
Low-Resource Routing Attacks Against Anonymous Systems

Kevin Bauer1 Damon McCoy1 Dirk Grunwald1 Tadayoshi Kohno2 Douglas Sicker1

1University of Colorado, Boulder, CO, USA 2University of Washington, Seattle, WA, USA

University of Colorado at Boulder
Technical Report CU-CS-1025-07

Abstract

Overlay mix-networks are widely used to provide low-
latency anonymous communication services. It is gen-
erally accepted that, if an adversary can compromise the
endpoints of a path through an anonymous mix-network,
then it is possible to ascertain the identities of a request-
ing client and the responding server. However, theoretical
analyses of anonymous mix-networks show that the like-
lihood of such an end-to-end attack becomes negligible
as the network size increases. We show that if the mix-
network attempts to optimize performance by utilizing a
preferential routing scheme, then the system is highly vul-
nerable to attacks from non-global adversaries with only
a few malicious servers.

We extend this attack by exploring methods for low-
resource nodes to be perceived as high-resource nodes by
reporting false resource claims to centralized routing au-
thorities. To evaluate this attack on a mature and represen-
tative system, we deployed an isolated Tor network on the
PlanetLab testbed. We introduced low-resource malicious
nodes that falsely gave the illusion of high-performance
nodes, which allowed them to be included on a dispropor-
tionately high number of paths. Our results show that our
malicious low-resource nodes are highly effective at com-
promising the end-to-end anonymity of the system. We
present several extensions to this general attack that fur-
ther improve the performance and minimize the resources
required. In order to mitigate low-resource nodes from ex-
ploiting preferential routing, we present several methods
to verify resource claims, including a distributed reputa-
tion system. Our attacks suggest what seems be a funda-
mental problem in multi-hop systems that attempt to si-
multaneously provide anonymity and high-performance.

1 Introduction

Overlay mix-networks are widely used to provide low-
latency anonymous communication services. It is gener-

ally accepted that it is impossible for any practical privacy
enhancing system to provide perfect anonymity. There-
fore, the designers of such systems must consider re-
stricted threat models. In particular, many systems ac-
knowledge that, if the endpoints of a path through the
mix-network are compromised, it is possible to perform
a traffic analysis attack. However, theoretical analyses of
anonymous mix-networks show that the likelihood of suc-
cessfully launching such a traffic analysis attack becomes
negligible as the network size increases [9, 24, 29].

In the case ofTor [9], one of the most popular pri-
vacy enhancing systems, the explicitly stated goal is that
the system should provide anonymity againstnon-global
adversaries. Although, in theory, such a system is resis-
tant to end-to-end traffic analysis attacks, our results show
quite the contrary. Since Tor attempts to provide opti-
mal performance for interactive applications, it employs
a preferential routing mechanism. We show that even if
an adversary can only control afew malicious nodes —
3 or 6 in our experiments with a PlanetLab network of
60 honest servers — the adversary can still compromise
the anonymity of a significant fraction of the connections
from new clients. Moreover, since our attacks exploit
Tor’s preferential routing algorithms, which are criticalto
ensuring it’s high-performance, our results have broad im-
plications to all high-performance, low-latency anonymity
systems.

Research Themes.Our attacks enable both positive and
negative adversarial actions, depending on who one con-
siders to be the adversary. For example, law enforcement
officers might use our techniques to cheaply and realisti-
cally track online child predators, and the RIAA and other
organizations might use our techniques to link web or tor-
rent requests to their corresponding requesters. Rather
than focus on particular applications, however, we focus
our research on the following two basic scientific ques-
tions: (1) how can weminimize the requirements neces-
sary for any adversary to compromise the anonymity of a
flow; and (2) how can we harden Tor against our attacks.

Attack Overview. All of our attacks extend the fol-
lowing very simple insight: Since Tor’s routing mecha-
nism prefers high-bandwidth, high-uptime servers for cer-
tain portions of a flow’s route, an adversary can bias the
route selection algorithm toward malicious nodes with
high bandwidths and high uptimes. The adversary only
needs a few such malicious nodes in order to success-
fully compromise the anonymity of a significant number
of clients. In this basic attack, an adversary could deploy
a few high-bandwidth, high-uptime servers, and with high
probability, compromise two of the critical Tor servers on
a Tor route for new Tor clients; technically, the compro-
mised nodes are theentry andexit nodes.

Compromising Anonymity by Linking Paths. We
present a new end-to-end method for associating a client’s
request to its corresponding destination server. After the
attacker has compromised the entry and exit nodes, they
can use ourpath linking algorithm to bind together both
parties in the flow. Once the identities of the sender and
receiver are discovered, the system’s anonymity has been
fully compromised.

This new flow linking algorithm is the first such tech-
nique that that can link flowsbefore any payload data is
transmitted. An advantage to linking a flow before any
payload data is sent is that if the adversary is unable to
link the path, but does control at least one router along
the path, than the adversary can at least terminate the path
before it is fully constructed. Doing so would force the
client to initiate a new path construction request, thereby
giving the adversary another opportunity to link the client
with the target server.

Reducing Per-Node Resource Requirements.While we
consider the basic attack to be quite serious, we can do
significantly better. Namely, while it only requires the ad-
versary to deploy a few malicious Tor nodes, the basic at-
tack still mandates that those nodes have high bandwidth
connections and high uptimes. As our next contribution,
we show that even adversaries with sparse resources —
such as adversaries with a few nodes behind residential
cable modems — can compromise the anonymity of many
paths. Our extension to low-resource adversaries exploits
the fact that a node can lie about it’s resources, since Tor’s
routing infrastructure doesnot verify a server’s resource
claims.

To sample our results, in one of our experiments, we
constructed an isolated Tor network on the PlanetLab
testbed consisting of 60 honest nodes and 6 malicious
nodes falsely claiming to have high bandwidths and high
uptimes. In this configuration, we introduced 90 new
clients that issued approximately 13,500 HTTP requests
over the course of two hours. By applying our path link-
ing algorithm and resource reduction techniques, the ad-
versary could compromise over 46% of the paths in the

network. This is in stark contrast to the 0.70% of paths
predicted by the previous analytical model [9].

Context. It is worth asking why the earlier theoretical
model [9] predicting strong resistance to this type of at-
tack does not match our experimental results. Besides al-
lowing malicious nodes to lie about their resources, the
main issue is that the theoretical model assumes a homo-
geneous set of Tor nodes, when in fact a real Tor network
will be vastly heterogeneous. While the Tor developers
seem to have realized that the previous analytical model
does not reflect the full complexities of a real deploy-
ment [8], we are the first to experimentally analyze and
push the limits of the practical implications of Tor’s het-
erogeneous architecture on it’s anonymity. In addition,
it is important to note that, since Tor uses a centralized
method to maintain and distribute the full list of routers,
it is not vulnerable to many of the routing attacks that are
possible in decentralized overlay systems. These include,
for example, the Eclipse attack [28], attacks on distributed
hash tables (DHTs) [1], and passive node profiling attacks
[4].

Additional Improvements and Other Attacks. We con-
sider additional attack variants and improvements in the
body of this paper. For example, we show how to adapt
our attack to compromise the flows of pre-existing Tor
clients; recall that our attack as described above is (gen-
erally) only successful at compromising new clients, who
have not already picked their preferred entry nodes. We
also consider further resource reductions, such as using
watermarking techniques to, in some cases, eliminate the
need for a compromised exit node. Additionally, we con-
sider methods to improve the effectiveness of our attack,
such as a variant of the Sybil attack [10].

While one might envision additional attacks against
Tor, such as enrolling each member of a large botnet as
a Tor server, or enrolling a large number of virtual ma-
chines as Tor servers, we view such attacks as orthogonal
to our research since our fundamental goal is to reduce
the resource requirements on the adversary, not to sup-
pose additional resources.

