers n € N must,
however, be proved, since the infinitude of natural numbers does not a priori
justify such an assumption. The existence proof goes back to the principle of
complete induction, corresponding to Peano’s third axiom above (see [Halm],
Chapters 11-13). For multiplication one proceeds analogously:

For every natural number n € N there exists a function p,, from N to N such
that

@ pn(0) =0,
(i) pn (x*) = pn(x) + n for all natural numbers x € N.

The value of the function py, () is called the product n - x of n. and x.

As expected, multiplication is defined in terms of addition. For the arithmetic
operations thus defined one can prove, through repeated application of complete
induction on z in accordance with Axiom III, such well-known arithmetic laws as
associativity, commutativity, and distributivity (cf. [Halm], Chapter 13). Although
we usually use these laws without further ado, we shall help ourselves to them as
much as we please in testing our FLINT functions (see Chapters 13 and 18).

In a similar way we obtain a definition of exponentiation, which we give here
in view of the importance of this operation in what follows.



Chapter 1

For every natural number n € N there exists a function e,, from N to N such
that

@ en(0) =1,
(i) en (3:+) = en(x) - n for every natural number z € N.

The value of the function e, () is called the xth power n® of n. With complete
induction we can prove the power law

Y=n"" n®.m” =(n-m)*, n°)Y=n"Y,

n“n
to which we shall return in Chapter 6.

In addition to the calculational operations, the set N of natural numbers
has defined on it an order relation “<” that makes it possible to compare two
elements n, m € N. Although this fact is worthy of our great attention from a
set-theoretic point of view, here we shall content ourselves with noting that the
order relation has precisely those properties that we know about and use in our
everyday lives.

Now that we have begun with establishing the empty set as the sole
fundamental building block of the natural numbers, we now proceed to consider
the materials with which we shall be concerned in what follows. Although number
theory generally considers the natural numbers and the integers as given and
goes on to consider their properties without excessive beating about the bush, it
is nonetheless of interest to us to have at least once taken a glance at a process
of “mathematical cell division,” a process that produces not only the natural
numbers, but also the arithmetic operations and rules with which we shall be
deeply involved from here on.

About the Software

The software described in this book constitutes in its entirety a package, a
so-called function library, to which frequent reference will be made. This library
has been given the name FLINT/C, which is an acronym for “functions for large
integers in number theory and cryptography.”

The FLINT/C library contains, among other items, the modules shown in
Tables 1-1 through 1-5, which can be found as source code at waw.apress.com.
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Table 1-1. Arithmetic and number theory in C in directory flint/src

flint.h header file for using functions from flint.c

flint.c arithmetic and number-theoretic functions in C

kmul.{h,c} functions for Karatsuba multiplication and squaring
ripemd.{h,c} implementation of the hash function RIPEMD-160
sha{1,256}.{h,c} implementations of the hash functions SHA-1, SHA-256
entropy.c generation of entropy as start value for pseudorandom sequences
random. {h,c} generation of pseudorandom numbers

aes.{h,c} implementation of the Advanced Encryption Standard

Table 1-2. Arithmetic modules in 80x86 assembler (see
Chapter 19) in directory flint/src/asm

mult.{s,asm} multiplication, replaces the C function mult() in flint.c
umul.{s,asm} multiplication, replaces the C function umul()
sqr.{s,asm} squaring, replaces the C function sqr()

div.{s,asm}  division, replaces the C function div_1()

Table 1-3. Tests (see Section 13.2 and Chapter 18) in directories flint/test and
flint/test/testvals

testxxx.c[pp] test programs in C and C++

Xxx.txt test vectors for AES
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Table 1-4. Libraries in 80x86 assembler (see Chapter 19) in
directories flint/lib and flint/lib/dll

flinta.lib library with assembler functions in OMF (object module format)

flintavc.lib library with assembler functions in COFF (common object file format)

flinta.a archive with assembler functions for emx/gcc under OS/2
libflint.a archive with assembler functions for use under LINUX
flint.dll DLL with the FLINT/C functions for use with MS VC/C++

flint.1lib link library for flint.d11

Table 1-5. RSA implementation (see Chapter 17) in directory flint/rsa

rsakey.h header file for the RSA classes
rsakey.cpp  implementation of the RSA classes RSAkey and RSApub

rsademo.cpp example application of the RSA classes and their functions

A list of the individual components of the FLINT/C software can be found
in the file readme.doc is the source code. The software has been tested with the
indicated development tools on the following platforms:

e GNU gcc under Linux, SunOS 4.1, and Sun Solaris

e GNU/EMX gcc under OS/2 Warp, DOS, and Windows (9x, NT)

e Borland BCC32 under Windows (9x, NT, 2000, XP)

e Icc-win32 under Windows (9x, NT, 2000, XP)

e Cygnus cygwin B20 under Windows (9%, NT, 2000, XP)

e [BM VisualAge under OS/2 Warp and Windows (9x, NT, 2000, XP)

e Microsoft C under DOS, OS/2 Warp, and Windows (9%, NT)

e Microsoft Visual C/C++ under Windows (9x, NT, 2000, XP)

e Watcom C/C++ under DOS, OS/2 Warp, and Windows (3.1, 9x, NT, XP)
e OpenWatcom C/C++ under Windows (2000, XP)

The assembler programs can be translated with Microsoft MASM,? with
Watcom WASM, or with the GNU assembler GAS. They are contained in the
downloadable source code in translated form as libraries in OMF (object module

2 call:ml /Cx /c /Gd (filename).



format) and COFF (common object file format), respectively, as well as in the
form of a LINUX archive, and are used instead of the corresponding C functions
when in translating C programs the macro FLINT _ASMis defined and the assembler
object modules from the libraries, respectively archives, are linked.

A typical compiler call, here for the GNU compiler gcc, looks something like
the following (with the paths to the source directories suppressed):

gcc -02 -o rsademo rsademo.cpp rsakey.cpp flintpp.cpp
randompp.cpp flint.c aes.c ripemd.c sha256.c entropy.c
random.c -lstdc++

The C++ header files following the ANSI standard are used when in
compilation the macro FLINTPP_ANSI is defined; otherwise, the traditional header
files xxxxx.h are used.

Depending on the computer platform, there may be deviations with regard
to the compiler switches; but to achieve maximum performance the options for
speed optimization should always be turned on. Because of the demands on
the stack, in many environments and applications it will have to be adjusted.’
Regarding the necessary stack size for particular applications, one should note the
suggestion about the exponentiation functions in Chapter 6 and in the overview
on page 117. The stack requirements can be lessened by using the exponentiation
function with dynamic stack allocation as well as by the implementation of
dynamic registers (see Chapter 9).

The C functions and constants have been provided with the macros

_ FLINT_API Qualifier for C functions
_ FLINT_API A Qualifier for assembler functions
_ FLINT_API_DATA Qualifier for constants

asin

extern int _ FLINT API add 1(CLINT, CLINT, CLINT);
extern USHORT _ FLINT API DATA smallprimes[];

or, respectively, in the use of the assembler functions
extern int _ FLINT API A div 1 (CLINT, CLINT, CLINT, CLINT);
These macros are generally defined as empty comments /**/. With their

aid, using the appropriate definitions, compiler- and linker-specific instructions
to functions and data can be made. If the assembler modules are used and not

3 With modern computers with virtual memory, except in the case of DOS, one usually does not

have to worry about this point, in particular with Unix or Linux systems.
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the GNU compiler gcc, the macro  FLINT API A is defined by _ cdecl, and
some compilers understand this as an instruction that the assembler functions
corresponding to the C name and calling conventions are to be called.

For modules that import FLINT/C functions and constants from a dynamic
link library (DLL) under Microsoft Visual C/C++, in translation the macros
-D__FLINT API=_cdecl and -D_ FLINT API DATA= _ declspec (dllimport)
must be defined. This has already been taken into account in flint.h, and it
suffices in this case to define the macro FLINT_USEDLL for compilation. For other
development environments analogous definitions should be employed.

The small amount of work involved in initializing a FLINT/C DLL is taken care
of by the function FLINTInit 1(), which provides initial values for the random
number generator! and generates a set of dynamic registers (see Chapter 9).
The complementary function FLINTExit 1() deallocates the dynamic registers.
Sensibly enough, the initialization is not handed over to every individual process
that uses the DLL, but is executed once at the start of the DLL. As arule, a function
with creator-specific signature and calling convention should be used, which is
executed automatically when the DLL is loaded by the run-time system. This
function can take over the FLINT/C initialization and use the two functions
mentioned above. All of this should be considered when a DLL is created.

Some effort was made to make the software usable in security-critical
applications. To this end, in security mode local variables in functions, in
particular CLINT and LINT objects, are deleted after use by being overwritten
with zeros. For the C functions this is accomplished with the help of the macro
PURGEVARS L() and the associated function purgevars_1(). For the C++ functions
the destructor ~LINT() is similarly equipped. The assembler functions overwrite
their working memory. The deletion of variables that are passed as arguments to
functions is the responsibility of the calling functions.

If the deletion of variables, which requires a certain additional expenditure
of time, is to be omitted, then in compilation the macro FLINT_UNSECURE must
be defined. At run time the function char* verstr 1() gives information about
the modes set at compile time, in which additionally to the version label X.x,
the letters “a” for assembler support and “s” for security mode are output in a
character string if these modes have been turned on.

4 The initial values are made up of 32-bit numbers taken from the system clock. For applications

in which security is critical it is advisable to use suitable random values from a sufficiently large
interval as initial values.
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Legal Conditions for Using the Software

The software is exclusively for private use. For such purposes the software may be
used, altered, and distributed under the following conditions:

1. The copyright notice may not be altered or deleted.

2. All changes must be annotated by means of comment lines. Any other use,
in particular the use of the software for commercial purposes, requires
written permission from the publisher or the author.

The software has been created and tested with the greatest possible care.
Since errors can never be completely eliminated, neither the author nor the
publisher can take responsibility for direct or indirect damages that may arise
from the use or unusability of the software, regardless of the purpose to which it
has been put.

Contacting the Author

The author would be glad to receive information about errors or any other helpful
criticism or comment. Please write to him at cryptography@welschenbach.com.

11


mailto:cryptography@welschenbach.com

CHAPTER 2

Number Formats:
The Representation of
Large Numbers in C

So I have made up my own system for writing large numbers and I am going
to use this chapter as a chance to explain it

—Isaac Asimov, Adding a Dimension

The process that has led to the higher organization of this form could also be
imagined differently

—]J. Weber, Form, Motion, Color

ONE OF THE FIRST STEPS in creating a function library for calculating with large
numbers is to determine how large numbers are to represented in the computer’s
main memory. It is necessary to plan carefully, since decisions made at this point
will be difficult to revise at a later time. Changes to the internal structure of a
software library are always possible, but the user interface should be kept as
stable as possible in the sense of “upward compatibility.”

It is necessary to determine the order of magnitude of the numbers to be
processed and the data type to be used for coding these numerical values.

The basic function of all routines in the FLINT/C library is the processing
of natural numbers of several hundred digits, which far exceeds the capacity of
standard data types. We thus require a logical ordering of a computer’s memory
units by means of which large numbers can be expressed and operated on. In
this regard one might imagine structures that automatically create sufficient
space for the values to be represented, but no more than is actually needed. One
would like to maintain such economically organized housekeeping with respect
to main memory by means of dynamic memory management for large numbers
that allocates or releases memory according to need in the course of arithmetic
operations. Although such can certainly be realized (see, for example, [Skal]),
memory management has a price in computation time, for which reason the

13
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representation of integers in the FLINT/C package gives preference to the simpler
definition of static length.

For representing large natural numbers one might use vectors whose
elements are a standard data type. For reasons of efficiency an unsigned data
type is to be preferred, which allows the results of arithmetic operations to be
stored in this type without loss as unsigned long (defined in flint.h as ULONG),
which is the largest arithmetic standard C data type (see [Harb], Section 5.1.1). A
ULONG variable can usually be represented exactly with a complete register word of
the CPU.

Our goal is that operations on large numbers be reducible by the compiler as
directly as possible to the register arithmetic of the CPU, for those are the parts
that the computer calculates “in its head,” so to speak. For the FLINT/C package
the representation of large integers is therefore by means of the type unsigned
short int (in the sequel USHORT). We assume that the type USHORT is represented
by 16 bits and that the type ULONG can fully accept results of arithmetic operations
with USHORT types, which is to say that the informally formulated size relationship
USHORT x USHORT < ULONG holds.

Whether these assumptions hold for a particular compiler can be deduced
from the ISO header file 1imits.h (cf. [Harb], Sections 2.7.1 and 5.1). For example,
in the file 1imits.h for the GNU C/C++ compiler (cf. [Stlm]) the following appears:

#define UCHAR_MAX oxffU
#define USHRT MAX oxffffU
#define UINT_MAX oxffffffffu
#define ULONG_MAX oxffffffffuL

One should note that with respect to the number of binary places there
are actually only three sizes that are distinguished. The type USHRT (respectively
USHORT in our notation) can be represented in a 16-bit register; the type ULONG fills
the word length of a CPU with 32-bit registers. The type ULONG_MAX determines
the value of the largest unsigned whole numbers representable by scalar types
(cf. [Harb], page 110).! The value of the product of two numbers of type USHRT
is at most Oxffff * oxffff = 0xfffe0001 and is thus representable by a ULONG
type, where the least-significant 16 bits, in our example the value 0x0001, can be
isolated by a cast operation into the type USHRT. The implementation of the basic
arithmetic functions of the FLINT/C package is based on the above-discussed
size relationship between the types USHORT and ULONG.

An analogous approach, one that used data types with 32-bit and 64-bit
lengths in the role of USHORT and ULONG in the present implementation, would
reduce the calculation time for multiplication, division, and exponentiation

! without taking into account such practical nonstandard types as unsigned long long in GNU

C/C++ and certain other C compilers.
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by about 25 percent. Such possibilities are realizable with functions written
in assembler with direct access to 64-bit results of machine instructions for
multiplication and division or with processors with 64-bit registers that would
also allow to C implementations the lossless storage of such results in a ULONG
type. The FLINT/C package contains some examples whose gain in speed results
from the use of arithmetic assembler functions (see Chapter 19).

The next question is that of the ordering of the USHORT digits within a vector.
We can imagine two possibilities: from left to right, with a descending evaluation
of digits from lower to higher memory addresses, or the other way round, with
an ascending evaluation of digits from lower to higher memory addresses. The
latter arrangement, which is the reverse of our usual notation, has the advantage
that changes in the size of numbers at constant addresses can take place with the
simple allocation of additional digits, without the numbers having to be relocated
in memory. Thus the choice is clear: The evaluation of digits of our numerical
representation increases with increasing memory address or vector index.

As a further element of the representation the number of digits will be
appended and stored in the first element of the vector. The representation of long
numbers in memory thus has the format

n=(lninz...n)) g, 0 <1< CLINTMAXDIGIT, 0<n; < B, i=1,...,1,

where B denotes the base of the numerical representation; for the FLINT/C
package we have B := 216 — 65536. The value of B will be our companion from
here on and will appear continually in what follows. The constant CLINTMAXDIGIT
represents the maximal number of digits of a CLINT object.

Zero is represented by the length [ = 0. The value n of a number that is
represented by a FLINT/C variable n_1 is calculated as

n_1[0]

> 1[E]BY, ifn 1[0] > 0,
n= =1

0, otherwise.

If n > 0, then the least-significant digit of n to the base B is given by n _1[1],
and the most-significant digit by n_1[n_1[0]]. The number of digits of n_1[0]
will be read in what follows by the macro DIGITS L (n_1) and set to 1 by the
macro SETDIGITS L (n_1, 1).Likewise, access to the least-significant and most-
significant digits of n_1 will be conveyed by LSDPTR L(n_1) and MSDPTR L(n 1),
each of which returns a pointer to the digit in question. The use of the macros
defined in flint.h yields independence from the actual representation of the
number.

15
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Since we have no need of a sign for natural numbers, we now have all
the required elements for the representation of such numbers. We define the
corresponding data type by

typedef unsigned short clint;
typedef clint CLINT[CLINTMAXDIGIT + 1];

In accordance with this, a large number will be declared by
CLINT n_1;

The declaration of function parameters of type CLINT can follow from the
instruction CLINT n_1 in the function header.” The definition of a pointer myptr 1
to a CLINT object occurs via CLINTPTR myptr 1orclint *myptr 1.

FLINT/C functions can, depending on the setting of the constant
CLINTMAXDIGIT in flint.h, process numbers up to 4096 bits in length, which
corresponds to 1233 decimal digits or 256 digits to the base 216, By changing
CLINTMAXDIGIT the maximal length can be adjusted as required. The definitions of
other constants depend on this parameter; for example, the number of USHORTs in
a CLINT object is specified by

#define CLINTMAXSHORT CLINTMAXDIGIT + 1
and the maximal number of processable binary digits is defined by
#define CLINTMAXBIT CLINTMAXDIGIT << 4

Since the constants CLINTMAXDIGIT and CLINTMAXBIT are used frequently, yet
are rather unwieldy from a typographical point of view, we shall denote these
constants by abbreviations MAX 5 and MA X5 (with the exception of program
code, where the constants will appear in their normal form).

With this definition it follows that CLINT objects can assume whole-number
values in the interval [0, BMAXs _ 1], respectively [O, oMAXz _ 1] . We denote
the value BMAXs _ 1 — gMAX2 1, the largest natural number that can be
represented by a CLINT object, by Nmax.-

In this regard compare Chapters 4 and 9 of the extremely readable book [Lind], where there
is an extensive explanation of when vectors and pointers in C are equivalent, and above all,
when this is not the case and what types of errors can arise from a misunderstanding of these
issues.
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For some functions it is necessary to process numbers that have more digits
than can be accommodated by a CLINT object. For these cases the variants of the
CLINT type are defined by

typedef unsigned short CLINTD[1+(CLINTMAXDIGIT<<1)];
and
typedef unsigned short CLINTQ[1+(CLINTMAXDIGIT<<2)];
which can hold double, respectively four times, the number of digits.
As support personnel to aid in programming, the module flint.c defines
the constants nul 1, one_1, and two_1, which represent the numbers 0, 1, and 2

in CLINT format; and in flint.h there are corresponding macros SETZERO_L(),
SETONE_L(), and SETTWO_L(), which set CLINT objects to the corresponding values.

17



CHAPTER 3

Interface Semantics

When people hear some words, they normally believe
that there’s some thought behind them.

—Goethe, Faust, Part 1

IN THE FOLLOWING WE SHALL set some fundamental properties that relate to the
behavior of the interface and the use of FLINT/C functions. First we shall consider
the textual representation of CLINT objects and FLINT/C functions, but primarily
we wish to clarify some fundamentals of the implementation that are important
to the use of the functions.

The functions of the FLINT/C package are identified with the convention
that their names end with “ 1”; for example, add_1 denotes the addition function.
Designators of CLINT objects likewise end with an underscore and an appended 1.
For the sake of simplicity we shall equate from now on, when conditions permit,
a CLINT object n_1 with the value that it represents.

The representation of a FLINT/C function begins with a header, which
contains the syntactic and semantic description of the function interface. Such
function headers typically look something like the following.

Function:  a brief description of the function
Syntax: int £ 1 (CLINT a_l, CLINT b_1, CLINT c_1);

Input: a_l, b 1 (operands)
Output: c_1 (result)
Return: 0 if all is ok

otherwise, a warning or error message

Here we distinguish, among other things, between output and return value:
While output refers to the values that are stored by the function in the passed
arguments, by return we mean the values that the function returns via a return
command. Except for a few cases (for example, the functions 1d_1(), Section 10.3,
and twofact_1(), Section 10.4.1), the return value consists of status information
Or error messages.

Parameters other than those involved with output are not changed by the
function. Calls of the form f 1(a_ 1, b 1, a 1), where a_1 and b_1 are used

19
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as arguments and a_1 is overwritten with the return value at the end of the
computation, are always possible, since the return variable is written to with the
return value only after the complete execution of the operation. From assembler
programming one says in this case that the variable a_1 is used as an accumulator.
This modus operandi is supported by all FLINT/C functions.

A CLINT object n_1 possesses leading zeros if for a value 1 one has

(DIGITS L (n.1) == 1) 8& (1 » 0) & (n_1[1] == 0);

Leading zeros are redundant, since although they lengthen the representation of a
number, they have no effect on its value. However, leading zeros are allowed in the
notation of a number, for which reason we should not simply ignore this option.
The acceptance of leading zeros is, to be sure, a burdensome implementation
detail, but it leads to increased tolerance of input from external sources and thus
contributes to the stability of all the functions. CLINT numbers with leading zeros
are thus accepted by all FLINT/C functions, but they are not generated by them.
A further setting is related to the behavior of arithmetic functions in the
case of overflow, which occurs when the result of an arithmetic operation is
too large to be represented in the result type. Although in some publications
on C the behavior of a program in the case of arithmetic overflow is said to be
implementation-dependent, the C standard nonetheless governs precisely the
case of overflow in arithmetic operations with unsigned integer types: There
it is stated that arithmetic modulo 2" should be executed when the data type
can represent integers of n-bit length (see [Harb], Section 5.1.2). Accordingly,
in the case of overflow the basic arithmetic functions described below reduce
their results modulo (Nmax + 1), which means that the remainder after whole-
number division by Nmax + 1 is output as the result (see Section 4.3 and Chapter
5). In the case of underflow, which occurs when the result of an operation is
negative, a positive residue modulo (Nmax + 1) is output. The FLINT/C functions
thus behave in conformity with arithmetic according to the C standard.
If an overflow or underflow is detected, the arithmetic functions return the
appropriate error code. This and all other error codes in Table 3-1 are defined in
the header file flint.h.



Table 3-1. FLINT/C error codes

Interface Semantics

Exror Code

E_CLINT BOR
E_CLINT DBZ
E_CLINT MAL
E_CLINT MOD
E_CLINT_NOR
E_CLINT NPT
E_CLINT OFL
E_CLINT UFL

Interpretation

invalid basis in str2clint_1() (see Chapter 8)

division by zero

error in memory allocation

nonodd (even) modulus in Montgomery multiplication
register unavailable (see Chapter 9)

null pointer passed as argument

overflow

underflow
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CHAPTER 4

The Fundamental
Operations

Thus calculation can be seen as the basis and foundation of all the arts.
—Adam Ries, Book of Calculation

And you, poor creature, you are completely useless. Look at me. Everyone
needs me.

—Aesop, “The Fir and the Blackberry Bush”

There is one small prerequisite for mastering the mathemagic tricks in
this chapter—you need to know the multiplication tables through 10 . ..
backward and forward.

—Arthur Benjamin, Michael B. Shermer, Mathemagics

THE FUNDAMENTAL BUILDING BLOCKS OF any software package for computer
arithmetic are the functions that carry out the basic operations of addition,
subtraction, multiplication, and division. The efficiency of the entire package
hangs on the last two of these, and for that reason great care must be taken in the
selection and implementation of the associated algorithms. Fortunately, volume
2 of Donald Knuth’s classic The Art of Computer Programming contains most of
what we need for this portion of the FLINT/C functions.

In anticipation of their representation to come, the functions developed in
the following sections use the operations cpy 1(), which copies one CLINT object
to another in the sense of an allocation, and cmp_1(), which makes a comparison
of the sizes of two CLINT values. For a more precise description see Section 7.4 and
Chapter 8.

Let us mention at this point that for the sake of clarity, in this chapter the
functions for the fundamental arithmetic operations are developed all of a piece,
while in Chapter 5 it will prove practical to split some of the functions into their
respective “core” operations and from there develop additional steps such as
the elimination of leading zeros and the handling of overflow and underflow,
where, however, the syntax and semantics of the functions are kept intact. For an
understanding of the relations described in this chapter this is irrelevant, so that
for now we can forget about these more difficult issues.

23



Chapter 4

24

4.1 Addition and Subtraction

This notion of “further counting” means, “to the integer n; add the integer
n2,” and the integer s at which one arrives by this further counting is called
“the result of addition” or the “sum of n; and n2” and is represented by
ni + no.

—Leopold Kronecker, On the Idea of Number

Since addition and subtraction are in principle the same operation with differing
signs, the underlying algorithms are equivalent, and we can deal with them
together in this section. We consider operands a and b with representations

m—1
a:=(am-1am—2...00)g = Z aiBi, 0<a; < B,
1=0
n—1 )
b= (bn71bn72...bo)B= ZbiBl, 0<b; < B,
1=0

where we assume a > b. For addition this condition represents no restriction,
since it can always be achieved by interchanging the two summands. For
subtraction it means that the difference is positive or zero and therefore can be
represented as a CLINT object without reduction modulo (Nmax + 1).

Addition consists essentially of the following steps.

Algorithm for the addition a + b
1. Set? «+— Oand c < O.
2. Sett «— a; +b; + ¢, 8; — t mod B,and ¢ — [t/B].
3. Seti «+— 1+ 1;if: < n — 1, go to step 2.
4. Sett < a; + ¢, 8; — t mod B,and ¢ — [t/B].
5. Seti «— 1+ 1;ift < m — 1, go to step 4.
6. Set s, «— c.

7. Output s = (SmSm—1-..50) -

The digits of the summands, together with the carry, are added in step 2, with
the less-significant part stored as a digit of the sum, while the more-significant
part is carried to the next digit. If the most-significant digit of one of the
summands is reached, then in step 4 any remaining digits of the other summand
are added to any remaining carries one after the other. Until the last summand
digit is processed, the less-significant part is stored as a digit of the sum, and
the more-significant part is used as a carry to the next digit. Finally, if there is a
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leftover carry at the end, it is stored as the most-significant digit of the sum. The
output of this digit is suppressed if it has the value zero.

Steps 2 and 4 of the algorithm appear in a similar form in the case of
subtraction, multiplication, and division. The associated code, which is illustrated
by the following lines, is typical for arithmetic functions:'

s = (USHORT) (carry = (ULONG)a + (ULONG)b + (ULONG)(USHORT)(carry >> BITPERDGT));

The intermediate value ¢ that appears in the algorithm is represented by the
variable carry, of type ULONG, which holds the sum of the digits a; and b; as well
as the carry of the previous operation. The new summation digit s; is stored in
the less-significant part of carry, from where it is taken by means of a cast as a
USHORT. The resulting carry from this operation is held in the more-significant part
of carry for the next operation.

The implementation of this algorithm by our function add_1() deals with a
possible overflow of the sum, where in this case a reduction of the sum modulo
(Nmax + 1) is carried out.

Function: addition

Syntax: int add 1 (CLINT a 1, CLINT b 1, CLINT s 1);
Input: a_l, b 1 (summands)

Output: s 1 (sum)

Return: E_CLINT OKifallis ok
E_CLINT OFL in the case of overflow

int
add 1 (CLINT a_1, CLINT b_1, CLINT s_1)
{
clint ss_1[CLINTMAXSHORT + 1];
clint *msdptra_1, *msdptrb_1;
clint *aptr 1, *bptr 1, *sptr 1 = LSDPTR_L (ss_1);
ULONG carry = OL;
int OFL = E_CLINT OK;

1 The C expression in this compact form is due to my colleague Robert Hammelrath.
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The pointers for the addition loop are set. Here it is checked which of the two
summands has the greater number of digits. The pointers aptr 1 and msdaptr 1
are initialized such that they point respectively to the least-significant and most-
significant digits of the summand that has the most digits, or to those digits of a_1
if both summands are of the same length. This holds analogously for the pointers
bptr 1 and msdbptr 1, which point to the least-significant and most-significant
digits of the shorter summand, or to those digits of b_1. The initialization is
carried out with the help of the macro LSDPTR_L() for the least-significant dig-
its and MSDPTR_L() for the most-significant digits of a CLINT object. The macro
DIGITS L (a_l) specifies the number of digits of the CLINT object a_1, and with
SETDIGITS L(a_l, n) the number of digits of a_1 is set to the value n.

if (DIGITS L (a_l) < DIGITS L (b 1))
{
aptr 1 = LSDPTR_L (b_1);
bptr 1 = LSDPTR_L (a_1);
msdptra 1 = MSDPTR L (b_1);
msdptrb 1 = MSDPTR L (a_l);
SETDIGITS L (ss_1, DIGITS L (b 1));
}

else

aptr 1 = LSDPTR_L (a_l);

bptr 1 = LSDPTR L (b 1);

msdptra 1 = MSDPTR_L (a_l);
msdptrb 1 = MSDPTR_L (b_1);
SETDIGITS L (ss_1, DIGITS L (a_1));

In the first loop of add_1 the digits ofa_1and b 1 are added and stored in the result
variable ss_1. Anyleading zeros cause no problem, and they are simply used in the
calculation and filtered out when the resultis copied to s_1.Theloop runs from the
least-significant digit of b_1 to the most-significant digit. This corresponds exactly
to the process of pencil-and-paper addition as learned at school. As promised,
here is the implementation of the carry.

while (bptr 1 <= msdptrb 1)
{
*sptr 1++ = (USHORT)(carry = (ULONG)*aptr l++
+ (ULONG)*bptr 1++ + (ULONG)(USHORT)(carry >> BITPERDGT));
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The two USHORT values *aptr and *bptr are copied via a cast to ULONG representa-
tion and added. To this the carry from the last interation is added. The result is
a ULONG value that contains the carry from the addition step in its higher-valued
word. This value is allocated to the variable carry and there reserved for the next
iteration. The value of the resulting digit is taken from the lower-valued word of the
addition result via a cast to the type USHORT. The carry saved in the higher-valued
word of carry is included in the next iteration by a shift to the right by the number
BITPERDGT of bits used for the representation of USHORT and a cast to USHORT.

In the second loop only the remaining digits of a_1 are added to a possible existing
carry and stored in s_1.

while (aptr 1 <= msdptra 1)
{
*sptr 1++ = (USHORT)(carry = (ULONG)*aptr l++
+ (ULONG) (USHORT) (carry >> BITPERDGT));

If after the second loop there is a carry, the result is one digit longer than a_1. If
it is determined that the result exceeds the maximal value Nyax representable
by the CLINT type, then the result is reduced modulo (Nmax + 1) (see Chapter 5),
analogously to the treatment of standard unsigned types. In this case the status
announcement of the error code E_CLINT OFL is returned.

if (carry & BASE)

{
*sptr 1 = 1;
SETDIGITS L (ss 1, DIGITS L (ss 1) + 1);
}
if (DIGITS L (ss_1) > (USHORT)CLINTMAXDIGIT) /* overflow? */
{
ANDMAX_L (ss_1); /* reduce modulo (Nmax + 1) */
OFL = E_CLINT OFL;
}

cpy 1 (s 1, ss 1);

return OFL;

}

The run time ¢ of all the procedures given here for addition and subtraction is
t = O(n), and thus proportional to the number of digits of the larger of the two
operands.
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Now that we have seen addition, we shall present the algorithm for
subtraction of two numbers a and b with representations

a = (am_lam_z .. .ao)B >b= (bn_lbn_z .. 'bO)B

to base B.

Algorithm for the subtractiona — b
1. Seti < Oandc «+ 1.
2. Ifc=1,sett +— B -+ a; — b;; otherwise, sett «— B — 1+ a; — b;.
3. Setd; « t mod Bandc « |t/B].
4. Seti «+— 1+ 1;if: < n — 1, go to step 2.
5. Ifc =1,sett < B + a;; otherwise, sett «— B — 1 + a;.
6. Setd; < t mod Bandc « [t/B].
7. Sett «— 1+ 1;ift <m — 1, goto step 5.

8. Outputd = (dm_ldm_z .. do)B.

The implementation of subtraction is identical to that of addition, with the
following exceptions:

e The ULONG variable carry is used to “borrow” from the next-higher digit of
the minuend if a digit of the minuend is smaller than the corresponding
digit of the subtrahend.

e Instead of an overflow one must be on the lookout for a possible underflow,
in which case the result of the subtraction would actually be negative;
however, since CLINT is an unsigned type, there will be a reduction
modulo (Nmax + 1) (see Chapter 5). The function returns the error code
E_CLINT UFL to indicate this situation.

e Finally, any existing leading zeros are eliminated.

