

Chapter	1
Introduction

The	modern	world	is	filled	with	computers.	Computers	run	our	phones,	our	cars,	and	even
our	refrigerators.	Computers	manage	our	businesses,	our	calendars,	and	our	social	lives.
With	the	world	relying	on	computers	for	so	many	functions,	it	is	important	to	know	how
these	devices	work.	Even	if	you	never	need	to	program	a	computer	yourself,	chances	are
that	at	some	point	in	your	life,	you	will	be	involved	with	software	development.	You	may
be	an	accountant	who	needs	to	tell	a	computer	programmer	how	you	want	your	purchasing
system	setup.	You	may	be	an	engineer	who	needs	to	describe	your	engineering	process	so
that	a	programmer	can	automate	it.	In	all	such	tasks	as	these,	it	is	important	to	know
something	about	how	computers	are	programmed,	even	if	you	are	not	personally	writing
the	software.

1.1	What	You	Will	Learn

When	programming	computers,	a	programmer	uses	a	programming	language	to	tell	the
computer	how	to	do	something.	Because	computers	are	not	intelligent	beings,	they	can’t
understand	ordinary	human	languages.	Computers	understand	a	type	of	language	called
machine	language,	which	will	be	discussed	further	in	Chapter	5.	Machine	languages	are
very	different	from	the	kind	of	languages	ordinary	people	use.	Therefore,	programming
languages	were	developed	to	meet	programmers	halfway—they	are	more	human-like	than
machine	language,	and	more	machine-like	than	human	language.

Numerous	programming	languages	have	been	developed	over	the	years.	Some	that	you
may	have	heard	of	include	JavaScript,	Ruby,	Python,	C,	Lisp,	Smalltalk,	ActionScript,	and
Swift.	Although	each	language	looks	different,	they	are	all	trying	to	do	the	same	task	of
helping	you	to	interface	with	the	machine	in	a	way	that	is	friendlier	and	easier	to	manage
than	machine	language.	In	fact,	most	programming	languages	are	geared	around	very
similar	concepts,	and	some	of	them	even	look	similar.	Therefore,	learning	any
programming	language	will	help	you	more	easily	learn	any	other	programming	language.	I
have	rarely	hired	people	for	my	development	team	who	already	knew	the	programming
language	that	my	team	uses.	If	someone	learns	one	programming	language	and	practices
until	they	are	good	at	it,	then	the	effort	to	learn	a	new	language	is	fairly	minimal.

You	may	wonder	why,	if	the	languages	are	so	similar,	there	are	so	many	programming
languages	to	choose	from.	The	fact	is,	when	engineering	anything,	trade-offs	have	to	be
made.	Sometimes	in	order	to	make	one	type	of	task	easier,	another	type	of	task	has	to	be
made	harder.	In	my	kitchen	I	have	both	a	mixer	and	a	blender.	Both	of	them	operate	on	the
same	basic	principles—you	put	food	into	the	main	container	area,	an	electric	motor	turns,
and	some	attachment	combines	the	food	together.	While	these	tasks	are	very	similar	and
operate	on	the	same	principles,	there	are	many	types	of	food	in	the	world	and	many	ways
that	they	need	to	be	mixed.	Similarly,	with	programming	languages,	some	of	them	are
better	suited	to	different	tasks.	Also,	the	choice	of	programming	language	is	dependent	on
the	programmer.	Just	as	different	types	of	cars	suit	the	preferences	and	tendencies	of
different	types	of	drivers,	so	do	different	programming	languages	suit	the	preferences	and
tendencies	of	different	types	of	programmers.	Because	of	these	reasons,	there	are
numerous	programming	languages	available	for	nearly	any	task	you	might	want	to
perform.

The	programming	language	covered	in	this	book	is	called	JavaScript.	I	like	to	teach
JavaScript	as	a	first	language	for	several	reasons.	First	of	all,	JavaScript	was	developed	to
be	a	first	language.	One	of	the	goals	of	the	language	was	to	make	it	easy	for	new
programmers	to	get	started	quickly.	Even	though	JavaScript	was	designed	to	make
programming	easier	for	new	programmers,	it	is	not	any	less	powerful	as	a	language.
Second,	JavaScript	has	become	the	de	facto	programming	language	for	website	interfaces.
If	you	use	a	website	that	does	anything	besides	link	to	other	web	pages,	JavaScript	is
probably	involved.	Therefore,	learning	JavaScript	will	have	immediate	practical	benefits
in	learning	how	the	web	operates.	Third,	the	tools	for	programming	JavaScript	are
available	on	every	computer.	You	don’t	need	to	download	any	special	tools	to	program
JavaScript.	If	you	have	a	computer	with	a	web	browser,	you	can	program	JavaScript!

Finally,	JavaScript	is	very	similar	to	other	popular	programming	languages,	such	as	C#,
Java,	ActionScript,	and	Swift.	Therefore,	knowing	JavaScript	will	not	only	be
immediately	beneficial	for	programming	websites,	it	is	also	a	language	that	makes	it	easy
to	transition	to	other	popular	systems.

This	book	is	for	the	first-time	programmer.	No	prior	programming	experience	is	assumed.
This	book	does	assume	that	you	have	a	basic	understanding	of	how	to	use	your	computer
and	browse	the	Internet.	That	is	all	that	you	need!

You	will	learn	not	only	the	basics	of	computer	programming,	but	also	a	more	general
knowledge	of	how	computers	and	data	work.	You	will	learn	where	computers	came	from,
how	they	work,	how	computers	work	with	data,	how	data	is	transmitted,	and	how	web
pages	work.	This	book	will	not	go	in-depth	in	these	subjects,	but	it	will	give	you	a	basic
working	framework	that	will	help	you	better	understand	the	computerized	age	we	live	in.

1.2	How	to	Use	This	Book

This	book	follows	several	conventions	to	help	you	along	your	programming	journey.	First,
this	book	will	introduce	you	to	new	terminology.	In	order	to	highlight	the	important
words,	terms	will	be	printed	in	bold	print	the	first	time	that	they	are	used.	You	can	find	a
complete	list	of	terms	in	Chapter	17.	These	terms	are	important,	and	you	should	memorize
their	meanings.

When	this	book	lists	out	computer	programs,	parts	of	computer	programs,	or	anything	that
should	be	typed	in	directly	(and	precisely),	it	will	be	offset	from	the	text	and	written	in	a
special	font	to	help	you	see	that	it	is	a	computer	program.	Computer	programs	will	look
like	this:

Figure	1.1:	How	Computer	Programs	Will	be	Displayed	in	the	Book

window.alert(“This	is	an	example	of	a	computer	program.”);

When	discussing	smaller	pieces	of	code	within	a	paragraph,	code	that	is	under	discussion
will	look	like	this.

Now,	there	are	many	different	types	of	computers,	each	with	different	operating	systems
and	software	loaded	on	them,	with	each	of	those	having	different	versions.	There	are	also
numerous	different	web	browsers,	each	with	different	features	available	and	slightly
different	ways	of	working.	This	book	attempts	to	walk	you	through	setting	everything	up
on	each	operating	system.	If	there	is	anything	in	this	book	that	depends	on	the	specific
operating	system	or	browser	that	you	are	using,	Appendix	A	has	the	steps	for	several
different	systems,	including	Windows	and	Mac	operating	systems.	This	book	will	refer
you	to	the	appropriate	section	of	the	Appendix	when	needed.	Though	this	book	works
with	any	modern	web	browser	(basically	anything	released	after	2008),	I	recommend	that
you	use	Google	Chrome.	As	of	the	time	of	this	writing,	Google	Chrome	is	the	easiest
browser	to	work	with	as	a	programmer.	That	being	said,	you	should	be	just	fine	with	any
web	browser,	including	Internet	Explorer,	Firefox,	Safari,	Chrome,	or	Opera.

This	book	contains	several	practice	questions	and	practice	activities.	The	goal	of	these
questions	and	activities	is	to	provide	you	with	a	hands-on	way	of	understanding	the
material.	By	doing	the	questions	and	activities,	the	text	will	become	much	more
meaningful	and	understandable.	More	importantly,	they	might	show	you	the	places	where
you	did	not	fully	understand	the	text.	Many	people	have	a	tendency	to	skip	over	things	if
they	don’t	understand	them	well.	Practice	questions	and	activities	give	you	a	chance	to
slow	down	and	make	sure	you	know	which	parts	you	understood	and	which	parts	you
need	to	read	again	and	spend	time	thinking	about.	Practice	questions	build	on	each	other,
so	by	doing	them	all	in	the	order	given	you	can	see	exactly	where	you	are	having
problems.

At	the	end	of	every	chapter	is	a	review	section	which	covers	the	most	important	concepts
of	each	chapter.	After	that	is	a	section	to	help	you	practice	applying	your	knowledge	to
problems.	These	questions	require	you	to	further	engage	your	brain	and	really	think	about
what	you	learned	in	that	chapter	and	what	it	means.

Chapter	17	contains	an	extended	glossary	of	terms	used	in	this	book,	plus	others	you	are
likely	to	encounter	when	reading	about	programming.	This	chapter	will	help	you	find	your
bearings	as	you	read	and	talk	with	other	people	about	programming.	I	would	suggest	that,
concurrent	with	your	readings,	you	also	take	the	time	to	look	through	the	glossary	for
words	that	you	may	have	heard	but	did	not	understand	at	the	time.

Also,	if	you	run	into	problems	when	writing	code,	Section	A.7	has	several	suggestions	for
getting	you	back	on	the	right	track.

1.3	Special	Note	for	the	E-book	Edition

In	JavaScript,	there	are	special	rules	about	where	end	of	lines	can	occur.	However,	e-
books	have	limited	(and	also	varying)	page	widths.	Therefore,	program	listings	in	the	e-
book	may,	depending	on	your	device,	have	line	breaks	where	the	print	book	does	not.

For	the	most	part,	JavaScript	does	not	care	if	you	have	a	line	break	instead	of	a	space.	One
exception,	however,	is	in	the	middle	of	a	quoted	section	(called	a	string,	which	you	will
see	later).	If	you	are	asked	to	type	“hello	there”	(including	the	double-quotes),	but	your
e-reader	puts	hello	and	there	on	separate	lines,	please	type	the	entire	quoted	phrase	on
the	same	line.	Otherwise,	your	JavaScript	program	likely	will	not	work.

Additionally,	there	are	a	few	tables	that	are	too	wide	for	the	smaller	reader	screens.	Those
tables	can	be	viewed	at	www.npshbook.com.

1.4	Using	the	Website

In	addition	to	the	book,	a	website	has	been	created	with	some	supplementary	material:
www.npshbook.com.	The	website	contains	a	forum	for	questions,	additional	resources,	and
video	walk-throughs	of	some	of	the	exercises.	The	exercises	in	Chapter	5	may	be
particularly	helpful	to	watch	on	video	before	attempting	them	yourself.	The	website	also
allows	you	to	sign	up	for	the	mailing	list	so	that	you	can	be	notified	as	new	titles	in	this
series	are	released.

1.5	For	Younger	Students

This	book	is	geared	for	high	school	and	college	students,	for	people	who	are	coming	to
computer	programming	as	a	new	career,	or	for	people	who	have	been	programming	but
want	to	come	back	and	revisit	their	foundations.	However,	it	can	also	be	used	for	middle
school	students	with	some	modification.	Middle	school	students,	generally,	are	not
cognitively	ready	for	the	material	following	Chapter	10.	For	middle	school	classes,	the
instructor	should	skip	to	Chapter	13,	and	possibly	add	Chapter	15	at	the	end.

All	right,	are	you	ready?	Let’s	get	started!

The	purpose	of	this	part	is	to	help	you	understand	how	computers	work	on	the	inside.
While	it	is	possible	to	learn	programming	without	learning	how	your	computer	works,	in
the	long	term,	knowing	what	is	going	on	inside	the	computer	will	help	you	write	better
programs.	This	part	covers	the	basics	of	how	computers	communicate,	how	they	store
data,	and	how	computer	programming	works	at	the	lowest	level.

Chapter	2
A	Short	History	of	Computers

The	history	of	computers	is	weird	and	wonderful.	What	started	as	an	abstract
philosophical	quest	ended	up	setting	the	course	for	society	for	over	a	century,	and
continues	to	be	one	of	the	most	profound	parts	of	modern	life.	The	goal	of	this	chapter	is
to	trace	an	outline	of	where	computing	started,	where	it	has	been,	and	where	it	is	now.

Review

In	this	chapter	we	covered	the	basic	history	of	computers.	We	have	learned:

Humans	have	used	tools	to	accomplish	tasks	from	the	beginning.
Early	tools	were	limited	by	available	power	options.
Advances	in	power	technology	allowed	for	the	improvements	and	industrialization	of
tools.
Standardization	of	parts	allows	for	more	complex	machines	to	be	built	and	serviced.
Electricity	allowed	for	the	movement	of	power	to	any	needed	location.
The	ability	to	control	a	machine	via	instructions,	such	as	the	Jacquard	Loom,	allowed
for	the	creation	of	more	general-purpose	tools	which	could	be	specialized	by
providing	the	right	sets	of	instructions.
Alan	Turing	and	Alonzo	Church	identified	the	logical	requirements	for	making
general-purpose	computations.
Several	early	computers	were	built	around	the	idea	of	a	general	purpose	calculating
machine.
Advances	in	electronics	allowed	for	storage	of	millions	of	transistors	onto	a	single
microchip.
The	availability	of	microchips	led	to	the	era	of	personal	computing.
The	increased	usage	of	computers	in	organizations	eventually	led	to	the	need	to	have
better	means	of	communication	between	computers.
Networks	were	invented	to	allow	computers	to	be	hooked	together	to	share	file	and
messages.
The	isolated	networks	around	the	world	were	eventually	unified	into	a	single
internetwork,	known	as	the	Internet.
The	growth	of	the	Internet	combined	with	the	ability	to	access	the	Internet	wirelessly
has	made	the	Internet	a	primary	factor	in	computer	usage.
The	ubiquity	of	the	Internet	has	led	programmers	to	start	designing	applications	with
the	network	in	mind	first,	rather	than	as	an	afterthought.

Apply	What	You	Have	Learned

1.	 Take	some	time	to	think	about	the	history	of	technology	and	the	Internet.	What	do
you	think	is	next	on	the	horizon	for	technology?

2.	 The	pace	of	technology	appears	to	have	been	accelerating	over	the	past	century.	What
do	you	think	has	caused	this	acceleration?

3.	 Pick	your	favorite	piece	of	technology	mentioned	in	this	short	history	and	research	it.
What	inspired	the	person	who	developed	it?	What	other	inventions	came	after	it?
Was	it	successful?	Write	a	few	paragraphs	describing	the	technology	you	have
chosen,	how	it	functioned,	and	how	it	impacted	the	future	of	technology.

2.1	The	Prehistory	of	Computers

Humans	have	always	had	tools.	Humans	have	built	fires,	made	spears,	and	built	houses
from	the	beginning.	At	first,	however,	technology	was	limited	to	standing	structures,	or
tools	that	were	extensions	of	yourself—like	knives	or	bows	and	arrows.	Very	little	early
technology	was	powered	and	free-functioning.	It	was	manually	powered	by	human	effort.
Therefore,	since	the	power	of	a	machine	was	limited	to	what	humans	could	drive,	only
small	machines	could	be	devised.

The	ability	to	power	a	machine	led	to	huge	advances	in	technology.	The	earliest	power
source	was	probably	water,	where	water	could	turn	a	wheel	to	grind	wheat	or	operate	a
sawmill.	These	water-based	power	sources,	however,	were	fairly	limited	in	the	types	of
devices	they	could	drive.	Such	technology	was	mostly	limited	to	standing	wheel-based
inventions.

This	was	essentially	the	state	of	technology	from	about	300	B.C.	to	the	early	1700s	A.D.
At	this	point	in	history,	technology	had	two	main	limiting	factors.	The	first	was	limitations
of	power	availability,	and	the	second	was	the	need	for	customized	parts.	The	industrial
revolution	solved	both	of	these	problems.	The	steam	engine	allowed	the	creation	of
powered	machines	anywhere.	Powered	machines	were	no	longer	tied	to	being	near
streams,	but	could	now	go	anywhere,	since	the	power	could	be	generated	from	fire	and
water.	Eventually	this	even	allowed	the	creation	of	trains,	since	the	power	could	move
with	the	vehicle.

The	other	invention	of	the	industrial	revolution	was	interchangeable	parts.	This	allowed	a
standardization	and	maintenance	of	equipment	that	was	previously	unattainable.	Instead	of
having	each	part	be	a	unique	piece,	the	parts	became	standardized	and	the	machine
became	unique.	It	is	one	of	the	more	curious	paradoxes	of	technology	that	as	the	pieces	of
technology	become	less	unique,	the	more	advanced	and	unique	the	systems	created	from
those	parts	can	become.	Standardization	allows	for	users	of	technology	to	stop	having	to
think	about	all	of	the	low-level	decisions	and	focus	on	the	larger,	more	meaningful
decisions.	This	also	allows	for	better	communication	about	systems,	because	the	parts	can
be	more	readily	described.	If	I	can	give	you	a	schematic	that	lists	pre-made	parts,	it	is
much	easier	to	design	and	communicate	that	design	than	if	I	also	had	to	describe	how	each
individual	part	was	supposed	to	be	made.

So	the	introduction	of	available	powered	machinery	and	standardized	parts	in	the
industrial	revolution	led	to	an	explosion	of	specialized	machines.	We	then	had	machines	to
perform	any	number	of	tasks	that	a	person	could	want	to	do.	The	next	step	was	the
introduction	of	machines	which	were	directed	not	by	people	directly	controlling	the
machine,	but	by	coded	instructions.	The	earliest	of	these	machines	was	the	Jacquard
Loom,	which	used	punched	cards	to	signify	a	pattern	woven	into	a	fabric.	The	cards	had
punched	holes	to	signify	to	the	machine	the	raising	or	lowering	of	the	particular	thread
causing	it	to	be	visible	or	hidden	in	the	pattern.	Thus,	the	loom	could	be	programmed	to
make	a	pattern	by	specifying	at	each	point	whether	each	thread	should	be	raised	or
lowered.

Later	inventions	applied	this	concept	to	mathematics.	Calculating	machines	had	been

around	for	a	long	time,	with	Blaise	Pascal’s	mechanical	calculator	having	been	invented	in
the	mid-1600s.	However,	this	required	the	power	of	physical	manipulation	to	actually
accomplish	the	addition.	Most	mathematical	tasks	are	not	single-step	like	addition,	but
require	a	process	of	several	steps,	sometimes	repeating	steps,	before	finding	an	answer.
Charles	Babbage	invented	a	more	advanced	machine	to	perform	navigational	calculations.
In	this	machine,	the	user	entered	the	input,	and	then	the	machine	used	that	input	to	run	a
series	of	steps	which	eventually	yielded	results.	Babbage	eventually	designed	a	machine
that	could	take	a	list	of	arbitrary	instructions	much	like	a	modern	computer,	but	he	was
never	able	to	build	that	design.

Once	humans	had	the	ability	to	power	a	machine,	create	a	machine	that	operated	on
external	instructions,	and	use	those	instructions	to	perform	mathematical	functions,	they
had	all	of	the	pieces	in	place	to	create	a	computer.	However,	the	revolution	in	computing
took	place	not	from	an	invention,	but	from	a	problem	in	philosophy.

2.2	The	Idea	of	a	Computer

What	separates	modern	computers	from	the	calculating	machines	of	the	past	is	that
modern	computers	are	general-purpose	computers.	That	is,	they	are	not	limited	to	a
specific	set	of	predesigned	features.	I	can	load	new	features	onto	a	computer	by	inputting
the	right	program.	How	did	we	get	the	idea	of	creating	such	a	general-purpose	machine?

It	turns	out	that	a	question	in	philosophy	led	to	the	creation	of	general-purpose	machines.
The	question	was	this—was	there	a	way	to	create	an	unambiguous	procedure	for	checking
mathematical	proofs?	This	seems	like	an	odd	question,	but	it	was	a	big	question	in	the
19th	century.	There	had	been	many	“proofs”	where	it	was	unclear	if	the	proof	actually
proved	its	subject.	Thus,	philosophers	of	mathematics	tried	to	find	out	if	there	was	a	way
to	devise	what	was	then	called	an	“effective	procedure”	for	checking	the	validity	of	a
mathematical	proof.	But	that	leads	to	another	question—what	counts	as	an	“effective
procedure”	anyway?	If	I	list	out	the	steps	of	a	procedure,	how	do	I	know	that	I’ve	given
you	enough	details	that	you	can	accomplish	this	procedure	exactly	as	I	have	described	it?
How	can	I	tell	that	my	instructions	are	clear	enough	to	know	that	the	procedure	that	I	have
listed	can	be	unambiguously	accomplished?

Alan	Turing	and	Alonzo	Church	both	tackled	this	problem	in	the	1930s.	The	results
showed	that	one	could	define	unambiguous	procedures	with	the	help	of	machines.	By
describing	a	machine	that	could	perform	the	operation,	one	can	be	certain	that	the
operation	of	the	procedure	would	be	unambiguous.	In	addition,	Turing	described	a	set	of
operations	which	could	be	used	to	mimic	any	other	set	of	operations	given	the	right	input.
That	is,	Turing	defined	the	minimum	set	of	features	needed	for	a	computing	system	to
become	truly	programmable—where	the	programmer	had	an	open-ended	ability	to	write
whatever	software	he	wanted.	Machines	and	programming	languages	that	are	at	least	as
powerful	as	Turing’s	set	of	features	are	known	as	Turing-complete	or	Universal
programming	languages.	Nearly	every	modern	programming	language	in	common	usage
is	Turing-complete.

It	is	interesting	to	note	that	the	creation	of	computing	came	from	a	question	in	philosophy.
Many	are	eager	to	dismiss	the	role	of	philosophy	in	academics	as	being	impractical	or
unimportant.	But,	as	we	see	here,	like	all	truths,	philosophical	truths	have	a	way	of	leading
to	things	of	deep	practical	importance.

And	what	happened	to	the	original	question—can	you	develop	an	effective	procedure	for
checking	proofs?	The	answer	is,	strangely,	no.	It	turns	out	that	there	are	true	facts	that
cannot	be	proved	via	mechanical	means.	But	to	learn	that	answer,	we	had	to	develop
computers	first.	Of	course,	that	leads	to	another	interesting	intersection	between
computers	and	philosophy.	If	there	are	true	facts	that	cannot	be	mechanically	proved,	how
could	we	know	that?	The	only	way	must	be	because	our	minds	cannot	be	represented
mechanically.	This	puts	a	limit	on	the	potential	capabilities	of	artificial	intelligence,	and
shows	that	even	though	computer	programmers	have	developed	some	very	clever	means
of	pretending	to	be	human,	the	human	mind	is	simply	outside	the	realm	of	mechanism	or
mechanistic	simulations.

2.3	The	Age	of	the	Computer

Shortly	after	Turing	described	the	necessary	feature	set	for	computers,	they	began	to	be
built.	Probably	the	first	Turing-complete	machine	was	Konrad	Zuse’s	Z3	computer,	built
in	1941.	Although	the	Z3’s	operating	principles	were	somewhat	similar	to	modern
computers,	the	Z3	was	still	largely	a	mechanical	device.	The	first	general-purpose,	digital
electronic	computer	was	the	ENIAC	in	1946,	and	was	about	a	thousand	times	faster	than
its	mechanical	predecessors.	It	should	be	noted	that	the	ENIAC	was	the	size	of	a	very
large	room,	but	it	had	roughly	the	same	processing	power	as	a	scientific	calculator.	Its
main	jobs	included	performing	calculations	for	the	production	of	the	hydrogen	bomb	and
calculating	tables	for	firing	artillery.

The	next	generation	of	computers	introduced	what	is	normally	termed	the	von	Neumann
architecture,	which	means	that	the	computer	had	a	single	memory	area	which	held	both
programs	and	data.	This	is	based	on	the	fact	that	both	a	program	and	the	values	that	the
program	generates	can	both	be	represented	by	numbers.	Therefore,	the	same	memory	can
be	used	both	for	the	program	that	tells	the	computer	what	to	do	and	for	the	data	that	the
program	generates	and	operates	on.	This	makes	the	computers	much	easier	to	program	and
use,	which	led	to	the	ability	to	sell	computers	commercially.	The	first	commercially-
available	computer	to	implement	this	idea	was	the	Manchester	Mark	1.	The	first	mass-
produced	computer	was	the	UNIVAC	I,	followed	shortly	after	by	IBM’s	650.	These
computers	were	still	massive	in	size,	but	contained	less	memory	storage	space	than	a
single	graphic	on	a	modern	computer.	The	UNIVAC	I	was	the	first	computer	to	have	an
external	tape	storage,	and	external	disk	storage	(similar	to	modern	hard	drives)	followed
soon	after.

The	next	move	for	computer	hardware	was	towards	miniaturization.	The	original
computers	used	large	devices	called	vacuum	tubes	to	perform	data	processing	(see
Figure	2.1,	left	column).	These	vacuum	tubes	would	allow	or	not	allow	current	to	flow
based	on	whether	other	wires	had	current	flowing	through	them	or	not.	Combinations	of
many	of	these	tubes	could	allow	for	data	to	be	stored	as	current	flow,	for	mathematical
operations	to	be	performed	on	such	data,	and	for	the	data	to	be	moved	around.