Towards Prevention. High-resource adversaries, even
if only in possession of a few malicious nodes, seem
to pose a fundamental security challenge to any high-
performance, multi-hop privacy enhancing system. We
focus on designing solutions to mitigate the low-resource
attacker’s ability to compromise anonymity. These solu-
tions include verifying information used in routing deci-
sions, allowing clients to make routing decisions based on
observed performance, and implementing location diver-
sity in routers to prevent Sybil attacks.

Broader Implications. Our results suggest what might
be a fundamental problem with any multi-hop system
that tries to simultaneously provide anonymity and high-

2

performance. Indeed, our results suggest that one must
be extremely careful when optimizing a system for
high performance since, if an adversary can place high-
performance servers in the network, or give the illusion of
high-performance servers, then a solution optimized for
high-performance could allow the adversary to compro-
mise the anonymity of many users.

Outline. The remainder of this paper is organized as fol-
lows: In Section 2 we present a brief overview of the Tor
system, an in depth analysis of Tor’s router selection al-
gorithms, a description of Tor’s envisioned attack model,
and an overview of the common anonymity metrics that
are used throughout the remainder of the paper. In Section
3, we introduce our attack and describe our attack model.
Section 4 provides a description of the experiments that
are used to validate our attack and we discuss the exper-
imental results. In Section 5, we present possible exten-
sions to our attack. Section 6 offers a detailed analysis of
our proposed defenses, and in Section 7, we compare our
attack with previous attacks against Tor. Section 8 con-
cludes with a discussion of the implications of our results
on the design and implementation of privacy enhancing
systems.

2 Background

In order to present our attack methodology, we provide
a brief overview of the Tor system, an in depth analysis
of Tor’s router selection algorithms, a description of Tor’s
envisioned attack model, and an overview of the common
anonymity metrics that are used throughout the remainder
of the paper.

2.1 Understanding Tor at a High Level

The Tor project’s main goal is to develop a network that
protects the privacy of TCP connections. In addition,
Tor aims to provide end-user anonymity with constraints
such as low-latency, deployability, usability, flexibility,
and simple design. Currently, Tor can anonymize TCP
streams, providing a high-throughputand low-latency mix
network [2].

In the Tor architecture, there are several fundamental
concepts which are defined as follows (see Figure 1): An
onion router (OR) is the server component of the network
that is responsible for forwarding traffic within the core of
the mix network. Anonion proxy (OP) is the client part of
the network that injects the user’s traffic into the network
of onion routers; for our purposes, one can view the onion
proxy as a service that runs on the user’s computer. Acir-
cuit is a path of three onion routers (by default) through
the Tor network from the onion proxy to the desired des-
tination server. The first onion router on the circuit is re-

Figure 1:Tor Overview

ferred to as theentrance router, the second router is called
a mix router, and the final hop is theexit router. Onion
proxies choose stable and high bandwidth onion routers
to beentry guards, which are used as an entrance router.
We use the termsentrance guard andentrance router syn-
onymously throughout this paper. Router information is
distributed by a set of well-known and trusteddirectory
servers. Finally, the unit of transmission through the Tor
network is called acell, which is a fixed-size 512 byte
packet, that is padded if necessary.

Tor’s low-latency objective requires that the network
design make some trade-offs between performance and
anonymity. In particular, Tor does not explicitly delay or
re-order cells. A separate set of buffers are created to store
cells received from each circuit. Cells are forwarded us-
ing a round-robin queuing model to give a fair amount of
bandwidth to each circuit and to minimize latency.

At the core of Tor is a circuit switched network. The
circuits are carefully built to ensure that only the origina-
tor of the circuit knows the complete path through which
the cell is routed. Tor also uses Transport-Layer Secu-
rity (TLS) [6] and other standard cryptographic methods
to prevent an eavesdropper from linking incoming cells
to outgoing cells. Cells are encrypted by the originator
of the circuit using a layered encryption scheme. Each
hop along the circuit removes a layer of encryption un-
til the cell reaches the exit node at the end of the circuit
and is fully decrypted, reassembled into a TCP packet,
and forwarded its final destination. This process is known
asonion routing [14]. It is important to note that only the
exit node can observe the unencrypted contents of the cell.
Since our attack does not focus on the cryptographic secu-
rity of any of these protocols, we will not go into any more
detail. For a thorough evaluation of the security of Tor’s
circuit building algorithm, we refer the reader to Goldberg
[13] and more details about the cryptography used in Tor

3

can be found in its design document [9].
Tor can operate as both an onion proxy, which builds

circuits to forward a local user’s traffic through the net-
work and also as an onion router, which will accept con-
nections from other routers/proxies and forward their traf-
fic as well as the local user’s traffic. By default, Tor cur-
rently operates as an onion proxy (client), handling only
the local user’s traffic.

2.2 Tor’s Router Selection Algorithm in De-
tail

There are currently two parts to the algorithm that Tor uses
to select which onion routers to include in a circuit. The
first part is used to select the entrance router, and the sec-
ond part is used to select subsequent routers in the circuit.
We will show methods to exploit both of these algorithms,
as currently implemented in Tor, in Section 3.

Entrance Router Selection Algorithm. The default al-
gorithm used to select entrance routers was modified in
May 2006 with the release of Tor version 0.1.1.20. Entry
guards were introduced to protect the beginning of circuits
[22]. The entry guard selection algorithm works by auto-
matically selecting a set of onion routers that are marked
by the trusted directory servers as being “fast” and “sta-
ble.” The directory server’s definition of a fast router is
one that reports bandwidth above the median of all band-
width advertisements. A stable router is defined as one
that advertises an uptime that is greater than the median
uptime of all other routers.

The client will only choose new entry guards when one
is unreachable. Currently the default number of entry
guards selected is three, and old entry guards that have
failed are stored and retried periodically. There is also an
option added to use only the entry guards that are hard-
coded into the configuration file, but this option is dis-
abled by default. This algorithm was implemented to pro-
tect the first hop of a circuit by using what are believed to
be more reliable and trustworthy nodes.

Non-Entrance Router Selection Algorithm. The sec-
ond algorithm to select non-entrance nodes is intended
to optimize onion router selection for bandwidth and up-
time, while not always choosing the very best nodes every
time. This is meant to ensure that all nodes in the system
are used to some extent, but nodes with more bandwidth
and higher stability are used most often. Tor has a set of
TCP ports that are designated as “long-lived.” If the traf-
fic transiting a path uses one of these long-lived ports, Tor
will optimize the path for stability by pruning the list of
available routers to only those that are marked as stable.
This causes Tor’s routing algorithm to have a preference
towards onion routers marked as stable nodes. For more
details on this part of the algorithm, see the Tor Path Spec-

ification [8].
The next part of the algorithm optimizes the path for

bandwidth. Briefly, this algorithm works as follows: Let
bi be the bandwidth advertised by thei-th router, and as-
sume that there areN routers. Then the probability that

thei-th router is chosen is approximatelybi /
(

∑N

j=1 bj

)

.

We assume that
∑N

j=1 bj is positive, since a zero value
would imply that the system has no available bandwidth.
We provide pseudocode for the bandwidth optimization
part of the algorithm in Appendix A. The most signifi-
cant feature of this algorithm is that the more bandwidth a
particular router advertises, the greater the probabilitythat
the router is chosen. The routing algorithm’s tendency to
favor stable and high bandwidth nodes is fundamentally
important to the implementation of our attack.

2.3 Tor’s Threat Model

Tor’s design document [9] lays out an attack model that
includes a non-global attacker that can control or mon-
itor a subset of the network. The attacker can also in-
ject, delay, alter, or drop the traffic along some of the
links. This attack model is similar to the attack model that
other low-latency anonymous systems such as Freenet [3],
MorphMix [25], and Tarzan [12] are designed to protect
against.