Thus we obtain the following function, which subtracts a CLINT number b _1 from
anumbera 1.
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Function:  subtraction

Syntax: int sub 1 (CLINT aa 1, CLINT bb 1, CLINT d 1);
Input: aa_l (minuend), bb_1 (subtrahend)

Output: d_1 (difference)

Return: E_CLINT OKifallis ok.
E_CLINT UFL in the case of underflow

int

sub 1 (CLINT aa 1, CLINT bb 1, CLINT d 1)
{

CLINT b_1;

clint a_1[CLINTMAXSHORT + 1]; /* allow 1 additional digit in a 1 */
clint *msdptra 1, *msdptrb 1;

clint *aptr 1 = LSDPTR_L (a_l);

clint *bptr 1 = LSDPTR_L (b_1);

clint *dptr 1 = LSDPTR_L (d_1);

ULONG carry = OL;

int UFL = E_CLINT OK;

cpy 1 (a1, aa l);
cpy 1 (b 1, bb 1);
msdptra 1 = MSDPTR L (a_1);
msdptrb 1 = MSDPTR L (b 1);

In the following the case a 1 < b 1 is considered, in which b 1 is subtracted not
froma_1, but from the largest possible value, N ax. Later, the value (minuend+1)
is added to this difference, so that altogether the calculation is carried out mod-
ulo (Nmax + 1). To generate the value Nmax the auxiliary function setmax_1()
is used.
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if (LT L (a1, b 1))
{
setmax 1 (a_l);
msdptra 1 = a 1 + CLINTMAXDIGIT;
SETDIGITS L (d_1, CLINTMAXDIGIT);
UFL = E_CLINT UFL;
} else
{
SETDIGITS L (d_1, DIGITS L (a_l));
}
while (bptr 1 <= msdptrb 1)
{
*dptr 1++ = (USHORT)(carry = (ULONG)*aptr l++
- (ULONG)*bptr_l++ - ((carry & BASE) >> BITPERDGT));
}

while (aptr_ 1 <= msdptra_l)
{
*dptr 1++ = (USHORT)(carry = (ULONG)*aptr l++
- ((carry & BASE) >> BITPERDGT));
}

RMLDZRS L (d_1);

The required addition of (minuend + 1) to the difference Nmax — b_1 stored in
d_1lis carried out before the output of d_1.

if (UFL)

{
add 1 (d 1, aa 1, d 1);
inc 1 (d_1);

}

return UFL;

}

In addition to the functions add_1() and sub_1() two special functions for
addition and subtraction are available, which operate on a USHORT as the second
argument instead of a CLINT. These are called mixed functions and identified by a
function name with a prefixed “u,” as in the functions uadd_1() and usub_1() to
follow. The use of the function u2clint _1() for converting a USHORT value into a
CLINT object follows in anticipation of its discussion in Chapter 8.
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Function: = mixed addition of a CLINT type and a USHORT type
Syntax: int uadd 1 (CLINT a 1, USHORT b, CLINT s 1);

Input: a_l, b (summands)
Output: s 1 (sum)
Return: E CLINT OKifallis ok

E_CLINT OFL if overflow

int

uadd 1 (CLINT a_l, USHORT b, CLINT s_1)
{

int err;

CLINT tmp_1;

u2clint 1 (tmp 1, b);
err = add 1 (a_1, tmp 1, s 1);
return err;

}
Function:  subtraction of a USHORT type from a CLINT type
Syntax: int usub 1 (CLINT a 1, USHORT b, CLINT d 1);
Input: a_l (minuend), b (subtrahend)
Output: d_1 (difference)
Return: E CLINT OKifallis ok

E_CLINT UFL if underflow

int

usub_1 (CLINT a 1, USHORT b, CLINT d 1)

{

int err;

CLINT tmp_1; wu2clint 1 (tmp_ 1, b);
err = sub 1 (a_l, tmp 1, d 1);
return err;

}

The Fundamental Operations
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Two further useful special cases of addition and subtraction are realized in
the functions inc_1() and dec_1(), which increase or decrease a CLINT value by 1.
These functions are designed as accumulator routines: The operand is overwritten
with the return value, which has proved practical in the implementation of many
algorithms.

It is not surprising that the implementations of inc_1() and dec_1() are
similar to those of the functions add_1() and sub_1(). They test for overflow and
underflow, respectively, and return the corresponding error codes E_CLINT OFL
and E_CLINT UFL.

Function: increment a CLINT object by 1
Syntax: int inc 1 (CLINT a_1);
Input: a_l (summand)

Output: a_1 (sum)

Return: E CLINT OKifallis ok
E CLINT OFL if overflow

int

inc_1 (CLINT a_l1)

{

clint *msdptra 1, *aptr 1 = LSDPTR L (a_l);
ULONG carry = BASE;

int OFL = E_CLINT OK;

msdptra 1 = MSDPTR L (a_1);

while ((aptr 1 <= msdptra 1) 8& (carry & BASE))

{
*aptr 1 = (USHORT)(carry = 1UL + (ULONG)*aptr 1);
aptr 1++;

}

if ((aptr_1 > msdptra 1) &% (carry & BASE))

{
*aptr 1 = 1;

SETDIGITS L (a_l, DIGITS L (a 1) + 1);
if (DIGITS L (a_1) > (USHORT) CLINTMAXDIGIT) /* overflow ? */
{
SETZERO L (a_l1); /* reduce modulo (Nmax + 1) */
OFL = E_CLINT_OFL;
}
}

return OFL;

}
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Function: decrement a CLINT object by 1
Syntax: int dec_1 (CLINT a_1);
Input: a_l (minuend)

Output: a_1 (difference)

Return: E CLINT OKifallis ok
E_CLINT UFL if underflow

int
dec_1 (CLINT a_l)
{
clint *msdptra 1, *aptr 1 = LSDPTR_L (a_l);
ULONG carry = DBASEMINONE;
if (EQZ_ L (a_l)) /* underflow ? */
{
setmax_1 (a_l); /* reduce modulo max_1 */
return E_CLINT_UFL;

}
msdptra_1 = MSDPTR_L (a_l);
while ((aptr_ 1 <= msdptra 1) 8& (carry & (BASEMINONEL << BITPERDGT)))
{
*aptr_1 = (USHORT)(carry = (ULONG)*aptr 1 - 1L);
aptr l++;
}
RMLDZRS L (a_1);
return E_CLINT OK;
}

4.2 Multiplication

If the individual summands n1, na, ns, ..., n, are all equal to one and the
same integer n, then one calls the addition “multiplication of the integer n by
the multiplier ” and sets n1 + n2 +n3 + --- + n, = rn.

—Leopold Kronecker, On the Idea of Number

Multiplication is one of the most critical functions of the entire FLINT/C package
due to the computation time required for its execution, since together with
division it determines the execution time of many algorithms. In contrast to our
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experience heretofore with addition and subtraction, the classical algorithms
for multiplication and division have execution times that are quadratic in the
number of digits of the arguments, and it is not for nothing that Donald Knuth
asks in one of his chapter headings, “How fast can we multiply?”

In the literature there have been published various procedures for rapid
multiplication of large and very large integers, among which are some rather
difficult methods. An example of this is the procedure developed by A. Schénhage
and V. Strassen for multiplying large numbers by application of fast Fourier
transforms over finite fields. The running time in terms of the number of digits n
in the arguments is bounded above by O(n log n loglogn) (see [Knut], Section
4.3.3). These techniques encompass the fastest known multiplication algorithms,
but their advantage in speed over the classical O (nz) methods comes into play
only when the number of binary digits is in the range 8,000-10,000. Based on the
demands of cryptographic systems, such numbers, at least for the present, are far
beyond the range envisioned in the application domain of our functions.

For our realization of multiplication for the FLINT/C package we would like
first to use as a basis the grade school method based on “Algorithm M” given
by Knuth (see [Knut], Section 4.3.1), and we shall make an effort to achieve as
efficient an implementation of this procedure as possible. Then we shall occupy
ourselves in a close examination of the calculation of squares, which offers great
potential for savings, and for both cases we shall finally look at the multiplication
procedure of Karatsuba, which is asymptotically better than O (n2).2 The
Karatsuba multiplication arouses our curiosity, since it seems simple, and one
could pleasantly occupy a (preferably rainy) Sunday afternoon trying it out. We
shall see whether this procedure has anything to contribute to the FLINT/C
library.

4.2.1 The Grade School Method

We are considering multiplication of two numbers a and b with representations

m—1

a=(Gm-1am-2...00) 5 = Z aiBi, 0<a; < B,
i=0

n—1
b= (bn1bn2...bo)g = » b:B, 0<b <B,
1=0

to the base B. According to the procedure that we learned in school, the product
ab can be computed for m = n = 3 as shown in Figure 4-1.

2 When we say that the calculation time is asymptotically better, we mean that the larger the

numbers in question, the greater the effect. One should not fall victim to premature euphoria,
and for our purposes such an improvement may have no significance whatsoever.
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(aza1a0) g - (bab2bo) 5

C20 P20 Pi1o  Poo
+ C21 P21 P11 Poi
+ c22  p22 P12 Po2

(s 1 b3 P2 P11 po)y

Figure 4-1. Calculations for multiplication

First, the partial products (a2a1a0) B b; for 5 = 0,1, 2, are calculated:
The values a;b; are the least-significant digits of the terms (a;b; + carry)
with the inner products a;b;, and the co; are the more-significant digits of
the p2;. The partial products are summed at the end to form the product

p = (Pspap3p2p1po) -
In the general case the product p = ab has the value

n—1m—1
P = Z Z aibjBi+j.
§j=0 i=0
The result of a multiplication of two operands with m and n digits has at least
m + n — 1 and at most m + n digits. The number of elementary multiplication
steps (that is, multiplications by factors smaller than the base B) is mn.

A multiplication function that followed exactly the schema outlined above
would first calculate all partial products, store these values, and then sum them
up, each provided with the appropriate scaling factor. This school method is
quite suitable for calculating with pencil and paper, but for the possibilities of
a computer program it is somewhat cumbersome. A more efficient alternative
consists in adding the inner products a;b; at once to the accumulated values in
the result digit p;+ j, to which are added the carries c from previous steps. The
resulting value for each pair (4, j) is assigned to a variable ¢:

t «— pitrj +abj +c,
where ¢ can be represented as
t=kB+1, 0<Ek, [<B,
and we then have
pivj+abj+c<B-14+(B-1)(B-1)+B-1
=(B-1)B+B-1=B>-1< B>

The current value of the result digit is taken by the assignment p;  ; < [ from this
representation of ¢. As the new carry we set ¢ < k.
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The multiplication algorithm thus consists entirely of an outer loop for
calculating the partial products a; (bp—1bn—2 ... bo) 5 and an inner loop for
calculating the inner products a;b;, 7 = 0, ...,n — 1, and the values ¢ and p; + j.
The algorithm then appears as follows.

Algorithm for multiplication
1. Setp; «+ Ofori =0,...,n — 1.
2. Seti «+— 0.
3. Setj «+— Oandc «+ 0.
4. Sett <« piy; + aibj + ¢, piy; < t mod B,and c — |t/B].
5. Setj «— 5+ 1;ifj < n — 1, go to step 4.
6. Setp;4n — c.
7. Sett «— 1+ 1;if7 < m — 1, go to step 3.

8. Outputp = (pm+n—1pm+n—2 .. -pO)B'

The following implementation of multiplication contains at its core this main
loop. Corresponding to the above estimate, in step 4 the lossless representation
of a value less than B? in the variable ¢ is required. Analogously to how we
proceeded in the case of addition, the inner products ¢ are thus represented as
ULONG types. The variable ¢ is nonetheless not used explicitly, and the setting of
the result digits p;+; and the carry c occurs rather within a single expression,
analogous to the process already mentioned in connection with the addition
function (see page 25). For initialization a more efficient procedure will be chosen
than the one shown in step 1 of the algorithm.

Function: multiplication

Syntax: int mul 1 (CLINT f1 1, CLINT f2_1, CLINT pp 1);
Input: f1 1, f2_1 (factors)

Output: pp_1 (product)

Return: E CLINT OKifallis ok
E_CLINT OFL if overflow
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int

mul 1 (CLINT f1 1, CLINT f2_1, CLINT pp_1)

{

register clint *pptr_1, *bptr 1;

CLINT aa_1, bb 1;

CLINTD p_1;

clint *a 1, *b 1, *aptr 1, *csptr 1, *msdptra 1, *msdptrb 1;
USHORT av;

ULONG carry;

int OFL = E_CLINT OK;

First the variables are declared; p_1 will hold the result and thus is of double length.
The ULONG variable carry will hold the carry. In the first step the case is dealt with
in which one of the factors, and therefore the product, is zero. Then the factors are
copied into the workspaces aa_1 and bb_1, and leading zeros are purged.

if (FQZ L (f1.1) || EQZ L (f2_1))
{
SETZERO_L (pp_l);
return E_CLINT OK;
}
cpy 1 (aa_ 1, f1.1);
cpy_1 (bb 1, f2.1);

According to the declarations the pointers a_1 and b_1 are given the addresses of
aa_l and bb_1, where a logical transposition occurs if the number of digits of aa_1
is smaller than that of bb_1. The pointer a_1 always points to the operand with the
larger number of digits.

if (DIGITS L (aa_l) < DIGITS L (bb_ 1))

{
al=n>bbl;
b1l=aal;
}
else
{
al=aal;
b 1=>bbl1;
}
msdptra 1l = a_1 + *a_1;

msdptrb 1 = b 1 + *b_1;
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To save time in the computation, instead of the initialization required above,
the partial product (by,—1bp—2. .. bo)B - ao is calculated in a loop and stored in

pn7pn—17~ . 7p0'

carry = 0;

av = *LSDPTR_L (a_l);

for (bptr 1 = LSDPTR_L (b_1), pptr 1 = LSDPTR L (p_1);

bptr 1 <= msdptrb 1; bptr l++, pptr l++)
{
*pptr 1 = (USHORT)(carry = (ULONG)av * (ULONG)*bptr 1 +
(ULONG) (USHORT) (carry >> BITPERDGT));

}

*pptr_1 = (USHORT)(carry >> BITPERDGT);

Next follows the nested multiplication loop, beginning with the digita 1[2] ofa 1.

for (csptr 1 = LSDPTR_L (p_1) + 1, aptr 1 = LSDPTR_L (a_l) + 1;
aptr_1 <= msdptra_1; csptr 1++, aptr l++)
{
carry = 0;
av = *aptr 1;
for (bptr_1 = LSDPTR_L (b_1), pptr 1 = csptr 1;
bptr 1 <= msdptrb 1; bptr 1++, pptr l++) {
*pptr 1 = (USHORT)(carry = (ULONG)av * (ULONG)*bptr 1 +
(ULONG)*pptr 1 + (ULONG)(USHORT)(carry >> BITPERDGT));
}

*pptr 1 = (USHORT)(carry >> BITPERDGT);
}

The largest possible length of the result is the sum of the numbers of digits of
a_l and b_1. If the result has one digit fewer, this is determined by the macro
RMLDZRS _L.

SETDIGITS L (p_1, DIGITS L (a_1) + DIGITS L (b 1));
RMLDZRS L (p_1);

If the result is larger than can be accommodated in a CLINT object, it is reduced,
and the error flag OFL is set to the value E_CLINT OFL. Then the reduced result is
assigned to the object pp 1.
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if (DIGITS L (p 1) > (USHORT)CLINTMAXDIGIT) /* overflow ? */

{
ANDMAX L (p_1);  /* reduce modulo (Nmax + 1) */

OFL = E_CLINT OFL;
}

cpy_1 (pp_1, p_1);
return OFL;

}

With ¢t = O(mn) the run time ¢ for the multiplication is proportional to the
product of the numbers of digits m and n of the operands. For multiplication,
too, the analogous mixed function is implemented, which processes a CLINT type
and as second argument a USHORT type. This short version of CLINT multiplication
requires O(n) CPU multiplications, which is the result not of any particular
refinement of the algorithm, but of the shortness of the USHORT argument. Later,
we shall set this function implicitly within a special exponentiation routine for
USHORT bases (see Chapter 6, the function wmexp_1()).

For the implementation of the umul 1() function we return primarily to a
code segment of the mul_1() function and reuse it with a few modifications.

Function:  multiplication of a CLINT type by a USHORT

Syntax: int umul 1 (CLINT aa_1, USHORT b, CLINT pp 1);
Input: aa_l, b (factors)

Output: pp_1 (product)

Return: E_CLINT OKifallis ok
E_CLINT OFL if overflow

int

umul 1 (CLINT aa_l, USHORT b, CLINT pp 1)
{

register clint *aptr 1, *pptr_1;

CLINT a_1;

clint p 1[CLINTMAXSHORT + 1];
clint *msdptra 1;

ULONG carry;

int OFL = E_CLINT_OK;
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cpy 1 (a1, aa 1);
if (EQZ_L (a_l) || 0 == b)
{

SETZERO L (pp_1);

return E_CLINT OK;

}

After these preliminaries, the CLINT factor is multiplied in a pass through a loop by
the USHORT factor, and at the end the carry is stored in the most-significant USHORT
digit of the CLINT value.

msdptra 1 = MSDPTR_L (a_1);
carry = 0;
for (aptr_1 = LSDPTR L (a_1l), pptr 1 = LSDPTR 1 (p_1);
aptr 1 <= msdptra_l; aptr l++, pptr 1++)
{
*pptr 1 = (USHORT)(carry = (ULONG)b * (ULONG)*aptr 1 +
(ULONG) (USHORT) (carry >> BITPERDGT));

}
*pptr_1 = (USHORT)(carry >> BITPERDGT);

SETDIGITS L (p_1, DIGITS L (a_ 1) + 1);
RMLDZRS L (p_1);

if (DIGITS L (p 1) > (USHORT)CLINTMAXDIGIT) /* overflow ? */
{

ANDMAX L (p_1); /* reduce modulo (Nmax + 1) */
OFL = E_CLINT OFL;
}

cpy_1 (pp_1, p_1);
return OFL;

}

4.2.2 Squaring Is Faster

The calculation of a large square is accomplished with significantly fewer
multiplications than in the case of the multiplication of large numbers. This
is a result of the symmetry in the multiplication of identical operands. This
observation is very important, since when it comes to exponentiation, which
involves not one, but hundreds, of squarings, we shall be able to achieve
considerable savings in speed. We again look at the well-known multiplication
schema, this time with two identical factors (a2a1a0) 5 (see Figure 4-2).
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(aza1a0) g - (a2a1a0) 5

a2ao aiaop ap ap
+ aza1 a1 a; aoai
+ azaz aiaz aopaz
(p5 Pa p3 b2 p1 po) B

Figure 4-2. Calculations for squaring

We recognize that the inner products a;a; for ¢ = j appear once (in boldface
in Figure 4-2) and twice for ¢ # j (in boxes in the figure). Thus we can save three
out of nine multiplications by multiplying the sum a;a; B “+J fori < j by 2. The
sum of the inner products of a square can then be written as

n—2 n—1

p= Z aia; B —22 Z aia; B+ Zaz B*.

1,j=0 i=0 j=i+1
The number of required elementary multiplications is thus reduced with
respect to the school method from n? to n(n + 1) /2.
A natural algorithmic representation of squaring calculates the above
expression with the two summands in two nested loops.
Algorithm 1 for squaring
1. Setp; «— Ofort =0,...,n — 1.
2. Seti — 0.
3. Sett < po; + a3, p2; « t mod B,and ¢ « |t/B].
4. Setj«— 1+ 1.Ifj =n,gotostep 7.
5. Sett < piy; + 2a;a; + ¢, pi+j — t (mod B),and ¢ « [t/B].
Setj «— 5+ 1;ifj <n —1,gotostep5.
Setpiyn < c.

Setj «— i+ 1;ifi =n —1,gotostep 7.

© ® N o

Output p = (p2n—1P2n—2-.-P0)p

In selecting the necessary data types for the representation of the variables we
must note that ¢ can assume the value

(B—1)+2(B—-1)*+(B—-1)=2B>-2B

(in step 5 of the algorithm). But this means that for representing ¢ to base B more
than two digits to base B will be needed, since we also have B> —1 < 2B%*—2B <
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2B?

— 1, and so a ULONG will not suffice for representing ¢ (the inequality above

is derived from the fact that one additional binary digit is needed). While this
poses no problem for an assembler implementation, in which one has access to
the carry bit of the CPU, it is difficult in C to handle the additional binary digit. To
get around this dilemma, we alter the algorithm in such a way that in step 5 the
required multiplication by 2 is carried out in a separate loop. It is then required
that step 3 be carried out in its own loop, whereby for a slight extra expenditure of
effort in loop management we are spared the additional binary digit. The altered
algorithm is as follows.

Algorithm 2 for squaring
1. Initialization: Setp; «— Oforz =0,...,n — 1.
2. Calculate the product of digits of unequal index: Set 7 < 0.

3.

10.
11.
12.
13.
14.
15.

16.

Setj «— i+ landc « 0.

. Sett «— piy; + aaj + ¢, pi+; < t mod B,and ¢ « |t/B].
. Setj «— 5+ 1;ifj <n —1,gotostep4.

. Setpitn — c.

. Seti «— 14 1;if1 < n — 2, go to step 3.

. Multiplication of inner products by 2: Set? <— 1 and ¢ < 0.

. Sett <« 2p; + ¢, pi < t mod B,and ¢ < [t/B].

Seti «— 1+ 1;if¢ < 2n — 2,go to step 9.

Set pan—1 «— c.

Addition of the inner squares: Set ¢ < 0 and ¢ < 0.
Sett < pa; + ai + ¢, p2; < t mod B,and ¢ « [t/B].
Sett < p2i+1 + ¢ p2it+1 < t mod B,and ¢ <+ [t/B].
Seti «— 1+ 1;if¢ < n — 1, go to step 13.

Setpan—1 « P2n—1 + ¢;outputp = (P2n—1P2n—2 - ..P0) g-

In the C function for squaring the initialization in step 1 is likewise, in analogy

to multiplication, replaced by the calculation and storing of the first partial

product ag (an—1an-2...a1)p.
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Function:  squaring

Syntax: int sqr 1 (CLINT f 1, CLINT pp 1);
Input: f 1 (factor)

Output: pp_1 (square)

Return: E_CLINT OKifallis ok
E_CLINT OFL if overflow

int

S

{

gr_1 (CLINT f 1, CLINT pp_ 1)

register clint *pptr_1, *bptr_1;
CLINT a_1;
CLINTD p_1;
clint *aptr_ 1, *csptr 1, *msdptra 1, *msdptrb 1, *msdptrc 1;
USHORT av;
ULONG carry;
int OFL = E_CLINT OK;
cpy 1 (a1, f1);
if (EQZ_L (a_l))
{
SETZERO L (pp_1);
return E_CLINT OK;
}
msdptrb 1 = MSDPTR_L (a_1);
msdptra 1 = msdptrb 1 - 1;

The initialization of the result vector addressed by pptr 1 is carried out by means
of the partial product ag (an—1an—2...a1) 5 in analogy with multiplication. The
digit po is here not assigned; it must be set to zero.

*LSDPTR_L (p_1) = 0;

carry = 0;

av = *LSDPTR_L (a_l);

for (bptr 1 = LSDPTR L (a_l) + 1, pptr 1 = LSDPTR L (p_ 1) + 1;
bptr 1 <= msdptrb 1; bptr l++, pptr l++)
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{
*pptr 1 = (USHORT)(carry = (ULONG)av * (ULONG)*bptr 1 +
(ULONG) (USHORT) (carry >> BITPERDGT));
}

*pptr 1 = (USHORT)(carry >> BITPERDGT);

The loop for summing the inner products a;a;.

for (aptr_ 1 = LSDPTR_L (a_1l) + 1, csptr 1 = LSDPTR_L (p_ 1) + 3;
aptr 1 <= msdptra_l; aptr l++, csptr 1 += 2)
{
carry = 0;
av = *aptr 1;
for (bptr 1 = aptr 1 + 1, pptr 1 = csptr 1; bptr 1 <= msdptrb 1;
bptr 1++, pptr l++)
{
*pptr 1 = (USHORT)(carry = (ULONG)av * (ULONG)*bptr 1 +
(ULONG)*pptr 1 + (ULONG) (USHORT)(carry >> BITPERDGT));

}
*pptr 1 = (USHORT)(carry >> BITPERDGT);
}
msdptrc_1 = pptr_1;

Then comes multiplication of the intermediate result in pptr 1 by 2 via shift
operations (see also Section 7.1).

carry = 0;
for (pptr_1 = LSDPTR_L (p_1); pptr 1 <= msdptrc_1; pptr l++)
{

*pptr 1 = (USHORT) (carry = (((ULONG)*pptr 1) << 1) +

(ULONG) (USHORT) (carry >> BITPERDGT));
}

*pptr_1 = (USHORT)(carry >> BITPERDGT);

Now we compute the “main diagonal.”

carry = 0;
for (bptr 1 = LSDPTR_L (a_l), pptr 1 = LSDPTR_L (p_1);
bptr 1 <= msdptrb 1; bptr l++, pptr l++)
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*pptr_1 = (USHORT)(carry = (ULONG)*bptr 1 * (ULONG)*bptr 1 +
(ULONG)*pptr 1 + (ULONG)(USHORT)(carry >> BITPERDGT));

pptr l++;

*pptr 1 = (USHORT)(carry = (ULONG)*pptr 1 + (carry >> BITPERDGT));

All the rest follows in analogy to multiplication.

SETDIGITS L (p_1, DIGITS L (a_1) << 1);
RMLDZRS L (p_1);

if (DIGITS L (p_1) > (USHORT)CLINTMAXDIGIT) /* overflow ? */

{
ANDMAX_L (p_1); /* reduce modulo (Nmax + 1) */

OFL = E_CLINT OFL;
}
cpy_1 (pp_1, p_1);
return OFL;

}

The run time for squaring is, with O (n2), likewise quadratic in the number
of digits of the operators, but with n(n + 1)/2 elementary multiplications it is
about twice as fast as multiplication.

4.2.3 Do Things Go Better with Karatsuba?

The antispirit of multiplication and division deconstructed everything and
then focused only on a specific part of the whole.

—Sten Nadolny (trans. Breon Mitchell), God of Impertinence

As announced, we shall now consider a method of multiplication named for the
Russian mathematician A. Karatsuba, who has published several variants of it
(See [Knut], Section 4.3.3). We assume that ¢ and b are natural numbers with

n = 2k digits to base B, so that we can write a = (a1a0) gr and b = (b1bo) g«
with digits aop and a1, respectively bg and b1, to base BF. Were we to multiply a
and b in the traditional manner, then we would obtain the expression

ab = BQkalbl =+ BIC (aobl =+ albo) + aobo,
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with four multiplications to base B¥ and thus n? = 4k elementary
multiplications to base B. However, if we set

co = apbo,

cl := a1by,

c2:= (ao + a1) (bo + b1) — co — c1,

then we have
ab = B* <Bkcl + 02) + cop.

For calculating ab it now appears that only three more multiplications
by numbers to base B k, or 3k? multiplications to base B, are necessary, in
addition to some additions and shifting operations (multiplication by B k can be
accomplished by left shifting by k digits to base B; see Section 7.1). Let us assume
that the number of digits n of our factors a and b is a power of 2, with the result
that by recursive application of the procedure on the remaining partial products
we can end with having to carry out only elementary multiplications to base B,
and this yields a total of 3'°82™ = p!°823 ~ ;1-585 elementary multiplications,
as opposed to n? in the classical procedure, in addition to the time for additions
and shift operations.

For squaring, this process can be simplified somewhat: With

2
Co = aop,
2
C1 ‘= ay,

c2 := (ao + a1)2 —co — c1,

we have
a’ = B* (Bkcl + cz> + co.

Furthermore, to our advantage, the factors in the squaring always have the
same number of digits, which is not generally the case in multiplication. With all
these advantages, we should, however, mention that recursion within a program
function always costs something, so that we may hope to experience a savings
in time over the classical method, which manages without the added burden of
recursion, only when the numbers get large.

To obtain information on the actual time performance of the Karatsuba
procedure the functions kmul() and ksqr() are provided. The division of the
factors into two halves takes place in situ, and so a copying of the halves is
unnecessary. But it is necessary that the functions be passed pointers to the
least-significant digits of the factors and that the numbers of digits be passed
separately.

The functions presented below in experimental form use the recursive
procedure for factors having more than a certain number of digits determined
by a macro, while for smaller factors we turn to conventional multiplication or
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squaring. For the case of nonrecursive multiplication the functions kmul() and
ksqr() use the auxiliary functions mult() and sqr(), in which multiplication and
squaring are implemented as kernel functions without the support of identical
argument addresses (accumulator mode) or reduction in the case of overflow.

Function:  Karatsuba multiplication of two numbersa landb 1
with 2k digits each to base B
Syntax: void kmul (clint *aptr 1, clint *bptr 1,
int len a, int len b, CLINT p_1);

Input: aptr 1 (pointer to the least-significant digit of the factora 1)
bptr_1 (pointer to the least-significant digit of the factor b 1)
len a (number of digits ofa_1)
len b (number of digits of b_1)

Output: p_1 (product)

void

kmul (clint *aptr 1, clint *bptr 1, int len_a, int len b, CLINT p_ 1)
{

CLINT co1_1, c10 1;

clint co_1[CLINTMAXSHORT + 2];

clint c1_1[CLINTMAXSHORT + 2];

clint c2_1[CLINTMAXSHORT + 2];

CLINTD tmp_1;

clint *aiptr 1, *biptr 1;

int 12;

if ((len_a == len b) & (len_a >= MUL_THRESHOLD)
88 (0 == (len_a & 1)) )

If both factors possess the same even number of digits above the value
MUL_THRESHOLD, then recursion is entered with the splitting of the factors into two
halves. The pointers aptr_ 1, aiptr 1, bptr 1, biptr 1 are passed to the corre-
sponding least-significant digits of one of the halves. By not copying the halves,
we save valuable time. The values co and c; are calculated by recursively calling
kmul() and then stored in the CLINT variables co0_1 and c1 1.
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12 = len a/2;

alptr 1 = aptr 1 + 12;

biptr 1 = bptr 1 + 12;

kmul (aptr 1, bptr 1, 12, 12, co 1);
kmul (aiptr 1, biptr 1, 12, 12, c1 1);

The value c2 := (ag 4+ a1) (bo + b1) — co — ¢1 is computed with two additions, a
call to kmul(), and two subtractions. The auxiliary function addkar () takes pointers
to the least-significant digits of two equally long summands together with their
number of digits, and outputs the sum of the two as a CLINT value.

addkar (aiptr 1, aptr 1, 12, co1 1);
addkar (biptr 1, bptr 1, 12, c10 1);
kmul (LSDPTR L (co1 1), LSDPTR L (c10 1),
DIGITS L (co1 1), DIGITS L (c10 1), c2 1);
sub (c2_1, c11, tmp 1);
sub (tmp_1, co 1, c2_1);

The function branch ends with the calculation of B (Bk c1 + ¢2) + co, which
used the auxiliary function shiftadd(), which during the addition left shifts the
first of the two CLINT summands by a given number of places to base B.

shiftadd (c1 1, c2 1, 12, tmp_ 1);
shiftadd (tmp_1, co 1, 12, p 1);
}

If one of the input conditions is not fulfilled, the recursion is interrupted and the
nonrecursive multiplication mult() is called. As a requirement for calling mult()
the two factor halves in aptr 1 and bptr 1 are brought into CLINT format.

else

{

memcpy (LSDPTR_L (c1_1), aptr 1, len a * sizeof (clint));
memcpy (LSDPTR_L (c2_1), bptr 1, len b * sizeof (clint));
SETDIGITS L (c1_1, len a);

SETDIGITS L (c2_1, len b);

mult (c1 1, c2 1, p 1);

RMLDZRS L (p_1);
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The Karatsuba squaring process proceeds analogously to this and will not be
described in detail. For calling kmul() and ksqr() we make use of the functions
kmul 1() and ksqr_1(), which are equipped with the standard interface.

Function:  Karatsuba multiplication and squaring

Syntax: int kmul 1 (CLINT a 1, CLINT b 1, CLINT p 1);
int ksqr 1 (CLINT a 1, CLINT p 1);

Input: a_1l, b 1 (factors)
Output: p_1 (product or square)

Return: E_CLINT OKifallis ok
E_CLINT OFL if overflow

The implementation of the Karatsuba functions are contained in the source file
kmul.c in the downloadable source code (www.apress.com).