After	the	vacuum	tube	came	the	invention	of	the	transistor	(see	Figure	2.1,	middle
column).	Transistors	generally	have	three	wires,	where	the	middle	wire	controls	whether
the	electricity	can	flow	between	the	other	two	wires.	As	with	vacuum	tubes,	transistors
can	be	wired	together	to	create	digital	computer	memory,	digital	computer	logic
operations	,	and	digital	information	pathways.	Transistors,	while	they	performed	the	same
basic	functions	as	the	vacuum	tube,	was	able	to	do	so	in	a	much	smaller	package	and
operating	on	a	lot	less	power.	Transistors	allowed	much	smaller	devices	to	be	built	which
also	required	almost	1,000	times	less	power.	The	Metrovick	950,	released	in	1956,	was	the
first	commercial	computer	that	operated	on	this	principle.

Miniaturization	continued	with	the	advent	of	integrated	circuits,	or	what	are	often	called
microchips	or	just	chips	(see	Figure	2.1,	right	column).	An	integrated	circuit	basically
allows	for	miniaturized	transistors	to	be	stored	on	a	small,	single	plate	of	silicon.	When
integrated	circuits	were	first	introduced,	they	only	had	a	few	transistors.	Today,	integrated

circuits	come	in	a	variety	of	sizes,	and	the	ones	used	for	desktop	computing	can	hold
billions	of	transistor	equivalents	on	a	two-inch	square	chip.	Integrated	circuits	basically
brought	computers	as	we	know	them	into	the	world.	However,	so	far,	they	were	primarily
used	by	very	large	businesses.

Figure	2.1:	Advancements	in	Computer	Hardware	Miniaturization

The	picture	on	the	left	is	of	a	vacuum	tube	(photo	courtesy	of	Tvezymer	on
Wikimedia).	Vacuum	tubes	are	still	around	today,	primarily	for	audio	applications.
The	picture	in	the	middle	is	of	a	transistor.	Transistors	were	much	smaller,	required
fewer	materials	to	produce,	and	used	much	less	power,	but	still	did	largely	the	same
job	as	vacuum	tubes.	The	picture	on	the	right	is	a	modern	microchip	used	in
appliances	(photo	courtesy	of	Vahid	alpha	on	Wikimedia).	Such	a	microchip	contains
the	equivalent	of	a	few	hundred	thousand	transistors.

In	the	1960s,	Douglas	Engelbart	led	a	research	team	to	look	at	the	future	of	computing.	In
1968,	Engelbart	presented	what	has	been	termed	“the	mother	of	all	demos,”	which
predicted	and	demonstrated	all	aspects	of	modern	personal	computing,	including	graphical
interfaces,	networking,	email,	video	conferencing,	collaborative	document	editing,	and	the
web.	This	served	as	an	inspiration	for	a	number	of	companies	to	start	pushing	to	make	this
vision	of	computing	a	reality.	Engelbart	had	accomplished	it	in	a	lab,	but	others	were
needed	to	make	it	a	commercial	reality.

The	first	recreational	personal	computer	was	the	Altair,	and	the	first	commercial	personal
computer	was	the	Apple	I	which	came	out	in	1976,	after	which	a	flood	of	personal
computers	entered	the	market.	IBM	eventually	entered	the	market,	with	Microsoft
providing	the	software	for	the	computer.	The	interfaces	for	these	computers	were	usually
text-only.	However,	eventually	Apple	released	the	Macintosh,	which	inaugurated	the	age
of	graphical	user	interfaces.	Shortly	after,	Microsoft	released	Windows,	which	brought	the
graphical	interface	to	the	IBM	side	of	the	personal	computer	world.

2.4	Computers	in	the	Age	of	Networks

Thus	far,	computers	had	been	largely	isolated	machines.	You	could	share	files	through
disks,	but,	by	and	large,	computers	operated	alone.	When	you	link	together	two	or	more
computers,	it	is	called	a	network.	Though	networking	technology	had	been	around	for
quite	a	while,	it	had	not	been	cheap	enough	or	popular	enough	to	make	an	impact	for	most
personal	computer	users.

For	most	users,	networking	started	with	office	file	sharing	systems,	usually	using	a	type	of
local	networking	called	Ethernet	which	runs	networking	services	over	specialized
networking	cables.	People	would	use	applications	that	were	installed	on	their	own
computers,	but	store	the	files	on	a	server	so	that	the	other	members	of	the	office	could
access	it.	A	server	is	a	computer	on	the	network	that	provides	one	or	more	services	to
other	computers	and	users	on	a	network.	A	software	program	that	accesses	a	server	is
often	called	a	client.	Many	office	networks	eventually	added	groupware	services	to	their
networks—local	email	and	calendar	sharing	systems	that	allowed	the	office	to	work
together	more	efficiently.	While	smaller	organizations	were	focused	on	local	services	such
as	file	sharing	and	groupware,	larger	institutions	were	also	at	work	linking	networks
together.	This	allowed	organizations	to	share	information	and	data	between	each	other
more	easily.

At	the	same	time,	a	few	home	computer	users	started	reaching	out	to	each	other	through
the	phone	system.	A	device	called	a	modem	allowed	a	computer	to	access	another
computer	over	standard	telephone	lines.	Services	called	bulletin-board	systems	(known
as	a	BBS)	started	popping	up	which	allowed	people	to	use	their	computers	to	access	a
remote	computer	and	leave	messages	and	files	for	other	users.

These	developments	laid	the	groundwork	for	the	idea	of	the	Internet.	At	the	time	it	was
developed,	there	were	many	different,	incompatible	networking	technologies.
Organizations	wanted	to	connect	their	networks	to	other	organizations’	networks,	but	were
finding	it	problematic	since	everyone	used	different	types	of	networks.	In	the	1970s	and
1980s,	DARPA,	the	Defense	Advanced	Research	Projects	Agency,	developed	a	way	to
unify	different	types	of	networks	from	different	organizations	under	a	single	system	so
that	they	could	all	communicate.	This	network,	known	as	ARPANET,	became	very
popular.	Other	large,	multi-organizational	groups	started	using	the	design	of	ARPANET	to
create	their	own	network.	Since	these	networks	all	used	the	same	basic	design,	they	were
eventually	joined	together	to	become	the	Internet	in	the	late	1980s.

The	1990s	witnessed	the	rise	of	Internet	Service	Providers,	or	ISPs,	which	provided	a	way
for	computer	users	to	use	the	modems	that	they	used	to	use	for	bulletin-board	systems	to
connect	their	computers	to	the	Internet.	Instead	of	using	a	modem	to	connect	to	a	single
computer,	like	they	did	with	bulletin-board	systems,	the	ISP	allowed	a	user	to	use	their
modem	to	connect	to	a	whole	network.	This	began	the	mass	public	adoption	of	the
Internet	by	both	individuals	and	organizations	of	all	stripes.

In	the	early	days	of	the	Internet,	the	speed	of	the	network	was	very	slow,	and	only	text
could	be	transmitted	quickly.	Eventually,	modems	were	replaced	with	more	advanced	(and
faster)	ways	of	connecting	to	the	Internet,	such	as	DSL,	cable,	and	fiber.	This	allowed

more	and	more	complex	content	to	be	transmitted	over	the	Internet.	Also,	because	these
technologies	do	not	tie	up	a	phone	line,	they	can	be	used	continuously,	rather	than
intermittently.	In	addition,	wireless	technologies,	such	as	WiFi	and	cellular-based
networking,	allowed	users	to	connect	to	the	Internet	without	being	tied	down	by	cables.
These	developments	together	led	to	the	near-ubiquitous	availability	of	the	Internet	that	we
have	today.

So,	today,	nearly	all	computer	software	is	built	with	the	network	in	mind.	In	fact,	much	of
the	software	that	people	use	on	a	daily	basis	operates	not	on	an	individuals	computer,	but
over	a	network.	This	allows	for	users	to	access	software	programs	no	matter	where	they
are	or	what	computer	they	are	using.	It	has	also	changed	software	development	so	that	the
focus	of	computer	software	is	no	longer	on	individuals	and	individual	tasks,	but	on
organizing	groups	of	people.

Chapter	3
How	Computers	Communicate

Before	we	start	our	study	of	computer	programming,	we	are	going	to	begin	by	studying
the	way	that	computers	communicate.	The	Internet	is	basically	a	giant	communication
system.	Communication	systems	operate	using	protocols.	A	protocol	is	a	predefined
sequence	of	steps	used	to	ensure	proper	communication.	We	actually	use	protocols	every
day.	Think	about	what	happens	when	you	answer	the	phone.	What	do	you	say	and	why	do
you	say	it?	The	first	thing	most	people	say	when	answering	the	phone	is	“hello.”	This
signals	to	the	person	calling	us	that	we	have	picked	up	the	phone	and	we	are	ready	to	start
talking.	If	we	didn’t	say	“hello”	the	person	might	think	that	we	accidentally	accepted	the
call	without	knowing	it,	or	that	we	are	not	quite	ready	to	talk	yet.	Then,	at	the	end	of	the
call,	we	usually	say	something	like,	“Thanks	for	calling!	Goodbye!”	This	signals	to	the
other	person	that	we	are	done	with	the	conversation.	If	we	didn’t	tell	them	goodbye,	they
might	think	that	we	are	still	on	the	line	and	continue	talking.	If	they	heard	silence,	they
may	presume	that	either	we	were	not	speaking	because	we	were	upset,	or	that	there	was	a
technical	problem.	Therefore,	we	end	our	conversations	with	a	“goodbye”	to	let	the	person
we	are	talking	to	know	that	the	conversation	is	over.

Figure	3.1:	Even	Answering	the	Phone	has	a	Protocol

This	is	the	essence	of	a	protocol.	A	communication	protocol	is	a	sequence	of	steps	or
possible	steps	that	enable	two	parties	to	communicate	or	interact	and	know	the	status	of
the	communication	or	interaction.	Because	computers	cannot	think	or	feel,	computers	rely
on	very	rigid	and	exact	protocols	to	allow	them	to	communicate	with	each	other.	In	fact,
computers	use	hundreds	of	different	protocols	to	communicate	different	types	of	data	in
different	ways.	Most	of	the	time,	there	are	actually	multiple	protocols	happening	at	once.

Think	about	writing	a	letter.	When	you	write	a	letter,	there	is	a	basic	protocol	that	governs
the	form	of	a	letter—at	minimum	it	should	have	a	date,	a	greeting,	and	a	closing.
However,	if	you	decide	to	mail	the	letter,	you	have	to	send	it	through	the	mail	service,
which	has	its	own	protocol.	To	send	the	letter	through	the	mail,	you	need	to	take	the	letter,
fold	it	up,	and	put	it	in	an	envelope.	What	you	write	on	the	envelope	is	governed	by
another	protocol	designed	by	the	U.S.	Postal	Service.	Their	protocol	requires	a	return
address	on	the	top	left	corner	of	the	envelope,	a	destination	address	in	the	middle	of	the
envelope,	and	a	stamp	in	the	top	right	corner.	Now	you	have	two	protocols	happening
simultaneously—the	letter-writing	protocol	and	the	envelope-addressing	protocol.	These
protocols	are	layered,	which	means	that	one	of	the	protocols	runs	fully	inside	of	the	other
protocol.	In	computer	jargon,	we	would	say	that	the	envelop	protocol	encapsulates	the
letter	protocol.	The	envelop	protocol	takes	the	results	of	the	letter	protocol,	packages	it	up,

and	puts	its	own	protocol	on	top.

Review

In	this	chapter	we	covered	the	basics	of	Internet	communication.	We	have	learned:

Protocols	define	how	communication	happens.
The	Internet	is	built	on	a	layering	of	many	protocols,	each	with	a	specific	function	or
set	of	functions.
HTTP	is	an	application-level	protocol,	used	for	transmitting	interactive	documents	to
users	browsing	the	web.
A	URL	is	a	piece	of	text	that	gives	the	browser	all	of	the	information	it	needs	to
locate	a	document	on	the	Internet.
A	URL	is	composed	of	a	protocol	(usually	HTTP),	a	hostname,	and	a	path.
The	hostname	on	the	URL	is	translated	into	an	IP	Address	using	DNS	nameservers.
The	path	of	the	URL	is	sent	to	the	server	to	identify	the	document	being	requested.

Apply	What	You	Have	Learned

1.	 Go	to	your	favorite	website.	Click	through	the	different	pages.	Pay	attention	to	how
the	URL	changes	on	each	page.	Does	every	click	change	the	URL?	Which	ones
change	the	URL	and	which	ones	don’t?

2.	 Some	websites	have	very	structured,	easy-to-understand	URL	paths,	and	some	of
them	don’t.	When	a	website	uses	structured	URLs,	it	is	often	easy	to	predict	what	the
URL	will	be	for	something	you	are	looking	for.	Go	to	Wikipedia.org	and	click
around.	Look	at	what	the	URLs	look	like.	Now,	try	to	guess	what	the	URL	to	the
Wikipedia	entry	on	JavaScript	will	be.	Put	it	into	your	browser	and	see	if	you	are
correct.

3.	 Go	to	Amazon.com	and	click	around.	Are	the	URLs	as	predictable	and	easy	to
understand	as	those	on	Wikipedia?	Do	you	think	you	could	guess	the	URL	of	a	book
the	same	way	you	could	guess	the	URL	for	JavaScript	in	Wikipedia?

4.	 Go	to	the	command	line	and	try	to	retrieve	the	web	page	for	JavaScript	from
Wikipedia	directly	using	the	HTTP	protocol.

3.1	The	Layers	of	Internet	Communication

On	the	Internet,	there	is	a	similar	layering	of	protocols	occurring.	The	difference	is	that	on
the	Internet,	there	are	many	more	layers	interacting	at	once,	and	they	all	have	funny	names
like	HTTP,	SSL,	TCP,	IP,	IEEE	802.3,	SMTP,	and	FTP.	The	International	Standards
Organization	developed	a	way	to	help	you	think	of	these	layers	called	the	OSI	Model,
which	identifies	seven	different	layers	of	protocols	that	may	need	to	be	active	when
communicating	on	a	computer	network.	To	understand	what	these	layers	are	doing,	let’s
look	at	the	questions	that	have	to	be	answered	in	order	for	one	computer	to	talk	to	another.

Let’s	say	that	we	have	a	chat	application	that	sends	messages	to	another	computer.	What
must	happen	to	get	that	message	to	another	computer?

1.	 The	computers	must	be	physically	connected	to	the	Internet.	“Physical”	can	include
both	wired	connections	and	wireless	connections.	This	is	called	the	physical	layer.

2.	 The	computers	must	know	how	to	move	data	on	those	physical	connections.	It	is	not
enough	for	the	wires	to	be	connected,	they	must	also	know	the	protocols	for	sending
messages.	Each	computer	has	to	be	able	to	identify	other	physically-connected
computers,	be	able	to	signal	to	them	that	they	are	sending	data,	and	know	which
computer	they	are	sending	it	to,	among	other	details.	This	is	called	the	data	link
layer.

3.	 Once	the	computers	know	how	to	talk	to	the	other	computers	they	are	physically
connected	to,	they	need	to	be	able	to	talk	to	computers	which	they	are	only	indirectly
connected	to.	For	instance,	most	locations	get	their	Internet	connection	by	connecting
a	router	to	their	DSL	or	cable	line,	and	then	the	other	devices	in	the	home	connect	to
that	router.	The	devices	in	the	home	are	all	connected	physically	and	communicate
using	the	data	link	layer.	However,	only	the	router	is	physically	connected	to	the
Internet	Service	Provider	(ISP).	The	other	computers	must	adopt	a	protocol	in	order
to	tell	the	router	to	relay	their	messages	on	to	the	rest	of	the	network.	The	rest	of	the
network,	likewise,	must	be	able	to	follow	the	same	protocol.	In	addition,	in	order	to
speak	to	other	computers	on	the	network,	you	must	be	able	to	identify	them,	so	it	also
includes	at	least	some	sort	of	naming	or	numbering	system	for	the	computers	on	the
network.	This	layer,	which	interconnects	computers	which	are	only	indirectly
connected	to	each	other,	is	called	the	network	layer.

4.	 Now	that	we	can	move	data	across	the	Internet,	there	is	another	issue.	Other	networks
might	not	be	as	reliable	as	we	want	them	to	be.	Since	we	have	no	control	over	how
reliable	the	other	networks	are,	we	must	adopt	a	protocol	for	making	sure	all	of	the
data	arrives	at	the	other	side	of	the	network	safely	and	allows	us	to	retransmit	any
missing	data	that	did	not	make	it	to	the	other	side.	This	layer	is	called	the	transport
layer.

5.	 Once	we	know	how	to	reliably	move	data	through	the	network.	We	need	to	be	able	to
signal	to	a	computer	that	we	want	to	start	talking	to	it,	and	let	it	know	when	we	are
finished	with	our	communication.	This	is	called	the	session	layer.

6.	 Now	that	we	have	a	connection	to	a	remote	computer,	and	the	remote	computer	is
accepting	data,	sometimes	we	need	to	adjust	or	rework	some	aspect	of	that
communication.	This	is	called	the	presentation	layer.	For	instance,	oftentimes	we

want	encrypted	communication	between	computers.	The	message,	when	it	is	sent,
goes	through	a	layer	of	encryption.	The	encryption	and	decryption	of	the	message
happens	at	the	presentation	layer.	Other	times	(though	this	is	rare),	two	computers
have	different	ways	of	representing	data,	and,	therefore,	the	message	has	to	be
translated	between	the	computers.	This	would	also	happen	at	the	presentation	layer.

7.	 Finally,	now	our	application	can	reliably	send	data	to	a	similar	application	on	the
other	computer.	Of	course,	for	our	applications	to	speak	to	each	other,	they	must	both
use	their	own	protocol.	This	layer	of	communication	between	applications	is	called
the	application	layer.

Figure	3.2:	Overview	of	the	OSI	Model

Layer What	it	Does Example

7 Application
Layer

the	main	content	of	the	message HTTP

6 Presentation
Layer

handles	encodings	and	encryption SSL

5 Session
Layer

controls	the	conversation	flow TCP

4 Transport
Layer

ensures	reliable	sending	in	a	noisy	network TCP

3 Network
Layer

provides	a	logical	addressing	mechanism	and	bridges
different	physical	configurations

IP

2 Data	Link
Layer

low-level	communication	protocol	for	the	physical
medium

Ethernet

1 Physical
Layer

how	the	machines	are	physically	connected Category
5	Cable

As	you	can	see,	there	is	a	lot	going	on	when	you	send	a	message	from	one	computer	to
another	through	the	Internet!	Thankfully,	since	this	is	built	in	layers,	we	rarely	have	to
think	about	all	of	the	things	that	are	going	on	at	the	different	layers.	For	instance,	when
you	mail	a	letter	to	a	friend,	you	never	have	to	think	about	the	different	mail	sorting
facilities,	postal	routes,	or	delivery	times	of	the	post	office.	That	is	a	system	that	is	already
in	place,	and	you	must	simply	drop	your	letter	in	the	mailbox	and	let	the	system	do	the
rest.	That	is	the	same	with	communication	on	the	Internet.	However,	it	is	good	to	know

what	is	happening	behind	the	scenes,	both	so	you	can	better	understand	the	capabilities	of
the	system	you	are	using,	and	so	you	can	better	identify	issues	when	something	goes
wrong!

Computers	haven’t	always	been	connected	through	the	Internet,	and	the	OSI	Model	was
developed	when	the	Internet	was	not	the	primary	means	of	communication.	In	fact,	at	the
time,	nearly	all	communication	was	on	private	networks.	Since	its	development,	certain
technologies	have	become	fairly	standard	in	each	layer.

For	the	physical	layer	and	data	link	layer,	the	two	primary	technologies	are	Ethernet	for
wired	connections	and	WiFi	for	wireless	connections.	In	addition,	your	connection	to	the
Internet,	whether	it	is	through	cable,	DSL,	or	fiber,	also	uses	its	own	physical	and	data	link
layers.	The	network	layer	is	handled	by	the	Internet	Protocol,	usually	abbreviated	as	IP.
The	number	that	identifies	each	computer	on	the	Internet	is	known	as	the	computer’s	IP
address.	On	the	Internet,	the	transport	and	session	layers	are	usually	combined	and
handled	through	a	protocol	called	the	Transmission	Control	Protocol,	abbreviated	as
TCP.	Because	TCP	and	IP	are	almost	always	seen	together,	they	are	often	collectively
labeled	TCP/IP.	The	only	common	presentation-layer	protocol	is	the	Secure	Sockets
Layer,	usually	abbreviated	as	SSL.	SSL	handles	the	job	of	encrypting	and	decrypting	data
on	a	secure	connection,	to	prevent	other	people	from	being	able	to	listen	in	on	your
communication.

Thankfully,	however,	we	rarely	need	to	know	much	about	these	layers.	In	fact,	this	is	one
of	the	main	reasons	such	layers	were	invented—so	that	all	an	application	programmer
really	needs	to	interact	with	is	the	application	layer.	It	is	still	good	to	know	that	these	other
layers	exist,	as	occasionally	you	might	interact	with	them.	In	addition,	knowing	the	basics
of	how	the	network	works	is	part	of	being	a	programmer.

The	layer	that	most	computer	programmers	deal	with	directly	is	the	application	layer.
There	are	several	application-layer	protocols	that	operate	on	the	Internet.	The	Internet	is
best	known	for	HTTP,	which	is	the	protocol	used	to	access	websites.	Second	to	HTTP	is
probably	SMTP,	which	is	the	protocol	used	to	send	email.	POP	and	IMAP	are	two
protocols	often	used	to	receive	emails	if	you	use	a	separate	email	program.	These
protocols	make	up	a	large	majority	of	people’s	use	of	the	Internet.

3.2	Communicating	Using	HTTP

As	mentioned	earlier,	when	you	access	a	website,	the	protocol	you	are	using	is	HTTP,
which	stands	for	“HyperText	Transfer	Protocol.”	Web	pages	are	considered	“hypertext,”
and	the	file	format	that	web	pages	use	is	called	the	“HyperText	Markup	Language,”	or
HTML.	We	will	dive	further	into	the	details	of	HTML	in	Chapter	6.	For	now,	we	will	just
consider	the	protocol	used	to	access	HTML	documents	and	not	concern	ourselves	with	the
contents.

The	first	thing	to	know	about	HTTP	is	that	it	is	fundamentally	about	documents.	Websites
might	look	fancy,	but	really	they	are	a	collection	of	interactive	documents.	Therefore,
when	you	go	to	a	website,	your	browser	connects	to	the	remote	computer	(called	the
server),	and	requests	a	document.	When	you	click	on	a	link,	what	usually	happens	is	that
the	link	tells	your	browser	the	location	of	a	new	document	to	fetch.	Your	browser	then
retrieves	that	new	document	and	shows	it	to	you.	These	documents	are	identified	and
located	by	a	piece	of	text	called	a	“Universal	Resource	Locator,”	or	URL.

A	typical	URL	looks	something	like	this:

Figure	3.3:	Typical	URL	Structure

Each	URL	has	three	main	parts—the	protocol,	the	hostname	(the	server’s	name),	and	the
document	path.	Optionally,	there	is	also	a	fourth	and	fifth	part,	the	query	string	and	the
anchor,	but	these	aren’t	covered	in	this	book.	(See	the	glossary	entries	for	these	terms	in
Chapter	17	for	more	information.)	In	a	URL,	the	protocol	is	the	everything	up	until	the
colon.	In	this	case,	it	is	“http,”	which	is	the	normal	protocol	used	on	the	Internet.	If	the
connection	is	an	encrypted	connection,	the	protocol	would	be	“https.”	The	two	slashes
after	the	protocol	indicate	that	the	next	piece	of	the	URL	is	the	hostname.	In	this	case,	the
hostname	is	www.npshbook.com.	We	will	discuss	hostnames	in	more	depth	in	Section	3.3.
The	slash	after	the	hostname	is	the	beginning	of	the	path.	The	path	includes	the	starting
slash,	and	is	essentially	the	rest	of	the	URL.	Sometimes	the	path	is	extremely	short.	For
instance,	when	you	first	go	to	a	website,	the	path	is	usually	just	/.	It	can	also	be	very	long,
like	/orders/123/products/5.	The	way	to	think	about	a	path	is	that	each	piece	of	the
path	is	like	a	folder	on	your	computer,	and	the	path	is	the	list	of	folders	someone	has	to	go
through	to	find	a	document.	That	isn’t	exactly	what	is	happening	on	the	server,	but	it	is	a
helpful	way	of	thinking	about	it.

For	an	example,	open	up	your	browser.	Find	the	location	bar	in	your	browser.	(For	more
information	on	finding	the	location	bar	in	your	browser,	see	Section	A.1.)	Put
http://www.npshbook.com/example/	into	the	location	bar	and	press	the	enter	key.	This
will	bring	up	an	example	website	that	I	built	for	this	book.	Depending	on	your	browser,	it

might	show	you	the	whole	URL,	or	it	might	remove	the	protocol	from	the	URL	to	make	it
easier	to	read.	Now,	click	on	the	link	titled	“About.”	Once	the	page	finishes	loading,	take
another	look	at	your	browser’s	location	bar.	The	location	bar	should	now	read
http://www.npshbook.com/example/about.html.	That	URL	is	used	to	find	the	server,
tell	the	server	what	document	it	should	give	you,	and	communicate	back	to	you	what
document	it	just	retrieved.

Now	we	will	look	at	how	the	browser	actually	retrieves	the	document.	Data	transmission
on	the	Internet	is	not	quite	as	mysterious	as	it	may	seem.