As a component of Tor’s attack model, the designers
acknowledge that an adversary can potentially compro-
mise a portion of the network. To predict the expected
percentage of flows compromised by such an adversary, a
simplified theoretical analysis of a privacy enhancing sys-
tem is provided in Tor’s design document. This analysis
is based on a combinatorial model that assumes nodes are
chosen at random from a uniform distribution. The de-
signers make the assumption that, due to the low-latency
nature of Tor, it is possible to correlate a traffic flow with
only theentrance andexit nodes compromised (we agree
in this regard, and provide a new method for doing so in
Section 3). According to the designers, the probability
of choosing a compromised entrance node ism

N
and the

probability of choosing a compromised exit node is the
same, thus, the combinatorial model is expressed as(m

N
)2,

wherem > 1 is the number of malicious nodes andN is
the network size [9].

2.4 Common Anonymity Metrics

Using entropy as a metric to measure the amount of
anonymity provided by a system was proposed in Diaz,et
al. [5], and Serjantov and Danezis [26]. From Shannon’s
information theory [27], the notion of entropy is defined
as follows:

4

H(N) = −
∑

xi∈N

p(xi) log2 (p(xi));

wherep(xi) is the probability of thei-th node being in-
cluded on a path andN is the set of all routers in the Tor
network. In Zhuang,et al. [33], a metric is given to mea-
sure theunlinkability of a system based on the entropy
calculation. The ideal entropy of a system is calculated
by I(N) = log2 (|N |). The unlinkability calculation nor-
malizes the raw entropy of a system by dividing by the
ideal entropy,H(N)

I(N) . This metric can show how well a
system does at making it appear equally likely that any
user in the system could have performed an action. Even
with this metric, anonymity is still a fuzzy concept that is
hard to fully measure, since a high entropy value in a sys-
tem is a necessary, but not sufficient, condition for strong
anonymity. A low entropy value in a system indicates
that it does not provide strong anonymity. However, when
measuring the anonymity of a system, one must also take
into account if the system is vulnerable to common at-
tacks (or previously undocumented attacks), that degrade
the anonymity of the system.

3 Compromising Anonymity

We now consider how an adversary might compromise
anonymity within the Tor threat model by gaining access
to a non-global set of malicious nodes. In our basic at-
tack, we assume that these malicious nodes are fast and
stable, as characterized by high bandwidths and high up-
times. While even the basic attack squarely compromises
anonymity under Tor’s target threat model [9], we also
show how to remove these performance restrictions for an
even lower-resource attack.

We focus on attacking the anonymity of clients that run
in their default configurations; in particular, we assume
that clients function only as onion proxies within the net-
work. We also focus on attacking clients that join the
network after the adversary mounts the first phase of our
attack (Section 3.1); we shall remove this restriction in
Section 5.

3.1 Phase One: Setting Up

To mount our attacks, an adversary must control a subset
of m > 1 nodes in the pool of active onion routers. The
adversary might obtain such nodes by introducing them
directly into the Tor network, or by compromising exist-
ing, initially honest nodes. The adversary may coordinate
these compromised machines in order to better orchestrate
our attack.

The Basic Attack. In our basic attack, the adversary’s
setup procedure is merely to enroll or compromise a num-

ber of high-bandwidth, high-uptime Tor servers. If pos-
sible, the adversary should ensure that all of these nodes
advertise unrestricted exit policies, meaning that they can
forward any type of traffic.

Resource Reduction.We can significantly decrease the
resource requirements for the malicious nodes, thereby
allowing them to be behind low-bandwidth connections,
like residential broadband Internet connections. This ex-
tension exploits the fact that a malicious node can re-
port incorrect (and large) uptime and bandwidth advertise-
ments to the trusted directory servers. These false adver-
tisements are not verified by the trusted directory servers,
nor by other clients who will base their routing decisions
on this information, so these false advertisements will re-
main undetected. Thus, from the perspective of the rest of
the network, the adversary’s low-resource servers actually
appear to have very high bandwidths and uptimes.

What Happens Next. Since one of Tor’s goals is to
provide alow-latency service, when a new client joins
the network and initiates a flow, the corresponding onion
proxy attempts to optimize its path by choosing fast and
stable onion routers. By deploying nodes with high band-
widths and high uptimes, or by deploying nodes that give
the impression of having high bandwidths and high up-
times, the adversary can increase the probability that its
nodes are chosen as both entry guards and exit nodes for a
new client’s circuit. Compromising the entrance and exit
position of a path is a necessary condition in order for the
second phase of our attack (Section 3.2) to successfully
correlate traffic.

As a brief aside, on the real Tor network, roughly half
of the onion routers have restricted exit policies that do
not allow them to be selected as exit nodes for all flows.
This situation further increases the probability that one of
the adversary’s nodes will be chosen as a flow’s exit node.

3.2 Phase Two: Linking Paths

We have shown a method that increases the likelihood of
a malicious router existing on a particular proxy’s path
through Tor. In the improbable case when the full path has
been populated with malicious nodes, it is trivial to com-
promise the anonymity of the path. However, in the more
likely case, if only the entrance and exit nodes are mali-
cious, we have developed a technique that allows paths to
be compromised with a high probability of success (see
Figure 2). Our approach here is independent of whether
the adversary is implementing the basic or the resource-
reduced attack from Section 3.1.

While others have postulated the possibility that an ad-
versary could compromise the anonymity of a Tor route
if the adversary controlled both the route’s entry and exit
nodes [9], to the best of our knowledge, ours is the first

5

Figure 2: Attack Model : Evil onion routers are positioned at both
the entrance and exit positions for a given client’s path to the requested
server through the Tor network.

approach capable of doing sobefore the client starts to
transmit any payload data. Furthermore, we experimen-
tally verify the effectiveness of our approach in Section 4.

Overview. In order for the attack to reveal enough in-
formation to correlate client requests to server responses
through Tor, each malicious router logs the following in-
formation for each cell received: (1) its location on the
current circuit’s path (whether it is an entrance, middle,
or exit node); (2) local timestamp; (3) previous circuit ID;
(4) previous IP address; (5) previous connection’s port;
(6) next hop’s IP address; (7) next hop’s port; and (8) next
hop’s circuit ID. All of this information is easy to retrieve
from each malicious onion router. Once this attack has
been carried out, it is possible to determine which paths
containing a malicious router at the entrance and exit po-
sitions correspond to a particular onion proxy’s circuit
building requests. With this information, an attacker can
associate the sender with the receiver, thus compromising
the anonymity of the system. In order to execute this algo-
rithm, the malicious nodes must be coordinated. The sim-
plest approach is to use a centralized authority to which
all malicious nodes report their logs. This centralized au-
thority can then execute the circuit-linking algorithm in
real-time.

Details. Tor’s circuit building algorithm sends a determin-
istic number of packets in an easily recognizable pattern.
Figure 3 shows the steps and the timing associated with
a typical execution of the circuit building algorithm. A
proxy creates a new circuit through Tor as follows: First,
the proxy issues a circuit building request to its chosen
entrance router and the entrance router sends an acknowl-
edgment. Next, the proxy sends another circuit building
request to the entrance router toextend the circuit through
a chosen mix router. The mix router acknowledges the

Entrance Mix ExitClient

TLS[build_1]

E_K1[E_K2[extend_3]]

E_K1[build_ack]

TLS[build_ack]

TLS[build_ack]

E_K2[build_ack]

E_K2[extend_3]

TLS[build_2]

TLS[build_3]

TLS[build_ack]

E_K2[build_ack]

}

Step 3

Step 1

Step 2}

}

E_K1[extend_2]

Figure 3: A sequential packet diagram of Tor’s circuit building pro-
cess. In Step 1, the client chooses the first hop along the circuit. Step 2
shows the chosen entrance router forwarding the client’s request to the
chosen mix router. Step 3 shows the entrance and mix routers forward-
ing the final circuit building request to the desired exit node. KeyK1 is
a shared secret key between the client and the entrance router. Key K2
is a shared secret key between the client and the mix router.

new circuit by sending an acknowledgment back to the
client via the entrance node. Finally, the proxy sends a cir-
cuit building request to the exit node, which is forwarded
through the entrance and mix routers to the chosen exit
server. Once the exit router’s acknowledgment has been
received through the mix and entrance nodes, the circuit
has been successfully built.