Extensive tests with these functions (on a Pentium III processor at 500 MHz
under Linux) have given best results when the nonrecursive multiplication
routine is called for a digit count under 40 (corresponding to 640 binary digits).
The computation time of our implementation appears in Figure 4-3).
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binary digits
Figure 4-3. CPU time for Karatsuba multiplication

We conclude from this overview what we expected, that between standard
multiplication and squaring there is a difference in performance of about 40
percent, and that for numbers of over 2000 binary digits a pronounced spread of
the measured times becomes noticeable, with the Karatsuba routine in the lead.
It is interesting to note that “normal” squaring sqr_1() is noticeably faster than
Karatsuba multiplication, and Karatsuba squaring ksqr_1() takes the lead only
above 3000 binary digits.
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The large drop in performance of the Karatsuba functions for smaller
numbers that was remarked on in the first edition of this book has in the
meantime been eliminated. Yet there is still potential for improvement. The
observable discontinuity in the calculation times of kmul 1() indicates that the
recursion breaks off earlier than specified by the threshold value if the factors of a
recursion step do not have an even number of digits. In the worst case this occurs
right at the beginning of the multiplication, and even for very large numbers we
are no better off than we were in the standard case. It would seem worthwhile,
then, to extend the Karatsuba functions to be able to process arguments with
differing numbers of digits and odd numbers of digits.

At the Max Planck Institute in Saarbriicken, J. Ziegler [Zieg] developed a
portable implementation of Karatsuba multiplication and squaring for a 64-bit
CPU (Sun Ultra-1) that overtakes the conventional method at 640 binary digits.
With squaring an improvement in performance of 10% occurred at 1024 binary
digits and 23% at 2048 binary digits.

C. Burnikel and J. Ziegler [BuZi] have developed an interesting recursive
division procedure based on Karatsuba multiplication that from about 250
decimal digits on is increasingly faster than the school method.

Once again, however, the Karatsuba functions have no particular advantage
for our cryptographic applications without considerable optimization, for which
reason we shall prefer to fall back on the functions mul 1() and sqr_1(), which
realize the conventional procedures (and their variants in assembly language
optimized by hand; see Chapter 19). For applications for which the Karatsuba
functions seem suited one could simply substitute those functions for mul _1()
and sqr_1().

4.3 Division with Remainder

And marriage and death and division
Make barren our lives.

—Algernon Charles Swinburne, “Dolores”

We still need to place the last stone in our edifice of the fundamental arithmetic
processes on large numbers, namely, division, which is the most complex of them
all. Since we are calculating with natural numbers, we have only natural numbers
at our disposal to express the results of a division. The principle of division that
we are about to expound will be called division with remainder. It is based on the
following relation. Given a, b € Z, b > 0, there are unique integers ¢ and r that
satisfy a = gb + r with 0 < r < b. We call q the quotient and r the remainder of
the division of a by b.
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Frequently, we are interested only in the remainder and couldn't care less
about the quotient. In Chapter 5 we shall see the importance of the operation of
calculating remainders, since it is used in many algorithms, always in conjunction
with addition, subtraction, multiplication, and exponentiation. Thus it will
be worth our while to have at our disposal as efficient a division algorithm as
possible.

For natural numbers a and b the simplest way of executing a division with
remainder consists in subtracting the divisor b from the dividend a continually
until the remaining quantity r is smaller than the divisor. By counting how often
we have carried out the subtraction we will have calculated the quotient. The
quotient g and the remainder 7 have the values ¢ = |a/b| and 7 = a — |a/b|b.?

This process of division by means of repeated subtraction is, of course,
terribly boring. Even the grade school method of long division uses a significantly
more efficient algorithm, in which the digits of the quotient are determined one
by one and are in turn used as factors by which the divisor is multiplied. The
partial products are subtracted in turn from the dividend. As an example consider
the division exercise depicted in Figure 4-4.

354938 : 427 = 831, remainder 101
- 3416
= 01333
- 1281
= 00528
- 427
=101

Figure 4-4. Calculational schema for division

Already at the determination of the first digit, 8, of the quotient we are
required to make an estimate or else discover it by trial and error. If one makes
an error, then one discovers either that the product (quotient digit times divisor)
is too large (in the example, larger than 3549), or that the remainder after
subtraction of the partial product from the digits of the dividend is larger than the
divisor. In the first case the chosen quotient digit is too large, while in the second
itis too small, and in either case it must be corrected.

This heuristic modus operandi must be replaced in an implementation of
a division algorithm by a more precise process. In [Knut], Section 4.3.1, Donald
Knuth has described how such rough calculations can be made precise. Let us
look more closely at our example.

3 Note that for a < 0withq = —[|a|/b] andr = b — (|a| + gb) if a 1 b, respectively r = 0 if
a \ b, division with remainder is reduced to the case a, b € N.
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Leta = (@min—1Gmin—2...00)g and b = (bn_1bn—2...bo) 5 be two
natural numbers, represented to the base B, and for b,,—1, the most-significant
digit of b, we have b,,—1 > 0. We are looking for the quotient ¢ and remainder r
suchthata =qgb+r,0 <r <b.

Following the long division above, for the calculation of ¢ and r a quotient
digit ¢; := |R/b] < B is returned in each step, where in the first step
R = (@4m4n—-1amin—2...ar) g is formed from the most-significant digit of
the dividend with the largest & for which 1 < |R/b| < B holds (in the above
example at the start wehavem +n —1 =343 —1 =5,k = 2,and R = 3549).
Then we will set R := R — ¢;b, where as a control for the correctness of the
quotient digit ¢; the condition 0 < R < b must be satisfied. Then R is replaced
by the value RB + (next digit of the dividend), and the next quotient digit is
again | R/b]. The division is complete when all digits of the dividend have been
processed. The remainder of the division is the last calculated value of R.

For programming this procedure we must repeatedly determine, for two large
numbers R = (rnrn—1...70) g and b = (bn—1bn—2...bo) g with | R/b| < B,
the quotient Q := |R/b| (r, = 0 is a possibility). Here we take from Knuth
the given approximation ¢ of ), which is computed from the leading digits of
Randb.

Let

(j::min{{mJ,B—l}. 4.1

If b,—1 > | R/b], then for § (see [Knut], Section 4.3.1, Theorems A and B), we
have § — 2 < @ < . Under the favorable assumption that the leading digit of the
divisor is sufficiently large in comparison to B, then as an approximation to @, ¢
is at most too large by 2 and is never too small.

By scaling the operands a and b this can always be achieved. We choose d > 0
such that db, 1 > |B/2],seta := ad = (Gm+nlGmin—1...00)p, and set
b:=bd = (i)n_li)n_g .. BO)B' The choice of d is then made in such a way that
the number of digits of b never increases in comparison to that of b. In the above
notation it is taken into account that a possibly contains one more digit than a (if
this is not the case, then we set é.,»+» = 0). In any case, it is practical to choose
d as a power of 2, since then the scaling of the operands can be carried out with
simple shift operations. Since both operands are multiplied by a common factor,
the quotient is unchanged; we have |a/ BJ = la/b].

The choice of ¢ in (4.1), which we want to apply to the scaled operators
a, respectively 7, and b, can be improved with the following test to the extent
that § = Q or ¢ = @ + 1: If from the choice of § we have Bn_Q(j >
(f*nB + o1 — (jI;n_1> B + 75,—2, then ¢ is reduced by 1 and the test is
repeated. In this way we have taken care of all cases in which ¢ is too large by 2 at
the outset, and only in very rare cases is g still too large by 1 (see [Knut], Section
4.3.1, Exercises 19, 20). The latter is determined from the subtraction of the partial
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product “divisor times quotient digit” from what is left of the dividend. Then for
the last time ¢ must be reduced by 1 and the remainder updated. The algorithm
for division with remainder is now essentially the following procedure.

Algorithm for division with remainder of a = (am+n_1am+n_2 - ao)B >0
byb = (bn_lbn_g .. .bo)B >0

1. Determine the scaling factor d as given above.

2. Setr = (TmtnTntm—1Tmin—2...70) g < (0@min—1amin—2...00)pg.

3. Seti «— m+mn,j «— m.

4. Set § — min{ VBLJ B— 1} with the digits 7, 7 — 1,

bn_1
and I;n_l obtained from scaling by d (see above). If l;n_gtj >
(fiB + i1 — c}i)nfl) B + #;_2,set § «— ¢ — 1 and repeat this
test.

5 Ifr —bg < 0,setqg «— ¢ — 1.
6. Setr := (mm_l .. -Ti—n)B — (T'Z‘Ti_l . ~-7"i—n)B —bq and g; «— q.
7. Seti «— 11— landj <+ j5 — 1;if7 > n, go to step 4.

8. Outputq = (¢gm@gm-1...90)gandr = (rn—17n—2...70) 5.

If the divisor has only a single digit bo, then the process can be shortened
by initializing r with » « 0 and dividing the two digits (ra;) 5 by bo with
remainder. Here 7 is overwritten by the remainder, < (ra;) B~ qibo, and a;
runs through all the digits of the dividend. At the end, r contains the remainder
and ¢ = (¢gm@gm—1 - - . qo) g forms the quotient.

Now that we have at hand all the requisite processes for implementing
division, we present the C function for the above algorithm.

Function: division with remainder

Syntax: int div_ 1 (CLINT d1_1, CLINT d2_1, CLINT quot 1,
CLINT rem 1);

Input: d1 1 (dividend), d2_1 (divisor)
Output: quot_1 (quotient), rem_1 (remainder)

Return: E_CLINT OKifallis ok
E_CLINT DBZ if division by 0

53



Chapter 4

int

div_1 (CLINT d1_1, CLINT d2_1, CLINT quot 1, CLINT rem 1)
{

register clint *rptr 1, *bptr 1;

CLINT b 1;

/* Allow double-length dividend plus 1 digit */

clint r 1[2 + (CLINTMAXDIGIT << 1)];

clint *qptr_1, *msdptrb_1, *1sdptrr_ 1, *msdptrr_1;
USHORT bv, rv, ghat, ri, ri 1, ri 2, bn_ 1, bn 2;
ULONG right, left, rhat, borrow, carry, sbitsminusd;
unsigned int d = 0;

int i;

The dividend a = (@mtn—1amin—2- .. ao)B and divisor b(bn—1bn—2. .. bo)B
are copied into the CLINT variables r 1 and b_1. Any leading zeros are purged.
If the divisor has the value zero, the function is terminated with the error code
E_CLINT DBZ.

We allow the dividend to possess up to double the number of digits determined
in MAX . This makes possible the later use of division in the functions of mod-
ular arithmetic. The storage allotment for a doubly long quotient must always be
available to the calling function.

cpy 1 (r 1, di 1);
cpy 1 (b 1, d2_1);
if (EQZ_L (b 1))
return E_CLINT DBZ;

A test is made as to whether one of the simple cases is at hand: dividend = 0,
dividend < divisor, or dividend = divisor. In these cases we are done.

if (EQZ_L (r_ 1))

{
SETZERO L (quot_1);
SETZERO L (rem 1);
return E_CLINT OK ;
}

i=ampl (rl, bl);
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if (4 == -1)

{
cpy 1 (rem 1, r 1);
SETZERO L (quot_1);
return E_CLINT OK ;
}

else if (i == 0)

{
SETONE_L (quot_1);
SETZERO L (rem 1);
return E_CLINT OK ;
}

In the next step we check whether the divisor has only one digit. In this case a
branch is made to a faster variant of division, which we shall discuss further below.

if (DIGITS L (b 1) == 1)
goto shortdiv;

Now begins the actual division. First the scaling factor d is determined as the
exponent of a power of two. As long as b,—1 > BASEDIV2 := | B/2], the most-
significant digit b, —1 of the divisor is shifted left by one bit, where d, beginning
with d = 0, is incremented by 1. Furthermore, the pointer msdptrb 1 is set to
the most-significant digit of the divisor. The value BITPERDGT — d will be used
frequently in the sequel, and therefore it is saved in the variable sbitsminusd.

msdptrb 1 = MSDPTR_L (b_1);
bn 1 = *msdptrb 1;
while (bn_1 < BASEDIV2)
{
d++;
bn_1 <<= 1;
}
sbitsminusd = (int)(BITPERDGT - d);

If d > 0, then the two most-significant digits br—1bn—2 of db are computed and
stored in bn_1and bn_2. In this we must distinguish the two cases that the divisor b
has exactly two, or more than two, digits. In the first case, binary zeros are inserted
into b, _» from the right, while in the second case the least-significant digits of
Bn_g come from b,,_3.
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if (d > 0)
{
bn 1 += *(msdptrb 1 - 1) >> sbitsminusd;
if (DIGITS L (b 1) > 2)
{
bn_2
}
else
{
bn_2
}
}
else
{
bn_2 = (USHORT) (*(msdptrb 1 - 1));
}

(USHORT) (*(msdptrb 1 - 1) << d) + (*(msdptrb 1 - 2) >> sbitsminusd);

(USHORT) (*(msdptrb 1 - 1) << d);

Now the pointers msdptrr 1 and lsdptrr 1 are set to the most-significant, respec-
tively least-significant, digit of (am+4n@Gm4n—1-..am41)p in the CLINT vector
r 1, which will represent the remainder of the division. At the digit a,,4n» the
variable r_1 is initialized to 0. The pointer gptr_1 is set to the highest quotient
digit.

msdptrb 1 = MSDPTR L (b_1);

msdptrr 1 = MSDPTR L (r_ 1) + 1;

lsdptrr 1 = MSDPTR_L (r_1) - DIGITS L (b 1) + 1;
*msdptrr 1 = 0;

gptr 1 = quot 1 + DIGITS L (r_1) - DIGITS L (b 1) + 1;

We now enter the main loop. The pointer lsdptrr 1 runs over the digits
Qm,Gm—2,...,a0 of thedividendinr 1, and the (implicit) index 7 over the values
t=m-+n,...,n.

while (lsdptrr 1 >= LSDPTR_L (r_1))
{
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As preparation for determining ¢ the three most-significant digits of part
(a;a;—1...a;—n)g of the dividend multiplied by the scaling factor d are calcu-
lated and stored in the variables ri, ri 1, and ri 2. The case where the part of the
dividend under consideration has only three digits is handled as a special case.
In the first pass through the loop there are at least three digits present: On the
assumption that the divisor b itself has at least two digits, there exist the most-
significant digits am+n—1 and am+n—2 of the dividend, and the digit a,,+n» was
set to zero during the initialization of r 1.

ri = (USHORT) ((*msdptrr 1 << d) + (*(msdptrr 1 - 1) >> sbitsminusd));
ri 1 = (USHORT)((*(msdptrr 1 - 1) << d) + (*(msdptrr 1 - 2) >> sbitsminusd));
if (msdptrr 1 - 3 > r 1) /* there are four dividend digits */
{
ri 2 = (USHORT) ((*(msdptrr 1 - 2) << d) +
(*(msdptrr 1 - 3) >> sbitsminusd));

}
else /* there are only three dividend digits */
{
ri 2 = (USHORT) (*(msdptrr 1 - 2) << d);
}

Now comes the determination of g, stored in the variable ghat. Corresponding to
step 4 of the algorithm, we distinguish the cases ri # bn_1 (frequent) and ri =
bn_1 (rare). The case ri > bn_1 is excluded, on account of / b < B. Therefore, ¢

is set to the minimum of L(ﬂB +7io1) /En_1J and B — 1.

if (ri != bn_ 1) /* almost always */

{
ghat = (USHORT)((rhat = ((ULONG)ri << BITPERDGT) + (ULONG)ri 1) / bn_1);
right = ((rhat = (rhat - (ULONG)bn 1 * ghat)) << BITPERDGT) + ri 2;

Ifbn_2 * ghat > right, then ghat is too large by at least 1 and by at most 2.

if ((left = (ULONG)bn 2 * ghat) > right)
{
ghat--;
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The test is now repeated only if we have rhat = rhat + bn_1 < BASE due to
the decrementing of ghat (otherwise, we already have bn 2 * ghat < BASE? <
rhat * BASE).

if ((rhat + bn_1) < BASE)

{
if ((left - bn_2) > (right + ((ULONG)bn_ 1 << BITPERDGT)))

{
ghat--;

In the second, rare, case, ri = bn_1, first § is set to the value BASE — 1 = 216 1=
BASEMINONE. In this case for rhat we have rhat = ri * BASE + ri 1 - ghat * bn 1
= ri 1 + bn_1. Onlyin the case that rhat < BASE is a test made as to whether ghat
is too large. Otherwise, we have already bn_2 * ghat < BASE? < rhat * BASE.
Under the same condition as above the test of ghat is repeated.

{
ghat = BASEMINONE;
right = ((ULONG)(rhat = (ULONG)bn 1 + (ULONG)ri 1) << BITPERDGT) + ri 2;
if (rhat < BASE)
{
if ((left = (ULONG)bn 2 * ghat) > right)
{
ghat--;
if ((rhat + bn_1) < BASE)
{
if ((left - bn_2) > (right + ((ULONG)bn 1 << BITPERDGT)))

{
ghat--;
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Then comes the subtraction of ghat - b from the part u := (a;a;—1...ai—n) g of
the dividend, which is replaced by the difference thus calculated. There are two
things to note:

e The products ghat - b; can have two digits. Both digits are saved for the time
beingin the ULONG variable carry. The more-significant word of carry is dealt
with as a carry in the subtraction of the next-higher digit.

e For the case that ghat is still too large by 1 and the difference u — ghat - b is
negative, as a precaution the value v’ := B" ™! ++ u — ghat - bis calculated
and the result considered modulo B" ! as the B complement @ of u. After
the subtraction the highest digit u; | ; of u’ is located in the most-significant
word of the ULONG variable borrow. Finally, that ghat is here too large by 1
is recognized in that u§+1 # 0. In this case the result is corrected in the
following by the addition u < u’ + b modulo B" 1.

borrow = BASE;
carry = 0;
for (bptr_1 = LSDPTR L (b_1), rptr 1 = lsdptrr 1;
bptr 1 <= msdptrb 1; bptr l++, rptr 1++)

{
if (borrow >= BASE)
{
*rptr 1 = (USHORT) (borrow = ((ULONG)*rptr 1 + BASE -
(ULONG) (USHORT) (carry = (ULONG)*bptr 1 *
ghat + (ULONG)(USHORT)(carry >> BITPERDGT))));
}
else
{
*rptr 1 = (USHORT) (borrow = ((ULONG)*IptI_l + BASEMINONEL -
(ULONG) (USHORT) (carry = (ULONG)*bptr 1 * ghat +
(ULONG) (USHORT) (carry >> BITPERDGT))));
}
}

if (borrow >= BASE) {
*rptr 1 = (USHORT) (borrow = ((ULONG)*rptr 1 + BASE -
(ULONG) (USHORT) (carry >> BITPERDGT)));
}

else

{
*rptr 1 = (USHORT) (borrow = ((ULONG)*rptr 1 + BASEMINONEL -

(ULONG) (USHORT) (carry >> BITPERDGT)));
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The quotient digit is stored, subject to a possible necessary correction.

*gptr_1 = ghat;

As promised, now a test is made as to whether the quotient digit is too large by
1. This is extremely seldom the case (further below, special test data will be pre-
sented) and is indicated by the high-valued word of the ULONG variable borrow
being equal to zero; that is, that borrow < BASE. If this is the case, then u u +b

modulo B" ! is calculated (notation as above).

if (borrow < BASE)
{
carry = 0;
for (bptr 1 = LSDPTR L (b 1), rptr 1 = lsdptrr 1;
bptr 1 <= msdptrb 1; bptr 1++, rptr 1++)
{
*rptr 1 = (USHORT)(carry = ((ULONG)*rptr 1 + (ULONG)(*bptr 1) +
(ULONG) (USHORT) (carry >> BITPERDGT)));

}
*rptr 1 += (USHORT)(carry >> BITPERDGT);
(*aptr_1)--;

}

Now the pointers are set to the remainder and the quotient, and we return to the
beginning of the main loop.

msdptrr 1--;
lsdptrr_1--;
gptr_1--;

}

The length of the remainder and that of the quotient are determined. The
number of digits is at most 1 more than the number of digits of the dividend
minus the number of digits of the divisor. The remainder possesses at most the
number of digits of the divisor. In both cases the exact length is set by the removal
of leading zeros.
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SETDIGITS L (quot 1, DIGITS L (r 1) - DIGITS L (b 1) + 1);
RMLDZRS L (quot 1);

SETDIGITS L (r_1, DIGITS L (b_1));
cpy 1 (rem 1, r 1);

return E_CLINT OK;

In the case of “short division” the divisor possesses only the digit bp, by which
the two digits (ra;) p are to be divided, where a; runs through all digits of the
dividend; r is initialized with  «+— 0 and assumes the difference r < (ra;) 5 —aqbo.
The value 7 is represented by the USHORT variable rv. The value of (ra;) 5 is stored
in the ULONG variable rhat.

shortdiv:

IV = 0;

bv = *LSDPTR L (b_1);

for (rptr 1 = MSDPTR L (r_1), gptr 1 = quot 1 + DIGITS L (r_1);

rptr 1 >= LSDPTR_L (r_1); rptr_1--, gptr_1--)

{
*qptr_1 = (USHORT) ((rhat = ((((ULONG)rv) << BITPERDGT) + (ULONG)*rptr 1)) / bv);
rv = (USHORT)(rhat - (ULONG)bv * (ULONG)*gptr_ 1);
}

SETDIGITS L (quot 1, DIGITS L (r_1));

RMLDZRS L (quot_1);

u2clint 1 (rem 1, 1v);

return E_CLINT_OK;

With ¢ = O(mn), the run time ¢ of the division is analogous to that for
multiplication, where m and n are the numbers of digits of the dividend and
divisor, respectively, to the base B.

In the sequel we shall describe a number of variants of division with
remainder, all of which are based on the general division function. First we have
the mixed version of the division of a CLINT type by a USHORT type. For this we
return once again to the routine for small divisors of the function div_1(), where
it is placed almost without alteration into its own function. We thus present only
the interface of the function.
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Function:  division of a CLINT type by a USHORT type

Syntax: int udiv_1 (CLINT dv_1, USHORT uds, CLINT q 1,
CLINT r 1);

Input: dv_1 (dividend), uds (divisor)
Output: g_l (quotient), r_1 (remainder)

Return: E CLINT OKifallis ok
E CLINT DBZ if division by 0

We have already indicated that for a given calculation the quotient of a
division is not required, and only the remainder is of interest. This will not result
in a great savings of time, but in such cases, at least the passing of a pointer to
the storage location of the quotient is burdensome. It is therefore worthwhile to
create an independent function for computing remainders, or “residues.” The
mathematical background of the use of this function is discussed more fully in
Chapter 5.

Function: Remainders (reduction modulo n)

Syntax: int mod 1 (CLINT d 1, CLINT n_1, CLINT r 1);
Input: d_1 (dividend), n_1 (divisor or modulus)
Output: r 1 (remainder)

Return: E_CLINT OKifallis ok
E_CLINT DBZ if division by 0

Simpler than the general case is the construction of the remainder modulo
a power of 2, namely 2% which is worth implementing in its own function. The
remainder of the dividend in a division by 2" results from truncating its binary
digits after the kth bit, where counting begins with 0. This truncation corresponds
to a bitwise joining of the dividend to 2 — 1 = (111111...1)a, the value of
k binary ones, by a logical AND (cf. Section 7.2). The operation is concentrated
on the digit of the dividend in its representation to base B that contains the kth
bit; all higher-valued dividend digits are irrelevant. For specifying the divisor the
following function mod_1() is passed only the exponent k.
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Function: remainder modulo a power of 2 (reduction modulo 2k

Syntax: int mod2 1 (CLINT d 1, ULONG k, CLINT r 1);

Input: d 1 (dividend), k (exponent of the divisor or modulus)
Return: r_1 (remainder)
int
mod2 1 (CLINT d_1, ULONG k, CLINT r 1)
{
int i;

Since 2¥ > 0, there is no test for division by 0. First d_1 is copied to r 1 and a test
is made as to whether k exceeds the maximal binary length of a CLINT number, in
which case the function is terminated.

cpy 1 (r 1, d 1);
if (k > CLINTMAXBIT)
return E_CLINT OK;

The digit in r 1 in which something changes is determined and is stored as an
indexin i. If i is greater than the number of digits of r 1, then we are done.

i =1+ (k >> LDBITPERDGT);
if (i > DIGITS L (r 1))
return E_CLINT OK;

Now the determined digit of r 1 (counting from 1) is joined by a logical AND to
the value 2Fmod BITPERDGT __ 1 9kmod16 _ 1 i thig implementation). The new
length i of r 1is stored inr_1[0]. After the removal of leading zeros the function
is terminated.
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r_1[i] &= (1U << (k & (BITPERDGT - 1))) - 1U;
SETDIGITS_L (r_1, i);

RMLDZRS L (r_1);

return E_CLINT OK;

}

The mixed variant of calculating residues employs a USHORT type as divisor
and represents the remainder again as a USHORT type, where here again only the
interface is given, and we refer the reader to the FLINT/C source code for the
short functions.

Function: remainders, division of a CLINT type by a USHORT type
Syntax: USHORT umod_1 (CLINT dv_1, USHORT uds);

Input: dv_1 (dividend), uds (divisor)
Return: nonnegative remainder if all is ok
OXFFFF if division by 0

For testing the division there are—as for all other functions as well—some
considerations to be taken into account (see Chapter 13). In particular, it is
important that step 5 be tested explicitly, though in randomly selected test cases it
will appear with a probability of only about 2/ B (= 2715 in our implementation)
(see [Knut], Section 4.3.1, Exercise 21).

In the following the given dividend a and divisor b with associated quotient q
and remainder 7 have the effect that the program sequence associated to step 5 of
the division algorithm is run through twice, and can therefore be used as test data
for this particular case. Additional values with this property are contained in the
test program testdiv.c.
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The display of test numbers below shows the digits in hexadecimal, running

from right to left in ascending order, without specifying the length:

Test values for step 5 of the division

a=e3 7d 3a bc 90 4b ab a7 a2 ac 4b 6d 8f 78 2b 2b 8 49 19
d2 91 73 47 69 0d 9e 93 dc dd 2b 91 ce e9 98 3c 56 4c f1
31 22 06 c9 1e 74 d8 Ob a4 79 06 4c 8f 42 bd 70 aa aa 68
9f 80 d4 35 af c9 97 ce 85 3b 46 57 03 c8 ed ca

b=08 0b 09 87 b7 2c 16 67 c3 Oc 91 56 a6 67 4c 2e 73 eb6 1a
1f d5 27 d4 e7 8b 3f 15 05 60 3c 56 66 58 45 9b 83 cc fd
58 7b a9 b5 fc bd cO ad 09 15 2e 0a c2 65

q = 1c 48 a1 c7 98 54 1a €0 b9 eb 2c 63 27 b1 ff ff f4 fe 5¢c
Oe 27 23

r=-ca 23 12 fb b3 f4 c2 3a dd 76 55 €9 4c 34 10 bl 5c 60 64
bd 48 a4 e5 fc c3 3d df 55 3e 7c b8 29 bf 66 fb fd 61 b4
66 7f 5e d6 b3 87 ec 47 c¢5 27 2c f6 fb
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CHAPTER 5

Modular Arithmetic:
Calculating with
Residue Classes

Every fine story must leave in the mind of the sensitive reader an intangible
residuum of pleasure . . .

—Willa Cather, Not Under Forty, “Miss Jewett”

WE BEGIN THIS CHAPTER WITH a discussion of the principle of division with
remainder. In relation to this we shall explain the significance of these remainders,
their possible applications, and how one calculates with them. In order for the
functions to be introduced later to be understandable, we begin with a bit of
algebra.

We have seen that in division with remainder of an integer a € Z by a natural
number 0 < m € N one has the unique representation

a=qm-+r, 0<r<m.

Here r is called the remainder after division of a by m or the residue of a modulo
m, and it holds that m divides a — r without remainder, or in mathematical
notation,
m | (a—r).
This statement about divisibility was given a new notation by Gauss, in
analogy to the equal sign:'

a=rmodm

(say “a is congruent to r modulo m”).
Congruence modulo a natural number m is an equivalence relation on the
set of natural numbers. This means that the set R := { (a,b) | a = b mod m }

Carl Friedrich Gauss, 1777-1855, is to be counted among the greatest mathematicians of all
time. He made many significant discoveries in mathematics as well as in the natural sciences,
and in particular, at the age of 24 he published his famous Disquisitiones Arithmeticae, which
is the foundation upon which modern number theory has been built.

67



Chapter 5

68

of integer pairs satisfying m | (a — b) has the following properties, which result
immediately from division with remainder:

(i) R is reflexive: For all integers a it holds that (a, a) is an element of R, that is,
we have a = a mod m.

(ii) R is symmetric:1f (a,b) is in R, then so is (b, a); thatis, a = b mod m
implies b = a mod m.

(iii) R is transitive: If (a,b) and (b, ¢) are in R, then so is (a, ¢); that is,
a = bmod m and b = ¢ mod m implies a = ¢ mod m.

The equivalence relation R partitions the set of integers into disjoint sets, called
equivalence classes: Given a remainder r and a natural number m > 0 the set

7:={a|a=rmodm},

or, in other notation, » + mZ, is called the residue class of r modulo m. This class
contains all integers that upon division by m yield the remainder r.

Here is an example: Let m = 7, r = 5; then the set of integers that upon
division by 7 yield the remainder 5 is the residue class

5=5+7-Z=1{...,—9,-2,5,12,19,26,33,... }.

Two residue classes modulo a fixed number m are either the same or disjoint.
Therefore, a residue class can be uniquely identified by any of its elements. Thus
the elements of a residue class are called representatives, and any element can
serve as representative of the class. Equality of residue classes is thus equivalent to
the congruence of their representatives with respect to the given modulus. Since
upon division with remainder the remainder is always smaller than the divisor,
for any integer m there can exist only finitely many residue classes modulo m.

Now we come to the reason for this extensive discussion: Residue classes
are objects with which one can do arithmetic, and in fact, by employing their
representatives. Calculating with residue classes has great significance for algebra
and number theory and thus for coding theory and modern cryptography. In what
follows we shall attempt to clarify the algebraic aspects of modular arithmetic.

Let a, b, and m be integers, m > 0. For residue classes @ and b modulo m
we define the relations “4” and “-”, which we call addition and multiplication
(of residue classes), since they are based on the like-named operations on the
integers:

a+b:=a+b (thesum ofclasses is equal to the class of the sum);
b

a -

[=al I~

=a (the product of classes is equal to the class of the product).

2 Two sets are said to be disjoint if they have no elements in common, or put another way, if

their intersection is the empty set.
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Both relations are well-defined, since in each case the result is a residue
class modulo m. The set Z,, := {7 | risaresidue modulo m } of residue
classes modulo m together with these relations forms a finite commutative ring
(Zyn, +, -) with unit, which in particular means that the following axioms are
satisfied:

1. Closure with respect to addition:
The sum of two elements of Z, is again in Z,.

2. Associativity of addition:
For every @, b, ¢ in Z,, one has @ + (l; + E) = (6 + B) + .

3. Existence of an additive identity:
For every @ in Z, onehasa + 0 = a.

4. Existence of an additive inverse:
For each element @ in Z,, there exists a unique element b in Z,,, such that
a+b=0.

5. Commutativity of addition:
For every a, binZ,, onehasa +b=">0+a.

6. Closure with respect to multiplication:
The product of two elements of Z,, is again an element of Z,,,.

7. Associativity of multiplication:
For every a, E, ¢in Z,, one hasa - (5 . E) = (6 . B) - C.

8. Existence of a multiplicative identity: For every @ in Z, onehasa - 1 = a.
9. Commutativity of multiplication: For each @, bin Z, onehasa-b =1 - a.
10. In (Zm, +, -) the distributive lawholds:@- (b+¢) =a-b+a - ¢.

On account of properties 1 through 5 we have that (Z,, +) is an abelian
group, where the term abelian refers to the commutativity of addition. From
property 4 we can define subtraction in Z,, as usual, namely, as addition of the
inverse element: If ¢ is the additive inverse of b, then b + ¢ = 0, and so for each
a € Zm we may define

a—b:=a+e

In (Zm, -) the group laws 6, 7, 8, and 9 hold for multiplication, where the
multiplicative identity is 1. However, in Z,, it does not necessarily hold that each
element possesses a multiplicative inverse, and thus in general, (Z, -) is not a
group, but merely a commutative semigroup with unit.> However, if we remove
from Z,, all the elements that have a common divisor with m greater than 1, we

3 A semigroup (H, ) exists merely by virtue of there existing on the set H an associative

relation .
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then obtain a structure that forms an abelian group with respect to multiplication
(see Section 10.2). This structure, which in particular does not contain 0, is called
a reduced residue system and is denoted by (ZTX,I, )

The significance of an algebraic structure like (Zﬁfl, -), in view of the results
we have obtained thus far, can be illustrated by looking at some other well-known
commutative rings: The set of integers Z, the set of rational numbers QQ, and the
set of real numbers R are commutative rings with unit (in fact, the real numbers
form a field, indicating additional internal structure), with the difference that
these rings are not finite. The rules for computation that we have outlined above
for our finite ring are well known to us because we use them every day. We shall
return to these laws in Chapter 13. There they will prove to be trusty allies when
it comes to testing arithmetic functions. In this chapter we have collected some
important prerequisites.