The	main	steps	are	as	follows:

1.	 Establish	a	connection	with	the	server
2.	 Tell	the	server	what	the	path	to	the	document	is
3.	 Tell	the	server	any	additional	information	about	the	communication
4.	 Send	a	blank	line
5.	 Receive	the	file

Once	the	connection	with	the	server	is	established,	here	is	what	the	protocol	looks	like	to
request	the	“about”	page:

Figure	3.4:	An	Example	HTTP	Request	for	the	About	Page

GET	/example/about.html	HTTP/1.1		

Host:	www.npshbook.com		

Connection:	close		

The	first	line,	called	the	request	line,	does	most	of	the	work.	It	has	three	components.	The
first	component	is	called	the	HTTP	verb.	This	tells	the	server	what	action	you	are	trying
to	do.	You	are	retrieving	the	document,	so	you	use	the	GET	verb.	Other	verbs	include
DELETE	for	remotely	destroying	documents	and	POST	for	sending	data	to	a	document	on
the	server.	The	next	component	is	the	path,	which	tells	the	server	how	to	find	the
document.	The	last	component	is	the	protocol	version—you	are	using	HTTP	version	1.1.

The	next	few	lines	are	called	the	request	headers.	They	are	a	list	of	options	that	you	send
to	the	server	to	clarify	in	more	detail	what	you	want	and	how	you	want	it	delivered.	The
first	request	header	line	that	we	send	tells	the	server	what	hostname	you	are	looking	for.
This	may	seem	redundant,	since	we	already	connected	to	the	server	that	we	want.
However,	modern	web	servers	are	actually	built	to	serve	requests	for	any	number	of
hostnames.	Therefore,	even	though	you	are	connected	to	the	server	for
www.npshbook.com,	you	still	have	to	tell	it	what	site	you	were	really	looking	for.	The	next
header	line	is	optional,	but	it	tells	the	server	to	close	the	connection	after	it	gives	you	the
document.	Otherwise,	it	will	sit	and	wait	for	you	to	request	something	else.	Then,	to	signal
that	we	are	at	the	end	of	our	request	headers,	we	send	a	blank	line.	There	is	also	an
optional	request	message	that	we	can	send	at	this	point,	but	that	is	beyond	the	scope	of	our

discussion.	The	requests	we	will	be	discussing	in	this	book	will	not	have	a	request
message.

When	the	server	receives	the	blank	line,	it	knows	that	you	are	done	asking	for	your
document,	and	it	attempts	to	process	your	request.	It	then	responds	with	something	that
looks	like	this:

Figure	3.5:	General	Server	HTTP	Response

HTTP/1.1	200	OK		

…Possibly	other	data	here…		

Content-Type:	text/html;	charset=UTF-8		

…Possibly	more	data	here…		

	

….Document	Gets	Put	Here….

The	response	is	very	similar	in	format	to	the	request.	The	first	line	is	the	response	line.	It
lists	the	protocol	version	that	the	server	is	responding	with,	followed	by	a	status	code	and
status	message.	200	is	the	status	code	that	means	everything	went	just	fine	and	there	is	a
document	coming.	Other	common	status	codes	include	404	which	means	that	the
document	could	not	be	found,	500	which	means	that	the	server	ran	into	an	error,	301	and
302	which	mean	that	the	document	has	moved	locations,	and	400	which	means	that	the
request	did	not	follow	the	proper	protocol.	After	the	response	line	is	a	series	of	response
headers.	These	communicate	additional	information	about	the	server	and	the	response.
The	headers	shown	here	are	just	an	example—most	servers	give	back	several	more
headers	as	well,	and	in	various	orders.	The	two	headers	shown	tell	us	the	type	of
document	we	have	retrieved	(in	this	case	an	HTML	file,	which	is	what	Content-Type:
text/html	means),	and	the	way	that	it	is	going	to	send	the	file	back	to	us	(in	this	case,	in
chunks).	The	server	then	sends	a	blank	line	telling	us	that	it	is	done	sending	the	headers,
and	the	rest	of	the	communication	will	be	the	document	we	asked	for.	The	document	we
get	back	is	an	HTML	file.	It	may	look	strange,	but	that	is	exactly	what	the	browser
receives	from	the	server.	It	includes	all	of	the	data	that	the	browser	needs	to	display	as
well	as	the	instructions	for	how	to	display	it	on	the	screen	and	how	you	can	interact	with
it.

Now	it	is	time	for	you	to	do	the	HTTP	communication	yourself.	For	this,	you	will	need	to
go	to	the	command	line	of	your	computer.	For	information	about	what	the	command	line
is	and	how	to	get	to	it	for	your	computer,	see	Section	A.2.	We	will	be	using	the	telnet
command	to	directly	talk	to	servers	without	using	our	browser	so	we	can	see	exactly	what
is	taking	place	under	the	hood.	Once	you	are	on	the	command	line,	type:

Figure	3.6:	Connecting	to	a	Remote	Server	Using	Telnet

telnet	www.npshbook.com	80

When	it	says	you	are	connected,	you	are	now	talking	directly	to	the	server	yourself!	Now
you	just	need	to	follow	the	HTTP	protocol	to	get	what	you	need.	Type	in	the	request	that
we	mentioned	earlier	(note	that	the	request	ends	with	a	blank	line):

Figure	3.7:	HTTP	Request	Example

GET	/example/about.html	HTTP/1.1		

Host:	www.npshbook.com		

Connection:	close		

The	server	will	then	respond	with	its	response	line,	response	headers,	and	response
message	as	outlined	above.	The	response	message,	since	it	is	the	document	itself,	will	be
fairly	lengthy.1	You	may	be	wondering	what	the	“80”	was	in	our	telnet	command.	This	is
the	“port”	to	connect	to	on	the	server.	A	port	is	merely	a	number	that	the	server	uses	to
know	where	to	direct	your	request.	Port	80	is	usually	the	port	that	is	used	to	handle	HTTP
requests.	You	can	typically	assume	that	any	HTTP	request	will	be	using	port	80.

You	have	now	communicated	directly	with	a	server	using	the	HTTP	protocol.	You	have
spoken	your	first	bit	of	computer-ese!

3.3	How	Computers	Are	Located	on	the	Internet

One	thing	that	we	haven’t	talked	about	yet	is	how	computers	are	located	on	the	Internet.
We	mentioned	earlier	that	the	URL	contains	a	hostname	that	names	the	computer.	You
might	wonder,	how	is	a	server	found	if	you	just	have	its	hostname?	It	turns	out	that	there
is	a	lot	involved	in	that	process!

We	talked	in	Section	3.1	about	the	different	protocol	layers	in	the	Internet.	Layer	3	is	the
network	layer,	and	on	the	Internet,	the	network	layer	is	handled	by	the	Internet	Protocol
(IP).	The	Internet	Protocol	mandates	that	each	computer	on	the	Internet	is	identified	by	a
series	of	numbers,	known	as	the	computer’s	IP	Address.	However,	we	don’t	normally
refer	to	computers	by	that	series	of	numbers	for	two	reasons.	The	first	reason	is	that
humans	aren’t	good	at	remembering	numbers.	It’s	much	easier	to	remember	google.com
than	it	is	to	remember	64.233.160.138.	The	second	reason	is	that	it	is	good	to	separate	out
physical	issues	from	logical	issues.	In	other	words,	the	IP	Address	tells	the	network	what
location	on	the	Internet	you	want	to	go	to.	However,	the	user	doesn’t	care	where	that	is.
The	user	just	wants	to	go	to	Google’s	website.	Therefore,	by	creating	a	name	for	Google’s
website	(i.e.,	google.com),	the	user	can	access	the	site	even	if	its	location	on	the	network
changes.	The	IP	Address	is	similar	to	a	phone	number,	and	the	hostname	is	like	the	name
of	the	person	you	want	to	reach.

However,	when	you	want	to	connect	to	a	server	for	a	website,	the	computer	must	know	the
destination	IP	Address	to	make	the	connection.	How	does	the	computer	know	what	the	IP
Address	is	for	the	website	you	want	to	visit?

The	computer	finds	the	destination	IP	Address	through	the	Domain	Name	System	(DNS).
DNS	is	a	system	that	translates	hostnames	to	IP	Addresses,	kind	of	like	the	way	a	phone
book	translates	a	person’s	name	into	a	phone	number.	However,	DNS	is	a	distributed
system,	so,	rather	than	just	one	big	phone	book,	there	are	millions	of	them	organized	into	a
hierarchy.	Each	server	(i.e.,	“phone	book”)	in	this	system	is	called	a	nameserver.	So,	when
you	tell	your	browser	you	want	to	go	to
http://www.npshbook.com/example/about.html,	before	it	makes	a	connection	to	the
server,	it	must	first	figure	out	where	www.npshbook.com	is	located.	In	order	to	do	that,	it
breaks	the	hostname	down	into	pieces,	separated	by	a	dot.	In	our	case,	there	are	three
pieces—www,	npshbook,	and	com.	The	browser	starts	with	the	rightmost	piece,	called	the
top-level	domain	name	(TLD).	Each	browser	is	preprogrammed	with	a	set	of	“root”
nameservers.	The	browser	begins	by	asking	the	root	nameservers	if	they	know	who
maintains	the	DNS	records	(i.e.,	who	handles	the	phone	book)	for	.com	domains.	The	root
nameserver	responds	with	the	IP	address	of	the	nameserver	or	nameservers	that	handle
requests	for	those	domains.	Next,	the	browser	goes	to	the	.com	nameserver	and	asks	it
who	maintains	the	DNS	records	for	the	npshbook.com	domain.	The	.com	nameserver	will
point	to	yet	another	server	who	handles	the	npshbook.com	domain.	Finally,	the	browser
will	go	to	the	npshbook.com	nameserver	and	ask	it	if	it	knows	what	the	IP	address	of
www.npshbook.com	is.	The	npshbook.com	nameserver	will	respond	with	the	IP	Address	of
www.npshbook.com,	and	with	that	IP	Address	your	computer	will	be	able	to	establish	a
connection	to	the	www.npshbook.com	server.

This	usually	happens	in	a	fraction	of	a	second,	so	we	don’t	notice	that	the	computer	is
doing	all	of	this	work	behind-the-scenes.	In	addition,	the	computer	usually	skips	the	steps
that	it	has	performed	recently,	and	just	remembers	what	results	it	got	back	last	time	so	that
it	doesn’t	have	to	do	the	same	query	over	and	over	again.

Chapter	4
How	a	Computer	Looks	at	Data

Chapter	3	covered	the	basics	of	how	computers	transmit	data	to	each	other	over	the
Internet.	This	chapter	expands	on	that,	covering	how	documents	are	stored	within	the
computer.	Much	of	the	information	in	this	chapter,	like	the	last	one,	is	more	background
information	than	practical	knowledge.	The	JavaScript	programming	language	automates	a
lot	of	the	data	handling	for	you,	so	you	don’t	have	to	worry	about	it.	Nonetheless,	it	is
important	to	know	what	the	computer	is	doing	for	you!

We	think	of	computers	as	systems	which	are	capable	of	anything,	but	in	reality	computers
are	very	limited.	In	many	areas	of	engineering,	engineers	achieve	the	most	powerful
results	by	limiting	the	possibilities,	which	makes	the	remaining	available	possibilities
more	potent.	Engines	are	made	by	taking	the	energy	from	combustion	reactions	and
channeling	them	in	a	specified	direction	to	operate	the	engines.	Instead	of	letting	the
energy	go	in	every	direction	(which	is	what	it	normally	does),	it	is	only	allowed	to	go	in
specific	directions.	The	driver	of	the	car	can	go	anywhere	he	or	she	wants	to,	but	only
because	the	combustion	within	the	engine	is	directed	to	a	very	limited	number	of
directions.	Computers	are	powerful	precisely	because	they	are	similarly	limited.

Computers,	at	their	core,	perform	two	functions—they	process	numbers	and	they	transmit
numbers.	This	may	seem	counterintuitive.	After	all,	when	you	type	on	your	keyboard,
doesn’t	it	produce	letters	on	the	screen?	Doesn’t	your	computer	do	graphics	and	sound?	In
reality,	all	of	these	things	are	controlled	by	numbers.	The	color	of	each	pixel	on	your
screen	is	a	number.	Each	letter	you	type	has	a	corresponding	number.	Each	sound	is	a	long
sequence	of	numbers.	The	computer	may	look	like	it	is	doing	lots	of	different	things,	but	it
is	really	doing	only	two	things—processing	numbers	and	transmitting	numbers.

The	first	part	of	this	chapter	will	cover	how	data	is	stored	on	a	computer	using	numbers.
The	second	part	of	this	chapter	will	cover	how	those	numbers	can	be	arranged	into	a	file
format	which	can	be	read	by	software	applications	like	web	browsers.

Review

In	this	chapter	we	covered	some	of	the	details	about	how	computers	look	at	and	process
data.	We	have	learned:

Computers	store	everything	using	numbers.
In	order	for	a	computer	to	understand	what	those	numbers	mean,	they	must	be	in	a
pre-defined	data	format.
Lists	of	data	are	often	stored	by	storing	the	length	before	the	number	of	data	items,	or
by	using	a	sentinel	value	to	indicate	the	end	of	a	list.
Display	characters,	including	letters,	digits,	punctuation,	and	spaces,	are	stored	using
numbers	to	represent	each	character.
Blocks	of	text	are	stored	as	sequences	of	display	characters	called	strings.
Just	like	other	sequences,	the	size	of	a	string	is	given	either	by	a	length	or	by	a
sentinel	value	at	the	end,	usually	the	number	zero	(not	the	text	digit	“0”),	called	the

null	character.
A	file	format	is	just	a	data	format	stored	on	a	disk.
Filenames	have	a	file	extension	to	indicate	what	the	format	of	the	data	is.
A	text	file	is	a	file	format	where	the	entire	file	is	stored	as	one	long	string.
Text	files	often	have	a	specific	structure	themselves.
CSV	files	are	an	example	of	a	text	file	with	a	specific	structure—they	use	the	newline
character	to	separate	records	and	commas	to	separate	fields.
HTML	files	are	text	files	with	their	own	structure.

Apply	What	You	Have	Learned

1.	 Let’s	say	that	we	wanted	to	store	data	on	a	computer	about	a	car.	What	pieces	of	data
might	we	want	to	store?	How	would	we	want	to	represent	it	in	the	computer	using
numbers?

2.	 Write	the	name	of	your	favorite	car	using	ASCII	numbers.
3.	 Try	to	create	your	own	CSV-formatted	file.	Be	sure	to	make	the	file	extension	.csv

when	you	save	it.	Now,	if	you	have	a	spreadsheet	program	on	your	computer,	try	to
open	up	the	file	with	your	spreadsheet	program.	What	happens?

4.	 Take	your	spreadsheet	program	and	create	a	spreadsheet.	Add	colors	and	styles	to	the
spreadsheet	cells.	Now,	save	or	export	the	spreadsheet	to	a	CSV	file.	Open	up	the	file
in	the	text	editor.	What	does	it	look	like?	Open	the	CSV	file	again	in	the	spreadsheet.
What	changed?

5.	 Write	a	document	in	your	word	processor.	Write	three	or	four	lines	of	text,	with	each
line	being	formatted	slightly	differently	(font	size,	italic,	etc.).	Save	this	file	as	an
RTF	(also	called	“Rich	Text	Format,”	extension	.rtf)	file.	An	RTF	file	is	a	text
format	for	word	processors.	Open	up	the	file	with	your	text	editor.	What	does	it	look
like?	Can	you	find	your	original	text?	Can	you	decipher	what	those	other	characters
might	mean?	Now,	in	the	text	editor,	make	a	change	to	some	of	your	original	text	and
open	it	in	the	word	processor.

4.1	What	Computer	Memory	Looks	Like

To	understand	how	the	computer	views	memory,	imagine	a	room	filled	with	numbered
lockers	that	are	all	the	same	size.	These	lockers	are	similar	to	computer	memory	in	that
each	are	numbered	sequences	of	fixed-size	storage	locations.	For	example,	if	you	have	2
gigabytes	of	computer	memory,	that	means	that	your	computer	contains	roughly	2	billion
fixed-size	storage	locations.	Or,	to	use	our	analogy,	2	billion	lockers.	Each	location	has	a
number,	and	each	location	has	the	same	fixed-length	size.	The	difference	between	a	locker
and	computer	memory	is	that	you	can	store	different	kinds	of	things	in	a	locker,	but	you
can	only	store	a	single	number	in	a	computer	memory	storage	location.

On	modern	computers,	each	storage	location	can	store	a	single	number	between	0	and
255.	Such	a	number	is	called	a	byte.	You	may	be	wondering	why	computers	use	the	range
between	0	and	255,	and	not	something	more	natural,	like	100	or	1000.	The	reason	is	that
the	range	of	0	to	255	is	natural	to	a	computer.	In	math,	we	usually	represent	numbers	using
the	decimal	system	which	has	ten	digits—zero	through	nine.	Computers,	however,	use	the
binary	system	which	only	has	two	digits—zero	and	one.	Each	digit	is	called	a	bit,	which	is
short	for	binary	digit.	If	you	write	down	numbers,	when	you	get	to	ten	you	have	run	out	of
digits,	so	you	add	another	digit	to	keep	counting,	making	a	two-digit	number.	In	binary,
you	run	out	of	digits	at	two.

Here	are	the	numbers	zero	through	eleven	in	decimal	and	in	binary:

Figure	4.1:	Numbers	Displayed	in	Decimal	and	Binary

Decimal Binary

0 0 The	first	two	numbers	look	the	same

1 1

2 10 Since	we	only	have	two	digits	in	binary,	we	have	to	add	another
place.

3 11 Just	like	in	decimal,	the	digit	on	the	right	will	increase	again.

4 100 However,	we	already	have	to	go	to	yet	another	place!

5 101
6 110
7 111
8 1000
9 1001

10 1010 Since	the	decimal	numbers	have	ten	digits,	it	is	only	when	we
get	to	ten	that	we	need	another	place.

11 1011

If	you	carry	this	out,	you	will	find	that	the	number	255	is	the	maximum	number	that	you
can	get	with	8	bits.	It	looks	like	11111111	in	binary.	In	short,	the	reason	why	a	computer
byte	stores	numbers	between	0	and	255	is	because	a	byte	is	made	up	of	8	bits.

It	is	important	to	note	that	the	numbers	in	the	left	column	and	right	column	are	the	same
numbers,	just	represented	differently.	The	reason	we	use	decimal	numbers	is	probably	due
to	the	fact	that	our	culture	started	counting	with	its	fingers.	A	few	cultures,	such	as	the
Yuki,	started	counting	using	the	spaces	between	their	fingers,	and	only	have	eight	digits	in
their	system.	The	numbers	are	not	different—only	the	way	they	are	displayed!

Two	other	systems	that	are	regularly	encountered	in	computer	programming	are	the	octal
system	and	the	hexadecimal	system.	The	octal	system	uses	only	the	digits	0–7,	but	the
hexadecimal	system	actually	adds	digits	to	our	current	ones.	Hexadecimal	uses	letters	to
add	additional	digits.	So,	in	hexadecimal,	the	letters	A–F	represent	the	decimal	numbers
10–15,	and	10	in	hexadecimal	is	the	same	as	the	number	16	in	decimal.

Here	is	a	combined	list	of	the	numbers	0–16	in	decimal,	binary,	octal,	and	hexadecimal:

Figure	4.2:	Numbers	0–16	in	Decimal,	Binary,	Octal,	and	Hexadecimal

Decimal Binary Octal Hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

The	reason	why	octal	and	hexadecimal	are	often	used	in	computing	is	that	a	single	octal
digit	represents	exactly	three	bits,	and	a	single	hexadecimal	digit	represents	exactly	four
bits.	Two	hexadecimal	numbers	together	represent	one	byte.	Therefore,	octal	and
hexadecimal	are	essentially	used	as	a	shorthand	for	writing	binary	numbers.	An	example

of	this	is	in	screen	colors.	Each	dot	on	your	screen	is	represented	by	3	bytes—one	byte	for
the	red	component,	one	byte	for	the	green	component,	and	one	byte	for	the	blue
component.	In	many	tools,	these	are	all	smashed	together	as	a	six-digit	hexadecimal
number.	For	instance,	red	is	represented	by	FF0000,	green	is	represented	by	00FF00,	blue
is	represented	by	0000FF,	a	greenish	blue	would	be	00FFFF,	and	a	darker	shade	of
greenish	blue	would	be	009999.

In	any	case,	computer	memory	is	a	long	sequence	of	millions	or	billions	of	bytes,	one	after
another.	Each	byte	has	an	address,	which	is	basically	like	a	locker	number,	so	you	can
refer	to	specific	memory	locations	on	the	computer.	We	won’t	be	accessing	bytes	by	their
memory	addresses	ourselves,	but	that	is	how	the	computer	works	at	the	lowest	level.

Now,	it	might	seem	very	limiting	to	only	be	able	to	deal	with	numbers	that	are	between	0
and	255.	The	reason	this	is	not	a	problem	is	because	this	is	only	how	the	machine	works	at
the	lowest	level.	Programming	languages	group	several	of	these	bytes	together	to
represent	much	larger	numbers,	or	other	kinds	of	data	altogether.	Representing	numbers
that	have	a	decimal	point	is	a	harder	problem,	but	it	is	usually	done	by	designating	some
number	of	bytes	to	be	the	number,	and	some	number	of	bytes	to	be	the	location	of	the
decimal	point.	Even	though	you	won’t	have	to	deal	with	these	details	in	JavaScript,	it	is
good	to	keep	in	mind	that,	at	the	lowest	level,	everything	you	deal	with	is	just	a	sequence
of	numbers	between	0	and	255.

Going	forward,	we	will	assume	that	the	computer	can	handle	whatever	size	number	we
throw	at	it.	This	isn’t	entirely	true,	but	it	is	true	enough	for	our	purposes.

4.1.1	Practice	Questions

How	do	you	write	the	decimal	number	12	in	binary?
How	many	bits	are	represented	by	a	single	hexadecimal	digit?
Since	black	is	the	absence	of	color,	how	do	you	think	you	would	represent	black	in
the	hexadecimal	system	discussed	in	this	section?
What	about	white,	which	is	the	mix	of	all	colors?

4.2	Using	Numbers	to	Represent	Data

So,	if	all	we	have	to	work	with	are	numbers,	how	do	we	store	other	types	of	data?	The
answer	is	that	we	must	convert	our	information	into	a	series	of	numbers.	Let’s	say	we
want	to	describe	a	person.	What	information	might	we	want	to	store?	We	might	want	to
store:

height
weight
hair	color	(black,	blonde,	brown,	red,	white,	etc.)
eye	color	(blue,	green,	hazel,	etc.)

Some	of	these	values	are	actually	numbers,	like	height	and	weight.	We	just	have	to	decide
what	units	we	are	using.	Let’s	use	inches	for	height	and	pounds	for	weight.	Hair	color	and
eye	color	are	not	numbers,	but	computers	only	have	numbers	to	work	with.	So,	what	do
we	do?	We	choose	numbers	to	represent	the	possible	values.	We	might	say	that,	for	hair
color,	black	is	0,	blonde	is	1,	brown	is	2,	red	is	3,	and	white	is	4.	There	doesn’t	have	to	be
any	reason	that	a	color	gets	a	particular	value.	The	important	thing	is	to	make	sure	that
whatever	number	we	assign,	we	consistently	use	that	same	number	to	represent	that	hair
color.	Next,	we	can	choose	numbers	to	represent	eye	color.	For	eyes,	we	can	say	blue	is	0,
green	is	1,	and	hazel	is	2.	It	doesn’t	matter	that	our	numbers	overlap	with	the	same
numbers	we	used	for	hair	color,	as	long	as	we	know	which	one	we	are	dealing	with.

We	can	now	represent	a	person	with	a	sequence	of	four	numbers	-	their	height,	weight,
hair	color,	and	eye	color.	Using	this	system,	I	would	be	72,	275,	2,	2.	Someone	identical	to
me,	but	with	blue	eyes,	would	be	72,	275,	2,	0.	Notice	how	important	the	order	of	the
numbers	is.	If	we	didn’t	know	what	order	the	numbers	were	in,	we	wouldn’t	be	able	to
understand	the	data.	It	isn’t	that	the	numbers	are	in	order	of	importance—we	could	just	as
easily	have	arranged	it	as	weight,	eye	color,	height,	hair	color—the	important	thing	is	that
we	know	what	order	to	expect	the	numbers,	and	follow	that	convention	every	time	we	use
the	data.	Otherwise,	we	might	wind	up	mistaking	someone’s	weight	for	their	height	or
their	eye	color	for	their	hair	color.

When	you	have	a	pre-defined	set	of	data	to	describe	something,	it	is	called	a	data	format.
It	might	not	seem	like	a	data	format	is	that	big	of	a	deal.	However,	when	communicating
with	other	programs,	they	may	have	their	data	in	a	different	pattern	than	you	do	with
yours.	Imagine	another	program	which	stored	the	same	data,	but	used	feet	instead	of
inches	for	the	height.	Or,	let’s	say	that	it	had	five	numbers	for	each	person,	with	the	fifth
being	their	age.	In	each	of	these	cases,	if	you	loaded	data	from	this	other	format,	you
would	have	to	convert	the	data	from	the	data	format	you	are	given	to	the	data	format	you
need	for	your	own	program.	This	may	include	transforming	certain	pieces	of	data	(e.g.,
feet	to	inches),	ignoring	certain	pieces	of	data	(since	our	format	doesn’t	include	an	age),
calculating	data	(if	one	program	needs	an	age	or	another	program	sends	the	date	of	birth),
or	any	other	number	of	possibilities.	These	are	called	data	transformations	and	account
for	a	very	large	portion	of	programming	tasks.