In order to exploit the circuit building algorithm, it is
necessary to associate the timing of each step and ana-
lyze the patterns in the number and direction of the cells
recorded. A naive packet counting approach would not
be sufficient, since not all cells sent from the onion proxy
are fully forwarded through the circuit; thus, the number
of cells received at each onion router along the circuit is
different. This pattern is highly distinctive and providesa
tight time bound, which we exploit in our circuit linking
algorithm.

Our circuit linking algorithm works as follows: The en-
trance node verifies that the circuit request is originating
from an onion proxy, not a router. This is easily deter-
mined since there will be no routing advertisements for
this node at the trusted directory servers. Next, the al-
gorithm ensures that steps 1, 2, and 3 occur in increasing
chronological order. Also, it is necessary to verify that the
next hop for an entrance node is the same as the previous
hop of the exit node. Finally, in step 3, it is verified that

6

the cell headed towards the exit node from the entrance
node is received before the reply from the exit node. If
every step in the algorithm is satisfied, then the circuit has
been compromised.

4 Experiments

In this section, we describe the experimental pro-
cess through which we demonstrate and evaluate our
resource-reduced attack. By experimentally evaluating
our resource-reduced attack, our experimental results also
immediately extend to the basic attack scenario in Sec-
tion 3.

4.1 Experimental Setup

In order to evaluate this attack in a realistic environment,
we set up an isolated Tor deployment on the PlanetLab
overlay testbed [23]. We were advised not to validate
our attack on the real Tor network because of its poten-
tially destructive effect [7]; however, we did verify that
our technique for publishing false router advertisements
did, in fact, propagate for a single test router on the real
Tor deployment. To ensure that the experimental Tor net-
work is as realistic as possible, we surveyed the real Tor
network to determine the router quality breakdown with
regard to the amount of bandwidth used to transit Tor traf-
fic. This data is given in Table 1. According to the real
trusted Tor directory servers, there are roughly 420 onion
routers in the wild that forward at least 5 KB per second.
However, due to limitations on the number of PlanetLab
nodes that were available over the course of the experi-
ments, we created a smaller Tor network according to our
analysis of the onion router quality distribution in the real
deployment. We created two isolated Tor networks on
PlanetLab, consisting of 40 and 60 nodes, each running
exactly one onion router per node. Each experimental de-
ployment has precisely three directory servers, which are
also nodes from PlanetLab.

Table 1: Bandwidth Quality Distributions

Bandwidth Class Tor Networks
Real Tor 40 Node 60 Node

996 KB 38 4 6
621 KB 43 4 6
362 KB 55 6 9
111 KB 140 13 20
29 KB 123 11 16
20 KB 21 2 3

When choosing nodes from PlanetLab for the exper-
imental deployments, each node was evaluated using

iperf, a common bandwidth measurement tool [16], to
ensure that it had sufficient bandwidth resources to sus-
tain traffic at its assigned bandwidth class for the course of
each experiment. Also, as is consistent with the real Tor
network, we chose PlanetLab nodes that are geographi-
cally distributed throughout the world.

All onion routers (malicious and benign) advertise the
same, unrestricted exit policy. The exit policies of routers
in the real Tor network are difficult to accurately model
due to the reduced size of our network. The global use of
unrestricted exit policies in our experimental Tor testbed
actually decreases the potential effectiveness of our at-
tack. With the potential for more restrictive exit policiesin
a real Tor network, we expect the attack’s performance to
improve since the malicious routers would have a higher
probability of compromising the exit positions.

To demonstrate the effect of the attack, we introduced a
small number of malicious onion routers into each private
Tor network. In the 40 node network, experiments were
conducted by adding two (2/42) and four (4/44) malicious
nodes. In the 60 node network, three (3/63) and six (6/66)
malicious nodes are added. The experiments were con-
ducted as follows: The three trusted directory servers and
each benign router in the network are started first, then the
client pool begins generating traffic through the network.
The network is given two hours for routing to converge
to a stable state,1 at which point the clients are promptly
stopped and all previous routing information is purged so
that the clients behave exactly like new onion proxies join-
ing the network. The malicious nodes are then added to
the network and the clients once again generate traffic for
precisely two hours. This procedure is repeated for the
2/42, 4/44, 3/63, and 6/66 experiments. The results of
these experiments are given in Section 4.4.

4.2 Traffic Generation

To make the experimental Tor deployments realistic, it is
necessary to generate traffic. Unfortunately, there is not
much data available on the nature of Tor traffic and exact
numbers of clients on the real Tor network. Therefore,
we adopt the same traffic-generation strategy as Murdoch
[20]. To generate a sufficient amount of traffic, we used
six dual Xeon class machines running GNU/Linux with
2GB of RAM on a 10 Gbit/s link running a total of 60
clients in the 40 node network, and a total of 90 clients
in the 60 node Tor deployment. These clients made re-
quests for various web pages and files of relatively small
size (less than 10 MB) using the HTTP protocol. The in-

1Our attempts to start the network with both honest and malicious
nodes at once failed, due to the inability of the honest nodesto integrate
into the hostile network. The two hour time period allowed the honest
nodes time to fully integrate into the routing infrastructure before adding
the malicious nodes.

7

Table 2: The raw number of compromised circuits

Number of Circuits
Compromised Total

2/42 425 4,774
4/44 3,422 10,199
3/63 535 4,839
6/66 6,291 13,568

terface between the HTTP client and the onion proxy is
made possible by thetsocks transparent SOCKS proxy
library [30]. The clients also sleep for a random period
of time between 0 and 60 seconds and restart (retaining
all of their cached state including routing information and
entry guards) after completing a random number of web
requests so that they do not flood the network.

4.3 Malicious Node Configuration

To maximize the amount of the anonymized traffic that
an attacker can correlate, each malicious router advertises
a read and write bandwidth capability of 1.5 MB/s and
a high uptime. Furthermore, each malicious node is rate
limited to a mere 20 KB/s for both data and controls pack-
ets to make the node a low-resource attacker. The majority
of this bandwidth was consumed while handling control
packets during the circuit-building process. This has the
effect of enabling the malicious nodes to accept the ma-
jority of the circuit-building requests and, therefore, exist
on a high number of circuits. Therefore, all the malicious
routers’ behavior is aimed at maximizing the probability
that it will be included on a circuit.

4.4 Results

In this section, we present the results of the experiments
on our isolated Tor deployments. To demonstrate the abil-
ity of the attack to successfully link paths through the Tor
network, the percentage of the Tor paths that our path link-
ing algorithm presented in Section 3.2 can correctly cor-
relate is measured. Also, to demonstrate the effect of the
attack on the anonymity of the system, the total network
entropy is calculated.

Using the data logged by malicious routers, our path
linking algorithm was able to link a relatively high per-
centage of paths through Tor to the initiating client. In
the 40 onion router deployment, we conducted experi-
ments by adding two (2/42) and four (4/44) malicious
nodes. The malicious routers composed roughly 5% and
9% of the network. In the 2/42 experiment, the malicious
nodes were able to compromise approximately 9% of the
4,774 paths established through the network. We then per-
formed the 4/44 experiment, and were able to correlate ap-

proximately 34% of the 10,199 paths through the network.
Thus, the attack is able to compromise the anonymity of
over one-third of the circuit-building requests transported
through the experimental network. These experiments
are repeated for a network of 60 onion routers. With
only three (3/63) malicious routers, the attack compro-
mises about 11% of the 4,839 paths and in an experiment
with six (6/66) malicious onion routers, the attack com-
promised over 46% of the 13,568 paths. The results as
percentages of compromised paths are given in Figure 4
and Tables 3 and 4. The raw number of compromised cir-
cuits in each experiment is given in Table 2. In addition
to the correctly correlated paths, there were a total of 12
incorrectly correlated paths (one false positive in the 3/63
experiment, three false positives in the 4/44 experiment,
and eight false positive in the 6/66 experiments). This
low number of false positives shows that our path linking
algorithm is highly accurate.