For calculating with residue classes we rely completely on the classes’
representatives. For each residue class modulo m we select precisely one
representative and thereby form a complete residue system, in terms of which
all of our calculations modulo m can be carried out. The smallest nonnegative
complete residue system modulo m is the set R, := {0,1,...,m — 1}. The
set of numbers r satisfying — %m <r< %m will be called the smallest absolute
complete residue system modulo m.

As an example we consider Zzs = { 0,1, ...,25 }. The smallest nonnegative
residue system modulo 26 is R2¢ = {0, 1,...,25 }, and the smallest absolute
residue system modulo 26 is the set {—12,—11,...,0,1,...,13}. The relation
between arithmetic with residue classes and modular arithmetic with residue
systems can be clarified as follows:

18+24=18+24=16
is equivalent to
18 4+ 24 = 42 = 16 mod 26,

while

9-15=9+11=20
is equivalent to
9—-15=9+ 11 = 20 mod 26.

By identifying the alphabet with the residue class ring Zag or the set of ASCII
characters with Zas¢ we can calculate with characters. A simple encoding system
that adds a constant from Zog to each letter of a text is ascribed to Julius Caesar,
who is said to have preferred the constant 3. Each letter of the alphabet would
thereby be shifted one position to the right, with X moving to A, Y to B, and Z to C.*

4 See Aulus Gellius, XII, 9 and Suetonius, Caes. LVI.
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Calculation in residue class rings can be made clearer by employing
composition tables, which we present in Tables 5-1 and 5-2 for the operations “+”
and “-” in Zs.

Table 5-1. Composition table for addition modulo 5

W N = o H
N = =)
S bW N =
- o A~ W NN
N = O e W W
W N = O W

Table 5-2. Composition table for multiplication modulo 5

o O o o o @
[SUI - S \C R B U}
N B = W O W
— N W e O B

1
0
1
2
3
4

=W N = O

The fact that the set of residue classes is finite gives the nice advantage
over infinite structures, such as the ring of integers, that the representation of
the results of arithmetic expressions within a computer program will not cause
overflow if in forming residues a suitable class representative is chosen. This
operation, as executed for example by the function mod_1(), is called reduction
(modulo m). We can thus calculate to our hearts’ content with the bounded
representation of numbers and the functions of the FLINT/C package within a
complete residue system modulo m, so long as we have m < Ny ax. We always
choose positive representatives and rely on nonnegative residue systems. Because
of these properties of residue classes the FLINT/C package does very well with the
CLINT representation of large numbers, except for a few situations, which we shall
discuss in some detail.

So much for the theory of the arithmetic of residue classes. Now we shall
develop our functions for modular arithmetic. We first recall the functionsmod 1()
and mod2_1() from Section 4.3, which return the remainder of a reduction modulo
m, respectively modulo 2’“, and we shall deal in turn with modular addition
and subtraction, as well as modular multiplication and squaring. Because of its
particular complexity, we devote a separate chapter to modular exponentiation.
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We shall avoid the notation @ for a residue class by simply omitting the bar and
letting the representative a denote the class of a, provided that there is no chance
of confusion.

The process by which the functions for modular arithmetic operate consists
essentially in carrying out the corresponding nonmodular function on the
operands and then using division with remainder to carry out a modular
reduction. However, one must note that intermediate results can grow to a size
of 2MA X p digits, which due to their size or, in the case of subtraction, on
account of a negative sign, cannot be represented in a CLINT object. We have
previously called these situations respectively overflow and underflow. The basic
arithmetic functions possess mechanisms for dealing with situations of overflow
and underflow that reduce these intermediate results modulo (Nmax + 1) (see
Chapters 3 and 4). These would be effective here if the result of the complete
modular operation were representable by a CLINT type. In order to obtain correct
results in these cases, we shall extract from the functions that we already have for
the basic operations, as announced in Chapter 4, kernel functions

void add (CLINT, CLINT, CLINT);
void sub (CLINT, CLINT, CLINT);
void mult (CLINT, CLINT, CLINT);
void umul (CLINT, USHORT, CLINT);
void sqr (CLINT, CLINT);

The kernel functions comprise the arithmetic operations that have been
removed from the functions add 1(), sub_1(), mul 1(), and sqr_1(), which we
have met earlier. What remains in these functions are simply the processes of
removing leading zeros, supporting the accumulator operation, and handling
possible overflow or underflow, while for the actual arithmetic operations the
kernel functions are invoked. The syntax and semantics of these earlier functions
are not altered, and the functions can be used as described.

As an example of multiplication mul _1(), this process leads to the following
function (see in this regard the implementation of the function mul 1() on
page 36).

Function: multiplication

Syntax: int mul 1 (CLINT f1 1, CLINT f2_1, CLINT pp 1);
Input: f1 1, f2_1 (factors)

Output: pp_1 (product)

Return: E CLINT OKifallis ok
E_CLINT OFL if overflow
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int
mul 1 (CLINT f1 1, CLINT f2_1, CLINT pp_1)
{

CLINT aa_1, bb 1;

CLINTD p_1;

int OFL = E_CLINT OK;

Purging of leading zeros and support of the accumulator operation.

cpy_1 (aa_l, f1.1);
cpy 1 (bb 1, f2 1);

Call the kernel function for multiplication.

mult (aa_l, bb 1, p 1);

Check for and deal with overflow.

if (DIGITS L (p_1) > (USHORT)CLINTMAXDIGIT)  /* overflow ? */
{
ANDMAX L (p_1); /* reduce modulo (Nmax + 1) */
OFL = E_CLINT OFL;
}
cpy_1 (pp_1, p_1);
return OFL;

}

For the remaining functions add_1(), sub _1(), and sqr_1() the changes are
similar. The arithmetic kernel functions themselves contain no new components
and therefore do not need to be given here. For details look at the implementation
inflint.c.

The kernel functions do not allow overflow, and they execute no reduction
modulo (Nmax + 1). They are intended for internal use by the FLINT/C functions
and therefore are declared as static. In using them, however, one must note that
they are not equipped for dealing with leading zeros and that they cannot be used
in accumulator mode (see Chapter 3).

The use of sub() presupposes that the difference is positive. Otherwise,
the result is undefined; there is no control in sub() in this regard. Finally, the
calling functions must make available enough space for the result of oversized
intermediate results. In particular, sub() requires that the result variable have
available at least enough storage space as for the representation of the minuend.
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We are now equipped to develop the functions madd 1(), msub_1(), mmul 1(), and
msqr_1() for modular arithmetic.

Function: modular addition

Syntax: int madd 1 (CLINT aa_ 1, CLINT bb_ 1, CLINT c 1,

CLINT m_1);
Input: aa_l, bb 1 (summands), m 1 (modulus)
Output: c_1 (remainder)
Return: E CLINT OKifallis ok

E_CLINT DBZ if division by 0

int
madd 1 (CLINT aa 1, CLINT bb 1, CLINT c 1, CLINT m 1)
{
CLINT a_1, b 1;
clint tmp 1[CLINTMAXSHORT + 1];
if (EQZ_L (m 1))
{
return E_CLINT DBZ;
}
cpy 1 (a_l, aa l);
cpy 1 (b 1, bb 1);
if (GE_L (a1, m1) || GE_L (b 1, m1))
{
add (a_1l, b 1, tmp 1);
mod 1 (tmp 1, m 1, c 1);
}

else

Ifa 1andb 1bothlie belowm 1, then we are spared a division.

{
add (a_1, b 1, tmp 1);
if (GE_L (tmp 1, m 1))
{
sub 1 (tmp 1, m 1, tmp_1); /* underflow excluded */

}
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In the preceding call by sub_1() some care was taken: We supply sub_1() with the
argument tmp_1, which here as the sum of a_1 and b_1 is possibly one digit larger
than allowed by the constant MAX g. Within the function sub_1() nothing can
go awry as long as we provide storage space for an additional digit in the result.
Therefore, we let the result be stored in tmp_1 and not immediately in c_1, as one
might suppose. Because of these conditions, at the end of sub_1() we have that
tmp_1 has at most MAX g digits.

cpy 1 (c 1, tmp 1);
}
return E_CLINT OK;
}

The function for modular subtraction msub_1() uses only the positive
intermediate results of the functions add _1(), sub_1(), and mod_1(), in order to
remain within a positive residue system.

Function: modular subtraction

Syntax: int msub 1 (CLINT aa_1, CLINT bb_1, CLINT c_1,
CLINT m_1);

Input: aa_l (minuend), bb_1 (subtrahend), m 1 (modulus)
Output: c_1 (remainder)

Return: E_CLINT OKifallis ok
E_CLINT DBZ if division by 0

int
msub 1 (CLINT aa_1, CLINT bb 1, CLINT ¢ 1, CLINT m 1)
{
CLINT a_ 1, b 1, tmp 1;
if (EQZ_L (m 1))
{
return E_CLINT DBZ;
}
cpy 1 (a 1, aa_l);
cpy 1 (b 1, bb 1);
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We distinguish the casesa 1 > b 1and a_1 < b_1. The first case is a standard
situation; in the second case we compute (b_1 — a_1), reduce modulo m_1, and
subtract a positive remainder fromm_1.

if (GE_L (al, b 1))

{

/¥al-bl>o0%*

sub (a_l, b 1, tmp 1);
mod 1 (tmp 1, m 1, c 1);

}

else

{

/$al-blco*/

sub (b 1, a1, tmp 1);
mod 1 (tmp 1, m 1, tmp 1);
if (GTZ_L (tmp_1))

{

sub (m 1, tmp 1, c 1);

SETZERO L (c_1);

}
}

return E_CLINT_OK;

}

Now come the functions mmul 1() and msqr_1() for modular multiplication and

squaring, of which we show only that for multiplication.

Function:

Syntax:

Input:
Output:

Return:

modular multiplication

int mmul 1 (CLINT aa_ 1, CLINT bb 1, CLINT c_ 1,
CLINT m_1);

aa_l, bb 1 (factors), m_1 (modulus)

c_1 (remainder)

E_CLINT OK if all ok
E_CLINT DBZ if division by 0
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int
mmul 1 (CLINT aa_1, CLINT bb 1, CLINT c_ 1, CLINT m_ 1)
{
CLINT a 1, b 1;
CLINTD tmp_1;
if (EQZ_L (m 1))
{
return E_CLINT DBZ;
}
cpy 1 (a_l, aa l);
cpy 1 (b 1, bb 1);
mult (a_1l, b 1, tmp 1);
mod 1 (tmp 1, m 1, c 1);
return E_CLINT_OK;

The functions for modular multiplication and squaring are so similar that for
modular multiplication we give only the interface of the function.

Function: modular squaring

Syntax: int msqr 1 (CLINT aa_1, CLINT c_1, CLINT m_1);
Input: aa_1 (factor),m 1 (modulus)

Output: c_1 (remainder)

Return: E_CLINT OKifallis ok
E_CLINT DBZ if division by 0

To each of these functions (of course, with the exception of squaring) there
is a corresponding mixed function, which as its second argument takes a USHORT
argument. As an example, we demonstrate the function umadd_1(). The functions
umsub_1() and ummul 1() follow exactly the same pattern, and so we shall not go
into them in detail.
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Function: = modular addition of a CLINT type and a USHORT type
Syntax: int umadd 1 (CLINT a_ 1, USHORT b, CLINT c 1,

CLINT m_1);
Input: a_l, b(summands), m_1 (modulus)
Output: c_1 (remainder)
Return: E CLINT OKifallis ok

E_CLINT DBZ if division by 0

int
umadd_1 (CLINT a_l, USHORT b, CLINT c_1, CLINT m_1)
{

int err;

CLINT tmp_1;

u2clint 1 (tmp_1, b);

err = madd 1 (a_1, tmp 1, c 1, m_1);

return err;

Our collection of mixed functions with a USHORT argument will be extended in
the following chapter to include two further functions. To end this chapter we
would like, with the help of modular subtraction, to construct an additional
useful auxiliary function that determines whether two CLINT values are equal as
representatives of a residue class modulo m. The following function mequ_1()
accomplishes this by using the definition of the congruence relationship
a=bmodm<= m| (a—Db).

To determine whether two CLINT objects a_1 and b_1 are equivalent modulo
m_1, we need do nothing further than apply msub 1(a 1, b 1, r 1, m 1) and
check whether the remainder r_1 of this operation is equal to zero.

Function: test for equivalence modulo m

Syntax: int mequ 1 (CLINT a 1, CLINT b_1, CLINT m_1);

Input: a_l, b 1 (operands), m 1 (modulus)
Return: lif (a_1l == b 1) modulom 1
0 otherwise
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int
mequ 1 (CLINT a_1, CLINT b_1, CLINT m_ 1)
{
CLINT r_1;
if (E0Z_L (m 1))
{
return E_CLINT DBZ;
}
msub 1 (a1, b 1, r 1, m1);
return ((0 == DIGITS L (r_1))?1:0);
}
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CHAPTER 6

Where All Roads Meet:
Modular Exponentiation

For along time on that spot I stood,

Where two roads converged in the wood and I thought:
“Someone going the other way

Might someday stop here for the sake

Of deciding which path to take.”

But my direction lay where it lay.

And walking on, I felt a sense

Of wonder at that difference.

—Ilya Bernstein, Attention and Man

IN ADDITION TO THE CALCULATIONAL rules for addition, subtraction, and multi-
plication in residue classes we can also define an operation of exponentiation,
where the exponent specifies how many times the base is to be multiplied by
itself. Exponentiation is carried out, as usual, by means of recursive calls to
multiplication: For a in Z,, we have a° := T and a**!

It is easy to see that for exponentiation in Z,, the usual rules apply (cf.
Chapter 1):

af - af = a7, a®- b = (a-b), (a®) =a®’.

=a-a’

6.1 First Approaches

The simplest approach to exponentiation consists in following the recursive rule
defined above and multiplying the base a by itself e times. This requires e — 1
modular multiplications, and for our purposes that is simply too many.

A more efficient way of proceeding is demonstrated in the following examples,
in which we consider the binary representation of the exponent:

=0 () a) ) @@= ((())>
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Here raising the base to the fifteenth power requires only six multiplications,
as opposed to fourteen in the first method. Half of these are squarings, which, as
we know, require only about half as much CPU time as regular multiplications.
Exponentiation to the sixteenth power is accomplished with only four squarings.

Algorithms for exponentiation of a® modulo m that calculate with the binary
representation of the exponent are in general much more favorable than the first
approach, as we are about to see. But first we must observe that the intermediate
results of many integer multiplications one after the other quickly occupy more
storage space than can be supplied by all the computer memory in the world,
for from p = a” follows log p = bloga, and thus the number of digits of the
exponentiated a’ is the product of the exponent and the number of digits of the
base. However, if we carry out the calculation of a° in a residue class ring Zm,
that is, by means of modular multiplication, then we avoid this problem. In fact,
most applications require exponentiation modulo m, so we may as well focus our
attention on this case.

Lete = (en—1€n—2...€0), With e,—1 > 0 be the binary representation
of the exponent e. Then the following binary algorithm requires |log, e|] = n
modular squarings and §(e) — 1 modular multiplications, where

n—1

oe) := Z €;

i=0
is the number of ones in the binary representation of e. If we assume that each
digit takes on the value O or 1 with equal probability, then we may conclude
that §(e) has the expected value §(e) = n/2, and altogether we have 2 |log, €|
multiplications for the algorithm.
Binary algorithm for exponentiation of «® modulo m

1. Setp « a®*'andi « n — 2.

2. Setp «— p? mod m.

3. Ife; = 1,setp < p-a mod m.

4. Seti «+— 1 — 1;if¢ > 0, go to step 2.

5. Output p.

The following implementation of this algorithm gives good results already for
small exponents, those that can be represented by the USHORT type.
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Function:

Syntax:

Input:

Output:

Return:

mixed modular exponentiation with USHORT exponent

int umexp 1 (CLINT bas 1, USHORT e, CLINT p 1,
CLINT m_1);

bas_1 (base)

e (exponent)

m_1 (modulus)

p_1 (power residue)

E_CLINT OKifall ok
E_CLINT DBZ if division by 0

int

umexp_1 (CLINT bas_1, USHORT e, CLINT p_1, CLINT m_ 1)

{

CLINT tmp_1, tmpbas_1;
USHORT k = BASEDIV2;
int err = E CLINT OK;

if (EQZ_L (m_ 1))
{

return E_CLINT DBZ; /* division by zero */

}
if (EQONE_L (m_1))
{

SETZERO L (p_1);

/* modulus = 1 ==> remainder = 0 */

return E_CLINT OK;

if (e == 0) /* exponent = 0 ==> remainder = 1 */

SETONE_L (p_1);

return E_CLINT_OK;

}
if (EQZ_L (bas_1))
{

SETZERO L (p_1);

return E_CLINT OK;

}
mod 1 (bas 1, m 1,

tmp_1);

cpy 1 (tmpbas 1, tmp 1);
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After various checks the position of the leading 1 of the exponent e is determined.
Here the variable k is used to mask the individual binary digits of e. Then k is
shifted one more place to the right, corresponding to setting s «<— n — 2 in step 1
of the algorithm.

while ((e & k) == 0)
{

k >>=1;

}

k >>=1;

For the remaining digits of e we run through steps 2 and 3. The mask k serves as
loop counter, which we shift to the right one digit each time. We then multiply by

the base reduced modulom 1.

while (k != 0)
{
msqr 1 (tmp 1, tmp 1, m 1);
if (e & k)
{
mmul 1 (tmp 1, tmpbas 1, tmp 1, m 1);
}
k >>=1;
}
cpy 1 (p_1, tmp_1);
return err;

}

The binary algorithm for exponentiation offers particular advantages
when it is used with small bases. If the base is of type USHORT, then all of the
multiplications p < pa mod m in step 3 of the binary algorithm are of the type
CLINT * USHORT modulo CLINT, which makes possible a substantial increase in
speed in comparison to other algorithms that in this case would also require the
multiplication of two CLINT types. The squarings, to be sure, use CLINT objects, but
here we are able to use the advantageous squaring function.

Thus in the following we shall implement the exponentiation function
wmexp_1(), the dual to umexp 1(), which accepts a base of type USHORT. The
masking out of bits of the exponent is a good preparatory exercise in view of the
following “large” functions for exponentiation. The way of proceeding consists
essentially in testing one after the other each digit e; of the exponent against a
variable b initialized to 1 in the highest-valued bit, and then shifting to the right
and repeating the test until b is equal to 0.
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The following function wmexp 1() offers for small bases and exponents up to
1000 bits, for example, a speed advantage of about ten percent over the universal
procedures that we shall tackle later.

Function: = modular exponentiation of a USHORT base
Syntax: int wmexp 1 (USHORT bas, CLINT e 1, CLINT rest 1,
CLINT m_1);
Input: bas (base)
e 1 (exponent)
m_1 (modulus)
Output: rest 1 (remainder of bas®-* mod m_1)

Return: E_CLINT OKifallis ok
E_CLINT DBZ if division by 0

int
wmexp_1 (USHORT bas, CLINT e 1, CLINT rest 1, CLINT m_1)
{

CLINT p 1, z 1;

USHORT k, b, w;

if (EQZ_L (m 1))

{
return E_CLINT_DBZ; /* division by 0 */
}
if (EQONE L (m 1))
{

SETZERO L (rest_1); /* modulus = 1 ==> remainder = 0 */
return E_CLINT OK;
}

if (EQZ_L (e 1))

{
SETONE L (rest_1);
return E_CLINT OK;
}

if (0 == bas)

{
SETZERO L (rest 1);
return E_CLINT OK;

}

SETONE_L (p_1);
cpy 1 (z 1, e 1);
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Beginning with the highest-valued nonzero bit in the highest-valued word of
the exponent z_1 the bits of the exponent are processed, where always we have
first a squaring and then, if applicable, a multiplication. The bits of the expo-
nent are tested in the expression if ((w & b) > 0) by masking their value with
a bitwise AND.

b=1<< ((1d1 (z1) - 1) & (BITPERDGT - 1UL));
w = z_1[DIGITS L (z_1)];
for (; b > 0; b >>=1)
{
msqr 1 (p_1, p. 1, m 1);
if ((w & b) > 0)
{
ummul 1 (p_1, bas, p_1, m 1);
}
}

Then follows the processing of the remaining digits of the exponent.

for (k = DIGITS L (z 1) - 1; k > 0; k--)

{
w =z _1[k];
for (b = BASEDIV2; b > 0; b >>= 1)
{
msqr 1 (p_ 1, p 1, m 1);
if ((w & b) > 0)
{
ummul 1 (p_1, bas, p 1, m 1);
}
}
}

cpy 1 (rest 1, p 1);
return E_CLINT_OK;
}

6.2 M -ary Exponentiation

Through a generalization of the binary algorithm on page 82 the number
of modular multiplications for exponentiation can be reduced even further.
The idea is to represent the exponent in a base greater than 2 and to replace
multiplication by a in step 3 by multiplication by powers of a. Thus let the




Where All Roads Meet: Modular Exponentiation

exponent e be given by e = (en—1€n—2... eo)M, to a base M vyet to be
determined. The following algorithm calculates the powers ¢ mod m.

M -ary algorithm for exponentiation ¢® mod m

—1

3 mod m,. .., a™ =1 mod m as a table.

1. Calculate and store a® mod m,a
2. Setp «— a®"~' mod mandi «— n — 2.

3. Setp «— pM mod m.

'S

. Ife; # 0, setp < pa® mod m.
5. Seti «— ¢ — 1;if ¢ > 0, go to step 3.

6. Output p.

The number of necessary multiplications evidently depends on the number of
digits of the exponent e and thus on the choice of M. Therefore, we would like
to determine M such that the exponentiation in step 3 can be computed to the
greatest extent possible by means of squaring, as in the example above for 216,
and such that the number of multiplications by the precomputed powers of a be
minimized to a justifiable cost of storage space for the table.

The first condition suggests that we choose M as a power of 2: M = 2F In
view of the second condition we consider the number of modular multiplications
as a function of M:

We require
|log,, e logy M = |log, €] (6.1)
squares in step 3 and on average
lo
|logas €] pr(e; #0) = {%J pr(e; #0) (6.2)

modular multiplications in step 4, where
re; #0)=(1-— S
pr(éq = M

is the probability that a digit e; of e is nonzero. If we include the M — 2
multiplications for the computation of the table, then the M -ary algorithm
requires on average

pa(k) =2 =2+ [logye| + rog,j GJ (1 - 2%) (6.3)

i 2k —1

modular squarings and multiplications.
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For exponents e and moduli m of, say, 512 binary places and M = 2F we
obtain the numbers of modular multiplications for the calculation of a® mod m
as shown in Table 6-1. The table shows as well the memory requirement
for the precomputed powers of a mod m, which result from the product
(2k — 2)CLINTMAXSHORT - sizeof (USHORT).

Table 6-1. Requirements for exponentiation

k Multiplications Memory (in Bytes)

1 766 0

2 704 1028
3 666 3084
4 644 7196
5 640 15420
6 656 31868

We see from the table that the average number of multiplications reaches a
minimum of 640 at £ = 5, where the required memory for each larger k£ grows by
approximately a factor of 2. But what are the time requirements for other orders
of magnitude of the exponents?

Table 6.2 gives information about this. It displays the requirements for
modular multiplication for exponentiation with exponents with various numbers
of binary digits and various values of M = 2¥. The exponent length of 768 digits
was included because it is a frequently used key length for the RSA cryptosystem
(see Chapter 17). The favorable numbers of multiplications appear in boldface.

Table 6-2. Numbers of multiplications for typical sizes of exponents and various bases 2*

Number of Binary Digits in the Exponent
32 64 128 512 768 1024 2048 4096
45 93 190 766 1150 1534 3070 6142
44 83 176 704 1056 1408 2816 5632
46 87 170 666 996 1327 2650 5295
52 91 170 644 960 1276 2540 5068
67 105 181 640 945 1251 2473 4918
98 135 209 656 954 1252 2444 4828
161 197 271 709 1001 1294 2463 4801
288 324 396 828 1116 1404 2555 4858

[-IEEN B R B U R
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In consideration of the ranges of numbers for which the FLINT/C package
was developed, it appears that with & = 5 we have found the universal base
M = 2k, with which, however, there is a rather high memory requirement of 15
kilobytes for the powers a2, a, ..., a3! to base a that are to be precomputed.
The M -ary algorithm can be improved, however, according to [Cohe], Section 1.2,
to the extent that we can employ not M — 2, but only M /2, premultiplications
and thus require only half the memory. The task now additionally consists in
the calculation of the power a® mod m, where e = (en—1en—2...€0),, is the
representation of the exponent to the base M = 2k,

M -ary Algorithm for exponentiation with reduced number of
premultiplications

k j—
1. Compute and store a® mod m, a® mod m, a” mod m,...,a® ~! mod m.

2. Ifep—1 =0,setp « 1.
Ife,_1 # 0, factor e,,_1 = 2'u with odd u. Set p « a“ mod m and then
p— p2t mod m.
In each case set? «— n — 2.

5 2
3. Ife; = 0,setp «— p2k mod m by calculating ( - ((p2)2> ) mod m

(k-fold squaring modulo m).

If e; # 0, factore; = 2ty with odd u; set p — ka mod m and then
t
p — pa* mod m; nowset p — p> mod m.

4. Sett «— ¢ — 1;if ¢ > 0, go to step 3.

5. Output p.

The trick of this algorithm consists in dividing up the squarings required in step 3
in a clever way, such that the exponentiation of a is taken care of together with the
even part 2° of e;. Within the squaring process the exponentiation of a by the odd
part u of e; remains. The balance between multiplication and squaring is shifted

to the more favorable squaring, and only the powers of a with odd exponent need
to be precomputed and stored.

For this splitting one requires the uniquely determined representation
e; = 2'u, u odd, of the exponent digit e;. For rapid access to ¢ and u a table is
used, which, for example, for £ = 5 is displayed in Table 6-3.

To calculate these values we can use the auxiliary function twofact 1(),
which will be introduced in Section 10.4.1. Before we can program the improved
M -ary algorithm there remains one problem to be solved: How, beginning with
the binary representation of the exponent or the representation to base B = 216
do we efficiently obtain its representation to base M = 2" for a variable k > 0?
It will be of use here to do a bit of juggling with the various indices, and we can
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“mask out” the required digits e; to base M from the representation of e to base
B. For this we set the following: Let (€,—16r—2 . . .50)2 be the representation
of the exponent e to base 2 (we need this on account of the number r of binary
digits). Let (eu—1€u—2 ...€0) 5 be the representation of e as a CLINT type
to base B = 2'°, and let (e}, €}, o... €0) ,, be the representation of e to
the base M = 2%, k < 16 (M should not be greater than our base B). The
representation of e in memory as a CLINT object e_1 corresponds to the sequence
[u+1],[eo],[e1] ;... [eu—1],[0] of USHORT values e_1[i] fori =0,...,u + 1;
one should note that we have added a leading zero.

Let f := |“2%|, andfori = 0,..., flets; := | %] and d; := ki mod 16.
With these settings the following statements hold:

1. Thereare f + 1digitsin (e}, _q1e},_5...€p),,; thatis,n — 1 = f.
2. es, contains the least-significant bit of the digit e;.

3. d; specifies the position of the least-significant bit of €} in es, (counting of
positions begins with 0). If ¢ < f and d; > 16 — k, then not all the binary
digits of e are in e, ; the remaining (higher-valued) bits of ¢, are in es, 1.
The desired digit e} thus corresponds to the k least-significant binary digits
of

esi—‘,—lB + es;
2d; '

Table 6-3. Values for the factorization of the exponent digits into
products of a power of 2 and an odd factor

e; t u e; t wu e; t wu
0 0 O 11 0 11 22 1 11
1 0 1 12 2 3 23 0 23
2 1 1 13 0 13 24 3 3
3 0 3 14 1 7 25 0 25
4 2 1 15 0 15 26 1 13
5 0 5 16 4 1 27 0 27
6 1 3 17 0 17 28 2 7
7 0 7 18 1 9 29 0 29
8 3 1 19 0 19 30 1 15
9 0 9 20 2 5 31 0 31
10 1 5 21 0 21




Where All Roads Meet: Modular Exponentiation

As aresult we have fori € {0, ..., f } the following expression for determining

/
€;:

e = ((e_1[si + 1] | (e_1[si + 2] << BITPERDGT)) >> d;) & (2" —1); (6.5

Since for the sake of simplicity we sete_1 [s¢ + 2] «— 0, this expression holds
aswell fori = f.

We have thus found an efficient method for accessing the digits of the
exponent in its CLINT representation, which arise from its representation
in a power-of-two base 2F with k < 16, whereby we are saved an explicit
transformation of the exponent. The number of necessary multiplications and
squarings for the exponentiation is now

_ 2k —1
,LLQ(k') = Qk 1 —+ UOgQ GJ (1 + k;2k> y (66)

where in comparison to 111 (k) (see page 87) the expenditure for the precomputa-
tions has been reduced by half. The table for determining the favorable values of
k (Table 6-4) now has a somewhat different appearance.

Table 6-4. Numbers of multiplications for typical sizes of exponents and various bases 2%

Number of Binary Digits in the Exponent
32 64 128 512 768 1024 2048 4096
47 95 191 767 1151 1535 3071 6143
44 83 176 704 1056 1408 2816 5632
44 85 168 664 994 1325 2648 5293
46 85 164 638 954 1270 2534 5066
53 91 167 626 931 1237 2459 4904
68 105 179 626 924 1222 2414 4798
99 135 209 647 939 1232 2401 4739
162 198 270 702 990 1278 2429 4732

[=-IEEEN B G B U

Starting with 768 binary digits of the exponent, the favorable values of &
are larger by 1 than those given in the table for the previous version of the
exponentiation algorithm, while the number of required modular multiplications
has easily been reduced. It is to be expected that this procedure is on the whole
more favorable than the variant considered previously. Nothing now stands in the
way of an implementation of the algorithm.
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To demonstrate the implementation of these principles we select an adaptive
procedure that uses the appropriate optimal value for k. To accomplish this we
rely again on [Cohe] and look for, as is specified there, the smallest integer value k
that satisfies the inequality

k(k + 1)2%"

o+ | — 2

which comes from the formula p2 (k) given previously for the number of
necessary multiplications based on the condition p2(k + 1) — pa2(k) > 0.
The constant number of modular squarings |log, e| for all algorithms for
exponentiation introduced thus far is eliminated; here only the “real” modular

log, e < 6.7)

multiplications, that is, those that are not squarings, are considered.

The implementation of exponentiation with variable k requires a large
amount of main memory for storing the precomputed powers of a; for k = 8
we require about 64 Kbyte for 127 CLINT variables (this is arrived at via (27 - 1)

* sizeof(USHORT) * CLINTMAXSHORT), where two additional automatic CLINT
fields were not counted. For applications with processors or memory models
with segmented 16-bit architecture this already has reached the limit of what is
possible (see in this regard, for example, [Dunc], Chapter 12, or [Petz], Chapter 7).

Depending on the system platform there are thus various strategies
appropriate for making memory available. While the necessary memory for the
function mexp5_1() is taken from the stack (as automatic CLINT variables), with
each call of the following function mexpk_1() memory is allocated from the heap.
To save the expenditure associated with this, one may imagine a variant in which
the maximum needed memory is reserved during a one-time initialization and
is released only at the end of the entire program. In each case it is possible to fit
memory management to the concrete requirements and to orient oneself to this
in the commentaries on the following code.

One further note for applications: It is recommended always to check whether
it suffices to employ the algorithm with the base M = 2°. The savings in time that
comes with larger values of k is relatively not so large in comparison to the total
calculation time so as to justify in all cases the greater demand on memory and
the thereby requisite memory management. Typical calculation times for various
exponentiation algorithms, on the basis of which one can decide whether to use
them, are given in Appendix D.