4.2.1	Practice	Questions

1.	 Describe	yourself	using	the	data	format	described	in	this	section.
2.	 Write	out	in	plain	language	what	someone	with	the	following	numbers	looks	like:

69,	150,	0,	1

4.3	Sequences	in	Data

The	data	format	we	explored	in	Section	4.2	is	only	helpful	if	we	have	a	fixed	number	of
things	to	store.	Because	each	piece	of	data	is	identified	by	its	position	in	the	sequence,	if
we	changed	the	number	of	items	in	the	data,	we	would	also	change	what	they	meant.	Let’s
say	you	wanted	to	store	the	ages	of	a	person’s	children.	The	problem	is	that	we	don’t
know	how	many	children	a	person	might	have.	They	might	have	none	or	twenty.	One	way
to	solve	the	problem	is	to	have	a	count	of	the	number	of	children	first,	then	the	children’s
ages.	This	way	we	would	know	when	the	children’s	ages	stopped.	For	instance,	we	could
modify	our	format	to	be	height,	weight,	number	of	children,	age	of	child	1,	age	of	child	2,
etc.,	hair	color,	and	eye	color.	By	storing	the	number	of	children	before	the	list	of	children,
even	though	each	record	would	be	slightly	different,	we	would	still	know	where	we	were
in	the	record	because	we	know	how	many	children	we	need	to	be	looking	for.

Let’s	say	that	our	friend	Fred	has	three	children,	ages	12,	10,	and	5.	His	record	might	look
like	this:	70,	200,	3,	12,	10,	5,	1,	1.	The	number	3	tells	you	that	the	next	three
records	will	be	children’s	ages.	After	that,	you	go	on	to	the	rest	of	the	record.

Another	way	of	storing	repeated	values	is	to	use	what	is	called	a	sentinel	value.	A	sentinel
is	a	value	that	tells	you	that	you	are	at	the	end	of	a	list.	Therefore,	rather	than	storing	the
number	of	children,	we	could	decide	that	we	are	going	to	use	a	sentinel	value.	Since	no
children	have	a	negative	age,	we	could	use	a	-1	to	indicate	that	we	are	at	the	end	of	the
list,	rather	than	having	a	count.	Under	this	scheme,	Fred’s	record	would	look	like	this:	70,
200,	12,	10,	5,	-1,	1,	1.

Such	sequences	of	data	are	commonly	referred	to	as	arrays.	An	array	is	simply	a
sequence	of	data	that	is	packaged	together	into	a	single	set.	In	this	example,	the	children’s
ages	are	treated	as	an	array.

4.3.1	Practice	Questions

1.	 What	would	Fred’s	record	look	like	if	he	had	6	children,	aged	21,	19,	14,	12,	10,	and
5,	using	the	format	that	counts	his	children?

2.	 What	would	that	record	look	like	using	the	format	that	has	a	sentinel	value?
3.	 Why	is	it	important	that	the	sentinel	value	not	be	a	possible	data	value?

4.4	Using	Numbers	to	Represent	Letters

Now	that	we	know	a	little	about	how	computers	represent	data	using	numbers,	we	can
now	talk	about	one	of	the	most	common	things	for	computers	to	store—text.	One	thing
that	was	missing	from	our	description	of	a	person	in	the	previous	section	was	the	person’s
name.	How	would	you	represent	a	name,	or	any	text,	using	only	numbers?

Before	we	look	at	how	computers	store	whole	blocks	of	text,	let’s	start	by	looking	at	how
a	computer	might	store	an	individual	character.	Since	computers	store	everything	as
numbers,	computers	do	the	same	thing	for	letters.	Just	like	we	used	the	number	0	to
represent	blue	eye	color,	we	could	come	up	with	a	number	to	represent	each	letter	in	the
alphabet.	However,	what	we	display	on	the	screen	is	not	just	the	letters	of	the	alphabet.
There	is	also	punctuation,	upper-	and	lower-case	letters,	symbols,	and	even	digits.	It	might
seem	odd	that	a	digit	needs	a	representation	as	a	number,	but	when	you	mix	them	in	with
the	list	of	“characters	that	need	to	be	typed	or	displayed,”	it	makes	sense.	Since	there	is
nothing	preventing	you	from	typing	a	0	as	part	of	a	piece	of	text,	it	is	something	that	must
be	represented	along	with	everything	else.

Each	character	that	might	be	displayed	has	a	corresponding	number	that	represents	it.	The
most	common	system	for	representing	characters	by	numbers	in	a	single	byte	is	called	the
ASCII	code,	which	was	developed	in	the	1960s.	In	ASCII,	the	decimal	numbers	65–90
represent	the	uppercase	letters	A–Z,	the	decimal	numbers	97–122	represent	the	lowercase
letters	a–z,	the	decimal	numbers	48–57	represent	the	digits	0–9,	and	the	space	is
represented	by	the	decimal	number	32.	A	more	complete	ASCII	table	is	available	in
Appendix	B.

That	is	how	you	represent	a	single	character,	but	how	should	a	whole	block	of	text,	like
someone’s	name,	be	represented?	If	you	think	back	to	the	previous	section,	how	did	we
represent	a	sequence	of	things?	We	used	an	array,	and	a	block	of	text	can	be	thought	of	as
an	array	of	characters.	As	an	array,	it	can	either	be	represented	as	a	length	followed	by	the
list	of	characters,	or	as	a	list	of	characters	with	a	sentinel	value.	In	ASCII,	the	decimal
number	0	is	a	special	character	called	the	null	character,	which	is	used	as	a	sentinel	for	a
list	of	characters.	An	array	of	characters	is	often	referred	to	as	a	string,	and	a	string	that	is
represented	using	a	null	for	its	sentinel	value	is	sometimes	called	a	null-terminated
string.

Let’s	go	back	to	our	person	data	format	before	we	added	the	children.	Let’s	say	we	wanted
to	store	the	name	of	the	person	to	the	record.	The	record	would	store	the	name,	height,
weight,	hair	color,	eye	color.	We	can	use	a	null-terminated	string	for	the	name.	Therefore,
my	name,	“Jon,”	would	be	encoded	as	74,	111,	110,	0.	Then,	my	whole	record	would
be:
74,	111,	110,	0,	72,	275,	2,	0

You	can	tell	where	my	name	ends	and	the	rest	of	the	record	begins	by	the	sentinel.

Now,	let’s	add	children,	using	-1	for	the	sentinel	value.	We’ll	pretend	I	have	two	children,
Jim	and	Bob.	In	the	next	record,	we	will	use	the	format	name,	height,	weight,	hair	color
eye	color,	name	of	child	1,	age	of	child	1,	…,	-1.	It	looks	like	this:

74,	111,	110,	0,	72,	275,	2,	0,	74,	105,		

109,	0,	14,	66,	111,	98,	0,	12,	-1

4.4.1	Practice	Questions

Look	at	the	record	above.	Based	on	the	format,	what	is	Jim’s	age?
Create	a	new	record	for	Jim	if	he	had	another	child	named	Mary	Ann,	aged	6.

As	you	can	see,	in	order	to	process	data,	computers	have	to	be	very	exact	about	what	kind
of	data	goes	where,	how	long	it	is,	and	whether	it	repeats.	In	order	for	two	programs	to
communicate,	or	even	for	two	functions	within	the	same	program	to	communicate,	they
must	both	agree	on	the	format	of	the	data.	Now,	in	modern	programming	languages	such
as	JavaScript,	the	representation	is	much	nicer	than	a	string	of	numbers.	JavaScript,	for
instance,	allows	you	to	say	“Jim”	instead	of	74,	105,	109,	0,	but	underneath	it	actually
does	the	same	thing.	“Jim”	is	a	string	of	characters.	In	most	programming	languages,
putting	quotations	around	a	string	of	characters	indicates	that	those	characters	should	be
treated	as	a	string	of	text.	Generally,	if	you	see	234	in	a	program	it	means	the	number	234,
but	“234”	means	the	string	of	characters	2,	3,	4	(which	would	be	represented	by	the
numbers	67,	68,	69	in	ASCII).

Modern	programming	languages	and	programs	use	an	encoding	called	UTF-8	instead	of
ASCII,	but	for	most	purposes,	when	using	the	English	language,	they	are	equivalent.	For
more	information	about	character	encodings	and	UTF-8,	see	Appendix	B.

4.5	What	Is	a	File	Format?

So	far,	we	have	discussed	how	computers	store	things	in	memory	using	data	formats.	Data
formats	are	used	because	everything	is	represented	by	numbers,	so	we	need	a	format	to
know	what	the	numbers	mean.	A	file	format	is	exactly	like	a	data	format,	except	that	it	is
stored	on	a	disk	rather	than	in	memory.

Have	you	ever	tried	to	open	up	a	document	in	the	wrong	application?	What	happened?
Usually,	if	you	open	up	a	document	in	the	wrong	application,	it	either	gives	you	an	error,
or	it	gives	you	a	lot	of	junk.	As	we	have	seen,	since	programs	are	just	dealing	with
numbers,	they	have	to	know	what	the	data	format	is	to	make	sense	of	the	data.	Without
knowing	that	format,	the	file	is	gibberish.

Computers	often	distinguish	between	different	file	types	by	the	name	of	the	file.	Most	files
have	a	filename	extension	which	tells	you	the	type	of	file	it	is.	For	instance,	Adobe
Portable	Document	Format	files	usually	end	in	.pdf.	There	are	many	different	graphics
formats,	each	with	their	own	extension,	such	as	.jpg,	.png,	or	.gif.	MP3	audio	files	have
the	extension	.mp3.

However,	on	the	Internet,	the	URL	does	not	always	contain	an	extension,	and	for	various
technical	reasons	sometimes	even	contains	a	different	extension	from	the	type	of	file	it	is
sending	you.	In	addition,	sometimes	there	is	more	than	one	format	with	the	same
extension.	Therefore,	to	remove	ambiguity,	the	Internet	signals	a	file	format	differently,
using	content	types,	also	called	MIME	types.	If	you	remember	back	to	communicating
with	a	server	using	HTTP	in	Chapter	3,	after	we	sent	our	request,	it	sent	back	a	response
line,	response	headers,	and	a	response	document.	One	of	the	response	headers	that	gets
sent	back	from	the	webserver	is	the	Content-Type	header.	In	our	example,	the	server	gave
back	a	content	type	of	text/html.	Content	types	have	two	parts,	a	type	and	a	subtype.	In
this	case	the	type	is	“text”	and	the	subtype	is	“html.”	Since	the	type	is	“text,”	how	do	you
think	it	stores	its	data?	All	text	documents	store	their	data	as	a	long	sequence	of
characters.	In	a	text	document,	the	only	type	of	data	allowed	are	characters.	Most	files	that
do	not	have	a	“text”	type	are	called	binary	files,	which	only	means	that	it	contains	data
that	is	not	text.

Notice,	however,	that	there	is	a	subtype,	“html.”	This	indicates	that	text	files	themselves
can	have	formats.	That	is,	we	can	organize	a	text	file	such	that	it	is	easy	for	a	computer	to
locate	specific	kinds	of	data.	For	instance,	spreadsheets	often	use	CSV	(comma-separated
value)	files.	The	CSV	file	format	uses	a	comma	to	separate	data	that	go	into	different
columns	and	a	return	character	to	separate	data	that	go	into	different	rows.	Below	is	a
sample	CSV	file	with	three	columns	and	four	rows:

Figure	4.3:	An	Example	CSV	File

Name,Age,Height	

Jon	B,36,72	

Fred	F,44,70	

Jennifer	Q,50,60	

Jim	Z,22,68

Since	a	CSV	is	a	text	document,	this	whole	file	would	be	stored	as	a	string	of	characters.
A	spreadsheet,	when	loading	the	document,	might	convert	columns	two	and	three	into
numbers,	but,	on	a	disk,	since	it	is	a	text	document,	it	is	stored	as	a	string	of	characters.
The	format	says	that	when	the	spreadsheet	loads	the	file,	it	should	split	the	row	into
columns	based	on	where	the	commas	occur,	and	split	the	file	into	rows	based	on	where	the
line	breaks	are.	So,	because	it	is	a	text	format,	all	of	the	details	of	the	file	are	easily
viewable	and	understandable	by	people,	since	it	is	just	a	string	of	characters.	However,	it
is	in	fact	a	data	format	because	the	different	pieces	of	the	file	have	significant	meanings—
in	this	case	the	commas	and	the	newline	characters.

In	Chapter	6	we	will	look	at	the	HTML	file	format.

4.5.1	Practice	Questions

To	see	the	difference	between	text	files	and	binary	files,	open	up	different	file	types	with
your	text	editor.	For	information	on	what	a	text	editor	is	and	how	to	use	one,	see
Section	A.3.

1.	 Open	up	your	text	editor	according	to	the	instructions	in	A.3.
2.	 Open	up	a	file	on	your	computer	with	one	of	the	following	extensions:	.jpg,	.png,

.pdf,	.mp3,	.doc,	.xls.	If	your	computer	is	not	showing	you	the	file	extension,
Section	A.3	describes	how	to	make	them	visible.

3.	 Since	you	are	using	a	text	editor,	it	will	attempt	to	treat	each	number	in	the	file	as	if	it
were	a	character.	This	is	what	makes	all	of	the	funny	characters—your	text	editor
doesn’t	know	how	to	deal	with	the	non-text	characters.

4.	 Now	open	up	a	file	on	your	computer	with	one	of	the	following	extensions:	.txt,
.csv,	.html,	.rtf.	If	you	don’t	have	any	of	these	types	of	files,	you	can	easily	create
a	.rtf	file	using	any	word	processor.	Just	tell	the	word	processor	to	export	your
document	in	“Rich	Text	Format,”	and	it	will	produce	an	appropriate	file	with	an
extension	of	.rtf.

5.	 Even	if	you	don’t	understand	the	file,	it	should	at	least	be	viewable—you	should
recognize	the	characters	that	it	is	using.

6.	 Note	that	the	extensions	themselves	don’t	do	anything—they	are	merely	there	to	help
you	know	what	is	in	the	file,	what	program	to	use	to	open	the	file,	and	what	icon	to
display	for	the	file.	Your	operating	system	keeps	a	list	of	default	programs	to	use	for
various	file	extensions.	If	you	change	a	file	extension	of	a	file,	the	computer	will
likely	open	up	the	wrong	program	for	that	file!

Chapter	5
How	Computers	Work

Now	that	we	know	a	little	bit	about	where	computers	come	from,	how	they	communicate,
and	how	they	store	data,	we	can	learn	how	computers	work.	Chapter	1	discussed	the
difference	between	a	machine	language,	which	allows	a	programmer	to	give	a	computer
instructions	that	it	directly	understands,	and	a	programming	language,	which	is	a	more
human-like	way	of	programming	the	computer.	Programming	languages,	since	they	are
not	native	to	a	computer,	eventually	have	to	be	translated	into	machine	language
instructions.	Therefore,	because	they	have	to	be	translatable	into	a	machine	language,
programming	languages	have	to	be	more	rigid	and	exact	than	a	human	language.

Most	programmers	never	need	to	use	machine	language.	However,	it	is	good	to	at	least
understand	conceptually	what	a	machine	language	looks	like,	as	it	will	help	you
understand	the	exactness	required	in	programming.	The	biggest	problem	that	new
programmers	run	into	is	that,	when	they	write	programs,	they	expect	the	computer	to	do
what	they	mean,	which	is	often	different	from	what	they	actually	told	it	to	do.	Knowing
how	machine	language	works	will	give	you	a	feel	for	the	exactness	required	to	program	a
computer.	Therefore,	before	we	begin	our	study	of	programming,	this	chapter	will	give
you	a	feel	for	how	the	computer	actually	does	its	processing	at	the	machine	language
level.

The	examples	in	this	chapter	may	seem	tedious.	They	are.	Few	people	program	in
machine	language	anymore	because	it	is	quite	tedious.	Don’t	worry,	though—
programming	languages	were	invented	specifically	to	remove	the	tediousness	of	machine
language.	The	point	is	to	introduce	you	to	the	way	a	machine	thinks,	so	it	will	help	you
understand	the	exactness	required,	and	start	thinking	in	the	ways	that	the	computer	needs
you	to	think.

Review

In	this	chapter	we	covered	how	machines	really	work.	We	have	learned:

The	main	parts	of	the	computer	are	the	CPU,	the	computer	memory,	the	input/output
system,	and	the	data	bus.
The	CPU	works	by	taking	instructions	one	at	a	time,	decoding	them,	and	then
running	the	processes	they	specify.
Each	instruction	on	a	CPU	performs	a	single,	very	small	task.
The	computer	can	only	do	exactly	what	you	tell	it	to	do.
All	steps	of	a	program	must	be	specified	exactly	in	order	for	the	computer	to	perform
it	correctly.

Apply	What	You	Have	Learned

1.	 Think	about	what	would	happen	if	one	instruction	in	the	program	was	changed.	How
would	a	missing	or	faulty	instruction	affect	the	result?

2.	 Did	you	notice	that	the	code	and	the	data	were	both	in	the	same	memory?	By	storing
everything	as	numbers,	both	code	and	data	can	be	stored	using	the	same	system.
What	problems	might	you	run	into	if	you	accidentally	overwrote	an	instruction	with	a
data	value?

JavaScript	is	primarily	a	language	for	making	websites	more	interactive.	This	part
introduces	the	basics	of	the	technologies	that	make	web	pages	work—HTML,	CSS,	and
JavaScript.	This	part	does	not	go	into	any	depth	for	any	of	these	topics,	but	should	give
enough	background	to	help	you	understand	how	they	work	together	to	make	a	web	page.

5.1	Parts	of	a	Computer

You	can	conceptually	break	a	computer	into	four	main	pieces:

the	Central	Processing	Unit	(CPU)
the	computer’s	memory	(also	known	as	Random	Access	Memory,	or	RAM)
an	input/output	system
a	data	bus	which	moves	the	data	between	these	different	parts

The	computer’s	CPU	is	where	most	of	the	data	processing	happens.	The	CPU	itself	is
divided	into	two	components—the	control	unit	and	the	arithmetic	and	logic	unit	(ALU).
The	control	unit	manages	the	process	of	computing	itself.	The	control	unit	maintains	a
piece	of	data	called	the	instruction	pointer	which	holds	the	location	in	memory	of	the
next	instruction	to	perform.	The	control	unit	looks	at	an	instruction,	determines	what	is
needed	to	process	that	instruction,	and	then	manages	all	of	the	components	needed	to
make	that	instruction	happen.	This	might	include	things	like	writing	and	fetching	data	to
and	from	the	memory,	reading	and	writing	data	to	the	input/output	system,	and	telling	the
arithmetic	and	logic	unit	to	perform	computations.	The	arithmetic	and	logic	unit	performs
basic	calculations,	such	as	add,	subtract,	multiply,	and	divide,	directly.	It	also	performs
logical	comparisons,	such	as	comparing	if	two	values	are	equal	or	if	one	value	is	greater
than	another.	Although	some	processors	have	more	basic	calculation	features	than	others,
all	of	them	are	computationally	equivalent.	Even	if	you	only	had	a	processor	that	could
add	and	subtract,	you	could	write	additional	code	that	would	use	addition	and	subtraction
to	be	able	to	multiply	and	divide.	A	computer	equipped	with	only	minimal	instructions	can
perform	any	computation	necessary—it	just	takes	more	work	from	the	programmer.	The
ALU	can	also	contain	temporary	storage	locations,	called	registers,	which	are	used	to
perform	the	computations.

The	computer’s	memory	is	where	a	computer	stores	data	that	is	being	actively	used	for
processing.	The	computer’s	memory	is	not	the	same	thing	as	its	hard	drive.	The	hard	drive
is	actually	external	to	the	computer	and	is	connected	through	the	input/output	system.	The
hard	drive	is	where	data	can	be	permanently	stored.	Computer	memory	is	where	data	is
stored	while	it	is	being	used.	To	conceptualize	the	difference,	if	you	turn	off	your
computer	suddenly,	the	information	stored	in	RAM	is	wiped	away.	In	Chapter	4,	we
discussed	how	computer	memory	was	laid	out.	It	is	divided	into	billions	of	storage
locations,	where	each	location	can	hold	a	number	between	0	and	255.	The	locations
themselves	are	numbered	so	that	they	can	be	identified	and	accessed	easily.

The	input/output	system	in	a	computer	is	tasked	with	communicating	with	the	outside
world.	The	main	computer	itself	is	incapable	of	interacting	with	people.	Keyboard	input,
screen	output,	hard	drives,	network	adapters,	and	all	of	the	other	things	that	we	think	of
when	we	interact	with	our	computer,	are	all	actually	on	the	“outside”	of	the	computer,
connected	through	the	input/output	system.	There	are	several	standards	for	input/output
systems,	the	most	common	of	which	is	the	Universal	Serial	Bus	(USB).	USB	defines	a
standard	way	of	connecting	input/output	devices	to	a	computer.	This	allows	USB	drives,
USB	cameras,	USB	keyboards,	and	a	myriad	of	other	devices	to	all	connect	to	your

computer.	Without	the	input/output	system,	computers	would	be	impossible	to	use,	as
there	would	be	no	way	for	us	to	give	it	data	or	programs	or	see	the	output	of	computation.

The	data	bus	handles	moving	data	between	each	of	these	systems.	It	is	an	important,	but
often	overlooked,	feature	of	computer	systems.	For	instance,	if	you	have	a	really	fast
CPU,	and	a	lot	of	memory,	neither	of	these	do	much	good	if	the	data	bus	is	slow	in
moving	the	memory	to	the	CPU.	Buses	are	connected	together	by	hubs,	which	direct
traffic	to	and	from	each	device.	Many	modern	computer	architectures	have	two	separate
hubs.	The	fastest	hub,	which	connects	directly	to	the	CPU,	is	often	called	the	northbridge.
It	connects	the	CPU	to	the	memory	and	the	graphics	card.	The	other	hub,	often	called	the
southbridge,	connects	from	the	northbridge	to	the	rest	of	the	input/output	systems.

5.2	A	Simplified	Paper	Machine	Simulation

For	the	rest	of	this	chapter	we	will	be	playing	with	a	“paper	machine.”	That	is,	we	will	use
a	pen	and	paper	to	simulate	what	a	CPU	would	be	doing	when	running	a	program.

The	purpose	of	the	machine	and	machine	language	introduced	here	is	to	help	you
understand	the	concept	of	a	machine	language.	The	machine	language	we	will	cover	is	not
an	actual	machine	language	used	on	any	computer	but	it	is	very	similar,	and	should	help
you	understand	and	learn	real	machine	languages	should	you	ever	wish	to.	Because	of
this,	you	do	not	need	to	memorize	anything	from	here	to	the	end	of	the	chapter.	You	do,
however,	need	to	follow	the	instructions	and	do	the	activities	because	they	will	help	you
understand	what	it	is	that	the	computer	is	doing.

To	perform	the	simulation,	you	will	need	several	blank	sheets	of	paper,	a	pen,	and	a	pencil
with	an	eraser.	You	also	might	want	to	use	a	ruler	to	help	you	make	straight	lines.	Be	sure
to	use	a	pencil	when	it	says	to,	because	you	will	be	doing	a	lot	of	erasing.

These	first	steps	should	be	done	in	pen.

On	the	top	of	the	first	sheet	of	paper,	title	the	paper	“Computer	Memory.”	Now,	make	an
8x8	grid	of	squares	to	fill	the	whole	sheet	of	paper.	Number	each	square	in	the	top-left
corner	of	the	square,	starting	with	0	and	going	through	63.	These	are	the	addresses	of	the
memory	locations.	Be	sure	to	leave	enough	room	to	write	a	value	in	each	box.	Each
memory	location	can	receive	a	number	between	0	and	255.	If	there	is	no	value	written	in
the	square,	then	the	value	is	assumed	to	be	zero	(so	right	now	your	memory	is	all	zeroes).
This	sheet	of	paper	will	represent	a	very	tiny	computer	memory.	(Real	computer	memories
would	take	about	half	a	billion	sheets	of	paper.)	As	we	progress	in	our	simulation,	the
values	in	the	squares	will	change.

On	the	top	of	the	second	sheet	of	paper,	title	the	paper	“Control	Unit.”	Now,	make	an
empty	box	at	the	top-left	of	the	paper,	and	label	the	box	“Instruction	Pointer.”	Now	make
four	columns	on	the	rest	of	the	paper,	titled	“Meaning,”	“Opcode,”	“Operand	1,”	and
“Operand	2.”

On	the	top	of	the	third	sheet	of	paper,	title	the	paper	“Arithmetic	and	Logic	Unit.”	Make
16	boxes	in	this	area	and	label	them	“Register	0”	through	“Register	15.”

At	the	end	of	this	process,	you	should	have	three	sheets	of	paper	that	look	like	Figure	5.1.

Figure	5.1:	Machine	Simulation	Setup

In	the	next	section,	we	will	have	a	machine	language	program	to	process,	which	should	be
done	in	pencil.	You	will	copy	the	program	(Figure	5.3)	into	memory.	Then	to	run	the
simulation,	you	will	use	the	steps	detailed	in	Figure	5.2.

Figure	5.2:	Simulation	Steps

These	steps	should	all	be	done	in	pencil.	Before	you	begin	a	simulation,	be	sure	to	double-
check	that	you	copied	the	memory	locations	exactly.

Before	you	start	the	steps	below,	set	the	box	labeled	Instruction	Pointer	to	0.	Then,	repeat
the	steps	below	until	you	get	to	a	halt	instruction	(0,	0,	0).	Each	time	through	the	steps	will

allow	you	to	execute	one	instruction.

1.	 Take	the	Control	Unit	sheet	and	look	at	your	Instruction	Pointer.
2.	 Look	at	the	Computer	Memory	sheet	at	the	location	indicated	by	the	Instruction

Pointer.	For	instance,	if	the	Instruction	Pointer	says	“0,”	then	you	would	retrieve	the
first	value	in	Computer	Memory.	If	the	Instruction	Pointer	says	“15,”	you	would	get
the	last	value	on	the	second	row	in	Computer	Memory.