Table 3: The number of predicted and actual
paths compromised in the 40 node PlanetLab
network.

Number of Malicious Routers
2/42 4/44

Analytical 0.12% 0.63%
Experimental 8.90% 33.69%

Improvement 7,574% 5,214%

Table 4: The number of predicted and actual
paths compromised in the 60 node PlanetLab
network.

Number of Malicious Routers
3/63 6/66

Analytical 0.15% 0.70%
Experimental 11.06% 46.46%

Improvement 7,079% 6,546%

In Tables 3 and 4, the experimental results are com-
pared to the analytical expectation of the percentage of
paths that can be compromised by controlling the entrance
and exit nodes. The analytical expectation is based on
a combinatorial model originally defined in Tor’s design
document [9] as(m

N
)2, wherem > 1 is the number of

malicious nodes andN is the network size. However, this
analytical model does not take into account the fact that an
onion router may be used only once per circuit. Thus, a
more precise expectation can be described by(m

N
)(m−1

N−1).
The analytical expectation given in Tables 3 and 4 is based
upon this assumption. This analysis assumes that each
node has an equal probability of being selected to be on
a path. The difference between the analytical expecta-
tions and the experimental results is clear, as the exper-
iments demonstrate an improvement of between 52 and

8

75 times increase in the number of circuits compromised.
This shows how effective the attack is in influencing Tor’s
routing mechanisms, since the nodes are clearly not cho-
sen with an equal probability.

 0

 20

 40

 60

 80

 100

6/66
4/44

3/63
2/42

P
er

ce
nt

 o
f C

irc
ui

ts
 C

or
re

la
te

d

Percent of Circuits Linked

Figure 4: The percent of the network traffic that can be
correlated versus the ratio of malicious nodes in each
experiment.

 0

 20

 40

 60

 80

 100

6/66
4/44

3/63
2/42

0/60
0/40

S
ys

te
m

 E
nt

ro
y

P
er

ce
nt

ag
e

Network Entropy

Figure 5: The network entropy is given as the ratio of
malicious nodes varies.

We measure the network entropy, as defined in Sec-
tion 2.4, by logging all of the paths used by our clients
to traverse our isolated Tor network. It is not possible to
measure the full entropy of the system in the real Tor net-
work, since we do not control all of the clients using Tor
at any given time. The entropy measurements for our ex-
periments given in Figure 5 show that when no malicious
nodes are present, the entropy of the system is approx-
imately 0.9, which is close to the ideal entropy of 1.0.
However, when 9% of the network is malicious, the en-
tropy of the network drops to 0.49 in the 6/66 experiment
and 0.57 in the 4/44 experiment. The decrease in network
entropy when we added malicious nodes shows the global
impact that our attack has on decreasing Tor’s anonymity.

4.5 Cost of the Attack

Our attack is perfectly suited to a low-resource attacker,
since it is not necessary to prove in any way that an onion

router can, in fact, support the bandwidth that it adver-
tises. Thus, a compromised dial-up or cable modem con-
nection is sufficient to send false bandwidth and uptime
advertisements. In addition, the results of our experi-
ments show that the attack has a significant impact upon
the anonymity of the system with only roughly 9% of the
network compromised. In the 40 node network, the 9%
malicious nodes were able to compromise one-third of
the traffic and in the 60 network, the 9% malicious nodes
were able to compromise almost one-half of the traffic.
We expect, at worse, that the attack will scaleO(N), for
a network of sizeN . However, there are many variables
to consider, such as the effect of variable router quality.
This analysis remains an open problem, due to the vari-
able router quality, the increasing size of the real Tor net-
work, and the Tor maintainer’s request [7] that we not ex-
periment with our attacks on the real Tor network.

5 Attack Extensions

Having presented the basic ideas behind our attacks, we
consider further attack variants and improvements, such
as attacking existing Tor clients as opposed to only new
Tor clients, selective path disruption, router advertisement
flooding, and watermarking attacks.

Compromising Existing Clients. Clients that exist
within the network before the malicious nodes join will
have already chosen a set of entry guard nodes. We
present two methods to compromise the anonymity of ex-
isting clients. First, if an attacker can observe the client
(e.g., by sniffing the client’s 802.11 wireless link), he
can easily deduce the entry guards used by a particular
client. The adversary can then make those existing entry
guards unreachable or perform a denial-of-service (DoS)
attack on these entry guards, making these nodes unus-
able. This forces the client to select a new list of entry
guards, potentially selecting malicious onion routers. An-
other method to attack clients that have a preexisting list
of entry guard nodes would be to DoS a few key stable
nodes that serve as entry guards for a large number of
clients. This would cause existing clients to replace un-
usable entry guards with at least one new and potentially
malicious entry guard node.

Improving Performance Under the Resource-Reduced
Attack. One concern with the resource-reduced attack
that we describe in Section 3 is that, by itself, the attack
can seriously degrade the performance of new Tor clients.
The degradation in performance could then call attention
to the malicious Tor nodes. Naturally, the basic attack
in Section 3 would be completely indistinguishable from
a performance perspective since the basic adversary does
not lie about its resources.

The first question to ask is whether poor performance

9

under an adversarial situation is a sufficient protection
mechanism. We believe that the answer to this question
is “no” — it is a poor design choice for users of a system
to have to detect an attack based on poor performance.
Most users will infer that the system is slow and not think
there is foul play involved. A better design is to have an
automated mechanism in place to detect and prevent our
low-resource attack. Furthermore, a resource-reduced ad-
versary could still learn a significant amount of private
information about Tor clients between the time when the
adversary initiates the attack and time when the attack is
discovered.

The second, more technical, question is to ask what a
resource-reduced adversary might do to improve the per-
ceived performance of Tor clients. One possible improve-
ment arises when the attacker wishes to target a particular
client. In such a situation, the adversary could overtly
deny service to anyone but the target client. Specifically,
an adversary’s Tor nodes could deny (or passively ignore)
all circuit-initiation requests except for those requeststhat
the target client initiates. This behavior would cause the
non-target clients to simply exclude the adversary’s nodes
from their lists of preferred entry guards, and would also
prevent non-target clients from constructing circuits with
the adversary’s nodes as the mix or exit routers. Since
circuit-formation failures are common in Tor, we suspect
that this attack would largely go unnoticed. Currently,
there is no automated mechanism in place to detect an at-
tack such as ours.

Selective Path Disruption. If a malicious node does not
exist at both the entrance and exit positions of a circuit,
but at only one position, it can still cause the circuit to
break simply by dropping all traffic along the circuit. This
would cause the circuit to be rebuilt with a chance that
the rebuilding process will create a path configuration in
which both the entrance and exit nodes are malicious.

Displacing Honest Entry Guards. Recall that Tor uses
special entry guard nodes to protect the entrance of a cir-
cuit. In order to be marked by the directory servers as a
possible entry guard, an onion router must advertise an
uptime and bandwidth greater than the median advertise-
ments. Another attack, which is a variant of the Sybil
attack [10], can be conducted by flooding the network
with enough malicious routers advertising high uptime
and bandwidth. On our private Tor network, we success-
fully registered 20 routers all on the same IP address and
different TCP port numbers.2 Flooding the network with
doctored router advertisements allows a non-global adver-
sary to effectively have a “global” impact on Tor’s routing
structure. Namely, this attack has the effect of increasing

2The trusted directory servers currently have no limits as tothe num-
ber of routers that can be hosted on the same IP address. In theory, an
attacker can register up to216 Tor routers to the same IP address.

the median threshold for choosing entry guards, thereby,
preventing benign nodes from being marked as possible
entry guards. This attack could help guarantee that only
malicious nodes compromise the possible entry guard por-
tion of the router pool. Currently there is no automated
way to detect an advertisement flooding attack in Tor.