The algorithm, implemented with M = 25, is contained in the FLINT/C
package as the function mexp5_1(). With the macro EXP_L() contained in flint.h
one can set the exponentiation function to be used: mexp5_1() or the following
function mexpk _1() with variable k.
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Function: modular exponentiation

Syntax: int mexpk 1 (CLINT bas 1, CLINT exp 1,
CLINT p_ 1, CLINT m 1);
Input: bas_1 (base)
exp_1 (exponent)
m_1 (modulus)

Output: p_1 (power residue)

Return: E_CLINT OKifallis ok
E_CLINT DBZ if division by 0
E_CLINT MAL ifmalloc() error

We begin with a segment of the table for representing e; = 2u, w odd, 0 < e; <
28 The table is represented in the form of two vectors. The first, twotab[ ], contains
the exponents ¢ of the two-factor 2! while the second, oddtab[ ], holds the odd
part u of a digit 0 < e; < 2°. The complete table is contained, of course, in the
FLINT/C source code.

static int twotab[] =
{o,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5, ...};
static USHORT oddtab[]=
{0,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15,1,17,9,19,5,21,11,23,3,25,13, ...};
int

mexpk_1 (CLINT bas_1, CLINT exp 1, CLINT p_1, CLINT m_ 1)

{

The definitions reserve memory for the exponents plus the leading zero, as well as
apointer clint **aptr 1 to the memory still to be allocated, which will take point-
ers to the powers of bas_1 to be precomputed. In acc_1 the intermediate results of

the exponentiation will be stored.
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CLINT a 1, a2 1;

clint e 1[CLINTMAXSHORT + 1];

CLINTD acc_1;

clint **aptr 1, *ptr 1;

int noofdigits, s, t, i;

ULONG k;

unsigned int lge, bit, digit, fk, word, pow2k, k_mask;

Then comes the usual checking for division by 0 and reduction by 1.

if (EQZ L (m_ 1))

{
return E_CLINT DBZ;
}
if (EQONE_L (m 1))
{

SETZERO L (p_1); /* modulus = 1 ==> residue = 0 */
return E_CLINT OK;
}

Base and exponent are copied to the working variables a 1 and e 1, and any
leading zeros are purged.

cpy_1 (a_l, bas_1);
cpy_1 (e 1, exp_ 1);

Now we process the simple cases a® = 1 and 0° = 0 (e > 0).

if (EQZ_L (e 1))
{
SETONE_L (p_1);
return E_CLINT_OK;
}
if (EQZ_L (a_l))
{
SETZERO_L (p_1);
return E_CLINT_OK;
}
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Next, the optimal value for k is determined; the value 2 is stored in pow2k, and
in k_mask the value 2% — 1. For this the function 1d_1() is used, which returns the
number of binary digits of its argument.

lge = 1d 1 (e 1);

k = 8;

while (k > 1 &% ((k - 1) * (k << ((k - 1) << 1))/((2 << k) - k - 1)) >= 1ge - 1)
{
__k;
}

pow2k = 1U << k;

k_mask = pow2k - 1U;

Memory is allocated for the pointers to the powers of a_1 to be computed. The
basea 1isreduced modulom 1.

if ((aptr_1l = (clint **) malloc (sizeof(clint *) * pow2k)) == NULL)
{
return E_CLINT MAL;
}

mod 1 (a_1, m 1, a 1);

aptr 1[1] = a_1;

If £ > 1, then memory is allocated for the powers to be computed. This is not nec-
essary for k = 1, since then no powers have to be precomputed. In the following
setting of the pointer aptr_1[1i] one should note that in the addition of an offset
to a pointer p a scaling of the offset by the compiler takes place, so that it counts
objects of the pointer type of p.

We have already mentioned that the allocation of working memory can be car-
ried out alternatively in a one-time initialization. The pointers to the CLINT objects
would in this case be contained in global variables outside of the function or in
static variables within mexpk_1().

95



Chapter 6

96

if (k> 1)
{
if ((ptr_1 = (clint *) malloc (sizeof(CLINT) * ((pow2k >> 1) - 1))) == NULL)
{
return E_CLINT MAL;
}

aptr 1[2] = a2 1;

for (aptr_1[3] = ptr 1, i = 5; i < (int)pow2k; i+=2)
{
aptr 1[i] = aptr 1[i - 2] + CLINTMAXSHORT;
}

Now comes the precomputation of the powers of the value a stored in a_1. The
values a®, a®, a7, R ak—1are computed (a? is needed onlyin an auxiliary role).

msqr 1 (a_1, aptr 1[2], m 1);

for (i =3; i < (int)pow2k; i += 2)
{
mmul 1 (aptr 1[2], aptr 1[i - 2], aptr 1[i], m 1);
}

}

This ends the case distinction for £ > 1. The exponent is lengthened by the
leading zero.

*(MSDPTR_L (e 1) + 1) = 0;

The determination of the value f (represented by the variable noofdigits).

noofdigits = (lge - 1)/k;
fk = noofdigits * k;

Word position s; and bit position d; of the digit e; in the variables word and bit.

word = fk >> LDBITPERDGT; /* fk div 16 */
bit = fk & (BITPERDGT-1U); /* fk mod 16 */

Calculation of the digit e,, 1 with the above-derived formula; e,, 1 is represented
by the variable digit.
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switch (k)
{
case 1
case 2
case 4:
case 8:
digit = ((ULONG)(e_1[word + 1] ) >> bit) & k_mask;
break;
default:
digit = ((ULONG)(e_l[word + 1] | ((ULONG)e 1l[word + 2]
<< BITPERDGT)) >> bit) & k_mask;

First run through step 2 of the algorithm, the case digit = ep—1 # 0.

if (digit 1= 0)  /* k-digit > 0 */
{
cpy 1 (acc 1, aptr 1[oddtab[digit]]);

Calculation of p2t; t is set to the two-part of e,—1 via twotablen,—1]; p is
represented by acc_1.

t = twotab[digit];
for (; t > 0; t--)
{
msqr_1 (acc 1, acc 1, m 1);
}

}
else /* k-digit == 0 */

SETONE_L (acc_1);
}

Loop over noofdigits beginning with f — 1.

for (--noofdigits, fk -= k; noofdigits >= 0; noofdigits--, fk -= k)
{
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Word position s; and bit position d; of the digit e; in the variables word and bit.

word = fk >> LDBITPERDGT; /* fk div 16 */
bit = fk & (BITPERDGT - 1U); /* fk mod 16 */

Computation of the digit e; with the formula derived above; ¢; is represented by
the variable digit.

switch (k)
{
case 1:
case 2:
case 4:
case 8:
digit = ((ULONG)(e 1[word + 1] ) >> bit) & k_mask;
break;
default:
digit = ((ULONG)(e_l[word + 1] | ((ULONG)e 1l[word + 2]
<< BITPERDGT)) >> bit) & k_mask;

Step 3 of the algorithm, the case digit = e; # 0; t is set via the table twotab[e;] to
the two-part of e;.

if (digit 1= 0)  /* k-digit > 0 */
{
t = twotab[digit];

Calculation of pzkft a®

aptr_1[oddtab [e;]].

in acc_1. Access to a" with the odd part u of e; is via

for (s =k -t; s> 0; s--)
{
msqr_1 (acc_l, acc_ 1, m_1);
}
mmul 1 (acc_1, aptr 1[oddtab[digit]], acc 1, m 1);
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Calculation of pzt ; pis still represented by acc_1.

for (; t > 0; t--)

{
msqr_1 (acc 1, acc 1, m 1);
}
}
else /* k-digit == 0 */

Step 3 of the algorithm, case e; = 0: Calculate ka.

for (s = k; s > 0; s--)
{
msqr 1 (acc 1, acc 1, m 1);
}
}
}

End of the loop; output of acc_1 as power residue modulom 1.

cpy 1 (p_1, acc 1);

At the end, allocated memory is released.

free (aptr_l);

if (ptr_1 != NULL) free (ptr_l);
return E_CLINT OK;

}

The various processes of M -ary exponentiation can be clarified with the help
of a numerical example. To this end let us examine the calculation of the power
1234567 mod 18577, which will be carried out by the function mexpk_1() in the
following steps:
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1. Precomputations

The representation of the exponent e = 667 can be expressed to the base

2% with k = 2 (cf. the algorithm for M -ary exponentiation on page 89),

whereby the exponent e has the representation e = (10 10 01 10 11)52 .

The power a® mod 18577 has the value 17354. Further powers of a do not

arise in the precomputation because of the small size of the exponent.

2. Exponentiation loop

exponentdigite; =2%u | 2.1 [ 2'.1 ] 2.1 2'.1] 2.3

p — p? mod n — | 14132 | 13261 | 17616 | 13599

p—p? modn - _ | 4239 ~ | 17343

p — pa* mod n 1234 | 13662 | 10789 | 3054 | 4445

p — p? mod n 18019 | 7125 - 1262 -
3. Result

p = 1234557 mod 18577 = 4445.

As an extension to the general case we shall introduce a special version
of exponentiation with a power of two 2F as exponent. From the above

considerations we know that this function can be implemented very easily by

means of k-fold exponentiation. The exponent 2% will be specified by k.

Function:

Syntax:

Input:

Output:

Return:

modular exponentiation with exponent a power of 2

int mexp2 1 (CLINT a_1, USHORT k, CLINT p 1,

CLINT m_1);
a_1 (base)
k (exponent of 2)
m_1 (modulus)
p_1 (residue of a_l2k mod m 1)

E_CLINT OK if all is ok
E_CLINT DBZ if division by 0

int

mexp2_ 1 (CLINT a_l, USHORT k, CLINT p_1, CLINT m_ 1)

{
CLINT tmp_1;

if (EQZ_ L (m_ 1))

{

return E_CLINT DBZ;

}
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Ifk > 0, then a_1is squared k times modulom_1.

if (k > 0)
{
cpy 1 (tmp 1, a 1);
while (k-- > 0)
{
msqr 1 (tmp 1, tmp 1, m 1);
}
cpy_1 (p_1, tmp_1);
}

else

Otherwise, if k = 0, we need only to reduce modulom 1.

{
mod 1 (a1, m 1, p1);
}
return E_CLINT OK;
}

6.3 Addition Chains and Windows

A number of algorithms for exponentiation have been published, some of which
are conceived for arbitrary operands and others for special cases. The goal is
always to find procedures that employ as few multiplications and divisions as
possible. The passage from binary to M -ary exponentiation is an example of how
the number of these operations can be reduced.

Binary and M -ary exponentiation are themselves special cases of the
construction of addition chains (cf. [Knut], Section 4.6.3). We have already
taken advantage of the fact that the laws of exponentiation allow the additive
decomposition of the exponent of a power:e = k + 1 = a° = abtt = aFal,
Binary exponentiation decomposes the exponent into a sum

€ =€k_1 '2k71+€]€72 .2k72+...+60’

from which follows the exponentiation in the form of alternating squarings and
multiplications (cf. page 82):

a modn= (- (((1@* ) a2)") ) moan.
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The associated addition chain is obtained by considering the exponents to
powers of a that arise as intermediate results in this process:

ek—1,

€k—1-2,

er—1-2+ex_ 2,
(ex—1-2+ex—2) -2,
(ex—1-2+ex—2) 2+ ep_s,
((ex—1-2+er—2) 2+ ex_3)-2,

(-~ ((ex—1-2+exp—2)-2+ex-3)-2+---+e1) 2+ eo.

Here terms of the sequence are omitted if e; = 0O for a particular j. For the
number 123, for example, based on the binary method the result is the following
addition chain with 12 elements: 1, 2, 3, 6, 7, 14, 15, 30, 60, 61, 122, 123.

In general, a sequence of numbers 1 = ag, a1, a2, ..., a, = e for which for
every i = 1,...,r there exists a pair (j, k) with j < k < isuchthata; = a; + ax
holds is called an addition chain for e of length r.

The M -ary method generalizes this principle for the representation of the
exponent to other bases. Both methods have the goal of producing addition
chains that are as short as possible, in order to minimize the calculational expense
for the exponentiation. The addition chain for 123 produced by the 23-ary
methodis 1, 2, 3, 4, 7, 8, 15, 30, 60, 120, 123; with the 24-ary method the addition
chain 1, 2, 3, 4, 7, 11, 14, 28, 56, 112, 123 is created. These last chains are, as
expected, considerably shorter than those obtained by the binary method, which
for larger numbers will have a greater effect than in this example. In view of the
real savings in time one must, however, note that in the course of initialization for

the calculation of ¢® mod n the M -ary methods construct the powers a2, a3, a5,

a™~1 also for those exponents that are not needed in the representation of e to
the base M or for the construction of the addition chain.

Binary exponentiation represents the worst case of an addition chain: By
considering it we obtain a bound on the greatest possible length of an addition
chain of log, e + H(e) — 1, where H (e) denotes the Hamming weight of e." The
length of an addition chain is bounded below by log, e 4 log, H(e) — 2.13, and
so a shorter addition chain for e is not to be found (cf. [Scho] or [Knut], Section
4.6.3, Exercises 28, 29). For our example this means that the shortest addition
chain for e = 123 has length at least 8, and so the results of the M -ary methods

cited earlier seem not to be the best possible.

! If n possesses a representation n = (ni_1nk—2 - ..n0),, then H(n) is defined as ), n;.

(See [HeQul], Chapter 8.)
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The search for shortest addition chains is a problem for which there is as yet
no known polynomial-time procedure. It lies in the complexity class NP of those
decision problems that can be solved in polynomial time by nondeterministic
methods, that is, those that can be solved by “guessing,” where the necessary
time for calculation is bounded by a polynomial p that is a function of the size
of the input. In contrast to this, the class P contains those problems that can
be solved deterministically in polynomial time.” It is not surprising that P is a
subset of NP, since all polynomial-time deterministic problems can also be solved
nondeterministically.

The determination of the shortest addition chain is an NP-complete problem,
that is, a problem that is at least as difficult to solve as all other problems in the set
NP (cf. [Yaco] and [HKW], page 302). The NP-complete problems are therefore of
particular interest, since if for even one of them a deterministic polynomial-time
procedure could be found, then all other problems in NP could be solved in
polynomial time as well. In this case, the classes P and NP would collapse into
a single set of problems. Although P # NP is conjectured, this problem has
remained unsolved, and it represents a central problem of complexity theory .

With this it is clear that all practical procedures for generating addition chains
must rest on heuristics, that is to say, mathematical rules of thumb such as that
for the determination of the exponent k in 2*-ary exponentiation, of which one
knows that it has better time behavior than other methods.

For example, in 1990 Y. Yacobi [Yaco] described a connection between
the construction of addition chains and the compression of data according to
the Lempel-Ziv procedure; there an exponentiation algorithm based on this
compression procedure as well as on the M -ary method is also given.

In the search for the shortest possible addition chains the M -ary exponenti-
ation can be further generalized, which we shall pursue below in greater detail.
The window methods represent the exponent not as in the M -ary method by
digits to a fixed base M, but by digits of varying binary lengths. Thus, for example,
long sequences of binary zeros, called zero windows, can appear as digits of the
exponent. If we recall the M -ary algorithm from page 89, it is clear that for a
zero window of length [ only the [-fold repetition of squaring is required, and the
corresponding step is then

ol 2\ 2 2 2 .
3.Setp «— p° mod m = ((p)) --+) (Il times) mod m.

Digits different from zero will be treated, depending on the process, either
as windows of fixed length or as variable windows with a maximal length. As

If the input to such a problem is an integer n, then the number of digits of n can serve as a
measure of the size of the input. There then exists a polynomial p such that the calculation
time is bounded by p(logs n). The difference whether the cost of solving the problem grows
with n or with the number of digits of n is decisive.
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with the M -ary process, for every nonzero window (in the following called not
quite aptly a “1-window”) of length ¢, in addition to the repeated squaring an
additional multiplication by a precalculated factor is required, in analogy to the
corresponding step of the ok -ary procedure:

3. Setp < p* mod m and then set p < pa® mod m.

The number of factors to be precomputed depends on the permitted
maximal length of the 1-window. One should note that the 1-windows in
the least-significant position always have a 1 and thus are always odd. The
factorization of the exponent digit on page 89 into an even and odd factor will
thus at first not be needed. On the other hand, in the course of exponentiation
the exponent is processed from the most-significant to least-significant place,
which means for the implementation that first the complete decomposition of the
exponent must be carried out and stored before the actual exponentiation can
take place.

Yet, if we begin the factorization of the exponent at the most-significant
digit and travel from left to right, then every 0- or 1-window can be processed
immediately, as soon as it is complete. This means, of course, that we will also
obtain 1-windows with an even value, but the exponentiation algorithm is
prepared for that.

Both directions of decomposition of the exponent into 1-windows with fixed
length [ follow essentially the same algorithm, which we formulate below for
decomposition from right to left.

Decomposition of an integer e into 0-windows and 1-windows having fixed
length [

1. If the least-significant binary digit is equal to 0, then begin a 0-window and
go to step 2; otherwise, begin a 1-window and go to step 3.

2. Add the next-higher binary digits in a O-window as long as no 1 appears. If a
1 appears, then close the 0-window, begin a 1-window, and go to step 3.

3. Collect a further [ — 1 binary digits into a 1-window. If the next-higher digit
is a 0, begin a 0-window and go to step 2; otherwise, begin a 1-window
and go to step 3. If in the process all digits of e have been processed, then
terminate the algorithm.

The decomposition from left to right begins with the most-significant binary
digit and otherwise proceeds analogously. If we suppose that e has no leading
binary zeros, then the algorithm cannot reach the end of the representation of e
within step 2, and the procedure terminates in step 3 under the same condition
given there. The following examples illustrate this process:



e Lete = 1896837 = (111001111000110000101)2, and let ! = 3. Beginning
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with the least-significant binary digit, e is decomposed as follows:

111 001 111 00 011 0000 101.

e

The choice | = 4 leads to the following decomposition of e:

e=111001111 0 0011 000 0101.

The 2" -ary exponentiation considered above yields, for example for k = 2,
the following decomposition:

e=01110011110001 1000 01 O1.

The window decomposition of e for [ = 3 contains five 1-windows, while
that for [ = 4 has only four, and for each the same number of additional
multiplications is required. On the other hand, the 22-ary decomposition
of e contains eight 1-windows, requires double the number of additional
multiplications compared to the case | = 4, and is thus significantly less
favorable.

e The same procedure, but beginning with the most-significant binary digit,

yields for [ = 4 and e = 123 the decomposition
e=111001111 000 1100 00 101,

likewise with four 1-windows, which, as already established above, are not
all odd.

Finally, then, exponentiation with a window decomposition of the exponent

can be formalized by the following algorithm. Both directions of window
decomposition are taken into account.

Algorithm for exponentiation ¢® mod m with the representation of ¢ in
windows of (maximal) length [/ for odd 1-windows

1.

Decompose the exponent e into 0- and 1-windows (wgx—1 . ..wo) of
respective lengths I 1, ..., lo.

ol

. Calculate and store a® mod m, a® mod m, a” mod m, ...,a*> ~* mod m.
. Setp <+ a“** mod mandi «— k — 2.

. Setp «— p' mod m.

. Ifw; # 0, setp « pa®’ mod m.

. Setv «— ¢ — 1;if7 > 0, go to step 4.

. Output p.
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If not all 1-windows are odd, then steps 3 through 6 are replaced by the
following, and there is no step 7:

’ olk—1 2\ 2 2 2 .
3. w1 =0,setp < p mod m = ((p) ) <o+ | (lj—1 times)

mod m. Ifwy_1 # 0, factor wi_1 = 2'u with odd u; set p «— a* mod m,
t
and then p «— p2 mod m. In each case set i «— k — 2.

. 2 2
4’ fw; =0,setp «— pzll mod m = < . ((p2)2> . ) (l; times) mod m.

If w; # 0, factor w; = 2'w with odd u; set p «— pzlrt mod m, and then
t
p — pa® mod m; nowset p — p? mod m.

5. Seti « i — 1;ifi > 0, go to step 4'.

6’. Output p.

6.4 Montgomery Reduction and Exponentiation

Now we are going to abandon addition chains and turn our attention to another
idea, one that is interesting above all from the algebraic point of view. It makes it
possible to replace multiplications modulo an odd number n by multiplications
modulo a power of 2, that is, 2’“, which requires no explicit division and is
therefore more efficient than a reduction modulo an arbitrary number n. This
useful method for modular reduction was published in 1985 by P. Montgomery
[Mont] and since then has found wide practical application. It is based on the
following observation.

Let n and r be relatively prime integers, and let 7~ be the multiplicative
inverse of » modulo n; and likewise let n~! be the multiplicative inverse of n
modulo r; and furthermore, define n’ := —n "' mod r and m := tn’ mod r. For
integers t we then have

t _
-+ A = tr~ ! mod n. (6.8)

r

Note that on the left side of the congruence we have taken congruences
modulo 7 and a division by  (note that ¢ + mn = 0 mod 7, so the division has
no remainder), but we have not taken congruences modulo n. By choosing r as a
power of 2 in the form 2° we can reduce a number x modulo r simply by slicing
off x at the sth bit (counting from the least-significant bit), and we can carry out
the division of « by r by shifting « to the right by s bit positions. The left side of
(6.8) thus requires significantly less computational expense than the right side,
which is what gives the equation its charm. For the two required operations we
can invoke the functions mod2_1() (cf. Section 4.3) and shift_1() (cf. Section 7.1).
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This principle of carrying out reduction modulo n is called Montgomery
reduction. Below, we shall institute Montgomery reduction for the express
purpose of speeding up modular exponentiation significantly in comparison to
our previous results. Since the procedure requires that n and r be relatively prime,
we must take n to be odd. First we have to deal with a couple of considerations.

We can clarify the correctness of the previous congruence with the help
of some simple checking. Let us replace m on the left-hand side of (6.8) by
the expression tn’ mod r, which is (6.9), and further, replace tn’ mod r by
tn' —r Ltn’ / TJ € 7 to get (6.10), and then in (6.10) for n the integer expression
(r'r — 1) /n for a certain v’ € Z and obtain (6.11). After reduction modulo n we
obtain the result (6.12):

t+mn _ t+n(tn' modr)

= (6.9)
r r
/ /
_ it ViJ (6.10)
r r
t+t(rr' —1)
= (6.11)
T
= tr~ " mod n. (6.12)
To summarize equation (6.8) we record the following: Let n, ¢, € Z with
ged(n,r) = 1,7/ := —n~" mod 7. For
f(t) :=t+ (tn’ mod r)n (6.13)
we have
f(t) =t mod n, (6.14)
f(t) =0 mod r. (6.15)

We shall return to this result later.
To apply Montgomery reduction we shift our calculations modulo n into a
complete residue system (cf. Chapter 5)

R:= R(r,n) :=={irmodn|0<i<n}

with a suitable 7 := 2° > 0 such that 2°”' < n < 2°. Then we define the
Montgomery product “x” of two numbers a and b in R:

a x b:=abr ' mod n,
with 71 representing the multiplicative inverse of » modulo n. We have
ax b= (ir)(jr)r ' = (ij)r mod n € R,

and thus the result of applying x to members of R is again in R. The Montgomery
product is formed by applying Montgomery reduction, where again n’ :=

—n"! mod r. From n’ we derive the representation 1 = ged(n, ) = 7'r — n/n,
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which we calculate in anticipation of Section 10.2 with the help of the extended
Euclidean algorithm. From this representation of 1 we immediately obtain

/
1=7rrmodn
and
!
1= -—n"nmodr,

so that 7 = r~! mod n is the multiplicative inverse of » modulo n, and
n’ = —n~! mod r the negative of the inverse of » modulo r (we are anticipating
somewhat; cf. Section 10.2). The calculation of the Montgomery product now

takes place according to the following algorithm.

Calculation of the Montgomery product a X bin R(r,n)
1. Sett < ab.
2. Setm + tn/ mod .
3. Setu «— (t +mn)/r (the quotient is an integer; see above).

4. If u > n, output © — n, and otherwise u. Based on the above selection of
the parameter we have a, b < n aswell asm,n < r and finally u < 2n; cf.
(6.21).

The Montgomery product requires three long-integer multiplications, one in
step 1 and two for the reduction in steps 2 and 3. An example with small numbers
will clarify the situation: Let a = 386, b = 257, and n = 533. Further, let r = 2'°,
Thenn' = —n "' mod r = 707, m = 6,t + mn = 102400, and v = 100.

A modular multiplication ab mod n with odd n can now be carried out by
first transforming a’ < ar mod n and b’ « br mod n to R, there forming
the Montgomery product p’ «— a’ x b’ = a’b'r~! mod n and then with
! = ab mod n obtaining the desired result. However, we
can spare ourselves the reverse transformation effected in the last step by setting

p—p x1=pr"

p « a’ x bat once and thus avoid the transformation of b, so that in the end we
have the following algorithm.
Calculation of p = ab mod n (n odd) with the Montgomery product

1. Determine 7 := 2% with 2° 7! < n < 2%, Calculate 1 = r'r — n/n by means
of the extended Euclidean algorithm.

2. Seta’ «— ar mod n.

3. Setp « a’ x band output p.
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Again we present an example with small numbers for clarification: Let
a=123,b=456,n = 789,7 = 2'°. Thenn’ = —n"! mod r = 963, a’ = 501,
andp = a’ x b= 69 = ab mod n.

Since the precalculation of 7’ and n’ in steps 1 and 2 is very time-
consuming and Montgomery reduction in this version also has two long-number
multiplications on its balance sheet, there is actually an increased computational
expenditure compared with “normal” modular multiplication, so that the
computation of individual products with Montgomery reduction is not
worthwhile.

However, in cases where many modular multiplications with a constant
modulus are required, for which therefore the time-consuming precalculations
occur only once, we may expect more favorable results. Particularly suited for
the Montgomery product is modular exponentiation, for which we shall suitably
modify the M -ary algorithm. To this end let once againe = (em—1€m—2...€0) g
andn = (nj—1nj—2... no)B be the representations of the exponent e and
the modulus n to the base B = 2. The following algorithm calculates powers
a® mod n in Z,, with odd n using Montgomery multiplication. The squarings
that occur in the exponentiation become Montgomery products a X a, in the
computation of which we can use the advantages of squaring.

Exponentiation modulo n (n odd) with the Montgomery product

1. Setr « B! = 2" Calculate 1 = 7’ — nn’ with the Euclidean algorithm.

3 5 _2k_1q

2. Seta «— ar mod n. Calculate and store the powers a°,a”, ..., a

the Montgomery product X in R(r, n).

using

3. Ifem_1 # 0, factor e, 1 = 2%w with odd u. Setp — (Eu)zt.
Ife,—1 = 0,setp < r mod n.
In each case set i < m — 2.

_ _9ok _9\2 2 2 . _92 —
4. Ife; = 0,setp «— p~ = ((p)) -] (k-fold squaring®” = P X D).

B E“)Qt

Ife; # 0, factore; = 2% with odd u. Set p «— (ﬁQ
5. If1 > 0,set? «+— ¢ — 1 and go to step 4.

6. Output the Montgomery productp X 1.

Further possibilities for improving the algorithm lie less in the exponentiation
algorithm than in the implementation of the Montgomery product itself, as
demonstrated by S. R. Dussé and B. S. Kaliski in [DuKa]: In calculating the
Montgomery product on page 108, in step 2 we can avoid the assignment
m « tn' mod r in the reduction modulo r. Furthermore, we can calculate with
ng := n’ mod B instead of with n” in executing the Montgomery reduction.
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We can create a digit m; < t;n(, modulo B, multiply it by n, scale by the factor
B?, and add to t. To calculate ab mod n with a,b < n the modulus n has the

representation n = (n;_1n;_o ... no)B as above, and we let r := B' as well as

/ !/ / /
rr’ —nn’ = landng := n’ mod B.

Calculation of the Montgomery product a X b ala Dussé and Kaliski
1. Sett « ab,n{, < n' mod B, i < 0.
2. Setm; «— tm6 mod B (m; is a one-digit integer).
3. Sett «— t+ minBi.
4. Seti «+— ¢+ 1;ifi <1 — 1, go to step 2.
5. Sett «— t/r.

6. If t > n, outputt — n and otherwise .

Dussé and Kaliski state that the basis for their clever simplification is the
method of Montgomery reduction to develop ¢ as a multiple of 7, but they offer no
proof. Before we use this procedure we wish to make more precise why it suffices
to calculate a x b. The following is based on a proof of Christoph Burnikel [Zieg]:

In steps 2 and 3 the algorithm calculates a sequence (t(i)) l by means
i=0,...,
of the recursion
0 = ap, (6.16)
‘ (@) .
Ut = f (%) B,  i=0,...,0—1, 6.17)

where
F)=t+ ((t mod B) (—n*1 mod B) mod B) n
is the already familiar function that is induced by the Montgomery equation (cf.

(6.13), and there set r +— B in f(t)). The members of the sequence +() have the
properties

t® = 0 mod Bi7 (6.18)
t® = b mod n, (6.19)

t(l) B .

= abr™" mod n, (6.20)
)

t— < 2n. (6.21)
,

Properties (6.18) and (6.19) are derived inductively from (6.14), (6.15), (6.16),
and (6.17); from (6.18) we obtain B' | ¢! < r | +(!). From this and from
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t®) = ab mod n follows (6.20), and lastly we have (6.21) on account of

-1
t — +0) + nz miBi < 2nB!
i=0
(note here that t(9) = ab < n? < nBY.

The expenditure for the reduction is now determined essentially by
multiplication of numbers of order of magnitude the size of the modulus. This
variant of Montgomery multiplication can be elegantly implemented in code that
forms the core of the multiplication routine mul_1() (cf. page 36).

Function: = Montgomery product

Syntax: void mulmon_ 1 (CLINT a_l, CLINT b_1, CLINT n_1,
USHORT nprime, USHORT logB r,
CLINT p 1);

Input: a_l, b_1 (factors a and b)

n_1 (modulusn > a,b)

nprime (n’ mod B)

logB 1 (logarithm of r to base B = 216;

it must hold that B8 ~1 < p < B1o8r)

Output: p_1 (Montgomery producta x b=a-b-7" ' mod n)

void
mulmon 1 (CLINT a_1, CLINT b 1, CLINT n_1, USHORT nprime,
USHORT logB r, CLINT p 1)

CLINTD t_1;

clint *tptr 1, *nptr_ 1, *tiptr 1, *lasttnptr, *lastnptr;
ULONG carry;

USHORT mi;

int i;

mult (a_1l, b 1, t 1);

lasttnptr = t 1 + DIGITS L (n_1);

lastnptr = MSDPTR L (n_1);

The earlier use of mult () makes possible the multiplication ofa_1 and b_1 without
the possibility of overflow (see page 72); for the Montgomery squaring we simply
insert sqr(). The result has sufficient spacein t_1. Then t_1 is given leading zeros
to bring it to double the number of digits of n_1ift 1 is smaller than this.
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for (i = DIGITS L (t 1) + 1; i <= (DIGITS_L (n 1) << 1); i++)
{

SETDIGITS L (t 1, MAX (DIGITS L (t 1), DIGITS L (n 1) << 1));

Within the following double loop the partial products m;n.B* with m; := t;n{, are
calculated one after the other and added to t_1. Here again the code is essentially
that of our multiplication function.

for (tptr 1 = LSDPTR L (t_1); tptr 1 <= lasttnptr; tptr 1++)
{

carry = 0;

mi = (USHORT)((ULONG)nprime * (ULONG)*tptr 1);

for (nptr_1 = LSDPTR_L (n_1), tiptr 1 = tptr 1;
nptr 1 <= lastnptr; nptr l++, tiptr 1++)
{
*tiptr 1 = (USHORT)(carry = (ULONG)mi * (ULONG)*nptr 1 +
(ULONG)*tiptr 1 + (ULONG)(USHORT)(carry >> BITPERDGT));

In the following inner loop a possible overflow is transported to the most-
significant digit of t 1, and t_1 contains an additional digit in case it is needed.
This step is essential, since at the start of the main loop t_1 was given a value and
not initialized via multiplication by O as was the variable p_1.

for ( ;
((carry >> BITPERDGT) > 0) && tiptr 1 <= MSDPTR L (t_1);
tiptr 1++)
{
*tiptr 1 = (USHORT)(carry = (ULONG)*tiptr 1 +
(ULONG) (USHORT) (carry >> BITPERDGT));
}

if (((carry >> BITPERDGT) > 0))
{
*tiptr 1 = (USHORT)(carry >> BITPERDGT);
INCDIGITS L (t_l);
}
}
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Now follows division by B !, and we shift t 1 by logB r digits to the right, or ig-
nore the logB r least-significant digits of t 1. Then if applicable the modulusn 1
is subtracted from t_1 before t 1 is returned as result into p_1.

tptr 1 =t 1 + (logB r);
SETDIGIT L (tptr 1, DIGITS L (t_ 1) - (logB 1));
if (GE_L (tptr 1, n 1))

{

sub 1 (tptr 1, n 1, p 1);

}

else

cpy_1 (p_1, tptr_1);
}
}

The Montgomery squaring sqrmon_1() differs from this function only
marginally: There is no parameter b_1 in the function call, and instead of
multiplication with mult(a_1, b 1, t 1) we employ the squaring function
sqr(a_l, t 1), which likewise ignores a possible overflow. However, in modular
squaring in the Montgomery method one must note that after the calculation of
p' — a' x d the reverse transformation p < p’ x 1 = p'r~! = a? mod n must

be calculated explicitly (cf. page 108).