3.	 Copy	the	value	from	the	Computer	Memory	into	the	first	empty	line	of	the	Control
Unit	sheet	under	the	heading	“Opcode.”

4.	 Now,	look	back	at	the	Computer	Memory,	and	copy	the	next	value	into	the	Operand	1
column	of	the	Control	Unit,	and	the	value	after	that	into	the	Operand	2	column	of	the
Control	Unit.	So,	if	the	Instruction	Pointer	said	15,	then	you	would	copy	the	value	in
memory	location	16	to	Operand	1	and	the	value	in	memory	location	17	to	Operand	2.
The	Control	Unit	now	has	the	full	instruction	to	execute.

5.	 Add	3	to	the	value	in	the	Instruction	Pointer	(erase	the	old	value).	If	the	value	was	15,
you	would	erase	that	and	write	18.

6.	 Look	up	the	value	that	you	wrote	in	the	“Opcode”	column	in	the	list	of	opcodes
(these	are	provided	in	Section	5.5).	Write	the	name	associated	with	the	opcode	in	the
column	labeled	“Meaning.”

7.	 In	the	opcode	table,	there	is	a	description	that	tells	you	what	to	do	with	each	opcode.
Perform	the	task	as	specified	in	the	description.	If	it	is	the	“Halt”	opcode	(0),	the
simulation	is	finished.

8.	 Go	back	to	step	1	and	do	it	again.

In	this	machine	language,	each	instruction	consists	of	three	parts—the	opcode,	operand	1,
and	operand	2.	The	opcode	is	the	actual	function	being	performed.	This	might	be	loading	a
value	from	memory	into	a	register,	adding	register	values	together,	comparing	register
values,	etc.	Operand	1	and	operand	2	will	behave	differently	based	on	what	opcode	is
being	used.	The	description	will	tell	you	how	to	use	each	one.

The	way	an	operand	is	used	is	called	a	mode.	Sometimes	an	operand	will	specify	a	register
number	(called	register	mode).	This	means	that	the	number	in	the	operand	refers	to	a
register	in	the	Arithmetic	and	Logic	Unit.	If	the	operand	was	6,	using	register	mode	would
mean	that	the	operand	was	referring	to	register	6.	Sometimes	an	operand	will	specify	a
memory	location	(called	memory	mode).	This	means	that	the	number	in	the	operand	refers
to	a	memory	location	in	Computer	Memory.	If	the	operand	was	6,	using	memory	mode
would	mean	that	the	operand	was	referring	to	memory	location	6.	Sometimes	an	operand
will	specify	a	value	(called	immediate	mode).	This	means	that	the	number	in	the	operand
is	used	as	the	number	itself.	If	the	operand	was	6,	using	immediate	mode	would	mean	that
the	operand	was	just	referring	to	the	number	6.	Finally,	there	is	a	mode	called	indirect
mode.	In	this	mode,	the	operand	refers	to	a	register,	but	the	register	is	used	to	refer	to	a
memory	location.	So,	if	the	operand	was	6,	using	indirect	mode	would	mean	that	the
operand	was	referring	to	a	memory	location	stored	in	register	6.	If	register	6	had	the	value
23,	then	in	indirect	mode	memory	location	23	would	be	used	as	the	operand.

As	an	example,	let’s	say	that	the	instruction	was	20,	5,	10.	This	means	that	20	is	the
opcode,	5	is	operand	1,	and	10	is	operand	2.	Now,	let’s	look	up	opcode	20	in	the	opcode

tables	at	the	end	of	the	chapter	(Section	5.5).	It	says	that	this	opcode	means	“Load
Immediate.”	In	the	table,	it	says	that	operand	1	uses	register	mode	and	therefore	refers	to	a
register.	Since	operand	1	is	5,	operand	1	is	interpreted	to	mean	register	5.	The	table	says
that	operand	2	uses	immediate	mode,	and	therefore	the	number	itself	is	used.	Since
operand	2	is	10,	operand	2	is	simply	the	value	10.	In	the	description,	it	says	that	we	are
supposed	to	load	the	value	specified	by	operand	2	into	the	register	specified	by	operand	1.
Therefore,	we	would	pull	out	the	“Arithmetic	and	Logic	Unit”	sheet,	and	erase	what	is	in
register	5,	and	write	in	the	value	10.

In	the	next	section,	we	will	do	a	full	simulation.

5.2.1	Doing	the	Simulation	in	a	Class	Setting

This	simulation	is	easy	to	do	in	a	class	setting,	and	was	actually	originally	developed	for
use	in	a	class.	To	do	this,	you	need	to	use	markerboards	or	chalkboards	rather	than	sheets
of	paper.	Appoint	one	student	to	be	the	Control	Unit.	This	student	is	responsible	for
performing	the	steps	outlined	above,	but	they	cannot	leave	the	control	unit	area	or	write	on
another	student’s	board.

Appoint	another	student	to	be	the	Data	Bus.	This	student	is	responsible	for	transferring	all
needed	data	to	and	from	the	Computer	Memory.	The	Control	Unit	will	direct	which	values
the	Data	Bus	needs	to	fetch	or	store.	The	Data	Bus	only	takes	instructions	from	the
Control	Unit.

Appoint	another	student	to	handle	the	Arithmetic	and	Logic	Unit	sheet.	They	will	perform
any	computation	requested	by	the	Control	Unit	on	its	registers,	and	can	give	to	the	Control
Unit	any	value	that	has	been	computed	in	its	registers.

I	have	found	that	doing	the	computations	interactively	greatly	increases	the	ability	of
students	to	visualize	what	is	happening	inside	the	computer	and	makes	them	better
programmers	long-term.

5.3	A	Short	Program:	Multiplying	by	Two

Now	we	will	perform	a	program	to	multiply	a	number	by	2.	If	you	look	through	the
opcode	tables	at	the	end	of	this	chapter	(Section	5.5),	you	might	notice	that	there	is	no
opcode	for	multiplication.	However,	basic	arithmetic	tells	us	that	we	can	multiply	by
repeated	adding.	Therefore,	we	will	need	to	fetch	a	number,	add	it	to	itself,	and	then	store
the	value	back	to	a	register	or	memory.	In	our	program,	memory	location	62	will	hold	the
value	that	we	want	to	multiply	(in	this	case,	the	number	12),	and,	at	the	end	of	the
program,	memory	location	63	will	hold	the	value	that	we	calculate.

5.3.1	Setting	Up	the	Simulation

To	begin	the	simulation,	the	code	and	the	data	are	both	written	into	memory.	Copy	the
following	values	into	your	Computer	Memory	sheet:

Figure	5.3:	Machine	Language	Program	to	Multiply	a	Number	by	Two
0			22

1			0
2			62

3			21
4			1

5			0
6			133

7			0
8			1

9			25
10			63

11			0
12			0

13			0
14			0

15			0
16			0

17			0
18			0

19			0
20			0

21			0
22			0

23			0
24			0

25			0
26			0

27			0
28			0

29			0
30			0

31			0
32			0

33			0
34			0

35			0
36			0

37			0
38			0

39			0
40			0

41			0
42			0

43			0
44			0

45			0
46			0

47			0
48			0

49			0
50			0

51			0
52			0

53			0
54			0

55			0
56			0

57			0
58			0

59			0
60			0

61			0
62			12

63			0

Before	you	decide	to	quit	programming	altogether,	let	me	remind	you	that	the	point	of	this
exercise	is	not	that	we	would	ever	actually	program	this	way,	but	rather	to	give	you	a
glimpse	into	how	the	computer	looks	at	processing.	The	very	reason	that	computer
programming	languages	were	invented	was	so	that	we	would	not	have	to	deal	with	this
stuff	on	a	daily	basis.	So,	to	allay	your	fears,	below	is	what	this	would	look	like	in
JavaScript:

Figure	5.4:	Multiply	a	Number	by	Two	in	JavaScript

var	multiply_by_two	=	function(x)	{	

			return	x	*	2;	

};

You	still	may	not	understand	what	exactly	this	does	or	why	it	is	written	that	way,	but
hopefully	it	gives	you	hope	that	it	will	be	more	understandable	than	a	bunch	of	numbers
written	out.

Now,	to	run	the	program,	you	need	to	look	at	the	steps	in	Figure	5.2.	We	will	go	through
them	step-by-step	so	you	know	how	to	do	it.

5.3.2	Running	the	Simulation

Now,	let’s	go	through	the	program	step-by-step	to	see	what	is	happening.	This	will	all	be
done	in	pencil.	Look	at	Figure	5.2.	The	first	thing	it	says	is	to	double-check	that	the
memory	locations	were	copied	over	correctly.	Do	this	now.	Next,	it	says	to	write	a	0	in	the
box	labeled	Instruction	Pointer.	Do	so	now.	Now	we	can	proceed	to	the	numbered	steps.

Step	1	says	to	look	at	the	instruction	pointer.	It	should	read	0.

Step	2	says	to	look	at	the	memory	location	indicated	by	the	Instruction	Pointer.	Since	ours
says	0,	we	will	look	at	memory	location	0.

Step	3	says	to	copy	the	value	at	that	memory	location	to	the	first	line	of	the	Control	Unit
sheet	under	the	heading	Opcode.	The	value	at	memory	location	0	is	22,	so	we	will	write
22	in	the	first	line	of	the	Control	Unit	sheet	in	the	Opcode	column.

Step	4	says	to	copy	the	next	value	in	memory	to	the	column	labeled	Operand	1.	The	next
memory	location	is	memory	location	1,	and	it	has	the	value	0.	Therefore,	we	will	write	the
number	0	to	the	Operand	1	column.	We	then	copy	the	next	value	in	memory	(memory
location	2)	to	the	Operand	2	column.	Memory	location	2	has	the	value	62	in	it,	so	write
the	number	62	in	the	Operand	2	column.	This	is	our	first	instruction:	22,	0,	62.

Step	5	says	to	add	3	to	the	value	in	the	Instruction	Pointer.	The	instruction	pointer
currently	has	a	0	in	it,	so	3	+	0	is	3.	Erase	the	0	and	write	3	in	the	box.	This	will	allow	us
to	read	the	next	instruction	the	next	time	we	go	through	the	steps.

Step	6	says	to	look	up	the	value	in	the	Opcode	column	in	the	list	of	opcodes	in
Section	5.5.	The	opcode	is	22,	so	go	through	the	list	of	opcodes	to	find	opcode	22.	The
opcodes	are	not	listed	in	numerical	order,	so	you	will	need	to	look	through	all	of	them
until	you	find	the	right	one.	The	opcode	is	“Load	Memory.”	Therefore,	write	“Load
Memory”	in	the	column	labeled	Meaning.

Step	7	says	to	perform	the	steps	listed	in	the	opcode	table	for	this	opcode.	You	will	notice
that	the	opcode	table	says	that	Operand	1	refers	to	a	register	and	Operand	2	refers	to	a
memory	location.	Therefore,	we	will	be	working	with	register	0	and	memory	location	62.
The	description	says	to	load	the	value	in	the	memory	location	specified	by	Operand	2	into
the	register	specified	by	Operand	1.	Therefore,	we	will	load	the	value	in	memory
location	62	into	register	0.	Memory	location	62	has	the	value	12	in	it,	so	we	will	write	12
in	register	0	on	the	Arithmetic	and	Logic	Unit	sheet.

Step	8	says	to	go	back	to	step	1	and	repeat	for	the	next	instruction.

Now	we	are	back	to	step	1.	Therefore,	we	need	to	look	at	our	Instruction	Pointer	again.

This	time	it	is	set	to	3.	Step	2	says	to	look	at	the	memory	location	indicated	by	the
instruction	pointer.	It	is	the	number	21.	Step	3	says	to	copy	that	number	to	the	next	line	on
the	Control	Unit	sheet	under	the	Opcode	column.	Therefore,	write	the	number	21	into	the
Opcode	column.	Step	4	says	to	copy	the	next	two	memory	locations	to	the	Opcode	1	and
Opcode	2	columns.	The	next	two	memory	locations	have	the	numbers	1	and	0	in	them,	so
write	1	in	the	Opcode	1	column	and	0	in	the	Opcode	2	column.	The	instruction	we	copied
is	21,	1,	0.

Step	5	says	to	add	3	to	the	Instruction	Pointer.	Therefore,	write	6	in	the	Instruction	Pointer
box,	erasing	the	previous	value.

Step	6	says	to	look	up	the	value	that	is	written	in	the	Opcode	column	in	the	list	of	opcodes
in	Section	5.5	and	write	the	name	of	the	opcode	in	the	Meaning	column.	Step	7	says	to	do
what	the	description	of	the	opcode	says	to	do.	The	description	says	to	copy	the	value	of
the	register	specified	in	Operand	2	into	the	register	specified	by	Operand	1.	Operand	1	is	1
and	Operand	2	is	0.	Therefore,	look	at	register	0.	It	currently	contains	the	number	12.	So
write	12	into	the	box	for	register	1.

This	instruction	has	given	us	two	copies	of	the	same	number—one	in	register	0	and	one	in
register	1.	This	is	good	because	multiplication	by	two	is	just	adding	the	same	number
twice.	Therefore,	what	type	of	instruction	do	you	think	will	come	next?	Look	through	the
list	of	instructions	to	see	which	one	you	think	we	will	do	next.	Step	8	says	to	repeat	the
process	for	the	next	instruction,	so	let’s	do	that	now.

If	you	go	through	steps	1–4	again,	you	will	have	the	next	instruction	copied	over,	which	is
133,	0,	1.	Step	5	then	tells	us	to	add	3	to	the	Instruction	Pointer,	so	write	a	9	in	the
Instruction	Pointer	box.	Step	6	says	to	look	up	the	Opcode	(133)	in	the	list	of	opcodes	and
write	down	its	meaning.	Write	“Add”	in	the	Meaning	column.	Step	7	says	to	do	what	the
description	of	the	opcode	says.	It	says	to	add	the	two	registers	specified	by	Operand	1	and
Operand	2	and	store	the	result	in	the	register	specified	by	Operand	1.	Operand	1	is	0	and
Operand	2	is	1.	Therefore,	we	will	add	the	value	in	register	0	to	the	value	in	register	1.
Register	0	has	12	in	it,	and	register	1	also	has	12	in	it.	Added	together,	this	makes	24.	The
instruction	says	to	store	the	value	in	register	specified	by	Operand	1.	Operand	1	is	0,	so	we
will	store	the	result	in	register	0.	Therefore,	erase	what	is	currently	in	register	0	and	write
24	in	it.

Register	0	now	has	the	value	we	want	(24	is	12	*	2),	but	the	goal	was	to	get	it	stored	in
memory	location	63.	So	what	do	you	think	the	next	instruction	might	do?	Step	8	says	to
repeat	the	process	to	find	out.

Following	steps	1–4	will	give	us	the	next	instruction:	25,	63,	0.	Step	5	tells	us	to
increase	the	Instruction	Pointer	to	12.	Step	6	tells	us	to	look	up	the	meaning	of	opcode	25
in	the	opcode	list	and	write	it	down	in	the	Meaning	column.	This	gives	us	“Store
Memory.”

Step	7	tells	us	to	perform	the	instructions	associated	with	the	opcode.	This	says	to	store
the	value	in	the	register	specified	by	Operand	2	into	the	memory	location	specified	by
Operand	1.	Operand	1	is	63	and	Operand	2	is	0.	Therefore,	we	will	take	the	value	in
register	0	(which	is	24)	and	write	it	in	memory	location	63,	erasing	what	is	currently	there.
Therefore,	write	24	into	memory	location	63.

Step	8	says	to	go	back	to	step	1	and	process	the	next	instruction.

Performing	steps	1–4	will	give	us	our	next	instruction—0,	0,	0.	Step	5	says	to	increase
the	Instruction	Pointer	to	15.	Step	6	says	to	look	up	the	opcode,	which	tells	us	that	opcode
0	is	“Halt.”	Step	7	says	that	if	we	reach	a	Halt	instruction,	we	should	end	the	simulation.

Now	we	are	done!	If	you	remember	from	the	beginning	of	this	section,	the	goal	was	to
take	the	value	stored	in	memory	location	62,	multiply	it	by	2,	and	store	it	in	memory
location	63.	Memory	location	62	has	a	12	in	it,	and	memory	location	63	has	a	24	in	it.	It
took	a	lot	of	work,	but	that	is	exactly	what	the	computer	does	when	it	processes
instructions.	The	instructions	have	to	be	so	simple	because	computers	themselves	cannot
think;	they	can	only	process.	Because	the	instructions	are	so	simple,	it	takes	quite	a	few	of
them	to	perform	even	simple	tasks.	However,	this	simplicity	also	allows	the	computer	to
perform	billions	of	them	every	second.

5.4	Adding	a	List	of	Numbers

Now	we	are	going	to	do	a	more	complicated	program—we	are	going	to	add	a	list	of
numbers.	In	order	to	do	this,	we	need	to	be	able	to	know	when	we	are	at	the	end	of	our	list
of	numbers.	We	will	use	a	sentinel	value	to	indicate	that	we	are	at	the	end	of	the	list	of
numbers.	(See	Chapter	4	for	more	information	on	sentinel	values.)	We	will	use	the	number
255	as	the	sentinel	to	represent	the	end	of	the	list	of	numbers.

What	the	program	will	do	is	add	up	all	of	the	numbers	starting	in	memory	location	57	until
it	hits	the	sentinel	value	and	then	store	the	result	in	memory	location	56.

Here	is	the	program:

Figure	5.5:	Machine	Language	Program	to	Add	a	List	of	Numbers
0			20

1			0
2			0

3			20
4			3

5			255
6			20

7			1
8			57

9			20
10			5

11			1
12			23

13			2
14			1

15			21
16			4

17			3
18			37

19			4
20			2

21			65
22			33

23			4
24			133

25			0
26			2

27			133
28			1

29			5
30			64

31			12
32			0

33			25
34			56

35			0
36			0

37			0
38			0

39			0
40			0

41			0
42			0

43			0
44			0

45			0
46			0

47			0
48			0

49			0
50			0

51			0
52			0

53			0
54			0

55			0
56			0

57			10
58			12

59			3
60			255

61			8
62			2

63			0

Now,	before	we	go	through	the	program	step-by-step,	let’s	think	about	what	needs	to
happen	to	do	this	procedure.	First,	we	will	need	a	place	(probably	a	register)	to	hold	the
current	results	of	the	sum	as	we	go	through	the	numbers.	As	we	go	along,	we	will	need	to
check	each	number	to	see	if	it	matches	our	sentinel	value,	255.	We	need	to	get	the
computer	to	do	something	different	if	it	hits	the	sentinel	value	than	if	it	doesn’t.	Finally,
we	will	need	a	way	to	repeat	steps,	since	we	don’t	know	how	many	times	we	will	be	doing
the	calculation.

The	way	to	accomplish	all	of	this	is	with	comparisons	and	conditional	jumps.	That	is,	we
will	compare	two	numbers,	and,	based	on	the	results	of	that	comparison,	potentially
change	the	instruction	pointer	to	tell	the	computer	to	run	different	code.	Since	we	look	at
the	instruction	pointer	to	retrieve	the	next	piece	of	code,	if	an	instruction	modifies	the
instruction	pointer,	then	we	will	do	a	different	task	than	we	would	otherwise	have.

The	other	feature	we	will	look	at	is	indirect	mode.	Since	we	will	be	looking	at	an
unknown	number	of	different	values,	we	cannot	put	the	location	of	the	value	to	load	in	our
code.	Therefore,	what	we	will	do	is	use	a	register	to	hold	the	address	of	the	first	value,	and
then	use	indirect	mode	to	tell	the	computer	to	load	the	value	from	the	address	stored	in	the

register.	From	there,	we	can	add	one	to	the	value	in	the	register	to	have	it	point	to	the	next
location	in	memory.

So	now,	let’s	run	through	the	simulation	using	the	steps	in	Figure	5.2.	Instead	of	going
through	each	step	like	we	did	in	the	previous	program,	I	am	going	to	assume	that	you	now
know	how	to	work	the	steps.	Each	paragraph	is	the	entirety	of	the	8	steps.	I	will	focus	on
the	meaning	of	each	instruction	rather	than	all	of	the	steps	to	perform	it.	Performing	the
steps	is	your	job,	but	be	sure	to	do	all	of	the	steps	in	the	right	order.	Also,	in	order	to	make
what	is	happening	more	understandable,	as	we	go	along	we	will	be	writing	names	on	our
registers	so	we	know	what	they	are	doing.	The	compute	doesn’t	use	this—this	is	entirely
for	our	own	purposes	so	we	know	what	each	register	is	being	used	for.

The	first	instruction	is	0,	0,	0.	This	says	to	load	register	0	with	the	number	0.	Register	0
will	hold	the	sum	of	all	of	the	numbers.	You	might	go	ahead	and	label	register	0	as	“sum”
so	you	can	remember	what	it	is	for.	Remember,	the	computer	doesn’t	care	what	it	is	for—
the	computer	just	does	what	you	tell	it.	But	you	need	to	remember	what	it	is	for	so	you	can
understand	the	program.

The	next	instruction	is	20,	3,	255.	This	says	to	load	register	3	with	the	number	255.	This
is	our	sentinel	value	and	will	be	used	for	comparison.	You	might	label	register	3	with	the
word	“sentinel.”

The	next	instruction	is	20,	1,	57.	This	says	to	load	register	1	with	the	number	57.	This	is
the	beginning	of	the	locations	that	we	will	be	reading	the	values	from.	Note	that	we	are
storing	the	number	57	into	register	1,	not	the	contents	of	memory	location	57.	That	will
come	later.	Label	register	1	with	the	word	“pointer,”	since	it	will	point	to	the	location	in
memory	that	we	are	reading	values	from.

The	next	instruction	is	20,	5,	1.	This	says	to	load	register	5	with	the	number	1.	This	is
the	number	that	we	will	use	to	increment	the	memory	location	pointer.	Label	register	5
with	the	word	“increment.”

Take	note	of	what	the	instruction	pointer	currently	is.	It	should	be	at	12.	All	of	the
previous	instructions	were	“setup”	instructions	that	were	meant	to	get	the	ball	rolling.	The
next	instruction	will	really	start	the	process.	You	should	label	memory	location	12	with	the
words	“main	process	start”	to	remind	yourself	that	this	is	where	the	core	of	the	process
will	happen.

The	instruction	here	at	memory	location	12	is	23,	2,	1.	This	says	to	look	in	register	1,
and	use	that	value	as	the	memory	location	to	look	in.	Right	now,	register	1	has	the	number
57	in	it.	Therefore,	look	in	memory	location	57	and	put	that	value	in	register	2.	Label
register	2	with	the	words	“current	value.”	It	should	have	the	value	10	in	it.

If	you	think	back	to	what	we	are	trying	to	do,	the	next	thing	we	need	to	do	is	determine
whether	or	not	the	current	value	is	our	sentinel	value	or	not.	Therefore,	we	have	to
compare	our	current	value	(register	2)	with	our	sentinel	value	(register	3).	However,	since
in	this	machine	language	comparisons	overwrites	one	of	the	values	being	compared	with
the	results	of	the	comparison	(look	at	the	Compare	instruction	in	the	tables),	we	have	to
first	copy	one	of	the	values	to	a	new	register	so	it	doesn’t	get	destroyed.	Therefore,	the
next	instruction	reads	21,	4,	3.	This	says	to	copy	the	contents	of	register	3	(the	sentinel
value)	to	register	4.	Label	register	4	with	the	words	“sentinel	comparison.”	It	should	have

the	value	255	in	it.

The	next	instruction	is	37,	4,	2.	When	you	look	up	that	instruction,	it	says	to	compare
the	value	in	register	2	(the	current	value)	with	the	value	in	register	4.	If	they	are	equal,	it
will	store	the	number	0	into	register	4.	If	the	value	in	register	2	is	greater	than	the	value	in
register	4,	it	will	store	a	2	in	register	4.	Finally,	if	the	value	in	register	4	is	greater	than	the
value	in	register	2,	it	will	store	a	1	in	register	4.	This	way,	at	the	end	of	the	comparison,
register	4	will	contain	the	result	of	comparing	the	current	value	with	the	sentinel.	Since
register	4	had	the	value	255	and	register	2	has	the	value	10,	the	value	in	register	4	should
be	erased,	and,	in	its	place,	you	should	write	the	number	1	since	255	is	greater	than	10.

Now	that	we	have	the	comparison,	what	do	we	do	with	it?	The	next	instruction	is	65,	33,
4.	This	instruction	says	to	look	at	register	4.	If	the	value	is	0,	then	change	the	instruction
pointer	to	33—otherwise,	do	nothing.	This	is	a	conditional	jump.	Basically,	it	says	if	the
previous	comparison	of	our	current	value	to	the	sentinel	showed	that	they	were	equal
(gave	the	value	0),	then	go	to	the	end	of	the	program	(which	is	at	memory	location	33).
Since	register	4	contains	a	1,	nothing	happens	and	we	go	to	the	next	instruction	like
normal.

The	next	instruction	is	133,	0,	2.	This	adds	the	contents	of	register	2	(the	current	value)
to	register	0	(the	sum	so	far),	and	stores	the	result	in	register	2.	Since	register	0	currently	is
at	0,	it	should	now	be	10	+	0,	or	10.

Now	we	need	to	do	the	same	thing	to	the	next	value.	But	how	do	we	get	to	the	next	value?
Since	register	1	holds	the	pointer	to	the	next	value,	we	just	need	to	increase	register	1	by
1,	which	is	stored	in	register	5	(the	increment).	The	next	instruction	is	133,	1,	5.	This
says	to	add	the	contents	of	register	5	(the	increment)	to	register	1	(the	pointer)	and	store
the	result	in	register	1.