Compromising Only the Entry Node. As another ex-
tension to our attack, suppose that an adversary is less in-
terested in breaking anonymity in general, but is instead
particularly interested in de-anonymizing Tor client re-
quests to a specific target website (such as a website con-
taining controlled or controversial content). Suppose fur-
ther that the adversary has the ability to monitor the target
website’s network connection; here the adversary might
have actually set up the target website to lure potential
clients, or might have obtained legal permission to moni-
tor this link. Under this scenario, an adversary only needs
to compromise an entry node in order to de-anonymize
client requests to this target website. The critical idea
is for the entrance router to watermark a client’s pack-
ets using some time-based watermarking technique, such
as the technique used in Wang,et al. [31] or variants.
The adversary’s malicious entrance routers could embed
a unique watermark for each client-mix router pair. A po-
tential complication might arise, however, if the client is
using Tor to conceal simultaneous connections to multiple
websites, and if the circuits for two of those connections
have the same mix router.

6 Proposed Defenses

Non-global, but high-resource (uptime, bandwidth), ad-
versaries seem to pose a fundamental security challenge to
any high-performance, multi-hop privacy enhancing sys-
tem, and we welcome future work directed toward ad-
dressing this challenge. We consider, however, methods
for detecting non-globallow-resource adversaries based
upon a reputation system.

Although presented in the context of Tor, we explore a
number of naive general defensive strategies first. These
defenses revolve around verifying the information that
will later be used as input to routing decisions and, in the
case that the information cannot easily be verified (such as
bandwidth), we investigate methods to mitigate the effects
that false information have on route selection. In addition,
we provide a detailed description of a robust method for
detecting false routing information.

6.1 Naive Solutions

In order to mitigate the negative effects of false routing
information in the network, it is necessary to devise a

10

methodology for verifying a router’s uptime and band-
width claims. Here, we provide a brief overview of some
naive solutions to the problem of resource verification.

Verifying Uptime. A server’s uptime could be tested by
periodically sending a simple heartbeat message. The ad-
ditional load on the directory server would be minimal and
it could effectively keep track of how long each server has
been available.

Centralized Bandwidth Verification. Since Tor relies
upon a centralized routing infrastructure, it is intuitiveto
suggest that the trusted centralized directory servers, in
addition to providing routing advertisements on behalf of
onion routers, also periodically verify the incoming band-
width self-advertisements that are received from onion
routers. The directory server could measure a router’s
bandwidth before publishing the routing advertisement
and correct the bandwidth if it found that the router does
not have sufficient bandwidth. The problem with this ap-
proach is that it cannot detect selectively malicious nodes.
Therefore, it is necessary for the bandwidth verification
mechanism to continuously monitor each node’s band-
width. Due to the significant performance load that would
be placed upon the few centralized directory servers, this
centralized bandwidth auditing approach would create a
performance bottleneck in the system.

Distributed Bandwidth Verification. In order to de-
tect false bandwidth advertisements, it may be tempting
to augment the routing protocol to allow onion routers
to proactively monitor each other. Anonymous auditing
[28], where nodes anonymously attempt to verify other
nodes’ connectivity in order to detect collusion, has been
proposed as a defense against routing attacks in decen-
tralized structured overlays. A similar technique could be
designed, not for collusion detection, but rather to identify
false resource advertisements. However, this technique is
also insufficient at detecting selectively malicious nodes.
In addition, this approach introduces additional load in
the network and could result in significant performance
degradation.

6.2 Our Solution: Local Observation Based
Reputation System

Reputation systems as an incentive mechanism are a com-
mon technique in peer-to-peer overlays to detect “free-
loaders,” or peers that selfishly utilize resources while
contributing little to the system [15, 19]. Our approach
allows the clients to use first-hand performance observa-
tions from past circuits to detect when a router’s perfor-
mance deviates from its advertised resource claim. This is
more difficult than in the case of most peer-to-peer over-
lays, since a client cannot immediately determine which
router’s performance is inconsistent with its advertise-

ment. This is due to the multiple hop path structure that is
imposed on every link through the system. However, if the
client keeps track of the routers present on links that fail
or under perform, over time it can statistically find those
that are on a disproportionately high number of links that
failed or deviated significantly from their advertised per-
formance capability. As a response to such a detection,
suspected malicious nodes can then be blacklisted for a
period of time by the client.

Details. In order to define a reputation system for a multi-
hop overlay, it is necessary to derive a method to reward
servers that perform at, or above, their advertised band-
width capability, and penalize those that perform below.
The complexity of this task is compounded by the diffi-
culty in determining which hop along the path contributed
most to the poor performance. Our approach to con-
structing such a system is based upon an evaluation of the
node’s performance history and the update of a reputation
parameter for each new observation of a particular node
in the system. For one observation, the reputation value is
adjusted by the reputation adjustment parameter,c, which
is computed by evaluating the product of the probabilities
of each node being chosen by the weighted path selection
algorithm, scaled by the size of the network:

c = N
∏

aj∈P

aj

N
∑

i=1

bi

;

whereaj ∈ P is the bandwidth advertisement of each
router in the set of routers that comprise the client’s path
through the network, andN is the total number of routers
in the system. Note that|P | = 3 in the case of Tor cir-
cuits. Initially, eachith router is assigned a local repu-
tation vector,~ri, equal to its probability of being chosen
by the client. Recall that the probability of a router being
selected is based up its advertised bandwidth capability,
as distributed by the centralized directory servers in Tor.
Thus, eachith router’s local reputation vector is initial-

ized to~ri = bi /
(

∑N

j=1 bj

)

. Both positive and negative

feedback must be used to adjust the reputation value of
routers. If a path under-performs, all of the reputations
of the routers in that path should be decreased. Alterna-
tively, when a path performs as expected (or better), the
reputations of all of routers included on the path should
be increased. Based upon the entire path’s performance,
for eachith router in that path, the local reputation vector
is updated according to~ri = ~ri ± c; wherec is added
to old reputation value to reward each router in a path
that performs at or above the minimum of all bandwidth
advertisements for that path. The reputation adjustment
parameter is subtracted to penalize each router in a cir-
cuit that performs below the minimum bandwidth adver-

11

tisement for that circuit. The minimal performance ex-
pectation is computed bym = min {aj ∈ P}, which is
the lowest bandwidth advertisement for the routers in the
path. The actual performance observation for a given path
is simply the bandwidth,p. Thus, each element of the lo-
cal reputation vector is updated according to the following
rules:

~ri =

{

~ri + c, if p ≥ m
~ri − c, otherwise

Since it may be the case that a single poor performing
node limits the performance of an entire path, the other
nodes will not incur significant blame for the poor perfor-
mance, since the reputation adjustment parameter,c, is al-
ways very small. In addition, the calculation ofc ensures
that nodes advertising high bandwidth resources will be
rewarded/penalized more than those that make lower re-
source claims.

Our reputation strategy is based upon the desire to
dynamically decrease the selection probability of under-
performing and potentially malicious nodes. This strategy
also has the effect of increasing the selection probability
of routers that outperform their claims. As the number
of a client’s observations increase, the selection probabil-
ities will adjust to favor nodes that repeatedly perform
well, and discount the likelihood that potentially mali-
cious under-performers will be selected upon future paths.

Distributed Reputation System. One limitation to the
local reputation system proposed is that the system will
potentially take a long time to converge upon the set of
malicious routers. To increase the system’s convergence
time, we propose that each client aggregate and distribute
its local reputation vector,~r. One concern that arises
when distributing local observations is that it reveals the
nodes that a particular client used in previous paths. This
compromises the anonymity of a system such as Tor.
To overcome this inherent limitation, the client creates a
pseudonym to use when reporting its~r vector to maintain
its anonymity. The centralized directory server uses a rep-
utation algorithm similar to Eigentrust [17] to compute a
global reputation vector that is subsequently distributedto
all clients. By aggregating the reputation information, the
system’s convergence time will increase. In order to pre-
vent malicious clients from influencing the global reputa-
tion system, the directory server assigns weights to each
pseudonym’s vector based upon how much they deviate
from the mean of all vectors for each node in the system.
A reasonable weighting scheme would roughly conform
to a normal distribution, where the closer a vector’s repu-
tation is to the mean, the greater the weight.