Function: Montgomery square

Syntax: void sqrmon 1 (CLINT a1, CLINT n_1, USHORT nprime,
USHORT logB r, CLINT p_1);

Input: a_l (factor a), n_1 (modulus n > a)
nprime (n’ mod B)
logB_r (logarithm of r to base B = 2'°);
it must hold that B8+ —1 < p < Blosir

Output: p_1 (Montgomery square a?r~! mod n)

In their article Dussé and Kaliski also present the following variant of the
extended Euclidean algorithm, to be dealt with in detail in Section 10.2, for
calculating ny, = n’ mod B, with which the expenditure for the precalculations
can be reduced. The algorithm calculates —n ' mod 2° foran s > 0 and for this
requires long-number arithmetic.
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Algorithm for calculating the inverse —n~ ' mod 2° for s > 0, n odd
1. Setx «— 2,y < 1,and 7 « 2.
2. Ifx <nymod x,sety «— y + x.
3. Setx «— 2z andt « i 4 1;ifi < s, go to step 2.

4. Outputx — y.

With complete induction it can be shown that in step 2 of this algorithm
yn = 1 mod x always holds, and thus y = n~! mod x. After z has taken on the
value 2° in step 3, we obtain with 2° — y = —n ! mod 2° the desired result if we
choose s such that 2° = B. The short function for this can be obtained under the
name invmon_1() in the FLINT/C source. It takes only the modulus n as argument
and outputs the value —n~! mod B.

These considerations are borne out in the creation of the functions
mexp5m_1() and mexpkm 1(), for which we give here only the interface, together
with a computational example.

Function: modular exponentiation with odd modulus
(2°-ary or 2" -ary method with Montgomery product)

Syntax: int mexp5m 1 (CLINT bas_1, CLINT exp 1,
CLINT p_1, CLINT m 1);

int mexpkm 1 (CLINT bas 1, CLINT exp 1,
CLINT p_1, CLINT m 1);

Input: bas 1 (base)
exp_1 (exponent)
m_1 (modulus)

Output: p_1 (power residue)

Return: E_CLINT OKifallis ok
E_CLINT DBZ if division by 0
E_CLINT MAL ifmalloc() error
E_CLINT MOD if even modulus

These functions employ the routines invmon_1(), mulmon_1(), and sqrmon_1()
to compute the Montgomery products. Their implementation is based on the
functions mexp5_1() and mexpk 1() modified according to the exponentiation
algorithm described above.

We would like to reconstruct the processes of Montgomery exponentiation
in mexpkm_1() with the same numerical example that we looked at for M -ary
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exponentiation (cf. page 100). In the following steps we shall calculate the power
1234%7 mod 18577:

1. Precomputations
The exponent e = 667 is represented to the base 2F with k = 2 (cf. the
algorithm for Montgomery exponentiation on page 114). The exponent e
thereby has the representation

e= (101001 10 11)0.

The value r for Montgomery reduction is 7 = 2'¢ = B = 65536.

The value ny, (cf. page 110) is now calculated as nj, = 34703.

The transformation of the base a into the residue system R(r,n) (cf.
page 107) follows from

a=ar modn = 1234 - 65536 mod 18577 = 5743.

The power @* in R(r,n) has the value @ = 9227. Because of the small
exponent, further powers of @ do not arise in the precomputation.

2. Exponentiation loop

exponentdigite; = 2w | 2'-1 2'.1 2.1 2'.1 2.3

p—p ~ 16994 3682 14511 11066

P P - - 6646 - 12834

P— pxa 5743 15740 8707 16923 1583
p—p 9025 11105 - 1628 -

3. Result
The value of the power p after normalization:

p=px1=pr ' modn=1583r"" mod n = 4445.

Those interested in reconstructing the coding details of the functions
mexp5m_1() and mexpkm_1() and the calculational steps of the example related to
the function mexpkm_1() are referred to the FLINT/C source code.

At the start of this chapter we developed the function wmexp_1(), which has
the advantage for small bases that only multiplications p < pa mod m of the
type CLINT * USHORT mod CLINT occur. In order to profit from the Montgomery
procedure in this function, too, we adjust the modular squaring to Montgomery
squaring, as in mexpkm_1(), with the use of the fast inverse function invmon_1(),
though we leave the multiplication unchanged. We can do this because with the
calculational steps for Montgomery squaring and for conventional multiplication
modulo n,

(a2r71) b= (a2b) r~ ' mod n,
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we do not abandon the residue system R(r,n) = {irmodn |0 < i < n}
introduced above. This process yields us both the function wmexpm 1() and the
dual function umexpm_1() for USHORT exponents, respectively for odd moduli,
which in comparison to the two conventional functions wnexp 1() and umexp_1()
again yields a significant speed advantage. For these functions, too, we present
here only the interface and a numerical example. The reader is again referred to
the FLINT/C source for details.

Function: = modular exponentiation with Montgomery reduction
for USHORT-base, respectively USHORT exponents
and odd modulus

Syntax: int wmexpm 1 (USHORT bas, CLINT e 1,
CLINT p_1, CLINT m 1);

int umexpm 1 (CLINT bas 1, USHORT e,

CLINT p_1, CLINT m 1);

Input: bas, bas_1 (base)

e, e_l (exponent)

m_1 (modulus)
Output: p_1 (residue of bas®! mod m_1, resp. bas_1° mod m_1)
Return: E_CLINT_OK f all is ok

E_CLINT DBZ if division by 0

E_CLINT MOD if even modulus

The function wmexpm_1() is tailor-made for our primality test in Section 10.5,
where we shall profit from our present efforts. The function will be documented
with the example used previously of the calculation of 123457 mod 18577.

1. Precalculations
The binary representation of the exponentis e = (1010011011)2 .
The value r for the Montgomery reduction is r = 2'° = B = 65536.
The value n(, (cf. page 110) is calculated as above, yielding ng = 34703.
The initial value of p is set as p < pr mod 18577.

2. Exponentiation loop

Exponent bit | 1 0 1 0 0 1 1 0 1 1
p— pxpinR(r,n) | 9805 9025 16994 11105 3682 6646 14511 1628 11066 9350
P < Pa mod n 5743 - 15740 - - 8707 16923 - 1349 1583
3. Result

The value of the exponent p after normalization:

p=px1l= ]_)r_l mod n = 1583r " mod n = 4445.
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A detailed analysis of the time behavior of Montgomery reduction with the
various optimizations taken into account can be found in [Boss]. There we are
promised a ten to twenty percent saving in time over modular exponentiation by
using Montgomery multiplication. As can be seen in the overviews in Appendix D
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of typical calculation times for FLINT/C functions, our implementations bear

out this claim fully. To be sure, we have the restriction that the exponentiation

functions that use Montgomery reduction can be used only for odd moduli.

Nonetheless, for many applications, for example for encryption and decryption,
as well as for computing digital signatures according to the RSA procedure (see
Chapter 17), the functions mexpsm_1() and mexpkm_1() are the functions of choice.

Altogether, we have at our disposal a number of capable functions for
modular exponentiation. To obtain an overview, in Table 6-5 we collect these

functions together with their particular properties and domains of application.

Table 6-5. Exponentiation functions in FLINT/C

Function

mexp5_1()

mexpk_1()

mexp5m_1()

mexpkm_1()

umexp_1()

umexpm_1()

wmexp_1()

wmexpm_1()

mexp2_1()

Domain of Application

General 2°-ary exponentiation, without memory allocation, greater
stack requirements.

General 2" -ary exponentiation with optimal & for CLINT numbers,
with memory allocation, lower stack requirements.

2°-ary Montgomery exponentiation for odd moduli, without
memory allocation, greater stack requirements.

2% _ary Montgomery exponentiation for odd moduli, with optimal
for CLINT numbers up to 4096 binary digits, with memory allocation,
lower stack requirements.

Mixed binary exponentiation of a CLINT base with USHORT exponent,
lower stack requirements.

Mixed binary exponentiation of a CLINT base with USHORT exponent
and Montgomery reduction, thus only for odd moduli, lower stack
requirements.

Mixed binary exponentiation of a USHORT base with CLINT
exponent,lower stack requirements.

Mixed binary exponentiation with Montgomery squaring of a USHORT
base with CLINT exponent, odd moduli, lower stack requirements.

Mixed exponentiation with a power-of-2 exponent, lower stack
requirements.
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6.5 Cryptographic Application of Exponentiation

We have worked hard in this chapter in our calculation of powers, and it is
reasonable to ask at this point what modular exponentiation might have to offer
to cryptographic applications. The first example to come to mind is, of course,
the RSA procedure, which requires a modular exponentiation for encryption and
decryption—assuming suitable keys. However, the author would like to ask his
readers for a bit (or perhaps even a byte) of patience, since for the RSA procedure
we still must collect a few more items, which we do in the next chapter. We shall
return to this extensively in Chapter 17.

For those incapable of waiting, we offer as examples of the application of
exponentiation two important algorithms, namely, the procedure suggested
in 1976 by Martin E. Hellman and Whitfield Diffie [Diff] for the exchange of
cryptographic keys and the encryption procedure of Taher ElGamal as an
extension of the Diffie-Hellman procedure.

The Diffie-Hellman procedure represents a cryptographic breakthrough,
namely, the first public key, or asymmetric, cryptosystem (see Chapter 17).
Two years after its publication, Rivest, Shamir, and Adleman published the RSA
procedure (see [Rive]). Variants of the Diffie-Hellman procedure are used today
for key distribution in the Internet communications and security protocols
IPSec, IPv6, and SSL, which were developed to provide security in the transfer of
data packets in the IP protocol layer and the transfer of data at the application
level, for example from the realms of electronic commerce. This principle of
key distribution thus has a practical significance that would be difficult to
overestimate.’

With the aid of the Diffie-Hellman protocol two communicators, Ms. A and
Mr. B, say, can negotiate in a simple way a secret key that then can be used for the
encryption of communications between the two. After A and B have agreed on
a large prime number p and a primitive root a modulo p (we shall return to this
below), the Diffie-Hellman protocol runs as follows.

Protocol for key exchange a la Diffie-Hellman

1. A chooses an arbitrary value za < p — 1 and sends ya := a™ mod p as her
public key to B.

2. B chooses an arbitrary value g < p — 1 and sends yg := a™® mod p as his
public key to A.

5.1P Security (IPSec), developed by the Internet Engineering Task Force (IETF), is, as an extensive

security protocol, a part of the future Internet protocol IPv6. It was created so that it could also
be used in the framework of the then current Internet protocol (IPv4). Secure Socket Layer
(SSL) is a security protocol developed by Netscape that lies above the TCP protocol, which
offers end-to-end security for applications such as HTTP, FTP, and SMTP (for all of this see
[Stal], Chapters 13 and 14).
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3. A computes the secretkey sa := yg" mod p.

B

4. B computes the secret key sg := y,® mod p.

Since

rBTra —

J— TA — rg —
SA=Ygt =a Ya® = sg mod p,

after step 4, A and B are dealing with a common key. The values p and a do not
have to be kept secret, nor the values ya and yg exchanged in steps 1 and 2.
The security of the procedure depends on the difficulty in calculating discrete
logarithms in finite fields, and the difficulty of breaking the system is equivalent
to that of calculating values xa or xg from values ya or yg in Zp.4 That the
calculation of ¢V from a” and @V in a finite cyclic group (the Diffie-Hellman
problem) is just as difficult as the calculation of discrete logarithms and thus
equivalent to this problem is, in fact, conjectured but has not been proved.

To ensure the security of the procedure under these conditions the modulus
p must be chosen sufficiently large (at least 1024 bits, better 2048 or more; see
Table 17-1), and one should ensure that p — 1 contains a large prime divisor
close to (p — 1)/2 to exclude particular calculational procedures for discrete
logarithms (a constructive procedure for such prime numbers will be presented
in Chapter 17 in connection with the generation of strong primes, for example for
the RSA procedure).

The procedure has the advantage that secret keys can be generated as needed
on an ad hoc basis, without the need for secret information to be held for a long
time. Furthermore, for the procedure to be used there are no further infrastructure
elements necessary for agreeing on the parameters a and b. Nonetheless, this
protocol possesses some negative characteristics, the gravest of which is the lack
of authentication proofs for the exchanged parameters ya and yg. This makes
the procedure susceptible to man-in-the-middle attacks, whereby attacker X
intercepts the messages of A and B with their public keys ya and yg and replaces
them with falsified messages to A and B containing his own public key yx.

Then A and B calculate “secret” keys sp := yy* mod pand sg := yx® mod p,
while X on his or her part calculates sj from y % = a™™ = o™ = ygh =
s mod p and sg analogously. The Diffie-Hellman protocol has now been
executed not between A and B, but between X and A as well as between X and B.
Now X is in a position to decode messages from A or B and to replace them by
falsified messages to A or B. What is fatal is that from a cryptographic point of
view the participants A and B are clueless as to what has happened.

To compensate for these defects without giving up the advantages, several
variants and extensions have been developed for use in the Internet. They all take
into account the necessity that key information be exchanged in such a way that

4 For the problem of calculating discrete logarithms see [Schn], Section 11.6, as well as [Odly].
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its authenticity can be verified. This can be achieved, for example, by the public
keys being digitally signed by the participants and the associated certificate
of a certification authority being sent with them (see in this regard page 400,
Section 17.3), which is implemented, for example, in the SSL protocol. IPSec and
IPv6 use a complexly constructed procedure with the name ISAKMP/Oakley,’
which overcomes all the drawbacks of the Diffie-Hellman protocol (for details see
[Stal], pages 422-423).

To determine a primitive root modulo p, that is, a value a whose powers
a’ mod pwithtz = 0,1,...,p — 2 constitute the entire set of elements of the
multiplicative group Z; = { 1,...,p—1 } (see in this regard Section10.2), the
following algorithm can be used (see [Knut], Section 3.2.1.2, Theorem C). It is
assumed that the prime factorization p — 1 = Py - - - p* of the order of Z,, is
known.

Finding a primitive root modulo p
1. Choose arandom integera € [0,p — 1] and set¢ « 1.

2. Compute t — a®~1/Pi mod p.

3. Ift =1, go to step 1. Otherwise, set¢ «— i + 1. If ¢ < k, go to step 2. If i > k,
output a and terminate the algorithm.

The algorithm is implemented in the following function.

Function: ad hoc generation of a primitive root modulo p (2 < p prime)
Syntax: int primroot 1 (CLINT a_l, unsigned noofprimes,
clint **primes 1);
Input: noofprimes (number of distinct prime factorsinp — 1,
the order of the group)
primes 1 (vector of pointers to CLINT objects, beginning with
p — 1, then follow the prime divisors p1, . . ., pi of the
group orderp — 1 = pi* - - - p;*, k = noofprimes)
Output: a_l (primitive root modulo p 1)

Return: E CLINT OKifallis ok
—1ifp — 1 odd and thus p is not prime

5 ISAKMP: Internet Security Association and Key Management Protocol.
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int
primroot 1 (CLINT a_l, unsigned int noofprimes, clint *primes 1[])

{
CLINT p_1, t 1, junk 1;
ULONG 1i;
if (ISODD_L (primes_1[0]))
{

return -1;

}

primes 1[0] contains p — 1, from which we obtain the modulus inp 1.

cpy 1 (p_1, primes 1[0]);
inc 1 (p_1);

SETONE_L (a_1);

do

{
inc 1 (a_1);

As candidates a for the sought-after primitive root only natural numbers greater
than or equal to 2 are tested. If a is a square, then a cannot be a primitive root
modulo p, since then already a?™Y/2 = 1 mod p, and the order of a must be
less than ¢(p) = p — 1. In this case a_1 is incremented. We test whether a_1is a
square with the function issqr_1() (cf. Section 10.3).

if (issqr 1 (a_ 1, t 1))
{
inc 1 (a_1);

The calculation oft «— aP~1/Pi mod p takes place in two steps. All prime factors
p; are tested in turn; we use Montgomery exponentiation. If a primitive root is
found, itis outputina 1.

do

{
div 1 (primes_1[0], primes 1[i++], t 1, junk_ 1);
mexpkm 1 (a_1, t 1, t 1, p_1);

}
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while ((i <= noofprimes) && !EQONE L (t 1));
}

while (EQONE_L (t 1));

return E_CLINT OK;

}

As a second example for the application of exponentiation we consider the
encryption procedure of ElGamal, which as an extension of the Diffie-Hellman
procedure also provides security in the matter of the difficulty of computing
discrete logarithms, since breaking the procedure is equivalent to solving the
Diffie-Hellman problem (cf. page 119). Pretty good privacy (PGP), the workhorse
known throughout the world for encrypting and signing e-mail and documents
whose development goes back essentially to the work of Phil Zimmermann, uses
the ElGamal procedure for key management (see [Stal], Section 12.1).

A participant A selects a public and associated private key as follows.

ElGamal key generation

1. A chooses a large prime number p such that p — 1 has a large prime divisor
close to (p — 1)/2 (cf. page 388) and a primitive root a of the multiplicative
group Z,' as above (cf. page 120).

2. A chooses a random number x with 1 < = < p — 1 and computes
b := a® mod p with the aid of Montgomery exponentiation.

3. As public key A uses the triple (p, a, b)a , and the associated secret key is
<p7 a, x>A-

Using the public key triple (p, a, b)a a participant B can now encrypt a
message M € {1,...,p— 1} andsend it to A. The procedure is as follows.

Protocol for encryption a la ElGamal
1. B chooses arandom number y with1 <y <p — 1.
2. B calculates a := a¥ mod pand 3 := MbY mod p = M (a”)¥ mod p.
3. B sends the cryptogram C := («, 3) to A.

4. A computes from C' the plain text using M = 3/a* modulo p.

Since

z\Y
% b —M(a)yEMmodp,

ot~ (a)? =~ (a)
the procedure works. The calculation of 3/«a” is carried out by means of a
multiplication 3a”~ =% modulo p.
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The size of p should be, depending on the application, 1024 bits or longer (see
Table 17-1), and for the encryption of different messages M1 and M> unequal
random values y1 # y2 should be chosen, since otherwise, from

pr MY M

B2 Mab¥ Mo
it would follow that knowledge of M7 was equivalent to knowledge of M>. In view
of the practicability of the procedure one should note that the cryptogram C'is
twice the size of the plain text M, which means that this procedure has a higher
transmission cost than others.

The procedure of ElGamal in the form we have presented has an interesting
weak point, which is that an attacker can obtain knowledge of the plain text with
a small amount of information. We observe that the cyclic group Z, contains
the subgroup U := {a” | x even } of order (p — 1)/2 (cf. [Fisc], Chapter 1). If
now b = a” or @ = aV lies in U, then this holds, of course, for ¢®Y. If this is the
case and the encrypted text 3 is also in U, then M = Ba™ " isin U as well. The
same holds if a®¥ and 3 are both not contained in U. In the other two cases, in
which precisely one of ¢”¥ and 3 does not lie in U, then M is also not in U. The
following criteria provide information about this situation:

1. ™ € U < (a® € Uora? € U). This, and whether also 3 € U, is tested
with

2. Forallu e Zy,uc U < u®—1/2 =1,

One may ask how bad it might be if an attacker could gain such information
about M. From the point of view of cryptography it is a situation difficult to
accept, since the message space to be searched is reduced by half with little effort.
Whether in practice this is acceptable certainly depends on the application.
Surely, it is a valid reason to be generous in choosing the length of a key.

Furthermore, one can take some action against the weakness of the
procedure, without, one hopes, introducing new, unknown, weaknesses: The
multiplication MbY mod p in step 2 of the algorithm can be replaced with an
encryption operation V' (H (a®¥) , M) using a suitable symmetric encryption
procedure V' (such as Triple-DES, IDEA, or Rijndael, which has become the
new advanced encryption standard; cf. Chapter 11) and a hash function H (cf.
page 398) that so condenses the value a”¥ that it can be used as a key for V.

So much for our examples of the application of modular exponentiation. In
number theory, and therefore in cryptography as well, modular exponentiation
is a standard operation, and we shall meet it repeatedly later on, in particular
in Chapters 10 and 17. Furthermore, refer to the descriptions and numerous
applications in [Schr] as well as in the encyclopedic works [Schn] and [MOV].
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CHAPTER 7

Bitwise and
Logical Functions

And sprinkled just a bit
Over each banana split.

—Tom Lehrer, “In My Home Town”

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were
so, it would be: but as it isn't, it ain’t. That’s logic.”

—Lewis Carroll, Through the Looking-Glass

IN THIS CHAPTER WE SHALL present functions that carry out bitwise operations on
CLINT objects, and we shall also introduce functions for determining the equality
and size of CLINT objects, which we have already used quite a bit.

Among the bitwise functions are to be found the shift operations, which
shift a CLINT argument in its binary representation by individual bit positions,
and certain other functions taking two CLINT arguments that enable the direct
manipulation of the binary representation of CLINT objects. How such operations
can be applied to arithmetic purposes is most clearly seen in the shift operations
described below, but we have also seen, in Section 4.3, how the bitwise AND
operation can be used in reduction modulo a power of two.

7.1 Shift Operations

Necessity devises all manner of shifts.
—Rabelais

The simplest way to multiply a number a with the representation a =
(@n—1Gn-2...a0) 5 to the base B by a power B¢ is to “shift a to the left by e
digits.” This works with the binary representation exactly as it does in our familiar
decimal system:

e A A A A A
aB" = (an+671an+e,2 e Qele—1 . . .ao)B y
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where
dn—‘,—e—l = an—1, dn+e—2 = an—-2, ...,
ae = ao, ae—1 =0, ..., a0 =0.

For B = 2 this corresponds to multiplication of a number in binary
representation by 2°, while for B = 10 it corresponds to multiplication by a
power of ten in the decimal system.

In the analogous procedure for whole-number division by powers of B the
digits of a number are “shifted to the right”:

a ~ ~ ~ ~ ~
LﬁJ = (Gn-1...Gn—cln—c—1an—c—2...00) g5,

A~ A~

anp—1 = *+* = An—¢ :07 &nfefl = an-—1, &n7672 :an727-~~7&0 = Qe.

For B = 2 this corresponds to integer division of a number in binary
representation by 2¢, and the analogous result holds for other bases.

Since the digits of CLINT objects are represented in memory in binary form,
CLINT objects can easily be multiplied by powers of two by shifting left, where the
next digit to the right is shifted into each place where a digit has been shifted left,
and the binary digits left over on the right are filled with zeros.

In an analogous way CLINT objects can be divided by powers of two by shifting
each binary digit to the right into the next lower-valued digit. Digits left free at the
end are either filled with zeros or ignored as leading zeros, and at each stage in
the process (shifting by one digit) the lowest-valued digit is lost.

The advantage of this process is clear: Multiplication and division of a CLINT
object a by a power of two 2¢ are simple, and they require at most ¢ [log a]
shift operations to shift each USHORT value by one binary digit. Multiplication and
division of a by a power B uses only [log ; a] operations for storing USHORT
values.

In the following we shall present three functions. The function shl 1()
executes a rapid multiplication of a CLINT number by 2, while the function
shr_1() divides a CLINT number by 2 and returns the integer quotient.

Lastly, the function shift 1() multiplies or divides a CLINT type a by a power
of two 2°. Which operation is executed is determined by the sign of the exponent
e of the power of two that is passed as argument. If the exponent is positive, then
the operation is multiplication, while if it negative, then division is carried out.
If e has the representation e = Bk + [, < B, then shift_1() carries out the
multiplication or division in (I + 1) [log 5 a| operations on USHORT values.

All three functions operate modulo (Nmax -+ 1) on objects of CLINT type. They
are implemented as accumulator functions, and thus they change their CLINT
operands in that they overwrite the operand with the result of the operation.
The functions test for overflow, respectively underflow. However, in shifting,
underflow cannot really arise, since in those cases where more positions are to
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be shifted than there are digits the result is simply zero, almost as it is in real life.

The status value E_CLINT_UFL for underflow then merely indicates that there was

less to shift than was required, or, in other words, that the power of two by which
division was to be carried out was larger than the dividend, and so the quotient is
zero. The three functions are implemented in the following manner.

Function: shift left (multiplication by 2)
Syntax: int shl 1 (CLINT a_1);
Input: a_l (multiplicand)

Output: a_1 (product)

Return: E_CLINT OKifallis ok
E_CLINT OFL if overflow

int

shl 1 (CLINT a_l)

{

clint *ap 1, *msdptra 1;
ULONG carry = OL;

int error = E_CLINT_OK;

RMLDZRS L (a_1);
if (1d_1 (a_l) >= (USHORT)CLINTMAXBIT)
{
SETDIGITS L (a_l, CLINTMAXDIGIT);
error = E CLINT OFL;
}
msdptra 1 = MSDPTR_L (a_1);
for (ap_l = LSDPTR L (a_l); ap_l <= msdptra 1; ap l++)

{
*ap_1 = (USHORT)(carry = ((ULONG)*ap 1 << 1) | (carry >> BITPERDGT));
}
if (carry >> BITPERDGT)
{
if (DIGITS L (a_1) < CLINTMAXDIGIT)
{
*ap 1 =1;

SETDIGITS_ L (a_l, DIGITS_L (a_l) + 1);
error = E_CLINT_OK;
}
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else
{
error = E CLINT OFL;
}
}
RMLDZRS L (a_l);
return error;

}
Function: shift right (integer division by 2)
Syntax: int shr 1 (CLINT a_1);
Input: a_1 (dividend)
Output: a_l (quotient)
Return: E_CLINT OKifallis ok
E_CLINT UFL if “underflow”
int
shr 1 (CLINT a_1)
{

clint *ap_1;
USHORT help, carry = 0;

if (EQZ_L (a_l))
return E_CLINT UFL;

for (ap_l = MSDPTR_L (a_1); ap 1 > a_1; ap 1--)

{
help = (USHORT)((USHORT)(*ap_1 »>> 1) | (USHORT)(carry <<

(BITPERDGT - 1)));

carry = (USHORT)(*ap 1 & 1U);
*ap_1 = help;
}

RMLDZRS L (a_1);

return E_CLINT OK;

}
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Function: left/right shift
(multiplication and division by powers of two)
Syntax: int shift 1 (CLINT n_1, long int noofbits);
Input: n_1 (operand)
noofbits (exponent of the power of two)
Output: n_1 (product or quotient, depending on sign of noofbits)

Return: E CLINT OKifall ok
E_CLINT UFL if “underflow”
E_CLINT OFL if overflow

int

shift 1 (CLINT n_1, long int noofbits)

{

USHORT shorts = (USHORT) ((ULONG)(noofbits < 0 ? -noofbits : noofbits) / BITPERDGT);
USHORT bits = (USHORT)((ULONG)(noofbits < 0 ? -noofbits : noofbits) % BITPERDGT);
long int resl;

USHORT i;

int error = E CLINT OK;

clint *nptr_1;
clint *msdptrn 1;

RMLDZRS L (n_1);
resl = (int) 1d 1 (n_1) + noofbits;

Ifn 1 == 0, we need only set the error code correctly, and we are done. The same
holds if noofbits == 0.

if (*n_1 == 0)
{
return ((resl < 0) ? E_CLINT UFL : E_CLINT OK);

}
if (noofbits == 0)

{
return E_CLINT_OK;

}

Next it is checked whether there is an overflow or underflow to announce. Then a
branch is taken depending on the sign of noofbits to shift either to the left or to
the right.
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if ((resl < 0) || (resl > (long) CLINTMAXBIT))

{
error = ((resl < 0) ? E CLINT UFL : E_CLINT OFL); /*underflow or overflow*/

}
msdptrn 1 = MSDPTR L (n_1);
if (noofbits < 0)

{

If noofbits < 0, then n_1 is divided by 2"°"'**, The number of digits of n_1 to
shift is bounded by DIGITS L (n_1). First the whole digits are shifted, and then the
remaining bits with shr _1().

shorts = MIN (DIGITS L (n_l), shorts);
msdptrn_1 = MSDPTR_L (n_1) - shorts;
for (nptr_1 = LSDPTR_L (n_1); nptr 1 <= msdptrn_1; nptr 1++)
{

*nptr 1 = *(nptr_1 + shorts);

}

SETDIGITS L (n_1, DIGITS L (n_1) - (USHORT)shorts);
for (i = 0; i < bits; i++)

{

shr 1 (n_1);

}

else

If noofbits > 0, then n_1 is multiplied by 2"°°"'*_If the number shorts of digits
to be shifted is greater than MAX p, then the result is zero. Otherwise, first the
number of digits of the new value is determined and stored, and then the whole
digits are shifted, and the freed-up digits filled with zeros. To avoid an overflow the
start position is limited by n_1 + MAX g and stored in nptr_1. As before, the last
bits are shifted individually, here with shl 1().
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if (shorts < CLINTMAXDIGIT)

{
SETDIGITS L (n_1, MIN (DIGITS L (n 1) + shorts, CLINTMAXDIGIT));

nptr 1 = n 1 + DIGITS L (n_1);
msdptrn 1 = n_ 1 + shorts;
while (nptr_1 > msdptrn_ 1)

{

*nptr 1 = *(nptr_1 - shorts);

--nptr_1;

}
while (nptr_1 > n_1)

{

*nptr_1-- = 0;

}
RMLDZRS L (n_1);

for (i = 0; i < bits; i++)
{
shl 1 (n_1);
}

}

else

{
SETZERO L (n_1);
}
}

return error;

}

7.2 All or Nothing: Bitwise Relations

The FLINT/C package contains functions that allow the built-in bitwise C
operators &, |, and ~ to be used for the type CLINT as well. However, before we
program these functions we would like to understand what their implementation
will net us.

From a mathematical viewpoint we are looking at relations of the generalized
Boolean functionsf : {0,1}* — {0,1} that map a k-tuple (z1,...,z%) €
{0,1}* to the value 0 or 1. The effect of a Boolean function is usually presented
in the form of a table of values such as that shown in Table 7-1.
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Table 7-1. Values of a Boolean function

z @®2 ... @ [F(x1,...,TE)
0 0o ... 0 0
1 0 0 1
0 1 0 0
1 1 1 1

For the bitwise relations between CLINT types we first regard the variables
as bit vectors (1, . ..,z ), and furthermore, the function values of the Boolean
functions will be formed into a sequence. Thus we have functions

f:{0,1}" x{0,1}" — {0,1}"

that map n-bit variables 1 := (x%, x5, ... ,:1;711) and T2 := (m%, z3, ..., x%) by
[ (@1,T2) == (fl (T1,%2), f2 (T1,T2) ..., [n (51,@)),
with f; (Z1,T2) = f (mzl,acf), again to an n-bit variable (z1, ..., =), which is

then interpreted as a number of type CLINT.

Decisive for the operation of the function f is the definition of the partial
functions f;, each of which is defined in terms of a Boolean function f. For the
CLINT functions and_1(), or_1(), and xor_1() the Boolean functions that are
implemented are defined as in Tables 7-2 through 7-4.

Table 7-2. Values of the CLINT function and_1()

x1 ®2  f(®1,2)
0 0 0
0 1 0
1 0 0
1 1 1

The implementations of these Boolean functions in the three C functions
and_1(), or_1(), and xor_1() do not actually proceed bitwise, but process the
digits of CLINT variables by means of the standard C operators 8, |, and ~. Each of
these functions accepts three arguments of CLINT type, where the first two are the
operands and the last the result variable.