Now	we	are	all	set	to	do	the	same	computation	on	the	next	value.	We	just	need	to	go	back
to	the	right	place	in	our	code	to	do	it	all	over	again.	The	next	instruction	is	64,	12,	0.
The	instruction	for	64	is	an	“unconditional	branch.”	This	means	that	we	directly	modify
the	instruction	pointer	to	be	12.	Therefore,	on	the	next	instruction	you	will	go	back	to
memory	location	12	to	get	the	next	instruction.	We	labeled	this	earlier	with	the	words
“main	process	start.”	Label	this	location	in	memory	(30)	“main	process	end.”

Now,	I’m	not	going	to	walk	you	through	all	of	the	next	steps,	as	you	will	just	be	going
back	through	the	same	steps	repeatedly.	However,	think	about	what	happens	when	you	do
load	in	the	value	255	from	memory?	At	that	point,	our	comparison	above	will	notice	that
the	value	in	register	4	(sentinel	comparison)	is	equal	to	the	value	in	register	2	(current
value),	and	will	therefore	store	the	value	0	in	register	4.	Then,	the	next	“Jump	if	Zero”
instruction	will	actually	work—the	value	in	register	4	will	be	zero,	so	we	will	modify	the
instruction	pointer	to	point	to	the	location	specified	in	the	instruction	(which	is	33).

At	that	point,	we	will	load	the	instruction	at	memory	location	33,	which	is	25,	56,	0.
This	stores	the	value	of	register	0	(the	current	sum,	which	is	now	the	final	sum)	into
memory	location	56.	Memory	location	56	should	now	contain	the	sum	of	the	relevant
values	(i.e.,	25).

The	next	instruction	is	0,	0,	0,	which	tells	the	simulation	to	stop.	We	are	now	finished,
and	memory	location	56	holds	the	value	of	the	sum	of	memory	locations	57,	58,	and	59.

Just	as	before,	this	is	much	easier	in	JavaScript.	A	similar	function	in	JavaScript	would
look	like	this:

Figure	5.6:	Add	a	List	of	Numbers	in	JavaScript

var	add_numbers	=	function(num_list)	{	

			var	sum	=	0;	

			for(var	i	=	0;	i	<	num_list.length;	i++)	{	

						sum	=	sum	+	num_list[i];	

			}	

			return	sum;	

};

Again,	I	don’t	expect	you	to	understand	what	this	means	yet,	but	you	should	at	least
recognize	that	this	will	be	much	easier	than	writing	out	numbers	for	machine	instructions!

Hopefully	this	exercise	has	helped	you	understand	the	precision	with	which	computers
perform	their	processing	and	the	exactness	required	from	the	programmer.	If	even	one	of
the	instructions	for	the	computer	programs	were	written	incorrectly,	the	whole	program
would	fail.	While	you	probably	won’t	ever	need	to	do	this	again,	the	goal	was	to	get	your
brain	in	line	with	the	way	that	computers	think.	This	will	make	thinking	about
programming	much	easier	in	the	future.

If	you	enjoyed	this	process,	a	few	other	machine	language	programs	are	available	in
Appendix	C.

5.5	Machine	Opcode	Tables

This	section	lists	out	the	different	machine	opcodes	used	by	the	simulated	machine	in	this
chapter.	The	opcodes	are	ordered	by	category,	not	by	number,	but	this	shouldn’t	be	too
much	of	a	hindrance	as	there	are	fewer	than	twenty	of	them.	While	we	will	not	be	using	all
of	the	listed	opcodes,	they	are	included	for	completeness	and	also	for	the	examples	in
Appendix	C.

Each	opcode	is	listed	along	with	what	types	of	operands	it	uses.	The	operands	are	the	list
of	values	that	will	be	used	for	processing	the	instruction.	For	instance,	for	an	add
instruction	the	operands	would	be	the	locations	which	hold	the	values	to	be	added
together,	and	where	the	result	should	end	up.	This	simulated	machine	has	four	types	of
operands:

Immediate	operands:	An	immediate	operand	means	that	the	number	represents	itself.
That	is,	if	we	want	to	load	the	value	1	somewhere,	we	would	use	an	immediate-mode
operand.
Register	operand:	Registers	are	temporary	storage	locations	within	the	ALU.
Therefore,	if	an	opcode	takes	a	register	operand,	this	operand	will	refer	to	the	register
number.
Memory	operand:	A	memory	operand	is	a	number,	called	a	memory	address,	that
refers	to	a	storage	location	in	the	computer	memory	from	which	to	load	or	store
values.
Indirect	operand:	an	indirect	operand	uses	the	value	in	a	register	as	the	memory
location	that	is	to	be	used	for	this	operand.	For	instance,	let’s	say	that	an	indirect
operand	had	the	value	1.	That	would	mean	to	look	at	register	1	and	use	the	value	in
that	register	as	the	memory	address	that	the	instruction	needs	to	operate	on.	So,	if
register	1	has	the	value	35,	then	we	would	read	or	write	to	memory	address	35.

The	first	set	of	instructions	we	will	look	at	are	the	load/store	instructions.	These
instructions	simply	move	data	around	between	storage	locations.	They	also	make	the	most
use	of	the	different	operand	types	discussed	above.

Figure	5.7:	Load/Store	Instructions

Opcode Name Operand
1

Operand
2

Description

20 Load
Immediate

Register Immediate Loads	the	value	specified	in	operand	2
into	the	register	specified	in	operand	1.

21 Load
Register

Register Register Loads	the	value	contained	in	the	register
specified	in	operand	2	into	the	register
specified	in	operand	1.

22 Load
Memory

Register Memory Loads	the	value	contained	in	the	memory
location	specified	in	operand	2	into	the
register	specified	in	operand	1.

23 Load
Indirect

Register Indirect Takes	the	value	in	the	register	specified	in
operand	2,	and	use	that	as	a	memory
address	to	load	a	value	from.	The	value	in
the	memory	address	is	loaded	into	the
register	specified	in	operand	1.

25 Store
Memory

Memory Register Takes	the	value	in	the	register	specified	in
operand	2,	and	stores	that	in	the	memory
location	specified	by	operand	1.

29 Store
Indirect

Indirect Register Takes	the	value	in	the	register	specified	in
operand	2,	and	stores	that	in	the	memory
location	specified	by	the	register	specified
by	operand	1.

The	next	set	of	opcodes	are	the	arithmetic	opcodes.	These	are	opcodes	that	modify	values
by	adding,	subtracting,	etc.	In	our	simulated	machine,	there	are	very	few	arithmetic
opcodes,	but	most	real	computers	have	a	fairly	large	set	of	them.	Nonetheless,	even	with
our	limited	opcode	list,	a	lot	can	be	done	with	it	using	a	little	creativity.	The	comparison
function	may	seem	unusual,	but	it	is	made	to	fit	with	the	conditional	jumps	in	the	next
opcode	table.

Figure	5.8:	Arithmetic	Instructions

Opcode Name Operand
1

Operand
2

Description

133 Add Register Register Takes	the	value	in	the	register	specified	by
operand	2	and	adds	it	to	the	value	in	the
register	specified	by	operand	1,	storing	the
resulting	value	in	the	register	specified	by
operand	1.

149 Subtract Register Register Takes	the	value	in	the	register	specified	by
operand	2	and	subtracts	it	from	the	value	in
the	register	specified	by	operand	1,	storing
the	resulting	value	in	the	register	specified
by	operand	1.

37 Compare Register Register Takes	the	value	in	the	register	specified	by
operand	2	and	compares	it	to	the	value	in	the
register	specified	by	operand	1.	If	the	value
in	the	register	specified	by	operand	2	is
greater	than	the	value	in	the	register
specified	by	operand	1,	it	stores	the
number	2	in	the	register	specified	by
operand	1.	If	the	value	in	the	register
specified	by	operand	2	is	less	than	the	value
in	the	register	specified	by	operand	1,	it
stores	the	number	1	in	the	register	specified
by	operand	1.	If	the	value	in	the	two	registers
are	equal,	it	stores	the	number	0	in	the
register	specified	by	operand	1.

The	last	list	of	opcodes	are	the	jump	instructions.	These	instructions	cause	the	instruction
pointer	to	change,	usually	based	on	a	certain	condition.	The	conditions	are	made	to	match
the	results	of	the	Compare	opcode	above	(i.e.,	37).	A	common	pattern	is	for	a	Compare
instruction	to	be	followed	by	a	conditional	Jump	instruction	based	on	the	result	of	the
Compare.	We	don’t	use	the	indirect	versions	of	the	jump	instructions	in	this	book,	but	they
are	listed	here	because	they	are	very	powerful	and	important	features	available	in	all
general-purpose	processors.

Figure	5.9:	Jump	Instructions

Opcode Name Operand
1

Operand
2

Description

64 Jump
Always

Immediate 0 Changes	the	instruction	pointer	to	the	value
in	operand	1,	causing	the	next	instruction
executed	to	be	the	one	listed	at	that	location.
Note	that	the	second	operand	is	always	0.

76 Jump
Always
Indirect

Register 0 Changes	the	instruction	pointer	to	the	value
in	the	register	specified	in	operand	1.

65 Jump	if
Zero

Immediate Register Changes	the	instruction	pointer	to	the	value
in	operand	1	if	the	value	in	the	register
specified	by	operand	2	is	zero.

77 Jump	if Register Register Same	as	the	previous	instruction,	but	operand

Zero
Indirect

1	specifies	a	register	to	use	to	find	the	next
instruction	pointer.

81 Jump	if
One

Immediate Register Change	the	instruction	pointer	to	the	value	in
operand	1	if	the	value	in	the	register
specified	by	operand	2	is	one.

93 Jump	if
One
Indirect

Register Register Same	as	the	previous	instruction,	but	operand
1	specifies	a	register	to	use	to	find	the	next
instruction	pointer.

97 Jump	if
Two

Immediate Register Change	the	instruction	pointer	to	the	value	in
operand	1	if	the	value	in	the	register
specified	by	operand	2	is	two.

109 Jump	if
Two
Indirect

Register Register Same	as	the	previous	instruction,	but	operand
1	specifies	a	register	to	use	to	find	the	next
instruction	pointer.

0 Halt Unused Unused This	instruction	ends	the	computer	program.

That’s	it!	That	is	all	that	computers	are.	Even	though	it	may	seem	confusing,	the	fact	that
you	can	write	out	all	of	the	rules	in	a	few	pages	is	pretty	amazing.	Computers	really	are
simple	at	heart.	The	confusion	most	people	make	is	thinking	that	they	are	complicated.
But	really,	they	do	exactly	what	you	tell	them.	Exactly.

While	performing	these	minute	calculations	may	seem	overwhelming	to	you,	to	the
computer	they	are	rather	simple.	In	fact,	it	is	their	simplicity	that	makes	it	possible	for
computers	to	run	quickly.	Modern	computers	can	perform	around	200,000,000,000	of
these	types	of	instructions	every	second.	They	have	to	be	that	fast	in	order	to	keep	up	with
the	latest	software.	Every	time	you	move	your	mouse,	the	computer	has	to	do	very	similar
operations	as	the	above	in	order	to	recalculate	the	new	mouse	position	and	redraw	your
cursor	on	the	screen.	You	might	have	noticed	that	even	with	200,000,000,000	instructions
per	second,	sometimes	it	is	still	not	enough!

5.5.1	Opcode	Numbering

You	might	be	thinking	that	the	numbering	system	for	the	opcodes	is	kind	of	strange.
However,	the	numbering	system	actually	has	a	very	logical	ordering,	but	this	plan	is	only
evident	if	you	write	out	the	numbers	in	binary.	Each	opcode	is	a	combination	of	a	general
instruction	type	(load,	add,	jump,	etc.)	and	the	types	of	operands	that	it	takes,	with	two	bits
dedicated	to	each	operand.	This	is	often	true	of	computers—what	may	seem	arbitrary	or
strange	oftentimes	makes	a	lot	more	sense	with	a	little	more	knowledge.

Don’t	worry,	I	don’t	expect	you	to	go	through	and	convert	the	opcodes	into	binary—after

all,	this	is	just	a	toy	system	to	help	you	understand	how	these	things	work.	But
nonetheless,	keep	in	mind	that	not	only	computers,	but	all	of	life	is	filled	with	things
whose	logic	may	not	be	directly	visible,	but	is	knowable	if	you	are	willing	to	look	beneath
the	surface.

Chapter	6
The	HTML	File	Format

In	Chapter	4	we	took	a	look	at	how	computers	format	data.	In	this	chapter,	we	are	going	to
look	at	the	data	format	used	on	the	Internet	for	displaying	web	pages.	That	format	is
HTML—the	HyperText	Markup	Language.	This	book	is	not	a	book	on	HTML,	but	it	is
needed	to	really	understand	how	JavaScript	works.	The	introduction	to	HTML	in	this
chapter	will	not	go	into	great	depth,	but	should	give	you	a	functional	understanding	of
how	HTML	works.

Review

In	this	chapter	we	covered	the	basics	of	HTML,	what	it	is,	and	how	to	write	it.	We	have
learned:

A	markup	language	is	a	text	document	that	uses	tags	(which	are	also	text)	to	specify
the	structure	and	function	of	the	different	pieces	of	the	document.
HTML	is	the	markup	language	that	is	used	on	the	Internet	for	web	pages.
In	HTML,	spacing	is	essentially	ignored—tags	are	used	instead	to	mark	locations	of
paragraphs	and	line-breaks.
URLs	specify	the	location	of	documents	on	the	Internet.
An	HTML	document	can	reference	another	document	on	the	Internet	using	URLs.
A	relative	URL	can	be	used	to	reference	other	related	files	on	the	same	website.
Relative	URLs	make	it	easy	to	keep	document	links	working	even	when	the	files	are
moved,	as	long	as	they	are	moved	together.
HTML	has	a	number	of	tags	for	many	different	situations.

Apply	What	You	Have	Learned

1.	 Create	a	new	HTML	file.	Place	an	image	in	the	same	directory	(one	with	a	.jpg	or
.png	extension).	Can	you	figure	out	how	to	write	an		tag	to	include	the	image
into	your	web	page	using	a	relative	URL?

2.	 Create	a	sequence	of	three	web	pages	that	relate	to	each	other	on	the	same	subject.	At
the	top	of	the	web	page,	put	links	to	each	of	the	other	pages	in	the	group.	Test	it	out
and	make	sure	that	you	can	navigate	between	them	on	your	browser.

3.	 Go	through	the	list	of	tags	in	this	chapter.	Modify	your	pages	so	that	each	page	has
one	or	more	headings,	and	your	sequence	of	pages	has	at	least	one	table,	one	list,	and
one	entity.

4.	 Go	to	several	of	your	favorite	websites,	and	view	the	HTML	of	several	of	the	pages
on	that	site	(see	Section	A.4).	Identify	which	tags	you	know	and	which	tags	you	don’t
know.	Look	up	on	the	Internet	at	least	two	tags	that	you	aren’t	familiar	with.	The
official	list	of	elements	in	the	current	version	of	HTML	is	available	at
http://www.w3.org/TR/html-markup/elements.html.

5.	 As	you	go	through	different	websites,	make	note	of	how	their	sites	are	organized	and
laid	out.	What	types	of	content	are	common	to	all	of	the	websites?	Are	there	common

ways	of	laying	out	the	website?	The	basic	structure	of	the	web	pages	themselves,	and
their	organization	on	the	site	is	known	as	the	site’s	information	architecture,	also
known	as	IA.	Can	you	sketch	the	basic	layout	of	the	web	page—where	they	put	their
menus,	where	they	put	their	images,	where	they	put	their	content,	etc.?	Can	you	draw
a	map	of	how	you	move	from	page	to	page	on	the	site?

6.1	A	Quick	Introduction	to	HTML

HTML	has	many	features	that	has	made	it	popular,	and	it	has	become	the	official	format
of	the	web.	First	of	all,	it	is	a	hypertext	format.	That	means	that	each	file	contains
hyperlinks	(or	just	links	for	short)	to	other	files	on	the	Internet.	This	is	what	enables	the
web-like	structure	on	the	Internet.	Each	document	(i.e.,	web	page)	contains	a	number	of
links	to	other	web	pages,	which	themselves	have	more	links	to	more	web	pages.	Thus,	the
file	format	follows	the	basic	idea	of	the	web—that	information	is	connected	to	each	other,
and	if	we	want	to	know	more	about	something,	we	can	just	click	the	link.

Another	great	feature	of	HTML	is	that	it	is	a	markup	language.	The	term	“markup
language”	comes	from	the	way	manuscripts	were	edited	and	laid	out	before	computers.
Writing	by	hand	is	a	little	different	than	making	a	print	book.	When	you	make	a	book,	you
need	to	know	what	font	you	want	to	use	for	the	text,	how	big	you	want	the	letters,	and
whether	you	want	some	of	them	bold,	etc.	Typewriters	and	handwritten	material	don’t
convey	any	of	this	information	for	a	printer.	Therefore,	when	an	author	wrote	a	book,	they
would	“mark	it	up”	with	annotations	telling	the	printer	how	he	should	make	the	final	text
look.

Figure	6.1:	An	Example	of	How	Authors	Marked	Up	Documents	for	a	Printer

Figure	6.1	shows	what	a	marked	up	document	looks	like.	Since	manuscripts	were	written
by	hand	or	using	a	typewriter,	authors	couldn’t	type	the	document	in	the	font	that	they
wanted,	so	they	put	in	these	markup	annotations	to	tell	the	printer	what	to	do.	“Helv	12”
tells	the	printer	to	make	the	font	12-point	Helvetica;	“BF”	means	to	use	a	bold-faced	font;
and	“FR”	means	to	flush	the	text	right.	These	types	of	instructions	tell	the	printer	exactly
how	to	typeset	each	piece	of	text.	Sometimes	that	can	get	tiresome,	and,	instead,	the
instructions	to	the	printer	tell	them	what	function	the	text	serves,	and	then	a	separate	sheet

tells	how	to	typeset	that	function.	In	this	example,	“CT”	tells	the	printer	that	the	marked
text	is	the	chapter	title,	so	the	printer	also	knows	to	put	that	title	into	the	page	header	at	the
top	of	each	page.	Sometimes	the	markup	would	tell	the	printer	exactly	what	to	do	(e.g.,
“Helv	12”	says	to	use	12	point	Helvetica	font)	and	sometimes	the	markup	would	tell	the
printer	the	function	of	the	text	in	the	document	(e.g.,	“CT”	tells	the	printer	that	use	text	is
a	chapter	title).	If	the	author	specified	the	function	of	the	text,	they	would	also	supply	a
separate	sheet	telling	the	printer	how	each	type	of	text	piece	should	be	handled.	This	idea
of	separating	the	structure	and	function	of	the	document	from	the	way	that	it	is	displayed
is	something	we	will	return	to	in	Chapter	7.

HTML	is	a	very	similar	concept.	It	is	a	markup	language,	meaning	that	it	consists	of	text,
and	then	additional	text	telling	the	computer	how	that	text	is	to	be	interpreted.	Below	is	a
short	bit	of	HTML	to	give	you	the	feel	of	the	language:

Figure	6.2:	A	Simple	HTML	Document

<!DOCTYPE	html>	

<html>	

<head>	

<title>This	is	the	title	of	this	document</title>	

</head>	

	

<body>	

	

<h1>This	is	a	large	heading</h1>	

<p>This	is	a	paragraph.</p>	

	

<h2>This	is	a	smaller	heading</h2>	

<p>This	is	another	paragraph.</p>	

	

</body>	

</html>

As	you	can	see,	an	HTML	document	consists	mostly	of	text	with	additional	codes	written
around	the	text	to	tell	the	computer	what	function	the	text	is	to	play.	In	HTML	lingo,	these
codes	are	called	tags.	<p>	is	a	start	tag	that	tells	the	computer	to	treat	that	text	as	a
paragraph,	and	</p>	is	an	end	tag	that	tells	the	computer	that	this	is	the	end	of	the
paragraph.	Similarly,	<h1>	tells	the	computer	to	treat	the	text	as	a	large	heading	(i.e.,
heading	level	1),	and	</h1>	tells	the	computer	that	this	is	the	end	of	the	large	heading.
HTML	has	a	predefined	set	of	tags	that	you	can	use	to	make	your	document.	By	arranging
text	and	tags	in	a	text	file,	you	can	easily	build	your	own	web	pages!

6.1.1	Practice	Activity

1.	 Open	your	text	editor,	and	type	in	the	HTML	document	above	into	a	new	file.

2.	 Save	the	file	so	that	it	has	a	.html	extension.
3.	 Open	up	your	browser.	Rather	than	typing	in	a	URL,	go	to	the	“File”	menu	and

choose	“Open.”	Open	up	the	file	you	just	saved.
4.	 Observe	how	the	browser	displays	each	piece	of	tagged	text.
5.	 Also	observe	the	location	bar	of	your	browser.	If	it	tells	you	the	protocol,	notice	that

it	is	not	an	HTTP	URL,	but	rather	a	file:	URL.	This	is	because	it	is	getting	the	file
from	your	hard	drive	and	not	from	a	web	server.

6.	 Go	back	to	your	text	editor	and	add	a	new	heading	and	a	new	paragraph	of	text	and
save	it.

7.	 Click	the	refresh	button	on	your	browser	to	see	your	changes.
8.	 Add	extra	spaces	between	words	and	before	and	after	tags.	Save	the	file	and	reload

the	browser.	Did	anything	change?	Other	than	separating	text	into	words,	blank	space
(termed	whitespace)	is	not	used	in	HTML.	If	you	need	to	alter	spacing,	you	have	to
use	tags	to	tell	the	computer	what	you	want	to	do.

6.2	The	Parts	of	an	HTML	Document

Now	that	you’ve	seen	what	an	HTML	document	looks	like,	it	is	time	to	dig	deeper	into	the
format.	The	first	thing	to	know	are	the	basic	rules	of	tagging.	These	are	important,	so	pay
special	attention.

1.	 All	tags	are	enclosed	in	angled	brackets	(i.e.,	<	and	>).
2.	 For	nearly	every	tag,	there	is	a	start	tag	and	an	end	tag.	For	the	paragraph	tag,	the

start	tag	is	<p>	and	the	end	tag	is	</p>.	The	only	difference	between	them	is	that	the
end	tag	has	a	forward	slash	(/)	before	the	tag	name.	If	you	forget	the	end	tag,	many
browsers	won’t	complain,	but	you	may	get	strange	results.

3.	 Pairs	of	start	and	end	tags	must	be	fully	within	other	pairs	of	start	and	end	tags.	For
instance	<p>hello	<i>there</p></i>	is	not	allowed,	but	<p>hello	<i>there</i>
</p>	is	allowed.	In	the	first	example,	the	<p>	tag	starts	before	the	<i>	tag,	but	the	end
tag	</p>	occurs	before	the	end	tag	</i>.	Therefore,	the	<i>	</i>	pair	is	not	fully
within	the	<p>	</p>	pair.

4.	 For	the	few	tags	that	do	not	have	an	end	tag,	you	combine	the	start	and	end	tag
together.	
	does	not	have	an	end	tag,	so	it	is	written	
.	This	is	called	a	self-
closing	tag.

5.	 The	combination	of	a	start	tag,	end	tag,	and	their	enclosed	content	and	tags	is	called
an	element.	<p>	is	a	tag	but	<p>hello</p>	is	an	element.

6.	 Blank	space	(called	whitespace)	is	used	to	separate	words,	but	is	not	used	for
anything	else.	HTML	ignores	all	extra	spacing	before,	between,	and	after	words.	This
includes	line	breaks	and	spaces	for	alignment.	All	of	these	things	are	controlled	by
tags,	not	by	trying	to	do	the	spacing	yourself.

From	here	on	out,	I	will	only	refer	to	a	tag	by	its	start	tag.	You	should	always	assume	that
the	start	tag	requires	an	end	tag	unless	we	explicitly	say	otherwise.

Now,	you	may	have	noticed	that	in	our	original	HTML	example,	there	were	several	tags
that	didn’t	seem	to	do	anything—namely	<html>,	<head>,	and	<body>.	The	<html>	tag	is
known	as	the	document	root	tag.	It	is	the	tag	that	contains	all	other	tags	and	is	required	to
be	there.	In	this	book,	if	you	see	an	example	that	doesn’t	have	an	<html>	tag,	then	it	is
only	showing	you	a	fragment	of	the	document—the	rest	is	assumed	to	be	there,	but	we	are
only	showing	the	important	parts	to	make	the	example	clearer.	The	first	tag	of	every
document	should	be	an	<html>	tag,	and	every	document	should	end	with	an	</html>	end
tag.	The	<head>	tag	includes	tags	that	tell	the	browser	about	the	document,	but	which	are
not	displayed	within	the	document	itself.	In	the	example	given,	the	<head>	tag	contained	a
<title>	tag,	which	told	the	browser	what	the	title	of	the	document	was.	The	browser
probably	displayed	this	title	in	the	top	of	the	window,	and	would	also	use	it	if	you
bookmarked	the	page.	The	<body>	tag	tells	the	browser	that	we	are	starting	the	portion	of
the	document	which	should	be	displayed.

Some	basic	tags	that	you	will	encounter	in	most	HTML	documents	include:

<html>

This	is	the	main	container	of	all	other	tags	within	a	document.

<head>

This	tag	contains	tags	which	give	information	to	the	browser	about	the	page	instead
of	the	page	content	itself.

<title>

This	tag	tells	the	browser	the	title	of	your	page.
<body>

This	tag	contains	the	actual	page	content.
<h1>

This	tag	is	used	for	the	largest	heading	on	the	page.
<h2>

This	tag	is	for	a	subheading	in	the	page.	HTML	has	additional	subheading	sizes	down
to	<h6>.