6.3 Preventing Sybil Attacks

In order for any distributed reputation system to be effec-
tive, it is necessary to address the Sybil attack [10]. Cur-
rently, the directory server publishs routers without any
limit on the number of advertisements from a single IP
address or verification of the information in the advertise-
ments. One of the proposed extensions to our attack is to
flood the directory servers with enough false routing ad-
vertisements to displace all of the benign candidate entry
guards with malicious ones. Since routers are marked by
the directory servers as suitable entry guards if they ad-
vertise more bandwidth and uptime than the median of
all onion routers, it is possible to do this if enough false
routers are advertised to raise the median values beyond
the values reported by benign routers. To help mitigate
this kind of attack, the directory servers should attempt
to prevent router advertisement flooding by limiting the
number of routers introduced. Some strategies to imple-
ment this limiting might be to place restrictions such that
only one onion router can by located on a single IP address
or subnet. This would force the attacker to have access to
a large number of IP addresses which are located in differ-
ent subnets. A similar idea of enforcing location diversity
in routing was proposed in Feamster and Dingledine [11].
This requirement does not prevent router flooding, but in-
creases the resources required to perform such an attack.

The possibility that a router advertisement flooding at-
tack can displace entry guards also raises the question: Is
Tor’s current use of entry guards wise? It might be bet-
ter to require some thresholds, such as two days of uptime
and 300KB per second of bandwidth, instead of using me-
dian values. This would make it impossible to displace ex-
isting routers that meet these resource requirements with
a flood of malicious routers.

7 Previous Attacks Against Tor

There have been three previously published attacks
against parts of the Tor protocol. Murdoch and Danezis
[21] presented a low cost traffic-analysis technique that
allowed an outside observer to infer which nodes are be-
ing used to relay a circuit’s traffic. An altered client that
created circuits of length one would inject a large amount
of traffic in timed bursts. If the same onion router used
by the altered client was also used by another client, the
victim’s traffic would exhibit a delayed pattern matching
the delay caused by the large amount of traffic injected by
the altered client. This attack exploited the fact that Tor
is a low-latency mix that does not explicitly delay traffic,
and that multiple circuits routed through that same router
interfere with each other. This attack also had the limita-
tion that it could only trace the circuit back to the entrance
router, but could not trace it back to the client.

12

Øverlier and Syverson [22] presented an attack that lo-
cated hidden servers inside the Tor network. They de-
ployed a single altered onion proxy, which also functioned
as an onion router. The client continually builds a path of
length one to contact the hidden service in the hope that
it will also be included in the circuit that the hidden ser-
vice uses to respond to the client’s request. When this
occurs, the attacker can use timing information to asso-
ciate the two circuits, and thereby locate the hidden ser-
vice. The predecessor attack presented in Wright,et al.
[32] was used to statistically identify the hidden service
as the server that appeared on these linked paths most of-
ten. When this research was conducted, Tor did not imple-
ment entry guards. However, they were added after these
results showed that entry guards would help conceal the
location of hidden services. The attack did not attempt to
compromise the anonymity of a general purpose circuit,
only those circuits used to connect to hidden services.

Another attack on Tor’s hidden services is proposed by
Murdoch [20]. The key to this attack is the observation
that when a server is idle, its CPU runs at a cooler tem-
perature. Since there is a distinct relationship between a
CPU’s temperature and its associated clock skew, the at-
tack exploits the ability to recognize minute clock devi-
ations that are consistent with a high load. These clock
skews can be detected by analyzing the TCP timestamps
on packets received from the target server [18] and com-
pared to an induced load pattern. If a correlation is de-
tected, then the location of the hidden service has been
compromised. It is suggested that this technique may be
used to construct covert channels and even allow an at-
tacker to ascertain the geographical location of a server.

Our attack is the first that presents techniques to subvert
path selection algorithms in a low-latency privacy enhanc-
ing system. We show that an attacker can infiltrate the
Tor network and can fully compromise the anonymity of a
large percentage of users. Our only assumption is that the
attacker has control of a small number of low-bandwidth
computers. We do not assume that the attacker controls
the website or other service that the victim is visiting as
in Murdoch and Danezis [21].

8 Conclusion

Despite the fact that it is generally acknowledged that
end-to-end traffic analysis attacks are possible to launch
against mix-network anonymity systems, there has been
little research focused toward developing preventative
measures. This is largely due to the assumption that these
types of attacks require a prohibitively large amount of
resources and, therefore, are not practical for large net-
works. However, we introduce a low-resource end-to-end
traffic analysis attack against mix-network anonymity sys-

tems that is highly practical. Our basic attack stems from
the use of preferential routing mechanisms that provide
low-latency, high-throughput performance suitable for in-
teractive applications. However, preferential routing with-
out sufficient resource verification is dangerous, as an at-
tacker can compromise the anonymity of a large amount
of the communication channels through the network.

To demonstrate the effectiveness of such a generic
end-to-end traffic analysis attack on a representative and
widely used privacy enhancing system, we implemented
this attack against an isolated Tor deployment on the Plan-
etLab overlay testbed. In our experiments, we showed that
Tor is vulnerable to attacks from non-global adversaries
that control only a few high-resource nodes, or nodes that
areperceived to be high-resource. Our end-to-end attack
on the anonymity of new Tor clients exploits the fact that
the system utilizes a preferential routing algorithm that at-
tempts to optimize for performance. We extend this basic
attack to low-resource attackers whereby false resource
claims are reported to the centralized authorities and this
bad information is propagated throughout the network.
Since there is currently no mechanism for verifying false
resource claims, the attack is able to compromise a high
percentage of Tor paths.

We experimentally showed that after deploying a few
high-bandwidth, high-uptime servers, an adversary can,
with high probability, compromise the entrance and exit
servers on a route for new clients. Having compromised
these two servers, we then presented and experimentally
validated a new method for linking paths, thereby com-
promising anonymity by binding together both parties in
a flow. In our experiments conducted on our isolated
Tor deployment consisting of 60 nodes, our attack was
able to correlate over 46% of circuit-building requests
through the entire network. This is a significant increase
over the 0.70% analytical expectation assumed by many
anonymity systems analysts. We believe a key contribu-
tion of this work is our observation that , in this partiular
case, analytical models fail to reflect the full complexities
of a real deployment. Tor’s analytical model predicted
that a relatively low number of paths could be compro-
mised with an attack similar to ours. However, this ex-
pectation failed to fully account for the heterogeneity in
the network, and as a consequence, our attack performed
far above expectations.

Over the course of extending the attack to a low-
resource adversary, we noticed several recurring themes
in the design that enabled the attack to succeed. We pro-
vide several concrete solutions designed specifically to
mitigate the low-resource variant of our attack on Tor.
These solutions focus upon verifying all information in
the system that can influence routing decisions by allow-
ing clients to incorporate local observations in their path
selection process. In addition, we believe that location di-

13

versity, in some form, can greatly reduce the ease at which
an adversary can deploy a compromised network to per-
form this attack. Our hope is that these attacks motivate
further research in the area of designing and implement-
ing preferential routing algorithms in anonymous overlay
systems that deliver a high level of performance without
compromising the security of any aspect of the system.

References
[1] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A.,

AND WALLACH , D. S. Secure routing for structured peer-to-peer
overlay networks. InOSDI ’02: Proceedings of the 5th symposium
on Operating systems design and implementation (New York, NY,
USA, 2002), ACM Press, pp. 299–314.

[2] CHAUM , D. Untraceable electronic mail, return addresses, and
digital pseudonyms.Communications of the ACM 4, 2 (February
1981).