132



Bitwise and Logical Functions

Table 7-3. Values of the CLINT function or_1()

z1 @2 f(z1,22)
0 0 0
0 1 1
1 0 1
1 1 1

Table 7-4. Values of the CLINT function xor_1()

1 x2  f(x1,x2)
0 0 0
0 1 1
1 0 1
1 1 0

Function:  operating by bitwise AND
Syntax: void and 1 (CLINT a 1, CLINT b 1, CLINT c_1);
Input: a_1,b 1 (arguments to be operated on)

Output: c_1 (value of the AND operation)

void

and_1 (CLINT a_1, CLINT b_1, CLINT c_1)
{

CLINT d_1;

clint *r 1, *s 1, *t 1;

clint *lastptr 1;

First pointers r 1 and s_1 are set to the respective digits of the arguments. If the
arguments have different numbers of digits, then s_1 points to the shorter of the
two. The pointer msdptra_1 points to the last digit ofa_1.
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if (DIGITS L (a_l) < DIGITS L (b 1))
{

r 1 =LSDPTR L (b 1);

s 1 = LSDPTR L (a_l);

lastptr 1 = MSDPTR L (a_1);

}
else
{
r 1= LSDPTR_L (a_l1);
s 1 = LSDPTR_L (b_1);

lastptr 1 = MSDPTR_L (b_1);
}

Now the pointer t_1 is set to point to the first digit of the result, and the maximal
length of the result is stored ind_1[0].

t 1= LSDPTR L (d 1);
SETDIGITS L (d_1, DIGITS L (s 1 - 1));

The actual operation runs in the following loop over the digits of the shorter
argument. The result cannot have a larger number of digits.

while (s_1 <= lastptr 1)
{
*t 14+ = *r 14+ & *s 1++;

}

After the result is copied to c_1, where any leading zeros are expunged, the
function is ended.

}

cpy 1 (c 1, d 1);

Function: operating by bitwise OR
Syntax: void or 1 (CLINT a_l, CLINT b_1, CLINT c_1);
Input: a_l,b 1 (arguments to be operated on)

Output: c_1 (value of the OR operation)
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void

or_1 (CLINT a_1, CLINT b_1, CLINT c_1)
{

CLINT d_1;

clint *r 1, *s 1, *t 1;

clint *msdptrr_1;

clint *msdptrs_1;

The pointersr_1and s_1 are set as above.

if (DIGITS L (a_l) < DIGITS L (b 1))
{
r 1= LSDPTR L (b 1);
s 1= LSDPTR L (a_1);
msdptrr 1 = MSDPTR_L (b_1);
msdptrs 1 = MSDPTR L (a_l);

else

r 1 =LSDPTR_L (a_l);
s 1= LSDPTR L (b 1);
msdptrr 1 = MSDPTR L (a_1);
msdptrs 1 = MSDPTR L (b 1);
}
t 1 = LSDPTR_L (d_1);
SETDIGITS L (d 1, DIGITS L (r 1 - 1));

The actual operation takes place within a loop over the digits of the shorter of the
two arguments.

while (s_1 <= msdptrs_1)
{

*t 1+t = 1 L1+t | *s 14+

}

The remaining digits of the longer argument are taken into the result. After the
result is copied to c_1, where any leading zeros are eliminated, the function is
terminated.
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while (r_1 <= msdptrr 1)

{
14+ = Fr 144
}
cpy 1 (c 1, d 1);
}
Function: operation by bitwise exclusive OR (XOR)
Syntax: void xor 1 (CLINT a_ 1, CLINT b 1, CLINT c_1);
Input: a_l,b 1 (arguments to be operated on)
Output: c_1 (value of the XOR operation)
void
xor 1 (CLINT a 1, CLINT b 1, CLINT c_1)
{
CLINT d_1;

clint *r 1, *s 1, *t 1;
clint *msdptrr_1;
clint *msdptrs_1;
if (DIGITS L (a_1) < DIGITS L (b 1))
{
r 1 =LSDPTR L (b 1);
s 1 =LSDPTR_L (a_1);
msdptrr 1 = MSDPTR_L (b_1);
msdptrs 1 = MSDPTR L (a_1);

}
else
{
r 1 =1LSDPTR L (a_l);
s 1= LSDPTR L (b 1);

msdptrr 1 = MSDPTR_L (a_l);
msdptrs 1 = MSDPTR_L (b_1);
}

t 1= LSDPTR L (d_1);

SETDIGITS L (d 1, DIGITS L (r 1 - 1));
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Now the actual operation takes place. The loop runs over the digits of the shorter
of the two arguments.

while (s_1 <= msdptrs 1)
{

¥t 14+ = 1 14+ T *s 14+

}

The remaining digits of the other argument are copied as above.

while (r_1 <= msdptrr 1)

{
*t 1+ = Fr l++;
}
cpy 1 (c 1, d 1);
}

The function and_1() can be used to reduce a number a modulo a power of two
2" by setting a CLINT variable a_1 to the value a, a CLINT variable b_1 to the value
2% — 1, and executing and 1(a_1, b 1, c_1). However, this operation executes
faster with the function mod2_1() created for this purpose, which takes into
account that the binary representation of 2° — 1 consists exclusively of ones (see
Section 4.3).

7.3 Direct Access to Individual Binary Digits

Occasionally, it is useful to be able to access individual binary digits of a number
in order to read or change them. As an example of this we might mention the
initialization of a CLINT object as a power of 2, which can be accomplished easily
by setting a single bit.

In the following we shall develop three functions, setbit 1(), testbit 1(),
and clearbit 1(), which set an individual bit, test a particular bit, and delete a
single bit. The functions setbit 1() and clearbit 1() each return the state of the
specified bit before the operation. The bit positions are counted from 0, and thus
the specified positions can be understood as logarithms of powers of two: If n_11is
equal to 0, then setbit 1(n_1, 0) returns the value 0, and afterwards, n_1 has the
value 2° = 1; after a call to setbit_1(n_1, 512),n 1 has the value 2°'2.
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Function: test and set a bit in a CLINT object
Syntax: int setbit 1 (CLINT a_l, unsigned int pos);
Input: a_l (CLINT argument)
pos (bit position counted from 0)
Output: a_1 (result)

Return: 1 if the bit at position pos was already set
0 if the bit at position pos was not set
E_CLINT OFL if overflow

int

setbit 1 (CLINT a_l, unsigned int pos)

{

int res = 0;

unsigned int i;

USHORT shorts = (USHORT)(pos >> LDBITPERDGT);
USHORT bitpos = (USHORT)(pos & (BITPERDGT - 1));
USHORT m = 1U << bitpos;

if (pos >= CLINTMAXBIT)

{
return E_CLINT OFL;

}
if (shorts »>= DIGITS L (a_l))
{

If necessary, a_l is zero filled word by word, and the new length is stored ina_1[0].

for (i = DIGITS L (a_l) + 1; i <= shorts + 1; i++)

{
a_1[i] = o;
}
SETDIGITS L (a_l, shorts + 1);

}

The digit of a_1 that contains the specified bit position is tested by means of the
mask prepared in m, and then the bit position is set to 1 via an OR of the relevant
digit with m. The function ends by returning the previous status.
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if (a_l[shorts + 1] & m)

{

res = 1;

}

a_1[shorts + 1] |= m;

return res;

}
Function: test a binary digit of a CLINT object
Syntax: int testbit 1 (CLINT a_l, unsigned int pos);
Input: a_1 (CLINT argument)
pos (bit position counted from 0)
Return: 1 if bit at position pos is set
0 otherwise
int

testbit 1 (CLINT
{

int res = 0;
USHORT shorts
USHORT bitpos

a_1, unsigned int pos)

(USHORT) (pos >> LDBITPERDGT);
(USHORT) (pos & (BITPERDGT - 1));

if (shorts < DIGITS L (a_l))

Bitwise and Logical Functions

{
if (a_1[shorts + 1] & (USHORT)(1U << bitpos))
res = 1;
}
return res;
}
Function: test and delete a bit in a CLINT object
Syntax: int clearbit 1 (CLINT a_l, unsigned int pos);
Input: a_1 (CLINT argument)
pos (bit position counted from 0)
Output: a_1 (result)
Return: 1 if bit at position pos was set before deletion
0 otherwise
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int

clearbit 1 (CLINT a_l, unsigned int pos)

{

int res = 0;

USHORT shorts = (USHORT)(pos >> LDBITPERDGT);
USHORT bitpos = (USHORT)(pos & (BITPERDGT - 1));
USHORT m = 1U << bitpos;

if (shorts < DIGITS L (a_l))
{

If a_1 has enough digits, then the digit of a_1 that contains the specified bit posi-
tion is tested by means of the mask prepared in m, and then the bit position is set
to 0 by an AND of the corresponding digit with the complement of m. The previous
status of the bit position is returned at the termination of the function.

if (a_l[shorts + 1] & m)
{
res = 1;
}
a_1[shorts + 1] &= (USHORT)("m);
RMLDZRS L (a_1);
}

return res;

}

7.4 Comparison Operators

Every program requires the ability to make assertions about the equality or
inequality or the size relationship of arithmetic variables, and this holds as well
for our dealings with CLINT objects. Here, too, the principle is obeyed that the
programmer does not need knowledge of the internal structure of the CLINT type,
and the determination of how two CLINT objects are related to each other is left to
functions designed for such purposes.

The primary function that accomplishes these tasks is the function cmp_1().
It determines which of the relationsa 1 < b 1,a 1 == b 1,ora 1 > b _1holds
for two CLINT values a_1 and b_1. To this end, first the numbers of digits of the
CLINT objects, which have been liberated from any leading zeros, are compared. If
the number of digits of the operands is the same, then the process begins with a
comparison of the most-significant digits; as soon as a difference is detected, the
comparison is terminated.



Function:
Syntax:
Input:

Return:

comparison of two CLINT objects
int cmp 1 (CLINT a_1, CLINT b 1);
a_1,b_1 (arguments)

—1if (value ofa_1) < (value ofb 1)

0 if (value ofa_1) = (value of b_1)
1if (value ofa_1) > (value ofb 1)

int

cmp_1 (CLINT a_1, CLINT b_1)

{

clint *msdptra_1,
int la = DIGITS L
int 1b = DIGITS L

*msdptrb 1;
(a_1);
(b_1);
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The first test checks whether both arguments have length, and hence value, 0.
Then any leading zeros are eliminated, and a decision is attempted on the basis
of the number of digits.

if (la == 0 8 1b
{

return 0;

}
while (a_1[la] ==
{

--1a;
}

while (b _1[1b] ==
{

--1b;
}
if (la == 0 8% 1b
{
return 0;
}
if (la > 1b)
{
return 1;
}

== 0)

0 &% la > 0)

0 8% 1b > 0)
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if (la < 1b)
{

return -1;

}

If the operands have the same number of digits, then the actual values must be
compared. For this we begin with a comparison of the most-significant digits and
proceed digit by digit until two digits are found that are unequal or until the least-
significant digits are reached.

msdptra_l = a_1 + la;
msdptrb 1 = b_1 + 1b;
while ((*msdptra 1 == *msdptrb 1) 8& (msdptra 1 > a 1))
{
msdptra 1--;
msdptrb 1--;
}

Now we compare the two digits and make our determination, and the

corresponding function value is returned.

if (msdptra 1 == a_ 1)

{
return 0;
}
if (*msdptra 1 > *msdptrb 1)
{
return 1;
}
else
{
return -1;
}

}

If we are interested in the equality of two CLINT values, then the application of
the function cmp_1() is a bit more than is necessary. In this case there is a simpler

variant, which avoids the size comparison.
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Function:
Syntax:
Input:

Return:

comparison of two CLINT objects
int equ 1 (CLINT a 1, CLINT b 1);
a_1,b_1 (arguments)

0 if (value ofa_1) # (value of b 1)
1if (value ofa_1) = (value of b_1)

int

equ_1 (CLINT a_1, CLINT b_1)

{

clint *msdptra 1,
int la = DIGITS_L
int 1b = DIGITS_L
if (la ==0 8% 1b

{

return 1;
}

while (a_1[la] ==
{

--1a;
}
while (b _1[1b] ==

{
--1b;

}
if (la == 0 8& 1b
{

return 1;

}
if (la != 1b)
{

return 0;

}
msdptra_l = a_1 +
msdptrb 1 = b 1 +

*msdptrb_1;
(a_1);
(b_1);
== 0)

0 &% la > 0)

0 8 1b > 0)

la;
1b;

Bitwise and Logical Functions
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while ((*msdptra 1 == *msdptrb 1) 8& (msdptra 1 > a 1))
{
msdptra 1--;
msdptrb 1--;
}
return (msdptra 1 > al? 0 : 1);

}

These two functions in their raw form can easily lead the user into the thickets
of error. In particular, the meaning of the function values of cmp_1() must be kept
constantly in mind or looked up repeatedly. As a measure against errors a number
of macros have been created by means of which comparisons can be formulated
in a more mnemonically satisfactory way (see in this regard Appendix C, “Macros
with Parameters”). For example, we have the following macros, where we equate
the objects a_1 and b_1 with the values they represent:

GE L (a_l, b 1) returns 1 if a_ 1 > b_1, and O otherwise;

EQZ L (a_ 1) returns 1 if a 1 == 0, and 0 if a 1 > 0.
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The numerals were now being converted automatically from base 2 to base
10... 881, 883, 887,907 . .. each one confirmed as a prime number.

—~Carl Sagan, Contact

WE BEGIN THIS CHAPTER WITH assignment, the simplest and also the most
important function. To be able to assign to a CLINT object a_1 the value of another
CLINT objectb 1, we require a function that copies the digits of b_1 to the reserved
storage space for a_l, an event that we shall call elementwise assignment. It will
not suffice merely to copy the address of the object b_1 into the variable a_1, since
then both objects would refer to the same location in memory, namely that of

b 1, and any change in a_1 would be reflected in a change in the objectb 1, and
conversely. Furthermore, access to the area of memory addressed by a_1 could
become lost.

We shall return to the problems of elementwise assignment in the second
part of this book when we concern ourselves with the implementation of the
assignment operator “=” in C++ (see Section 14.3).

The assignment of the value of a CLINT object to another CLINT is effected with
the function cpy 1().

Function: copy a CLINT object as an assignment
Syntax: void cpy 1 (CLINT dest 1, CLINT src 1);
Input: src_1 (assigned value)

Output: dest 1 (destination object)
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void

cpy 1 (CLINT dest 1, CLINT src 1)

{

clint *lastsrc_1 = MSDPTR L (src_1);
*dest 1 = *src 1;

In the next step leading zeros are found and then ignored. At the same time, the
number of digits of the target object is adjusted.

while ((*lastsrc_1 == 0) &&% (*dest 1 > 0))
{

--lastsrc_1;

--*dest_1;

}

Now the relevant digits of the source object are copied into the goal object. Then
the function is terminated.

while (src_1 < lastsrc 1)

{

*t++dest 1 = *++4src_1;
}
}

The exchange of the values of two CLINT objects can be accomplished with
the help of the macro SWAP_L, the FLINT/C variant of the macro SWAP, which
manages in an interesting way to accomplish the exchange of two variables using
XOR operations without the requirement of intermediate storage in a temporary
variable:

#define SWAP(a, b) ((a)"=(b), (b)"=(a), (a)"=(b))
f#tdefine SWAP L(a 1, b 1) \

(xor 1((a 1), (b 1), (a_ 1)), \

xor 1((b 1), (a 1), (b 1)), \

xor_1((a_l), (b 1), (a_1)))
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Function:  swap the values of two CLINT objects
Syntax: void fswap 1 (CLINT a 1, CLINT b 1);
Input: a_1,b 1 (values to be exchanged)
Output: albl

The functions in the FLINT/C library for the input and output of numbers in a
form readable by human beings are not among the most exciting functions in this
library, yet for many applications they are unavoidable. For practical reasons a
form was selected to allow for the input and output by means of character strings,
as vectors of type char. For this the two essentially complementary functions
str2clint 1() and xclint2str 1() were developed: The first transforms a
character string with digits into a CLINT object, and the second, conversely,
transforms a CLINT object into a character string. The base of the character string’s
representation is specified, with representations to bases in the range from 2 to
16 allowed.

The conversion to be carried out by the function str2clint 1() of a
representation of type CLINT into a representation in the base specified is
accomplished by means of a sequence of multiplications and additions to base B
(cf. [Knut], Section 4.4). The function registers any overflow that occurs, the use of
invalid bases, and the passing of the null pointer and returns the corresponding
error code. Any prefixes indicating the number’s representation, “0X,” “0x,” “0B,”
or “oOb,” are ignored.

Function:  conversion of a character string into a CLINT object
Syntax: int str2clint 1 (CLINT n_1, char *str, USHORT b);

Input: str (pointer to a sequence of char) base
(base of the numerical representation of the character
string, 2 < base < 16)
Output: n_1 (target CLINT object)
Return: E_CLINT OKifallis ok
E_CLINT_BOR if base < 2 or base > 16,
or if the number of digits in str is larger than base
E_CLINT OFL if overflow
E_CLINT NPT ifin str the null pointer was passed
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int
str2clint 1 (CLINT n_1, char *str, USHORT base)

{
USHORT n;

int error = E_CLINT OK;
if (str == NULL)

{
return E_CLINT NPT;
}
if (2 > base || base > 16)
{
return E_CLINT_BOR; /* error: invalid base */
}

SETZERO_L (n_1);

if (*str == ’0°)
{
if ((tolower 1(*(str+1)) == ‘x’) ||
(tolower 1(*(str+1)) == ‘b’)) /* ignore any prefix */
{
++str;

++str;

}
}

while (isxdigit ((int)*str) || isspace ((int)*str))

{
if (lisspace ((int)*str))

{

n = (USHORT)tolower 1 (*str);

Many implementations of tolower() from non-ANSI-conforming C libraries re-
turn undefined results if a character is not uppercase. The FLINT/C function

tolower 1() calls tolower() only for uppercase A-Z and otherwise returns the
character unchanged.
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switch (n)
{
case
case ‘b’:
case
case ‘d’:
case
case ‘f’:
n -= (USHORT)(‘a’ -- 10);
break;
default:
n -= (USHORT)0’;
}
if (n >= base)
{
error = E CLINT BOR;
break;

}
if ((error = umul 1 (n_1, base, n_ 1)) != E_CLINT OK)
{

break;

}
if ((error = vadd 1 (n_1, n, n 1)) != E_CLINT OK)

{

break;

}
}

++str;
}

return error;

}

The function xclint2str 1(), complementary to str2clint 1(), returns
a pointer to an internal buffer of storage class static (cf. [Harb], Section 4.3),
which contains the calculated numerical representation and its value until
xclint2str 1() is called again or the program is ended.
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The function xclint2str 1() carries the required conversion of the CLINT
representation into the representation to the specified base by means of a
sequence of divisions with remainder to the base B.

Function:  Conversion of a CLINT object into a character string

Syntax: char * xclint2str 1 (CLINT n_1, USHORT base,
int showbase);

Input: n_1 (CLINT object to be converted)
base (base of the numerical representation of the character
string to be specified);
showbase (value # 0: The numerical representation
has a “0x” in the case base = 16 or “0b” if base = 2.
Value = 0: there is no prefix.)

Return: pointer to the calculated character string if all ok
NULL if base < 2 orbase > 16

static char ntable[16] =
{0°,0°,2°,3°,4°,°5°,96°, 77, 8%, 9”@, b, L, e, P
char *
xclint2str 1 (CLINT n_1, USHORT base, int showbase)
{

CLINTD u_1, r 1;

int i = 0;

static char N[CLINTMAXBIT + 3];

if (2U > base || base > 16U)

{

return (char *)NULL; /* error: invalid base */
}
cpy 1 (u 1, nl);
do

{
(void) udiv_1 (u_l, base, u_l, r 1);
if (FQZ_L (r 1))
{
N[i++] = 0’;
}

else
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{
N[i++] = (char) ntable[*LSDPTR L (r_1) & oxff];
}
}
while (GTZ_L (u_l));
if (showbase)
{
switch (base)
{
case 2:
N[i++] = b’;
N[i++] = ‘0’;
break;
case 8:
N[i++] = 0’;
break;
case 16:
N[i++] = X’;
N[i++] = 0’;
break;

return strrev 1 (N);

}

For reasons of compatibility with the function clint2str 1() in the first
edition of this book, clint2str 1(n 1, base) was defined as a macro that calls
the function xclint2str(n 1, base, 0).

Furthermore, macros HEXSTR_L (), DECSTR _L(), OCTSTR_L(), and BINSTR L()
were created, which create, from a passed CLINT object as argument, a character
string without prefix with the numerical representation specified by the macro
name and thus eliminate the base of the representation as an argument (see
Appendix C).

As standard form for the output of CLINT values we have available the macro
DISP_L(), which processes a pointer to a character string and a CLINT object as
arguments. The character string contains, according to the purpose to which it
will be put, information about the following CLINT value to be output, such as “The
product of a_1 and b_1 has the value ... .” The output of the CLINT value is in
hexadecimal, that is, to base 16. Additionally, DISP_L() outputs in a new line the
number of significant binary digits (that is, without leading zeros) of the indicated
CLINT object (cf. Appendix C).
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If there are to be conversions between byte vectors and CLINT objects, then
the pair of functions byte2clint 1() and clint2byte 1() can be employed
(cf. [IEEE], 5.5.1).

It is assumed that the byte vectors embody a numerical representation to
base 256 with values increasing from right to left. For the implementation of these
functions the reader is referred to the file f1lint.c. We give here only the function
headers.

Function: conversion of a byte vector into a CLINT object
Syntax: int byte2clint 1 (CLINT n_1, UCHAR *bytestr, int len);
Input: bytestr (pointer to a sequence of UCHAR)
len (length of the byte vector)
Output: n_1 (target CLINT object)
Return: E_CLINT OKifall ok

E_CLINT OFL if overflow
E_CLINT NPT ifin bytestr the null pointer was passed

Function: conversion of a CLINT object into a byte vector
Syntax: UCHAR * clint2byte 1 (CLINT n_1, int *len);

Input: n_1 (CLINT object to be converted)
Output: len (length of the generated byte vector)
Return: pointer to the calculated byte vector

NULL, ifin len the null pointer was passed

Finally, for the transformation of unsigned values into the CLINT numerical
format the two functions u2clint 1() and ul2clint 1() can be used. The function
u2clint_1() converts USHORT arguments, and the function ul2clint 1() converts
ULONG arguments, into the CLINT numerical format. The function ul2clint 1()
will be described in the following as an example.

Function: conversion of a value of type ULONG into a CLINT object
Syntax: void ul2clint 1 (CLINT num_ 1, ULONG ul);
Input: ul (value to be converted)

Output: num_1 (target CLINT object)
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void
ul2clint 1 (CLINT num_ 1, ULONG ul)

{

*LSDPTR_L (num_1) = (USHORT)(ul & oxffff);

*(LSDPTR_L (num_1) + 1) = (USHORT)((ul >> 16) & oxffff);
SETDIGITS L (num_ 1, 2);

RMLDZRS_L (num_1);

}

To end this chapter we shall discuss a function that carries out a validity
check of a memory object for the CLINT number format. Control functions of
this type are called as needed whenever “foreign” values are imported into a
system for further processing into a subsystem. Such a subsystem can be, for
example, a cryptographic module that before every processing of input data
must check whether it is dealing with valid values or arguments. Checking at
run time whether the assumptions about the input values of a function have
been met is good programming practice, one that helps to avoid undefined
situations and that can contribute decisively to the stability of an application. For
testing and debugging this usually takes place with assertions, with the help of
which run-time conditions can be tested. Assertions are inserted as macros and
can be decommissioned for the actual running of the program, usually during
compilation via #define NDEBUC. In addition to the assert macro of the C standard
library (see [Plal], Chapter 1) there are a number of further implementations
of similar mechanisms that take various actions when the test conditions are
violated, such as listing recognized exceptional conditions in a log file, with or
without program termination in the event of an error. For extensive information
in this area the reader is referred to [Magu], Chapters 2 and 3, as well as [Murp],
Chapter 4.

The protection of the functions of a program library like the FLINT/C package
against being passed values that lie outside of the domain of definition of the
respective parameters can occur within the invoked functions themselves or
within the calling functions, where in the latter case the responsibility lies with
the programmer who employs the library. For performance considerations, in
the development of the FLINT/C functions we did not test every passed CLINT
argument for a valid address and possible overflow. The thought of carrying out
multiply redundant checks of the numerical format in thousands of modular
multiplications of an exponentiation moved the author to offload this control
task to the programs that use the FLINT/C functions. An exception is the passing
of divisors with the value zero, which is checked as a matter of principle and if it
occurs is acknowledged with a suitable error notification, even in all the functions
for residue class arithmetic. The code of all the functions was particularly
carefully tested to make sure that the FLINT/C library generates only valid
formats (cf. Chapter 12).
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The function vcheck 1() was created for the analysis of CLINT arguments
with regard to the validity of their format. It should help to protect the FLINT/C
functions from being passed invalid parameters as CLINT values.

Function:
Syntax:
Input:

Return:

test for a valid CLINT numerical format
int vcheck 1 (CLINT n_1);

n_1 (object to be tested)
E_VCHECK OK if format ok

errors and warnings according to Table 8-1

Table 8- 1. Diagnostic values of the function vcheck_1()

Return Value

E_VCHECK_OK

E_VCHECK_LDZ

E_VCHECK_MEM
E_VCHECK_OFL

Diagnosis

Format is ok

leading zeros

memory error

genuine overflow

Explanation

Info: The number has a valid
representation and a value with

the range of definition of a CLINT type.
Warning: The number has leading zeros,
but otherwise a valid definition within
the range of definition.

Error: NULL Pointer was passed.

Error: The passed number is too large;

it cannot be represented as a

CLINT object.

int

vcheck 1 (CLINT n_1)

{

unsigned int error = E_VCHECK OK;
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Check for the null pointer: the ugliest error of them all.

if (n_1 == NULL)
{
error = E VCHECK MEM;

}

else

{

Check for overflow: Does the number have too many digits?

if (((unsigned int) DIGITS L (n_1)) > CLINTMAXDIGIT)

{
error = E VCHECK OFL;

else

Check for leading zeros: These we can live with ;-)

if ((DIGITS L (n 1) > 0) 8 (n_1[DIGITS L (n_1)] == 0))

{
error = E_VCHECK_LDZ;
}
}
}

return error;

}

The return values of the function are defined as macros in the file flint.h. An

explanation of these values is provided in Table 8-1.

The numeric values of the error codes are smaller than zero, so that a simple
comparison with zero suffices to distinguish between errors on the one hand and

warnings or the valid case on the other.
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Dynamic Registers

“What a depressingly stupid machine,” said Marvin and trudged away.
—Douglas Adams, The Restaurant at the End of the Universe

IN ADDITION TO THE AUTOMATIC, or in exceptional cases global, CLINT objects used
up to now, it is sometimes practical to be able to create and purge CLINT variables
automatically. To this end we shall create several functions that will enable us to
generate, use, clear, and remove a set of CLINT objects, the so-called register bank,
as a dynamically allocated data structure, where we take up the sketch presented
in [Skal] and work out the details for its use with CLINT objects.

We shall divide the functions into private management functions and public
functions; the latter of these will be made available to other external functions
for manipulating the registers. However, the FLINT/C functions do not use the
registers themselves, so that complete control over the use of the registers can be
guaranteed to the user’s functions.

The number of registers available should be configurable while the program
is running, for which we need a static variable NoofRegs that takes the number of
registers, which is predefined in the constant NOOFREGS.

static USHORT NoofRegs = NOOFREGS;
Now we define the central data structure for managing the register bank:

struct clint_registers
{
int noofregs;
int created;
clint **reg 1; /* pointer to vector of CLINT addresses */

};

The structure clint_registers contains the variable noofregs, which specifies
the number of registers contained in our register bank, and the variable created,
which will indicate whether the set of registers is allocated, as well as the pointer
reg 1to avector that takes the start address of the individual registers:

static struct clint registers registers = {0, 0, 0};
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Now come the private management functions allocate reg 1() to set up the
register bank and destroy reg 1() to clear it. After space for the storage of the
addresses of the registers to be allocated has been created and a pointer is then
set to the variable registers.reg 1, there follows the allocation of memory for
each individual register by a call to malloc() from the C standard library. The fact
that CLINT registers are memory units allocated by means of malloc() plays an
important role in testing the FLINT/C functions. We shall see in Section 13.2 how
this makes possible the examination of any memory errors that may occur.

static int
allocate reg 1 (void)

{
USHORT 1, j;

First, memory is allocated for the vector of register addresses.

if ((registers.reg 1 = (clint **) malloc (sizeof(clint *) * NoofRegs)) == NULL)
{

return E_CLINT MAL;

}

Now comes the allocation of individual registers. If in the process a call tomalloc()
ends in an error, all previously allocated registers are cleared and the error code
E CLINT MAL is returned.

for (i = 0; i < NoofRegs; i++)

{
if ((registers.reg 1[i] = (clint *) malloc (CLINTMAXBYTE)) == NULL)
{
for (j = 0; j < 1i; j++)
{
free (registers.reg 1[j]);
}
return E_CLINT_MAL; /* error: malloc */
}
}
return E_CLINT_OK;

}

The function destroy reg 1() is essentially the inverse of the function
create reg 1(): First, the content of the registers is cleared by overwriting them
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with zeros. Then each individual register is returned by means of free(). Finally,
memory pointed to by registers.reg 1isreleased.

static void
destroy reg 1 (void)
{

unsigned i;

for (i = 0; 1 < registers.noofregs; it++)
{
memset (registers.reg 1[i], 0, CLINTMAXBYTE);
free (registers.reg 1[i]);

}

free (registers.reg 1);

}

Now come the public functions for register management. With the function
create reg 1() we create a set of registers consisting of the number of individual

registers determined in NoofRegs. This takes place via a call to the private function
allocate reg 1().

Function:  Allocation of a set of registers of type CLINT
Syntax: int create reg 1 (void);
Return: E_CLINT OKif allocation is ok

E_CLINT MAL if error with malloc()

int
create reg 1 (void)

{
int error = E_CLINT OK;

if (registers.created == 0)
{
error = allocate reg 1 ();
registers.noofregs = NoofRegs;
}
if (lerror)
{

++registers.created;

}

return error;
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The structure registers involves the variable registers.created, which
is used for counting the number of requested registers to be created. A call to
the function free reg 1() described below results in the set of registers being
released only if registers.created has the value 1. Otherwise, registers.created
is simply reduced by 1. With the use of this mechanism, called a semaphore, we
manage to prevent a set of registers allocated by one function being inadvertently
released by another function. On the other hand, every function that requests the
set of registers by calling create reg 1() is responsible for releasing it again with
free_reg 1().Moreover, in general, one cannot assume that the registers contain
specific values after a function has been called.

The variable NoofRegs, which determines the number of registers created by
create reg 1(), can be changed by the function set_noofregs 1(). This change,
however, remains in effect only until the currently allocated set of registers is
released and a new set is created with create reg 1().

Function: set number of registers
Syntax: void set noofregs 1 (unsigned int nregs);

Input: nregs (number of registers in the register bank)

void
set _noofregs 1 (unsigned int nregs)

{
NoofRegs = (USHORT)nregs;

}

Now that a set of registers can be allocated, one may ask how individual
registers can be accessed. For this it is necessary to select the address field
reg 1, dynamically allocated by create reg 1(), of the above-defined structure
clint_reg. This will be accomplished with the help of the function get reg 1(),
introduced below, which returns a pointer to an individual register of the set
of registers, provided that the specified ordinal number denotes an allocated
register.



Function: output a pointer to a register
Syntax: clint * get reg 1 (unsigned int reg);
Input: reg (register number)
Return: pointer to the desired register reg, if it is allocated
NULL if the register is unallocated
clint *

get reg 1 (unsigned int reg)

{

if (!registers.created || (reg >= registers.noofregs))

{

return (clint *) NULL;

}

return registers.reg 1[reg];

}

Since the set of registers can be changed dynamically with respect to its size
and location in memory, it is not recommended that addresses of registers once
read be stored for further use. It is much to be preferred that one obtain the
register addresses afresh for each use. In the file f1int.h are to be found several

predefined macros of the form

#define r0_1 get reg 1(0);

with the help of which the registers can be invoked, without additional syntactic
effort, by their actual current addresses. With the function purge reg 1(),
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introduced below, an individual register of the set can be cleared by overwriting it.

Function:

Syntax:
Input:

Return:

Clear a CLINT register of the register bank by completely
overwriting it with zeros

int purge reg 1 (unsigned int reg);
reg (register number)

E_CLINT OKif deletion is ok
E_CLINT_NOR if register is unallocated
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int
purge reg 1 (unsigned int reg)
{

if (!registers.created || (reg >= registers.noofregs))

{
return E_CLINT_NOR;

}
memset (registers.reg 1[reg], 0, CLINTMAXBYTE);
return E_CLINT OK;
}

Just as an individual register can be cleared with the function purge reg 1(),
with the function purgeall reg 1() the complete set of registers can be cleared
by overwriting.