<p>

This	is	the	paragraph	tag.	Browsers	usually	give	a	blank	line	between	any	two
paragraphs.

This	is	a	line	break.	This	tag	self-closes,	and	is	used	to	force	a	line	break	anywhere	in
the	document.

This	tag	tells	the	browser	to	use	a	bold	font.
<i>

This	tag	tells	the	browser	to	use	an	italic	font.
<u>

This	tag	tells	the	browser	to	underline	its	contents.
<div>

This	is	a	general-purpose	tag	used	for	grouping	blocks	of	content	together.

This	is	a	general-purpose	tag	used	for	grouping	letters	or	words	together	within	a
paragraph	or	other	block	of	text.

Also	notice	that	we	began	our	file	with	<!DOCTYPE	html>.	This	is	called	the	doctype
declaration	and	tells	the	browser	that,	yes,	this	really	is	an	HTML	document.

6.2.1	Practice	Questions

1.	 If	<h4>	is	a	start	tag,	what	is	its	end	tag?
2.	 Which	of	the	following	HTML	fragments	use	tags	in	an	invalid	way?	Why?

a.	 <h1>My	Heading</h1>	
<p>This	is	a	<i>great</i>	section.	
Don’t	you	think?</p>

b.	 <h1>My	Heading</h1>	
<p>This	is	a	<i>great</i>	section.	
Don’t	you	think?</p>

c.	 <h1>My	Heading</h1>	
<p>This	is	a	<i>great</i>	section.</p>	
<p>Don’t	you	think?</p>

3.	 Open	up	any	web	page	on	the	Internet.	View	the	HTML	source	of	the	web	page	(see
Section	A.4	for	instructions	on	doing	this).	Try	to	identify	tags	from	the	list	above.

4.	 In	a	previous	practice	activity,	you	created	an	HTML	file.	Modify	your	HTML	file
using	some	of	the	tags	in	the	list	above.

6.3	Adding	Attributes	to	Tags

HTML	tags	can	also	have	what	are	called	attributes.	An	attribute	modifies	or	specializes
an	HTML	tag.	For	instance,	most	tags	take	a	width	attribute,	which	tells	the	browser	how
wide	to	make	the	tag’s	content.	An	attribute	looks	like	this:

Figure	6.3:	Tag	Attributes	Example

<div	width=“100”>	

			This	block	is	only	100	pixels	wide,	

			no	matter	how	much	text	I	put	into	it.	

</div>

As	you	can	see,	the	attribute	is	placed	inside	the	start	tag.	It	has	the	format	attribute-
name=”value“.	The	value	should	always	be	surrounded	by	quotes,	though	you	may	choose
either	single	quotes	or	double	quotes.	The	allowable	values	inside	the	quotes	depends	on
the	particular	tag	you	are	using.	You	can	also	specify	multiple	attributes	on	the	same	tag.
If	you	specify	multiple	attributes,	just	separate	your	attributes	by	a	space	(not	a	comma),
and	you	can	add	as	many	attributes	as	you	want.

I	should	note	that	setting	a	width	in	this	manner	is	actually	frowned	upon	in	HTML.	I	only
present	it	here	because	it	illustrates	the	concept	of	attributes.

6.4	Tags	that	Refer	to	Other	Documents

As	mentioned	previously,	one	of	the	things	that	makes	HyperText	valuable	is	its	ability	to
refer	to	other	documents.	HTML	pages	refer	to	other	documents	either	to	include	them
into	the	current	page	or	to	link	to	them	for	when	a	user	performs	an	action.	The	tags	that
you	will	run	into	most	often	are:

This	tag	is	used	to	include	an	image	into	the	page	at	the	location	where	the	tag	is
placed.	The	src	attribute	tells	the	browser	where	to	find	the	image.	Note	that		is
a	self-closing	tag.

<a>

This	tag	is	used	to	link	to	another	document	when	the	text	inside	the	tag	is	clicked.
The	href	attribute	(i.e.,	hypertext	reference)	tells	the	browser	what	URL	to	go	to
next.

<link>

This	tag	is	used	to	connect	stylesheets	to	your	HTML	page.	We	will	cover	more
about	stylesheets	in	Chapter	7.	Note	that	<link>	is	a	self-closing	tag.

<script>

This	tag	is	used	to	connect	JavaScript	programs	to	your	HTML	page.	We	will	start
covering	JavaScript	in	Chapter	8.

Here	is	an	example	of	a	few	of	these	tags	in	a	document:

Figure	6.4:	Example	Document	Showing	Tags	Referencing	Other	Documents

<!DOCTYPE	html>	

<html>	

<body>	

<h1>This	document	refers	to	other	documents</h1>	

<p>	

			Click	on	

			this	link	

			to	access	the	Bible	online.	

</p>	

<p>	

			Below	is	an	image	of	a	cat:	

</p>	

	

<img	src=”http://placekitten.com.s3.amazonaws.com/homepage-

samples/408/287.jpg”	/>	

	

</body>	

</html>

As	you	can	see	in	this	example,	the	<a>	tag	creates	a	link	to	another	document.	The
document	to	link	to	goes	in	the	href	attribute,	and	the	text	to	link	to	goes	between	the	start
and	end	tags.	Then,	at	the	end,	the		tag	refers	to	an	image	file	at	a	specified	URL	and
includes	that	within	the	page.

6.4.1	Practice	Questions

Create	a	new	HTML	file	using	the	example	document	in	this	section.	View	it	in	your
browser	to	make	sure	you	entered	everything	correctly.
Modify	this	HTML	file.	Add	links	for	all	of	your	favorite	places	to	go	on	the	web.
Find	an	image	on	the	web	that	you	like.	Find	out	its	URL	(see	Section	A.5).	Add	that
image	to	your	web	page.

When	a	document	refers	to	another	document,	it	is	not	always	necessary	to	refer	to	the	full
URL	of	the	destination	document.	In	addition,	if	you	ever	have	to	move	a	set	of
documents,	it	is	difficult	to	modify	the	links	in	all	of	the	web	pages	to	point	to	the	new
URL.	For	instance,	let’s	say	that	you	owned	the	website	www.example.com.	But	then,
someone	offered	you	a	large	sum	of	money	so	that	they	could	own	the	domain	name.	So
now	you	have	to	move	your	stuff	to	be	under	a	different	domain.	However,	if	all	of	your
links	refer	to	http://www.example.com/whatever,	you	now	have	to	modify	each	one	to
point	to	the	new	domain!	In	a	more	practical	scenario,	think	about	if	you	were	building	a
new	version	of	your	website.	While	you	are	still	building	it,	the	current	website	needs	to
stay	where	it	is,	so	you	put	your	test	version	on	another	site.	Wouldn’t	it	be	great	if	all	of
the	links	just	worked	when	you	moved	it	over?	That	doesn’t	work	with	complete	URLs
because	they	refer	to	the	exact	location	on	the	Internet.	Once	we	move	locations,	the	URL
is	now	wrong.

In	order	to	solve	this,	URLs	can	be	rewritten	to	be	relative	to	the	location	of	the	current
document.	Let’s	say	that	I	have	one	file	at
http://www.example.com/fruit/oranges.html	and	another	at
http://www.example.com/fruit/apples.html	but	they	each	link	to	the	other.	Under	the
scheme	demonstrated	so	far,	we	would	have	the	first	file	have	a	link	that	looks	like	this:	See	the	Apples.	The
second	file	will	have	a	link	back	to	the	first	file	that	looks	something	like	this:	I	prefer	oranges.	This	is
rather	tedious,	especially	since	they	are	in	the	same	directory	(i.e.,	/fruit).

The	HTML	standard	gives	us	three	choices	of	what	to	do.	The	regular	URL,	also	called
the	fully-qualified	URL	or	absolute	URL,	that	we	have	been	using	contains	all	of	the
data	necessary	to	connect.	The	relative	URL	takes	most	of	its	connection	information
from	the	current	URL,	which,	for	linking	purposes,	is	also	called	the	base	URL.	So,	in	the
previous	example,	if	we	were	already	looking	at
http://www.example.com/fruit/apples.html,	we	could	link	to	the	other	file	just	by
referring	to	oranges.html	like	this:

Figure	6.5:	Example	of	a	Relative	Link

See	the	Oranges	Page

Using	relative	URLs	not	only	gives	us	less	typing,	but	it	also	makes	it	easier	to	move
groups	of	documents.	As	long	as	apples.html	and	oranges.html	stayed	in	the	same
directory	together,	you	could	move	them	around	to	be	under	a	different	site	or	to	a
different	directory	on	your	site,	and	their	links	would	still	work.	In	short,	relative	URLs
use	the	current	URL,	up	to	and	including	the	current	directory,	as	the	starting	point.	The
relative	URL	just	tells	how	to	get	to	the	document	from	where	you	already	are.	You	can
tell	a	relative	URL	from	a	fully-qualified	URL	by	the	fact	that	it	doesn’t	include	a	protocol
and	it	doesn’t	start	with	a	slash.

There	are	two	other	kinds	of	URLs	which	are	hybrids	between	absolute	and	relative
URLs.	The	first	is	the	absolute	path.	The	absolute	path	tells	the	browser	to	use	the	current
protocol	and	server,	but	replace	the	path	entirely	with	the	one	specified.	In	our	example,
the	absolute	path	to	apples.html	is	/fruit/apples.html.	Note	that	absolute	paths	always
begin	with	a	slash.	If	it	does	not	begin	with	a	slash,	it	is	considered	a	relative	URL.

The	final	type	of	URL	is	the	network	path.	This	URL	uses	the	protocol	of	the	current
page,	but	you	specify	everything	else.	So,	the	network	path	of	oranges.html	is
//www.example.com/fruit/oranges.html.	Network	paths	are	rarely	necessary,	but	it	is
good	to	know	what	they	mean	in	case	you	see	them.

6.4.2	Practice	Questions

1.	 Create	another	simple	web	page	in	the	same	directory	as	your	other	web	pages.
2.	 Create	a	link	from	your	new	page	to	one	of	your	other	pages.	Remember	to	use

relative	links!
3.	 Create	another	link	to	some	other	page	on	the	Internet.
4.	 Save	the	page,	and	open	it	up	in	your	browser.
5.	 Test	out	your	links.	Did	they	work?	If	not,	check	the	URL	in	your	browser	to	see

where	the	browser	thought	you	were	asking	it	to	go.

6.5	Relative	URLs

Relative	URLs	have	a	lot	of	features	that	make	them	helpful	both	when	building	a	website
and	when	using	a	book	like	this.	For	instance,	since	the	files	we	create	will	be	on	your
hard	drive	instead	of	a	webserver,	it	is	much	easier	to	use	relative	URLs	rather	than	the
extremely	long	file:	URLs	that	specify	where	on	your	hard	drive	it	is.	In	addition,	by
using	relative	URLs,	it	means	that	the	web	pages	you	create	will	still	work	if	you	hand
them	in	to	a	teacher	or	parent.	If	you	use	file:	URLs,	then	all	of	the	URLs	would	be
wrong	when	your	parent	or	teacher	loads	them	on	their	computer,	because	they	would	be
in	a	different	location	on	their	computer	than	they	were	on	yours.	If,	instead,	you	use
relative	URLs,	then,	as	long	as	you	deliver	all	of	the	files	together,	the	URLs	will	still
work	in	their	new	destination.	For	the	purposes	of	this	book,	every	time	you	reference	a
file	that	you	create	or	that	you	store	on	your	hard	drive,	you	should	use	a	relative	URL,
but	when	you	reference	a	file	stored	somewhere	else	on	the	web,	you	should	use	absolute
URLs.

Another	feature	of	relative	URLs	is	that	you	can	use	them	to	refer	to	subdirectories.	Let’s
say	that	you	want	the	page	at	http://www.example.com/fruit/apples.html	to	link	to
the	file	http://www.example.com/fruit/exotic/rambutan.html.	You	will	notice	that
they	share	a	lot	of	their	URLs	between	them.	The	relative	URL	tells	you	how	to	get	to	the
document	from	the	current	directory.	From	http://www.example.com/fruit/	I	only	have
to	say	that	I	want	to	go	to	exotic/rambutan.html.	Therefore,	I	can	link	to	this	page	like
this:

Figure	6.6:	A	Relative	URL	with	a	Subdirectory

See	information	about	the	rambutan

fruit

Now,	let’s	say	that	I	am	writing	the	page	on	rambutans,	and	I	want	to	see	my	page	on
apples.	How	does	that	work	with	relative	URLs?	There	is	a	special	directory	name	that
refers	to	the	enclosing	directory	(also	called	the	parent	directory).	This	is	referred	to	with
two	periods	(i.e.,	..).	If	you	are	writing	the	page
http://www.example.com/fruit/exotic/rambutan.html	and	you	want	to	link	to
http://www.example.com/fruit/oranges.html	you	can	write	the	link	like	this:

Figure	6.7:	A	Relative	URL	with	a	Parent	Directory

See	information	about	oranges

You	can	include	as	many	directories	as	necessary	in	your	URL.	For	example,	if	you	were
writing	the	page	http://www.example.com/fruit/exotic/rambutan.html	and	wanted	to
link	to	the	page	http://www.example.com/fruit/poisonous/snowberry.html,	you
would	write:

Figure	6.8:	A	Relative	URL	with	Multiple	Directory	References

Don’t	eat	snowberry	fruit!

One	other	important	special	directory	name	is	the	.	directory.	While	the	two	periods	(..)
refer	to	the	parent	directory,	the	single	period	(.)	refers	to	the	current	directory.	This	is
rarely	used	in	HTML,	but	you	will	see	it	on	occasion.

6.6	Other	HTML	Features

HTML	has	many	other	great	features.	The	goal	of	this	book	is	to	get	you	just	enough
HTML	to	get	started	and	to	understand	what	you	read	about	HTML	on	the	Internet.	There
are	many	tags	which	do	many	different	things.	In	this	section	we	will	cover	a	few	of	the
more	popular	tags	and	simple	features,	but	this	is	not	meant	to	be	exhaustive.

6.6.1	Entities

Because	HTML	uses	the	<	and	>	characters	to	signify	that	the	given	text	is	a	tag,	how
would	you	then	actually	write	those	characters?	HTML	provides	entities	to	refer	to
characters	that	either	have	a	special	use	by	the	HTML	format	or	are	hard	to	type	(i.e.,
characters	from	other	languages).	An	HTML	entity	starts	with	an	ampersand	(&)	and	ends
with	a	semicolon	(;).	Common	entities	include:

>

>
<

<
&

&
"

”
'

’

a	“non-breaking”	space—a	space	that	doesn’t	allow	a	line	break	at	that	point
©

©

6.6.2	Lists

Lists	are	great	ways	of	organizing	things	in	HTML.	A	list	can	either	be	unordered	(i.e.,	a
bulleted	list),	or	ordered	(i.e.,	a	numbered	list).	The	tag	that	encloses	the	whole	list	is	
for	an	unordered	list,	or		for	an	ordered	list.	Then,	each	list	item	is	enclosed	in	an
	tag	for	both	kinds.

Here	is	a	short	HTML	fragment	that	illustrates	how	these	are	used:

Figure	6.9:	Simple	Lists

<h1>An	Unordered	List	of	Plants	in	my	Garden</h1>	

	

				Tomatoes		

				Peas		

				Beans		

	

	

<h1>An	Ordered	List	of	my	Favorite	Books	by	G.	K.	Chesterton</h1>	

	

				<i>The	Everlasting	Man</i>		

				<i>Manalive</i>		

				<i>Heretics</i>		

The	first	list	will	display	as	a	bulleted	list,	while	the	second	list	will	be	numbered.

6.6.3	Table	Tags

In	addition	to	paragraphs,	headings,	and	lists,	people	often	need	to	represent	tables	of	data
on	web	pages.	HTML	has	a	set	of	tags	specialized	for	displaying	tables	of	data.	Let’s	say
we	wanted	to	make	a	list	of	our	friends,	with	their	name,	their	email,	and	their	phone
number.	We	would	want	the	first	row	to	be	the	headings	(such	as	“Name,”	“Email,”	and
“Phone”),	and	the	other	rows	to	be	the	data.	For	that,	we	will	need	several	tags:

<table>

This	tag	wraps	around	the	whole	table.
<tr>

This	tag	wraps	around	a	row	of	data.
<td>

This	tag	wraps	around	the	contents	of	a	single	data	cell.
<th>

This	is	just	like	the	<td>	tag,	but	it	is	used	for	headings	(i.e.,	by	making	the	content
bold).

<thead>

This	tag	is	not	strictly	necessary,	but	it	is	often	used	to	wrap	around	the	row(s)	of
your	table	heading.

<tbody>

This	tag	is	also	not	strictly	necessary,	but	it	is	often	used	to	wrap	around	rows	of	data
in	your	table.

<tfoot>

Just	like	the	<thead>	tag,	but	used	for	footers	of	tables.

We	can	put	them	together	to	make	the	following	web	page	fragment:

Figure	6.10:	An	Example	Use	of	Table	Tags

<table>	

			<thead>	

						<tr>	

									<th>Name</th>	

									<th>Email</th>	

									<th>Phone</th>	

						</tr>	

			</thead>	

			<tbody>	

						<tr>	

									<td>Jeff</td>	

									<td>jeff@example.com</td>	

									<td>555-555-1234</td>	

						</tr>	

						<tr>	

									<td>Melissa</td>	

									<td>melissa@example.com</td>	

									<td>555-555-6789</td>	

						</tr>	

			</tbody>	

</table>

This	will	display	something	like	this:	

Name Email Phone
Jeff jeff@example.com 555-555-1234
Melissa melissa@example.com 555-555-6789

6.6.4	Form	Tags

A	lot	of	web	pages	allow	you	to	enter	data.	Data	entry	web	pages	are	commonly	referred
to	as	“forms.”	These	tags	allow	the	user	to	enter	in	their	own	values.	They	won’t	be	useful
until	we	know	how	to	process	them,	but	we	will	list	some	of	those	tags	for	future	use.
Notice	that	the	<input>	tag	can	actually	be	several	different	input	elements.	The	element
that	is	displayed	on	the	page	is	chosen	based	on	the	type	attribute.	The	<input>	tag	should
also	be	written	as	a	self-closing	tag.

<form>

This	tag	normally	encloses	other	form	tags.	If	the	form	is	supposed	to	submit	data	to
a	server,	that	destination	is	usually	put	in	the	action	attribute.

<input	type=“text”>

This	is	a	basic,	single-line	data	entry	field.
<input	type=“checkbox”>

This	is	a	single	box	that	can	be	checked	on	or	off.
<textarea>

This	is	a	multi-line	data	entry	field.
<select>

This	is	a	drop-down	list.	Each	option	is	specified	inside	this	tag	using	the	<option>
tag.

<button>

This	is	a	basic	pushbutton.	The	enclosed	text	is	the	text	of	the	button.

Most	of	these	tags	also	have	a	name	attribute	that	you	can	use	to	specify	what	the	field	is
for	(this	will	be	important	later),	and	a	value	attribute	to	give	the	field	an	initial	value,	or,
in	the	case	of	check	boxes,	to	give	the	value	that	this	box	represents.

Here	is	an	example	HTML	fragment	for	a	form	(note	that	this	doesn’t	do	anything,	it	just
lets	the	user	interact	with	it):

Figure	6.11:	Form	Element	Demonstration

<form>	

			Here	is	an	input	field:	<input	type=”text”	/>	
	

			Here	is	a	checkbox:	<input	type=”checkbox”	/>	
	

			Here	is	a	multi-line	input	field:	

						<textarea></textarea>	
	

			Here	is	a	drop-down	list:	

						<select>	

									<option>Option	1</option>	

									<option>Option	2</option>	

						</select>	

						
	

			Here	is	a	button:	<button>Click	Me</button>	

</form>

6.6.5	Comments,	Declarations,	Processing	Instructions,	and	CDATA	Blocks

When	we	talk	about	the	structure	of	a	language,	we	are	talking	about	its	syntax.	The
syntax	includes	what	sorts	of	letters,	symbols,	and	features	are	allowed	in	what	places.	For
instance,	the	tag	is	an	integral	part	of	HTML’s	syntax.	To	get	a	good	example	of	what
syntax	is,	perhaps	an	example	of	a	violation	of	that	syntax	will	help.	We	have	seen	tags
like	this:	<p><i>This	is	an	italicized	paragraph</i></p>.	This	is	perfectly
legitimate.	Imagine,	however,	that	instead	of	starting	with	<p><i>	we	accidentally	typed
<p	<i».	That	would	be	a	syntax	error,	meaning	that	we	didn’t	properly	follow	the
structure	of	HTML.	Syntaxes	are	important	because	that	is	how	the	computer	knows	what
we	are	attempting	to	do.

The	two	primary	units	of	HTML	syntax	we	have	discussed	so	far	are	tags	and	entities.
There	are	several	other	syntactical	units	that	are	important	to	know,	but	they	will	rarely	be
used	in	this	book.

The	most	common	syntactical	unit	is	the	HTML	comment.	For	writing	any	kind	of	code,
most	programming	and	markup	languages	allow	for	developers	to	add	comments	to	their
code.	Comments	are	notes	that	the	programmer	writes	to	himself	or	any	other	developer
looking	at	the	code.	It	basically	says	something	like,	“I	did	it	this	way	because	I	had

trouble	getting	some	other	way	to	work,”	or	“here	are	the	reasons	the	code	looks	this
way.”	It	holds	important	information	that	is	not	immediately	obvious	to	someone	looking
at	the	code,	but	which	is	ignored	by	the	browser.

In	HTML,	like	most	other	computer	languages,	comments	are	essentially	ignored	by	the
browser.	This	feature	allows	for	another	use	of	comments—temporarily	disabling	parts	of
your	code.	Let’s	say	that	you	have	built	a	large	web	page,	and	you	want	to	see	what	it
looks	like	without	a	big	chunk	of	your	code.	Rather	than	deleting	that	code	and	having	to
re-type	it	later,	you	can	just	wrap	it	in	a	comment,	and	the	browser	will	ignore	it.	This	is
called	commenting	out	code,	because	you	are	taking	the	code	out	of	the	document	or
program	using	comments.

So	what	does	a	comment	look	like?	Comments	are	simple.	They	start	with	<!–	and	they
end	with	–>.	Here	is	a	short	HTML	fragment	with	a	few	comments:

Figure	6.12:	A	Comment	Example

<h1>Web	Page	with	Comments</h1>	

<!—	Here	is	an	unordered	list	—>	

	

			Here	is	a	list	item	

			<!—	

						This	list	item	is	not	visible	because	it	has	been	commented

out	

			—>	

			Another	list	item	

Another	feature	of	HTML	is	the	declaration.	Declarations	are	used	to	identify,	and
possibly	extend,	the	list	of	valid	tags,	attributes,	and	entities.	Usually,	the	only	declaration
you	will	see	is	the	HTML	doctype	declaration,	which	tells	the	computer	the	basic	type	of
document	you	are	working	with	so	it	knows	what	tags	are	valid	and	what	they	mean.
HTML	doctype	declaration	tells	the	computer	that,	yes,	you	are	really	looking	at	an
HTML	document.	In	its	basic	form	it	looks	like	this:	<!DOCTYPE	html>.	It	is	always	placed
before	the	first	<html>	tag.	There	are	other,	fancier	ways	of	writing	it,	but	the	meaning	is
basically	the	same—yes,	computer,	you	are	looking	at	an	HTML	document.

Another	feature	is	the	processing	instruction.	These	are	used	to	give	document	processors
(such	as	browsers)	special	information	on	how	to	handle	your	document.	However,	with
the	exception	of	a	single	processing	instruction,	this	feature	is	almost	entirely	unused.	The
processing	instruction	looks	like	a	start	tag	and	can	include	attributes,	but	it	has	a	question
mark	before	the	processing	instruction	name	and	before	the	right	angled-bracket,	like	this:

Figure	6.13:	The	Structure	of	a	Processing	Instruction

<?processing-instruction-name	attribute1=”value1”	attribute2=”value2”	?>

The	only	processing	instruction	you	are	likely	to	see	is	this	one,	known	as	the	XML
declaration:

Figure	6.14:	The	XML	Declaration	Processing	Instruction

<?xml	version=“1.0”	encoding=”UTF-8”	?>

If	used,	this	goes	at	the	beginning	of	the	document,	before	the	doctype	declaration,	and
even	before	any	blank	lines	or	whitespace.	It	tells	the	browser	to	use	special,	more	strict
rules	when	processing	the	HTML	document.

One	last	feature	that	is	sometimes	seen	is	CDATA	sections.	A	CDATA	section	is	most
often	used	when	you	have	a	lot	of	angled	brackets	to	write	in	the	document	itself,	but
don’t	want	to	have	to	write	entities	for	each	one.	A	CDATA	section	tells	the	browser	to
just	treat	the	text	as	literal	text,	and	don’t	try	to	find	tags,	comments,	or	entities.	CDATA
sections	start	with	<![CDATA[and	end	with]]>.

Here	is	a	short	example:

Figure	6.15:	A	CDATA	Example

<h1>A	CDATA	Example</h1>	

<p>	

			This	is	me	writing	a	tag	name	that	I	want	displayed	without	CDATA:

<p>	

</p>	

<p>	

			<![CDATA[

						This	is	me	writing	a	tag	name	to	display	with	CDATA:	<p>	

]]>	

</p>

Many	browsers	don’t	fully	support	CDATA	sections	in	all	circumstances,	so	it	is	best	not
to	use	them,	but	it	is	good	to	know	what	they	are	in	case	you	see	one.