[3] CLARKE , I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A distributed anonymous information storage and re-
trieval system. InProceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in Anonymity and Un-
observability (July 2000), pp. 46–66.

[4] DANEZIS, G.,AND CLAYTON , R. Route fingerprinting in anony-
mous communications. InSixth IEEE International Conference
on Peer-to-Peer Computing (P2P 2006), 2-4 October 2006, Cam-
bridge, United Kingdom (2006), pp. 69–72.

[5] D ÍAZ , C., SEYS, S., CLAESSENS, J.,AND PRENEEL, B. Towards
measuring anonymity. InProceedings of Privacy Enhancing Tech-
nologies Workshop (PET 2002) (April 2002), R. Dingledine and
P. Syverson, Eds., Springer-Verlag, LNCS 2482.

[6] D IERKS, T. RFC 4346: The Transport Layer Security (TLS) Pro-
tocol Version 1.1, April 2006.

[7] D INGLEDINE, R. Personal communication.

[8] D INGLEDINE, R., AND MATHEWSON, N. Tor path specification.
http://tor.eff.org/cvs/doc/path-spec.txt.

[9] D INGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. InProceedings of the 13th
USENIX Security Symposium (August 2004).

[10] DOUCEUR, J. The Sybil Attack. InProceedings of the 1st In-
ternational Peer To Peer Systems Workshop (IPTPS 2002) (March
2002).

[11] FEAMSTER, N., AND DINGLEDINE, R. Location diversity in
anonymity networks. InProceedings of the Workshop on Privacy
in the Electronic Society (WPES 2004) (Washington, DC, USA,
October 2004).

[12] FREEDMAN, M. J., AND MORRIS, R. Tarzan: A peer-to-peer
anonymizing network layer. InProceedings of the 9th ACM Con-
ference on Computer and Communications Security (CCS 2002)
(Washington, DC, November 2002).

[13] GOLDBERG, I. On the security of the tor authentication proto-
col. In Proceedings of the Sixth Workshop on Privacy Enhancing
Technologies (PET 2006) (Cambridge, UK, June 2006), Springer.

[14] GOLDSCHLAG, D. M., REED, M. G., AND SYVERSON, P. F.
Hiding Routing Information. InProceedings of Information Hid-
ing: First International Workshop (May 1996), Springer-Verlag,
LNCS 1174, pp. 137–150.

[15] GUPTA, M., JUDGE, P.,AND AMMAR , M. A reputation system
for peer-to-peer networks. InNOSSDAV ’03: Proceedings of the
13th international workshop on Network and operating systems
support for digital audio and video (New York, NY, USA, 2003),
ACM Press, pp. 144–152.

[16] Iperf - The TCP/UDP Bandwidth Measurement Tool.
http://dast.nlanr.net/Projects/Iperf.

[17] KAMVAR , S., SCHLOSSER, M., AND GARCIA-MOLINA , H. The
EigenTrust Algorithm for Reputation Management in P2P Net-
works. InProceedings of WWW2003 (2003), ACM.

[18] KOHNO, T., BROIDO, A., AND CLAFFY, K. C. Remote phys-
ical device fingerprinting. InSP ’05: Proceedings of the 2005
IEEE Symposium on Security and Privacy (Washington, DC, USA,
2005), IEEE Computer Society, pp. 211–225.

[19] MARTI , S.,AND GARCIA-MOLINA , H. Taxonomy of trust: cate-
gorizing p2p reputation systems.Comput. Networks 50, 4 (2006),
472–484.

[20] MURDOCH, S. J. Hot or not: Revealing hidden services by their
clock skew. In13th ACM Conference on Computer and Commu-
nications Security (CCS 2006) (Alexandria, VA, November 2006).

[21] MURDOCH, S. J.,AND DANEZIS, G. Low-cost traffic analysis of
Tor. In Proceedings of the 2005 IEEE Symposium on Security and
Privacy (May 2005), IEEE CS.

[22] ØVERLIER, L., AND SYVERSON, P. Locating hidden servers. In
Proceedings of the 2006 IEEE Symposium on Security and Privacy
(May 2006), IEEE CS.

[23] PETERSON, L., MUIR, S., ROSCOE, T., AND KLINGAMAN , A.
PlanetLab Architecture: An Overview. Tech. Rep. PDN–06–031,
PlanetLab Consortium, May 2006.

[24] REITER, M., AND RUBIN , A. Crowds: Anonymity for web trans-
actions.ACM Transactions on Information and System Security 1,
1 (June 1998).

[25] RENNHARD, M., AND PLATTNER, B. Introducing MorphMix:
Peer-to-Peer based Anonymous Internet Usage with Collusion De-
tection. InProceedings of the Workshop on Privacy in the Elec-
tronic Society (WPES 2002) (Washington, DC, USA, November
2002).

[26] SERJANTOV, A., AND DANEZIS, G. Towards an information the-
oretic metric for anonymity. InProceedings of Privacy Enhancing
Technologies Workshop (PET 2002) (April 2002), Springer-Verlag,
LNCS 2482.

[27] SHANNON, C. A Mathematical Theory of Communication. InBell
System Technical Journal (July, October 1948), vol. 27, pp. 379–
656.

[28] SINGH, A., DRUSCHEL, P., AND WALLACH , D. S. Eclipse at-
tacks on overlay networks: Threats and defenses. InIEEE INFO-
COM (2006).

[29] SYVERSON, P., TSUDIK, G., REED, M., AND LANDWEHR, C.
Towards an Analysis of Onion Routing Security. InProceedings of
Designing Privacy Enhancing Technologies: Workshop on Design
Issues in Anonymity and Unobservability (July 2000), H. Feder-
rath, Ed., Springer-Verlag, LNCS 2009, pp. 96–114.

[30] Transparent SOCKS Proxying Library.
http://tsocks.sourceforge.net.

[31] WANG, X., CHEN, S., AND JAJODIA, S. Tracking anonymous
peer-to-peer voip calls on the internet. InProceedings of the ACM
Conference on Computer and Communications Security (Novem-
ber 2005), pp. 81–91.

[32] WRIGHT, M., ADLER, M., LEVINE, B. N., AND SHIELDS, C.
An analysis of the degradation of anonymous protocols. InPro-
ceedings of the Network and Distributed Security Symposium -
NDSS ’02 (February 2002), IEEE.

[33] ZHUANG, L., ZHOU, F., ZHAO, B. Y., AND ROWSTRON, A.
Cashmere: Resilient anonymous routing. InProc. of NSDI
(Boston, MA, May 2005), ACM/USENIX.

14

A Non-Entrance Router Selection
Algorithm

Algorithm 1: Non-Entrance Router Selection
Input : A list of all known onion routers,router list
Output : A pseudo-randomly chosen router, weighted toward the

routers advertising the highest bandwidth
B ← 0
T ← 0
C ← 0
i← 0
router bandwidth← 0
bandwidth list← ∅

foreach router r ∈ router list do
router bandwidth ← get router advertisedbandwidth(r)
B ← B + router bandwidth

bandwidth list← bandwidth list∪router bandwidth
end
C ← randomint(1, B)
while T < C do

T ← T + bandwidth list[i]
i← i + 1

end
return router list[i]

At the lowest level, the algorithm computesB, the total
amount of bandwidth from all known onion routers and
creates a list of each router’s bandwidth advertisement. It
then chooses a pseudo-random numberC between 1 and
B. Each onion router from the router list is selected and
its bandwidth is added to a variableT ; if T is greater than
C, then the most recently added onion router is included
in the circuit, if not already included. IfT is less than
C, more onion routers are selected and their bandwidth is
added to the variableT , until T is greater thanC. Thus,
this algorithm assigns a weight to each onion router from a
probability distribution defined by the magnitude of each
router’s bandwidth advertisement. Most significantly, the
more bandwidth a particular router advertises, the greater
the probability that the router is to be chosen. This fact
is fundamentally important in the implementation of our
attack.

15