Function: clear all CLINT registers by overwriting with zeros
Syntax: int purgeall reg 1 (void);

Return: E_CLINT OK if deletion is ok
E_CLINT NOR if registers are not allocated

int
purgeall reg 1 (void)
{
unsigned i;
if (registers.created)

{
for (i = 0; 1 < registers.noofregs; i++)
{
memset (registers.reg 1[i], 0, CLINTMAXBYTE);
}
return E_CLINT_OK;
}
return E_CLINT NOR;

}

It is good programming style and etiquette to release allocated memory
when it is no longer needed. An existing set of registers can be released with the
function free_reg 1(). However, as we have explained above, the semaphore
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registers.created in the structure registers must have been set to 1 before the
allocated memory is actually released:

void
free reg 1 (void)
{

if (registers.created == 1)

{
destroy reg 1 ();

}

if (registers.created)

{

--registers.created;

}

We now present three functions that create, clear, and again free individual
CLINT registers, in analogy to the management of the complete set of registers.

Function: allocation of a register of type CLINT
Syntax: clint * create 1 (void);

Return: pointer to allocated registers, if allocation ok
NULL if error with malloc()

clint *
create 1 (void)
{
return (clint *) malloc (CLINTMAXBYTE);

}

It is important to treat the pointer returned by create_1() in such a way that
it does not “become lost,” since otherwise, it is impossible to access the created
registers. The sequence

clint * do_not overwrite 1;
clint * lost_1;

VA
do_not overwrite 1 = create 1();
VA

do not overwrite 1 = lost 1;
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allocates a register and stores its address in a variable with the suggestive name
do_not_overwrite 1. If this variable contains the only reference to the register,
then after the last instruction,

do_not overwrite

1 =1lost 1;

the register is lost, which is a typical error in the jungle of pointer management.

A register can, like any other CLINT variable, be cleared with the function
purge 1() that follows, whereby the memory reserved for the specified register is
overwritten with zeros and thereby cleared.

Function: clear a CLINT object by completely overwriting with zeros
Syntax: void purge 1 (CLINT n_1);
Input: n_1 (CLINT object)

void

purge 1 (CLINT n_1)

{

if (NULL != n 1)

{

memset (n_1, 0, CLINTMAXBYTE);

}

The following function additionally releases the memory allocated for the
specified register after it has been cleared. Afterwards, the register can no longer

be accessed.

Function:
Syntax:
Input:

clear and release a CLINT register
void free 1 (CLINT reg 1);
reg 1 (pointer to a CLINT register)
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void
free 1 (CLINT reg 1)
{
if (NULL != reg 1)
{
memset (reg 1, 0, CLINTMAXBYTE);
free (n_1);
}

Dynamic Registers
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CHAPTER 10

Basic Number-Theoretic
Functions

I am dying to hear about it, since I always thought
number theory was the Queen of Mathematics—the
purest branch of mathematics—the one branch of
mathematics which has NO applications!

—D. R. Hofstadter, Godel, Escher, Bach

NOW THAT WE ARE FITTED out with a sturdy tool box of arithmetic functions that we
developed in the previous chapters, we turn our attention to the implementation
of several fundamental algorithms from the realm of number theory. The number-
theoretic functions discussed in the following chapters form a collection that

on the one hand exemplifies the application of the arithmetic of large numbers
and on the other forms a useful foundation for more complex number-theoretic
calculations and cryptographic applications. The resources provided here can be
extended in a number of directions, so that for almost every type of application
the necessary tools can be assembled with the demonstrated methods.

The algorithms on which the following implementations are based are drawn
primarily from the publications [Cohe], [HKW], [Knut], [Kran], and [Rose], where
as previously, we have placed particular value on efficiency and on as broad a
range of application as possible.

The following sections contain the minimum of mathematical theory required
to explicate the functions that we present and their possibilities for application.
We would like, after all, to have some benefit from all the effort that will be
required in dealing with this material. Those readers who are interested in a more
thoroughgoing introduction to number theory are referred to the books [Bund]
and [Rose]. In [Cohe] in particular the algorithmic aspects of number theory
are considered and are treated clearly and concisely. An informative overview of
applications of number theory is offered by [Schr], while cryptographic aspects of
number theory are treated in [Kobl].

In this chapter we shall be concerned with, among other things, the
calculation of the greatest common divisor and the least common multiple
of large numbers, the multiplicative properties of residue class rings, the
identification of quadratic residues and the calculation of square roots in
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residue class rings, the Chinese remainder theorem for solving systems of linear
congruences, and the identification of prime numbers. We shall supplement the
theoretical foundations of these topics with practical tips and explanations, and
we shall develop several functions that embody a realization of the algorithms
that we describe and make them usable in many practical applications.

10.1 Greatest Common Divisor

That schoolchildren are taught to use the method of prime factorization
rather than the more natural method of the Euclidean algorithm to compute
the greatest common divisor of two integers is a disgrace to our system of
education.

—W. Heise, P. Quattrocci, Information and Coding Theory

Stated in words, the greatest common divisor (gcd) of integers a and b is the
positive divisor of a and b that is divisible by all common divisors of a and b.
The greatest common divisor is thereby uniquely determined. In mathematical
notation the greatest common divisor d of two integers a and b, not both zero, is
defined as follows: d = ged(a,b) ifd > 0,d | a, d | b, and if for some integer d’
we have d’ | aand d’ | b, then we also have d’ | d.

It is convenient to extend the definition to include

ged(0,0) := 0.

The greatest common divisor is thus defined for all pairs of integers, and in
particular for the range of integers that can be represented by CLINT objects. The
following rules hold:

@ ged(a,b) = ged(b, a),

(i) ged(a,0) = |a| (the absolute value of a), 10.1)
(iii) ged(a, b, c) = ged(a, ged(b, ¢)),
(iv) ged(a,b) = ged(—a,b),

of which, however, only (i)—(iii) are relevant for CLINT objects.

It is obligatory first to consider the classical procedure for calculating the
greatest common divisor according to the Greek mathematician Euclid (third
century B.C.E.), which Knuth respectfully calls the grandfather of all algorithms
(definitely see [Knut], pages 316 ff.). The Euclidean algorithm consists in a
sequence of divisions with remainder, beginning with the reduction of @ mod b,
then b mod (a mod b), and so on until the remainder vanishes.
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Euclidean algorithm for calculating gcd(a, b) fora, b > 0
1. If b = 0O, output a and terminate the algorithm.

2. Setr < amod b,a < b,b « r,and go to step 1.

For natural numbers a1, a the calculation of the greatest common divisor
according to the Euclidean algorithm goes as follows:
a1 = a2q1 +a3z, 0<a3<az,
a2 = asqs + a4, 0<aq4 <as,

a3 = asqs +as, 0<as < aq,

Am—2 = Gm—19m—2 + am, 0<am< aAm—1,

am—1 = Gm{Gm—1-

Result:
ged(ar, a2) = am.
We compute as an example ged (723, 288):

723 =288 -2+ 147,
288 = 147 -1 + 141,
147 =141 -1+ 6,
141 =6-23 + 3,
6=3-2.
Result:
ged(723,288) = 3.

This procedure works very well for calculating the greatest common divisor
or for letting a computer program do the work. The corresponding program is
short, quick, and, due to its brevity, provides few opportunities for error.

A consideration of the following properties of integers and of the greatest
common divisor indicates—at least theoretically—possibilities for improvement
for programming this procedure:

() aandbareeven = gecd(a,b) = ged(a/2,b/2) - 2.
(i) aisevenandbisodd = gcd(a,b) = ged(a/2,b).
(iii) ged(a,b) = ged(a — b, b).

(ivy aandbareodd=-a — bisevenand |a — b| < max(a,b).

(10.2)

169



Chapter 10

170

The advantage of the following algorithm based on these properties is
that it uses only size comparisons, subtractions, and shifts of CLINT objects,
operations that do not require a great deal of computational time and for which
we use efficient functions; above all, we need no divisions. The binary Euclidean
algorithm for calculating the greatest common divisor can be found in almost the
identical form in [Knut], Section 4.5.2, Algorithm B, and in [Cohe], Section 1.3,
Algorithm 1.3.5.

Binary Euclidean algorithm for calculating gcd(a, b) fora,b > 0

1. If a < b, exchange the values of a and b. If b = 0, output a and terminate
the algorithm. Otherwise, set k < 0, and as long as a and b are both even,
setk «— k+1,a < a/2,b < b/2. (We have exhausted property (i); a and b
are now no longer both even.)

2. Aslong as a is even, set repeatedly a < a/2 until a is odd. Or else, if b is
even, set repeatedly b < b/2 until b is odd. (We have exhausted property
(ii); @ and b are now both odd.)

3. Sett « (a — b)/2.1ft = 0, output 2”a and terminate the algorithm. (We
have used up properties (ii), (iii), and (iv).)

4. Aslongast is even, set repeatedly ¢ < ¢/2, until ¢ is odd. Ift > 0, seta « ¢;
otherwise, set b < —t; and go to step 3.

This algorithm can be translated step for step into a programmed function,
where we take the suggestion from [Cohe] to execute in step 1 an additional
division with remainder and set r «— a mod b, a < b, and b < r. We thereby
equalize any size differences between the operands a and b that could have an
adverse effect on the running time.

Function: greatest common divisor

Syntax: void gcd 1 (CLINT aa_l, CLINT bb_ 1, CLINT cc_1);
Input: aa_l, bb 1 (operands)
Output: cc_1 (greatest common divisor)
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void
gcd 1 (CLINT aa_l, CLINT bb_1, CLINT cc_1)

{

CLINTal, b1, r1, tl;
unsigned int k = 0;
int sign of t;

Step 1: If the arguments are unequal, the smaller argument is copied tob_1.1fb 1
isequal to 0, then a_1 is output as the greatest common divisor.

if (LT L (aa_l, bb 1))
{
cpy 1 (a_l, bb 1);
cpy 1 (b 1, aa_ l);
}
else
{
cpy 1 (a_l, aa_ l);
cpy 1 (b 1, bb 1);
}
if (EQZ_L (b 1))
{
cpy 1 (cc 1, a 1);
return;

}

The following division with remainder serves to scale the larger operand a_l. Then
the powers of two are removed froma 1andb 1.

(void) div 1 (a1, b 1, t 1, r 1);
cpy 1 (a1, b 1);
cpy 1 (b 1, r 1);
if (E0Z_L (b 1))
{
cpy 1 (cc 1, a l);
return;

}
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while (ISEVEN L (a 1) 8& ISEVEN L (b 1))
{
++k;
shr 1 (a_1);
shr 1 (b 1);
}

Step 2.

while (ISEVEN L (a_l))
{
shr 1 (a_1);
}
while (ISEVEN L (b 1))
{
shr 1 (b_1);
}

Step 3: Here we have the case that the difference of a_l1 and b_1 can be negative.
This situation is caught by a comparison between a_1 and b_1. The absolute value
of the difference is stored in t_1, and the sign of the difference is stored in the
integer variable sign of t.Ift 1 == 0. Then the algorithm is terminated.

do
{
if (GE_L (a_1, b 1))
{
sub 1 (a1, b1, t 1);
sign of t = 1;
}
else
{
sub 1 (b1, al, t1);
sign of t = -1;
}
if (E0Z_L (t.1))
{
cpy 1 (cc 1, a l1); /¥ ccl<-a*
shift 1 (cc_1, (long int) k); /* cc 1 <~ cc 1xp¥¥k */
return;

}
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Step 4: Depending on the sign of t 1, we have t 1 allocatedtoa lorb 1.

while (ISEVEN L (t_1))

{
shr 1 (t 1);
}
if (-1 == sign of t)
{
cpy 1 (b 1, t 1);
}
else
{
cpy 1 (a1, t 1);
}
}
while (1);

}

Although the operations used are all linear in the number of digits of the
operands, tests show that the simple two-line greatest common divisor on page
168 is hardly slower as a FLINT/C function than this variant. Somewhat surprised
at this, we ascribe this situation, for lack of better explanation, to the efficiency of
our division routine, as well as to the fact that the latter version of the algorithm
requires a somewhat more complex structure.

The calculation of the greatest common divisor for more than two arguments
can be carried out with multiple applications of the function gcd 1(), since as we
showed above in (10.1)(iii) the general case can be reduced recursively to the case
with two arguments:

ged (na,...,ny) = ged (n1, ged (na2, ..., ny)) . (10.3)

With the help of the greatest common divisor it is easy to determine the least
common multiple (Ilcm) of two CLINT objects a_1 and b_1. The least common
multiple of integers n1, . .., n,, all nonzero, is defined as the smallest element
of the set { m e Nt | n; dividesm,i=1,...,r } Since it contains at least the
product H::1 |n;|, this set is nonempty. For two arguments a, b € Z the least
common multiple can be computed as the absolute value of their product divided
by the greatest common divisor:

lem(a, b) - ged(a,b) = |abl. (10.4)

We shall use this relation for the calculation of the least common multiple ofa_1
andb_1.
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Function: least common multiple (Icm)

Syntax: int 1em 1 (CLINT a_ 1, CLINT b 1, CLINT c 1);
Input: a_l, b 1 (operands)

Output: c 1(cm)

Return: E_CLINT OKifall ok
E_CLINT OFL if overflow

int
lem 1 (CLINT a 1, CLINT b 1, CLINT c 1)
{
CLINT g_1, junk_1;
if (EQZ_ L (a_1l) || EOZ L (b 1))
{
SETZERO L (c_1);
return E_CLINT_OK;
}
ged 1 (a1, b 1, g 1);
div.1l (a_1, g 1, g 1, junk 1);
return (mul 1 (g 1, b 1, c_1));
}

It holds for the least common multiple as well that its calculation for more
than two arguments can be recursively reduced to the case of two arguments:

lem (n1,...,ny) =lem (n1,lem (no, ..., n.)) . (10.5)

Formula (10.4) above does not, however, hold for more than two numbers:
The simple fact that lem(2,2,2) - ged(2,2,2) = 4 # 2° can serve as a
counterexample. There does exist, however, a generalization of this relation
between the greatest common divisor and the least common multiple for more
than two arguments. Namely, we have

lem(a, b, ¢) - ged(ab, ac, be) = |abe| (10.6)
and also
ged(a, b, ¢) - lem(ab, ac, be) = |abe|. (10.7)

The special relationship between the greatest common divisor and the least
common multiple is expressed in additional interesting formulas, demonstrating
an underlying duality, in the sense that exchanging the roles of greatest common
divisor and least common multiple does not affect the validity of the formula, just
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asin (10.6) and (10.7). We have the distributive law for gcd and lcm, namely,
ged(a, lem(b, ¢)) = lem(ged(a, b), ged(a, c)), (10.8)
lem(a, ged(b, ¢)) = ged(lem(a, b), lem(a, ¢)), (10.9)
and to top it all off we have (see [Schr], Section 2.4)

ged(lem(a, b),lem(a, ¢),lem(b, ¢)) = lem(ged(a, b), ged(a, ¢), ged(b, ¢)).
(10.10)

Aside from the obvious beauty of these formulas on account of their fearful
symmetry, they also serve to provide excellent tests for functions that deal with
greatest common divisor and least common multiple, where the arithmetic
functions used are implicitly tested as well (on the subject of testing, see
Chapter 12).

Don't blame testers for finding your bugs.

—Steve Maguire

10.2 Multiplicative Inverse in Residue Class Rings

In contrast to the arithmetic of whole numbers, in residue class rings it is possible,
under certain assumptions, to calculate with multiplicative inverses. Namely,
many elements a € Z,, not necessarily all, possess a suitable z € Z,, such that
a - T = 1. This is equivalent to the assertion that the congruence a - = 1 mod n
and the statement a - x mod n = 1 hold. For example, in Z14, 3 and 5 are
multiplicative inverses of each other, since 15 mod 14 = 1.

The existence of multiplicative inverses in Z,, is not obvious. In Chapter
5, on page 69, it was determined only that (Zy,, -) is a finite commutative
semigroup with unit 1. A sufficient condition for an element @ € Z,, to possess a
multiplicative inverse can be obtained with the help of the Euclidean algorithm:
The second-to-last equation in the Euclidean algorithm procedure on page 169,

Am—2 = Gm—1 " gm—2 + Am, 0<am < am-1,
can be transformed into
Am = Gm—2 — Am—1 " m—2. (1)

If we continue in this fashion, then we obtain in succession

Am—1 = Am—-3 — Gm—2 * qm—3, (2)
Am—2 = AGm—4 — QGm—3 * qm—4, (3)
a3 =ai —az2-qi. (m —2)
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If in (1) we replace a,,—1 by the right side of equation (2), then we obtain
Am = aGm—2 — ¢m—2 (@m—3 — gm—3 - Am—2) ,
or
am =1+ gm-3 qm-2)am-2 — ¢m—2* AGm—3.

Proceeding thus one obtains in equation (m — 2) an expression for a,, as a
linear combination of the starting values a1 and a2 with factors composed of the
quotients g; of the Euclidean algorithm.

In this way we obtain a representation of gcd(a,b) = u-a+v-b =: gas
a linear combination of a and b with integer factors u and v, where © modulo
a/g and v modulo b/g are uniquely determined. If for an element a € Z,, we
now have gcd(a,n) = 1 = w - a + v - n, then it follows immediately that
1 = u - a mod n, or, equivalently, a - & = 1. In this case v modulo 7 is uniquely
determined, and @ is consequently the inverse of @ in Z,,. We have thus found a
condition for the existence of a multiplicative inverse of an element in the residue
class ring Z,,, and we have simultaneously obtained a procedure for constructing
such an inverse, which shall demonstrate with the following example. From the
calculation above of gcd (723, 288) we obtain by rearrangement

3=141-6-23,
6 =147 — 141 - 1,
141 = 288 — 147 - 1,
147 = 723 — 288 - 2.
From this we obtain our representation of the greatest common divisor:
3=141—-23- (147 — 141) = 24 - 141 — 23 - 147
=24-(288 —147) — 23 - 147 = —47 - 147 + 24 - 288
= —47- (723 —2-288) +24 - 288 = —47- 723 + 118 - 288.

A fast procedure for calculating this representation of the greatest common
divisor would consist in storing the quotients g; (as is done here on the page)
so that they would be available for the backward calculation of the desired
factors. Because of the high memory requirement, such a procedure would
not be practicable. It is necessary to find a compromise between memory
requirements and computational time, which is a typical tradeoff in the design
and implementation of algorithms. To obtain a realistic procedure we shall
further alter the Euclidean algorithm in such a way that the representation of the
greatest common divisor as a linear combination can be calculated along with
the greatest common divisor itself. For a in Z,, there exists an inverse = € Z,, if
ged(a,n) = 1. The converse of this statement can also be demonstrated: If @ in
7, has amultiplicative inverse, then gcd(a, n) = 1 (one may find a mathematical
proof of this statement in [Nive], the proof to Theorem 2.13). We see, then, that
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here the issue of having no common factors (that is, being relatively prime) is of
great significance: If we consider the subset Z,; := {a € Zy, | gcd(a,n) =1}
of those elements a € Z,, for which a has no common factor with n other than
1, then with the operation of multiplication one has an abelian group, which we
have denoted by (Zﬁ , ) already in Chapter 5. The properties of (Z,,, -) as an
abelian semigroup with unit,

e associativity of (Z, -),
e commutativity of (Z, -),
e existence of a unit: Foralla € Z,, onehasa -1 = a,

carry over directly to (ZTXL, ) The existence of multiplicative inverses holds
because we have selected precisely those elements that have such inverses, so
that we have now only to demonstrate closure, namely, that for two elements a
and bin Z) the product a - b is again an element of Z." . Closure is easily proved:
If a and b are relatively prime to n, then the product of @ and b cannot have a
nontrivial factor in common with 7, so that @ - b must belong to the set Z.<. The
group (ZTXL , ) is called the group of residue classes relatively prime ton.

The number of elements in Z,;, or, equivalently, the number of integers

relatively prime to n in the set { 1,2,...,n — 1}, is given by the Euler phi
function ¢(n). For n = p{'p5? - - - p;* written as a product of distinct primes
p1, ..., Pt to positive powers e;, we have

¢(n) = _pri_l (pi —1)

(see, for example, [Nive], Sections 2.1 and 2.4). This means, for example, that Z;
has p — 1 elements if p is a prime number."

If gcd(a,n) = 1, then according to Euler’s generalization of the little
theorem of Fermat,? a®("™) = 1 mod n, so that the calculation of a®*™~* mod n
determines the multiplicative inverse of a. For example, if n = p - ¢ with
prime numbers p # ganda € ZX, then a® V™1 = 1 mod n, and
therefore o=@~ =1 10d n is the inverse of a modulo n. However, this
calculation requires, even in the advantageous case that ¢(n) is known, a
modular exponentiation whose computational cost is O (log® n).

We do significantly better, namely with a computational cost of O (log2 n)
and without knowing the value of the Euler phi function, by integrating the

! In this case Z, is in fact a field, since both (Zp, +) and (Z,-) = (Z; \ {0}, -) are abelian
groups (see [Nive], Section 2.11). Finite fields have application, for example, to coding theory,
and they play an important role in modern cryptography.

The little Fermat theorem states that for a prime number p and for any integer a one has
aP = a mod p. If p is not a divisor of a, then a?~1 =1 mod p (see [Bund], Chapter 2, §3.3).
The little theorem of Fermat and its generalization by Euler are among the most important
theorems of number theory.
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above constructive procedure into the Euclidean algorithm. For this we introduce
variables u and v, with the help of which the invariants

a; =ui-a+v;-b

are maintained in the individual steps of the procedure presented on page 169, in
which we have

Qi1 = A;—1 mod a;,

and these invariants provide us at the end of the algorithm the desired
representation of the greatest common divisor as a linear combination of ¢ and b.
Such a procedure is called an extended Euclidean algorithm.

The following extension of the Euclidean algorithm is taken from [Cohe],
Section 1.3, Algorithm 1.3.6. The variable v in the above invariant condition is
employed only implicitly, and only at the end is it calculated as v := (d — u - a) /b.

Extended Euclidean algorithm for calculating gcd(a, b) and factors v and v
such thatged(a,b) =u-a+v-50<a,b

1. Setu «+— 1,d <+ a.Ifb = 0, set v + 0 and terminate the algorithm;
otherwise, set v1 < 0 and vz < b.

2. Calculate g and t3 with d = q - v3 + t3 and t3 < v3 by a division with
remainder, and sett1 «— u — q - v1, U < v1,d < v3,v1 < t1,and v3 <« t3.

3. Ifvs = 0,setv < (d — u - a)/band terminate the algorithm; otherwise, go
to step 2.

The following function xgcd 1() uses the auxiliary functions sadd() and
ssub() for the (exceptional) calculation of a signed addition and subtraction. Each
of these functions contains a prelude that deals with the sign as an argument
to be passed, and then calls the kernel functions add() and sub() (cf. Chapter
5), which execute addition and subtraction, respectively, without consideration
of overflow or underflow. Based on the division function div_1() for natural
numbers there exists the auxiliary function smod(), which forms the residue
a mod bwith a,b € Z, b > 0. These auxiliary functions will be needed again
later, in connection with the application of the Chinese remainder theorem in the
function chinrem 1() (see Section 10.4.3). In a possible extension of the FLINT/C
library for processing integers they could be used as models for handling signs.

A hint for using the following function is in order: If the arguments satisfy
a,b > Nmax/2, an overflow in the factors u and v, which are returned as the
result of xgcd 1(), can occur. In such cases enough space must be reserved for
holding v and v, which are then declared by the calling program as type CLINTD or
CLINTQ as required (see Chapter 2).
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Function:

Syntax:

Input:
Output:

extended Euclidean algorithm for calculating the
representation gcd(a, b) = u - a 4+ v - b for natural
numbers a, b
void xgcd 1 (CLINT a_1, CLINT b 1, CLINT g 1,
CLINT u_1, int *sign u,
CLINT v_1, int *sign v);
a_l, b 1 (operands)
g l(gcdofa landb 1)
ul, v 1(factorsofa landb 1in therepresentation
ofg 1)
*sign u (signofu 1)
*sign v (signofv 1).

void

xgcd 1 (CLINT a_1, CLINT b_1, CLINT d_1, CLINT u_l, int *sign u, CLINT v 1,

CLINT v1 1, v3 1,

int *sign v)

t11, 131, q_1;

CLINTD tmp_ 1, tmpu 1, tmpv 1;
int sign_vi1, sign_t1;

Step 1: Initialization.

cpy 1 (d 1, a 1);

cpy 1 (v3_1, b 1);

if (EQZ_L (v3_1))
{

SETONE_L (u_1);
SETZERO L (v 1);

*sign u = 1;
*sign v = 1;
return;

}
SETONE_L (tmpu_1)
*sign u = 1;
SETZERO L (v1_1);
sign vi = 1;

>

Step 2: Main loop; calculation of the greatest common divisor and of u.
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while (GTZ_L (v3_1))
{
div_1 (d_1, v3_1, q_1, t3_1);
mul 1 (vi 1, q.1, q1);
sign t1 = ssub (tmpu_l, *sign u, q_1, sign vi, t11);
cpy 1 (tmpu 1, vi 1);
*sign u = sign vi;
cpy 1 (d 1, v3 1);
cpy 1 (vi 1, t1.1);
sign vi = sign t1;
cpy_1 (v3_1, t3_1);

Step 3: Calculation of v and the end of the procedure.

mult (a_1, tmpu 1, tmp 1);

*sign v = ssub (d 1, 1, tmp 1, *sign u, tmp_1);
div 1 (tmp 1, b 1, tmpv 1, tmp 1);

cpy 1 (u_l, tmpu 1);

cpy 1 (v 1, tmpv_ 1);

return;

Since dealing with negative numbers within the FLINT/C package requires
additional cost, we arrive at the observation that for calculating the inverse of a
residue class @ € Z;; only the one factor u of the representation 1 = u-a +v-n
of the greatest common divisor is necessary. A positive representative for v can
always be found, and we can thereby spare ourselves the need to deal with
negative numbers. The following algorithm is a variant of the previous one that
makes use of this observation and eliminates entirely the calculation of v.

Extended Euclidean algorithm for calculating gcd(a, n) and the multiplicative
inverse of a mod n,0 < a,0 <n
1. Setu «— 1,9 < a,v1 «+ 0, and vz « n.

2. Calculate g, t3 with g = ¢q - v3 + t3 and {3 < v3 by division with remainder
andsett; <« u — q-v1 mod n,u < vi, g « v3, V1 < t1, V3 « t3.

3. If vs = 0, output g as gcd(a, n) and u as the inverse of @ mod n and
terminate the algorithm; otherwise, return to step 2.

The modular step t1 < u — q - v1 mod n ensures that ¢1, v1, and v do not
become negative. At the end we have u € {1,...,n — 1 }. The coding of the
algorithm leads us to the following function.
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Function: calculation of the multiplicative inverse in Z,,
Syntax: void inv 1 (CLINT a_1, CLINT n 1, CLINT g 1, CLINT i 1);
Input: a_l, n_1 (operands)
Output: g 1(gcdofa landn 1)
i 1 (inverse of a1 modn 1, if defined)

void

inv_1 (CLINT a_1, CLINT n_1, CLINT g 1, CLINT i 1)

{

CLINT va1 1, v3 1, t11, t3 1, q 1;

Test of the operands for 0. If one of the operands is zero, then there does not exist
an inverse, but there does exist a greatest common divisor (cf. page 168). The result
variable i_1 is then undefined, which is indicated by being set to zero.

if (E0Z L (a_1))

{
if (EQZ_L (n_ 1))
{
SETZERO L (g_1);
SETZERO L (i_1);
return;
}
else
{
cpy_1 (g_1, n_1);
SETZERO L (i_1);
return;
}
}
else
{
if (EQZ_L (n_ 1))
{
cpy 1 (g 1, a l);
SETZERO L (1 1);
return;
}
}
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Step 1: Initialization of the variables.

cpy_1 (g1, a_l);
cpy 1 (v3_ 1, n 1);
SETZERO L (vi_1);
SETONE L (t1 1);
do

{

Step 2: With the test in GTZ_L (t3_1) after the division an unnecessary call to
mmul 1() and msub_1() is avoided in the last run through the loop. The assignment
to the result variable i_1 is not carried out until the end.

div1l (g 1, v3.1, q1, t3.1);

if (GTZ_L (t3.1))
{

mmul 1 (vi 1, g1, q. 1, n 1);
msub 1 (t1.1, q 1, q 1, n_ 1);
cpy 1 (t1.1, vi 1);

cpy 1 (vi 1, q1);

cpy 1 (g 1, v3 1);

cpy 1 (v3_1, t3 1);

}
while (GTZ_L (t3_.1));

Step 3: As the last requisite assignment we take the greatest common divisor from
the variable v3_1, and if the greatest common divisor is equal to 1, we take the
inverse to a_1 from the variable v1_1.

cpy_1 (g1, v3_1);
if (EQONE_L (g_ 1))

{
cpy 1 (i 1, vi1);
}
else
{
SETZERO L (i_1);
}
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10.3 Roots and Logarithms

In this section we shall develop functions for calculating the integer part of square
roots and logarithms to base 2 of CLINT objects. To this end we first consider
the latter of these two functions, since we will need it for the first of them: For

a natural number o we are seeking a number e for which 2¢ < a < 2°7!. The
number e = |log, a] is the integer part of the logarithm of a to the base 2 and
is easily obtained from the number of relevant bits of a, as determined from the
following function 1d_1(), reduced by 1. The function 1d_1(), which is used in
many other functions of the FLINT/C package, disregards leading zeros and counts
only the relevant binary digits of a CLINT object.

Function: number of relevant binary digits of a CLINT object
Syntax: unsigned int 1d 1 (CLINT n_1);

Input: n_1 (operand)

Return: number of relevant binary digits of n_1.

unsigned int
1d 1 (CLINT n_1)
{
unsigned int 1;
USHORT test;

Step 1: Determine the number of relevant digits to the base B.

1 = (unsigned int) DIGITS L (n_1);
while (n_1[1] == 0 8% 1 > 0)
{
__1;
}
if (1 ==0)
{
return 0;

}

Step 2: Determine the number of relevant bits of the most-significant digit. The
macro BASEDIV2 defines the value of a digit that has a 1 in the most-significant bit
and otherwise contains 0 (that is, 25/PFRPGT—1)
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test = n 1[1];
1 <<= LDBITPERDGT;
while ((test & BASEDIV2) == 0)
{
test <<= 1;
--1;
}

return 1;

}

We then calculate the integer part of the square root of a natural number
based on the classical method of Newton (also known as the Newton—-Raphson
method), which is used for determining the zeros of a function by successive ap-
proximation: We assume that a function f () is twice continuously differentiable
on an interval [a, b], that the first derivative f’(z) is positive on [a, b], and that we
have

17
max |£E @)
b | f'(2)?
Then if z,, € [a, b] is an approximation for a number r with f(r) = 0, then
Tn41 := Tn, — f (zn) /f' (z5) is a better approximation of r. The sequence

defined in this way converges to the zero r of f (cf. [Endl], Section 7.3).
Ifwe set f(z) := 2% — cwith ¢ > 0, then f(z) for z > 0 satisfies the above
conditions for the convergence of the Newton method, and with

. flzn) 1 c
Tn+l = Tn — f/ (fL’n) = 5 (Cvn + a)

we obtain a sequence that converges to /c. Due to its favorable convergence
behavior Newton’s method is an efficient procedure for approximating square
roots of rational numbers.

Since for our purposes we are interested in only the integer part r of \/c,
for which 7% < ¢ < (r + 1)? holds, where c itself is assumed to be a natural
number, we can limit ourselves to computing the integer parts of the elements of
the sequence of approximations. We begin with a number 21 > +/c and continue
until we obtain a value greater than or equal to its predecessor, at which point the
predecessor is the desired value. It is naturally a good idea to begin with a number
that is as close to /c as possible. For a CLINT object with value c and e := |log, c|

we have that {2(6"’2)/ 2J is always greater than /c, and furthermore, we can

easily calculate it with the function 1d_1(). The algorithm goes as follows.
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Algorithm for determining the integer part r of the square root of a natural
numbern > 0

1. Setx «— [2(e+2)/2J with e := [logy n].
2. Sety «— |[(x+n/x) /2]|.Ify < x,setx < y and repeat step 2.

3. Output z and terminate the algorithm.

The proof of the correctness of this algorithm is not particularly difficult.
The value of = decreases monotonically, and it 