Chapter	7
Introduction	to	Cascading	Style	Sheets

Review

This	chapter	covered	the	basics	of	Cascading	Style	Sheets.	We	have	learned:

Technology	often	develops	by	refactoring	an	old	technology	into	distinct	concepts.
Cascading	Style	Sheets	(CSS)	developed	when	HTML	was	refactored	into	separate
content,	presentation,	and	interactive	components.
CSS	files	are	meant	to	handle	the	presentation	of	content	written	in	HTML.
CSS	allows	HTML	to	hold	the	content	of	a	web	page	without	regard	to	how	it	will	be
displayed.
CSS	works	by	having	a	list	of	style	properties	applied	to	HTML	elements	designated
by	selectors.
CSS	selectors	are	often	based	on	the	names	of	tags	and	the	values	of	attributes.
CSS	lays	out	a	page	on	the	basis	of	the	CSS	box	model,	in	which	each	HTML
element	is	assigned	a	rectangular	box	on	the	page	and	has	its	own	padding,	border,
and	margin.
The	variety	of	layouts	possible	for	HTML	content	simply	by	changing	stylesheets	is
quite	dramatic.
Because	the	styling	for	a	page	or	set	of	pages	lives	in	an	external	file,	CSS	allows	the
look	of	an	entire	website	to	be	changed	by	updating	only	the	shared	CSS	file.

Apply	What	You	Have	Learned

1.	 Take	the	HTML	file	from	Figure	7.3	and	write	a	new	stylesheet	for	it.	Put	the
headings	in	a	16-point	font	and	the	paragraph	text	in	a	12-point	font.	Put	a	12-point
gap	between	the	paragraphs.

2.	 Create	a	new	HTML	file	with	a	new	CSS	file.	Create	4	rectangles	on	the	screen	with
different	widths,	heights,	and	background	colors.

3.	 Come	up	with	your	own	design	for	the	content	in	Figure	7.3.	First,	draw	on	a	sheet	of
paper	how	you	might	want	to	lay	it	out—be	creative!	Then,	try	to	see	what	parts	of
that	design	you	can	replicate	with	your	current	knowledge	of	CSS.	Don’t	worry	if
your	imagination	is	more	than	what	you	know	how	to	do.	Just	do	what	you	can!	Feel
free	to	also	look	on	the	web	for	additional	CSS	properties	you	can	use	to	make	your
design	come	to	life.	Sites	like	w3schools.com	have	a	wealth	of	information	on	CSS
creation.

4.	 Find	your	favorite	design	on	CSS	Zen	Garden	(csszengarden.com).	Somewhere	on
the	page	is	a	link	that	says	“View	This	Design’s	CSS.”	Click	on	it	and	see	if	you	can
decipher	what	the	CSS	file	is	doing.	Don’t	worry	if	there	are	a	lot	of	things	you	don’t
understand.	Focus	on	the	things	that	you	do	understand.

7.1	The	Origin	of	Cascading	Style	Sheets

When	HTML	was	first	developed,	it	was	entirely	used	for	communicating	information.
HTML	was	originally	built	as	an	easy	way	to	browse	and	view	documents.	Therefore,
HTML	documents	were	never	pretty,	but	were	very	functional.	In	addition,	there	was	a
direct	match	between	the	tag	used	and	the	purpose	that	the	tagged	text	served	in	the
document.	For	instance	<h1>	tags	meant	that	the	given	text	was	a	main	heading.	If	you
were	looking	at	the	HTML	code	itself,	you	would	know	precisely	what	it	meant	if	you
found	text	with	that	tag.	In	fact,	if	you	knew	the	tags,	you	could	almost	just	as	easily	read
the	document	source	with	the	tags	as	you	could	read	it	rendered	in	the	browser.

However,	as	more	and	more	people	started	using	the	web,	HTML	started	serving	more
purposes	than	purely	informational	ones.	The	modern	web	is	much	more	user-focused,	and
incorporates	many	other	types	of	media	and	functionality,	including	navigation,
entertainment,	advertising,	and	branding.	In	the	early	days,	in	order	to	accommodate	for
these	new	uses,	HTML’s	tag	and	attribute	set	expanded	and	expanded.	The	problem	was,
however,	that	the	initial	beauty	and	simplicity	of	HTML	was	lost.	Web	pages	became
complicated	messes	of	undecipherable	tags.	In	addition,	different	browsers	rendered	the
tags	slightly	differently.	Therefore,	in	order	to	write	a	web	page,	you	had	to	know	not	only
what	each	tag	did,	but	how	the	tag	would	look	in	every	browser,	and	how	to	get	them	all	to
work	together	to	produce	a	good-looking	web	page.

The	organizations	that	control	the	standards	for	the	web	recognized	this	problem,	and
decided	to	move	HTML	back	closer	to	its	roots.	In	order	to	achieve	this,	they	attempted	to
separate	content	from	presentation.	Content	refers	to	the	data	that	the	web	page	is
intended	to	communicate.	Presentation	refers	to	how	that	page	will	look	to	the	user.
Headings,	paragraphs,	figures,	etc.	are	all	part	of	the	content.	The	background,	formatting,
layout,	colors,	fonts,	and	decorations	are	all	part	of	the	presentation.

In	order	to	do	this,	they	removed	styling	from	HTML,	and	created	a	new	language,	called
Cascading	Style	Sheets	(CSS	for	short),	to	tell	browsers	how	the	HTML	should	look.	In
this	new	paradigm	the	structure	and	content	of	the	document	is	written	in	HTML.	How
that	content	should	be	laid	out,	formatted,	and	presented	is	written	in	CSS.	The	advanced
interactions	between	the	user	and	the	content	is	written	in	JavaScript.	This	separation	is
not	perfect,	but	it	is	a	huge	improvement.

7.1.1	The	Progression	of	Technology

It	is	interesting	to	note	the	way	that	technology	progresses.	The	way	HTML	progressed	is
very	similar	to	many	other	technologies.	The	first	version	was	very	simple	and	direct.	It
accomplished	the	needs	of	its	users	very	well.

However,	its	success	led	to	many	problems.	Because	everyone	was	using	it,	new	people,
with	different	needs	than	the	original	users,	were	also	using	it.	In	order	to	accommodate
this,	they	simply	added	a	bunch	of	features	to	HTML.	However,	it	quickly	became
apparent	that	simply	adding	features	was	making	a	mess	of	things.	It	did	expand	the
capabilities	of	HTML,	but	at	the	cost	of	making	all	HTML	work	more	complicated	(and

expensive).

The	next	step	in	the	progress	of	HTML	was	to	re-evaluate	the	different	aspects	of	how
HTML	worked	and	the	different	needs	they	served.	As	it	turned	out,	there	were	several
needs	that	were	plainly	distinct.	There	was	the	need	to	handle	content,	the	need	to	display
content	in	a	visually-pleasing	manner,	and	the	need	to	make	the	content	interactive.

Because	these	needs	were	distinguishable,	they	were	then	refactored	into	entirely	separate
pieces.	HTML	would	handle	the	content,	CSS	would	handle	the	presentation,	and
JavaScript	would	handle	the	interactivity.	HTML	was	a	great	content	language,	but	a	bad
styling	language.	So	this	new	setup	allowed	HTML	to	do	what	it	did	best	and	left	styling
and	interaction	to	other	technologies	which	were	better	suited	for	the	task.

Refactoring	is	a	common	occurrence	in	the	progress	of	technology.	The	word
“refactoring”	is	based	on	the	idea	of	factoring	in	mathematics.	In	math,	factoring	refers	to
taking	a	number	and	separating	it	out	into	its	prime	components.	The	number	15	has	the
prime	factors	5	and	3.	In	technology,	refactoring	is	similar.	It	is	re-evaluating	the
technology	you	have	and	looking	for	components	which	are	more	basic	that	the
technology	can	be	divided	into.	This	usually	happens	when	the	growth	of	a	technology
causes	it	to	become	overly	complex.	At	that	point,	it	needs	to	be	re-evaluated	to	find	if
there	are	simpler	components	that	the	technology	can	be	divided	into.

Refactoring	is	not	a	panacea	and	must	be	used	judiciously.	If	refactoring	is	done
prematurely,	all	of	the	different	components	may	not	be	clearly	seen,	and	it	may	be
refactored	in	ways	that	make	progress	more	difficult	rather	than	less.	However,	for	the
most	part,	refactoring	tends	to	give	new	life	to	old	technology	as	it	increases	both
flexibility	and	understandability.

7.2	The	Structure	of	a	CSS	Document

The	best	way	to	understand	the	basic	operation	of	CSS	is	to	see	it	in	action.	To	start	with,
create	a	file	called	basic.css	with	the	following	content	(as	usual,	be	sure	to	enter	it
exactly	as	shown):

Figure	7.1:	A	Simple	CSS	Document

h1	{	

			font-size:	20pt;	

			color:	blue;	

}	

	

p	{	

			font-size:	12pt;	

			color:	black;	

}

What	this	document	says	is	that:

All	text	inside	<h1>	tags	should	be	shown	as	blue	text	in	a	20-point	font	(a	point	is	a
unit	of	measurement	in	typography—1	point	is	 	of	an	inch).
All	text	inside	<p>	tags	should	be	shown	as	black	text	in	a	12-point	font.

Now,	create	a	document	called	basic.html	in	the	same	directory	as	basic.css	with	the
following	contents:

Figure	7.2:	A	Web	Page	Using	CSS

<!DOCTYPE	html>	

<html>	

<head>	

<title>Stylesheet	Test</title>	

<link	rel=”stylesheet”	href=”basic.css”	/>	

</head>	

<body>	

<h1>This	is	a	Heading</h1>	

<p>This	is	a	paragraph.</p>	

</body>	

</html>

The	part	of	the	file	that	links	together	these	two	files	is	the	<link>	tag.	The	<link>	tag	can

be	used	to	specify	all	sorts	of	related	documents	(what	it	is	linking	is	specified	by	the	rel
attribute),	but	its	most	important	usage	is	to	specify	the	stylesheet	to	use	for	a	web	page.
The	document	that	the	<link>	tag	refers	to	is	listed	in	the	href	attribute.	So,	in	short,	the
<link>	tag	in	the	document	above	says	to	use	the	file	basic.css	as	its	stylesheet.

If	you	open	this	file	with	your	browser,	you	will	find	that,	indeed,	it	renders	the	document
as	we	specified.	If	it	doesn’t,	go	back	through	and	try	to	find	your	mistake.

The	CSS	file	format	is	fairly	simple	and	straightforward.	It	consists	of	two	major	parts:
selectors	and	properties.	CSS	properties	list	out	the	styles	to	be	used,	and	CSS	selectors
tell	which	pieces	of	HTML	those	styles	are	to	be	used	on.	So,	in	the	file	we	were	looking
at,	h2	and	p	were	the	selectors.	The	selector	was	followed	by	a	property	list	wrapped	in
curly	braces({	and	}).	The	property	list	tells	what	styles	to	use	on	the	text.

The	two	properties	we	use	in	the	file	in	Figure	7.1	are	color,	which	defines	the	color	to
make	the	text,	and	font-size,	which	tells	what	size	font	to	use	for	the	text.	CSS2	defines
98	different	properties	to	use,	and	CSS3	defines	even	more.	However,	there	aren’t	that
many	properties	that	you	need	to	know	to	get	started.	This	chapter	will	only	cover	the
most	important	ones,	but	you	can	see	a	full	list	at
http://www.w3.org/TR/CSS2/propidx.html.

7.3	Understanding	Selectors

The	CSS	selectors	used	in	the	previous	section	listed	the	tag	name	that	was	to	be	styled.
However,	such	a	selector	has	limited	use,	and	will	not	give	us	the	kind	of	flexibility
needed	to	produce	really	nice	documents.

Let’s	say,	for	instance,	that	you	have	different	types	of	paragraphs	that	you	wanted	to	lay
out	in	different	ways.	You	want	one	paragraph	to	be	red	text	on	a	blue	background	and
another	paragraph	to	be	green	text	on	a	black	background.	In	order	to	do	this,	the	CSS	file
will	have	to	be	able	to	distinguish	between	these	two	different	types	of	paragraphs,	but
HTML	only	provides	one	paragraph	(<p>)	tag.	To	accomplish	this,	CSS	can	also	use
attributes	to	choose	which	tags	that	a	set	of	properties	applies	to.	In	order	to	facilitate	this
process,	HTML	defines	a	class	property	available	on	all	HTML	tags,	which	can	be	used
for	whatever	purpose	the	writer	wants.	Usually,	they	are	used	to	make	distinctions
between	tags	for	CSS	to	process.

Let’s	look	at	how	this	works.

Create	the	following	HTML	file,	called	classes.html:

Figure	7.3:	An	HTML	File	Using	Classes

<!DOCTYPE	html>	

<html>	

<head>	

<title>Testing	HTML	Classes</title>	

<link	rel=”stylesheet”	href=”classes.css”	/>	

</head>	

<body>	

	

<div	class=”section1“>	

<h1>A	Title</h1>	

<p	class=”style1“>My	paragraph	1.</p>	

<p	class=”style2“>My	paragraph	2.</p>	

	

</div>	

	

<div	class=”section2“>	

<h1>Another	Title</h1>	

<p>Another	paragraph.</p>	

</div>	

	

</body>	

</html>

This	document	uses	<div>	tags	to	group	the	document	into	two	sections,	where	each

section	has	a	title	and	one	or	more	paragraphs.	The	sections	are	differentiated	from	each
other	by	the	class	attribute.	In	the	first	section,	the	paragraphs	are	differentiated	from
each	other	by	the	same	way.

CSS	allows	us	to	use	HTML	attributes	to	supply	specific	styles	for	different	uses	of	the
same	tag.

To	see	this	in	action,	create	a	file	called	classes.css	in	the	same	directory	as	the	previous
file	with	the	following	content:

Figure	7.4:	A	CSS	File	Styling	Classes

p	{	

			font-size:	10pt;	

}	

	

p[class=style1]	{	

			color:	red;	

			background-color:	blue;	

}	

	

p[class=style2]	{	

			font-size:	12pt;	

			color:	green;	

			background-color:	black;	

}

After	typing	both	the	HTML	and	CSS	files,	open	the	classes.html	file	and	see	what	the
results	look	like.

The	first	selector	is	just	like	before—it	is	a	tag	name	followed	by	styling	properties.	It	says
that	paragraph	tags	should	have	a	font	size	of	10	points.

The	next	selector,	however,	is	different.	This	selector	says	p[class=style1],	which
means	that	it	applies	only	to	<p>	tags	that	have	the	class	attribute	set	to	the	value	style1.
The	properties	for	this	say	that	paragraphs	with	the	style1	class	should	be	red	text	on	a
blue	background.	Note	that	a	<p>	tag	with	the	style1	class	would	also	match	the	first
selector,	since	the	first	selector	applies	to	all	<p>	tags.	Therefore,	any	attribute	set	in	the
original	selector	would	be	still	be	applied,	so	it	uses	a	10	point	font	as	well.

The	final	selector	is	just	like	the	previous	one,	except	that	it	is	set	to	match	paragraphs
with	a	class	of	style2.	It	displays	the	paragraph	with	green	text	on	a	black	background.	It
also	sets	the	size	of	the	font	to	12	points.	This	is	in	conflict	with	the	setting	that	was	set	in
the	first	group	of	CSS	properties,	which	set	all	<p>	tag	sizes	to	10	points.	However,
because	the	selector	for	these	properties	is	more	specific,	its	properties	supercede	the	ones
from	the	more	general	selector.

Now,	you	can	select	HTML	elements	by	any	attribute	you	want.	However,	selecting	by	the

class	attribute	is	very	common.	In	fact,	it	is	so	common	that	there	is	a	special	simplified
notation	for	selecting	by	class.	Instead	of	writing	p[class=style1]	for	a	selector,	I	can
just	write	p.style1.

Therefore,	if	I	were	to	rewrite	my	classes.css	file	using	this	simplified	notation,	it	would
look	like	this:

Figure	7.5:	A	CSS	File	Using	Simplified	Notation	for	Classes

p	{	

			font-size:	10pt;	

}	

	

p.style1	{	

			color:	red;	

			background-color:	blue;	

}	

	

p.style2	{	

			font-size:	12pt;	

			color:	green;	

			background-color:	black;	

}

Not	only	is	that	easier	to	write,	it	is	easier	to	read!

CSS	has	a	rich	supply	of	selectors	that	allow	you	to	style	documents	in	a	very	dynamic
way.	You	can	have	selectors	that	indicate	tags	that	are	within	other	tags,	tags	that	are
preceded	by	some	other	tag,	and	a	number	of	other	ways	of	selecting	HTML	elements	for
styling.	This	book	only	covers	the	very	basic	elements	of	CSS	that	you	will	need	on	your
way	to	understanding	how	to	program	web	pages.

7.4	The	CSS	Box	Model

In	order	to	understand	how	styling	works,	it	is	important	to	understand	how	CSS	looks	at
the	content	on	a	web	page.	This	is	known	as	the	CSS	“box	model,”	because	CSS	thinks
about	web	pages	in	terms	of	boxes.	There	are	four	main	ways	that	CSS	looks	at	content—
either	as	lines	of	text	(known	as	inline	style),	as	a	rectangular	box	(known	as	block	style),
as	a	table,	or	as	a	list.	This	chapter	will	only	look	at	inline	and	block	styles	since	table	and
list	styles	have	a	lot	of	complexities	that	we	don’t	need	to	deal	with.

Most	tags	we	have	dealt	with,	such	as	<div>,	<p>,	<h1>,	<h2>,	etc.,	are	all	block	style	tags
by	default.	This	means	that	when	the	content	is	generated,	the	browser	will	put	the	given
element	into	a	rectangular	box.	Unless	otherwise	specified,	this	box	will	be	as	wide	as
possible	(i.e.	the	size	of	its	container)	and	as	tall	as	required	to	hold	all	of	the	content.
Inline	tags,	such	as	the	<a>	and		tags,	are	primarily	for	text	within	a	paragraph.
Therefore,	these	are	not	strictly	rectangular	boxes,	since	you	could	have	text	that	started	in
the	middle	of	one	line	and	wrapped	onto	the	next	line,	producing	an	irregular	shape.	So,
block	tags	are	for	styling	paragraphs,	groups	of	paragraphs,	and	other	blocky	content,	and
inline	tags	are	used	for	styling	text	within	a	paragraph.	You	can	also	change	an	HTML
element	from	inline	to	block	and	vice-versa	using	the	display	property.	By	setting	the
property	using	display:	block;	or	display:	inline;	you	can	force	HTML	elements	to
behave	in	a	different	way	than	their	default.

The	general	box	model	is	presented	in	Figure	7.6.

Figure	7.6:	The	CSS	Box	Model

Every	box	that	CSS	makes	is	a	block	of	content	surrounded	by	padding,	a	border,	and	a
margin.	If	a	width	is	specified	for	the	element	(using	the	width	property),	then	the	width	is
applied	to	the	content	box.	The	height	is	normally	based	on	the	content	within	the	box,	but
it	can	be	set	manually	using	the	height	property.	The	padding	is	the	area	surrounding	the
content.	If	there	is	a	background	set,	the	background	extends	through	the	content.	The
border	is	a	(usually)	solid	line	that	surrounds	the	padding.	The	margin	is	the	minimum
amount	of	space	between	one	element	and	the	next.	Margins	of	two	elements	next	to	each

other	collapse	together	so	that	the	combined	margin	is	the	largest	of	the	two	box	margins.

Oftentimes	you	don’t	see	all	of	these	pieces	(especially	the	border)	because	they	are	zero-
width.	However,	you	can,	using	CSS,	set	the	size	and	other	properties	of	each	one	of
these.	Inline	content,	because	of	its	irregular	shape,	can	have	padding	and	a	border	but	not
a	margin.

If	you	go	back	to	the	HTML	from	Figure	7.3,	we	can	modify	the	CSS	stylesheet
(classes.css)	to	show	how	the	box	model	works.	The	HTML	is	divided	into	two	sections
by	<div>	tags.	We	will	set	each	<div>	tag	with	a	border,	a	background,	a	padding,	and	an
internal	width.	Here	is	the	code	to	use:

Figure	7.7:	CSS	Example	for	the	Box	Model

div.section1	{	

			border:	1px	solid	black;	

			padding:	20px;	

			margin:	10px;	

}	

div.section2	{	

			border:	1px	solid	red;	

			background-color:	green;	

			width:	50%;	

			padding:	50px;	

			margin:	10px;	

}	

p	{	

			border:	1px	solid	blue;	

}

This	gives	us	two	large	boxes,	one	for	each	section,	and	several	smaller	boxes.	Note	that,
unless	otherwise	constrained,	the	boxes	take	up	as	much	width	as	they	can.	The	top	box
takes	up	the	width	of	the	page	(minus	the	margin	around	itself).	The	boxes	within	that	box
also	take	up	as	much	width	as	they	can,	but	they	are	constrained	by	the	margin,	border,
and	padding	of	the	box	around	them.

The	second	box	does	not	go	all	the	way	across	the	screen	because	we	set	the	width	of	that
box	to	be	50%.	Therefore,	it	only	goes	halfway	across	the	page.	Likewise,	the	boxes	within
that	box	are	constrained	to	this	new	size.

So	far,	we	have	seen	several	different	units	for	the	sizes	of	things	in	CSS.	CSS	has	several
units	of	measure	available,	but	the	most	common	are	pt	for	points,	px	for	pixels,	in	for
inches,	and	%	for	percentage	width.

7.5	Other	Capabilities	of	CSS

We	have	only	scratched	the	surface	of	CSS	in	this	chapter,	but	hopefully	you	have	a	taste
for	what	it	can	do	and	how	it	works.	In	addition	to	the	capabilities	we	have	discussed	so
far,	CSS	also	has	the	ability	to	move	boxes	around,	put	data	into	tables,	put	numbers	on
lists,	generate	small	amounts	of	content,	use	images	for	backgrounds,	show	and	hide
elements,	and	even	more.	On	the	box	model,	the	top,	right,	bottom,	and	left	sides	of	each
part	of	the	box	can	be	set	separately	(i.e.,	margin-right,	margin-left,	etc.).

Also,	CSS	can	adjust	your	layout	based	on	the	screen	size.	So,	for	instance,	if	you	have	a
lot	of	content	on	your	page	but	only	want	to	show	a	small	part	of	it	if	you	are	looking	at	it
on	a	small	screen	(like	a	phone),	CSS	will	let	you	hide	different	elements	based	on	the
screen	size.

There	are	a	number	of	different	extensions	to	CSS	that	have	been	developed	over	the	years
which	allow	lots	of	additional	features	such	as	animations,	some	3D	manipulation,
gradient	backgrounds	(where	one	color	slowly	transitions	to	another	color),	and	more.
These	extensions	are	not	all	supported	across	every	browser,	but	every	year	more	features
become	available	for	developers	to	use.

In	any	case,	CSS	is	a	great	tool	for	adding	style	to	your	web	pages.	To	see	the	amazing
flexibility	of	CSS,	you	should	check	out	CSS	Zen	Garden,	which	is	at
http://www.csszengarden.com.	This	is	a	collection	of	styles	which	all	display	the	same
web	page,	with	the	only	difference	being	the	CSS	used.	It	is	almost	unbelievable	the
amount	of	creativity	that	can	be	achieved	in	this	fashion.	It	should	also	be	noted	that	this	is
possible	precisely	because	HTML	was	refactored	into	separate	content	and	design
components.	Thus,	you	really	can	change	the	design	of	an	entire	website	just	by	switching
out	the	stylesheet.	Before	the	advent	of	CSS,	such	changes	required	rewriting	the	entire
website.	Now	it	only	requires	rewriting	the	stylesheet.

Chapter	8
Your	First	JavaScript	Program

In	part	5.5.1	we	covered	the	basics	of	how	web	pages	worked	using	HTML	and	CSS.	As
we	noted,	HTML	is	a	markup	language,	which	is	used	to	tell	the	computer	about	the
structure	of	text.	CSS	is	HTML’s	counterpart,	acting	as	a	styling	language	to	tell	the
computer	how	you	want	the	HTML	to	look.	These	are	both,	limited,	special-purpose
document	languages.	They	tell	the	computer	about	the	static	structure	of	a	document,	or
set	of	documents,	but	not	how	to	perform	any	function	or	computation.	Neither	HTML	nor
CSS	is	truly	a	general	purpose	programming	language.	Therefore,	in	order	to	add
interaction	and	computation	to	our	web	pages,	we	will	need	to	use	the	JavaScript
programming	language.

This	chapter	covers	one,	short,	simple	program.	However,	it	is	important	to	read	it	in
detail	because	we	cover	a	lot	of	the	terminology	that	we	will	use	when	talking	about	how
programs	and	programming	languages	work.

Review

In	this	chapter	we	covered	the	absolute	basics	of	how	to	write	a	JavaScript	program.	We
have	learned:

JavaScript	is	a	general-purpose	programming	language	that	allows	us	to	create
dynamic	web	pages.
ECMAScript	is	the	name	for	the	language	used	by	the	group	which	standardized	it,
but	it	is	usually	still	referred	to	as	JavaScript.
JavaScript	can	either	be	included	on	a	page	or	stored	in	a	separate	file.
JavaScript	is	designated	in	web	pages	using	the	<script>	tag.
Variables	are	temporary	storage	locations	for	values	and	are	declared	using	the	var
keyword.
The	=	operator	is	used	for	assigning	a	value	to	a	variable.
Functions	are	named	processes	that	are	defined	elsewhere.
Functions	can	be	given	values,	called	parameters	(or	arguments).
Multiple	function	parameters	are	separated	by	commas.
When	functions	complete,	the	value	they	give	back	is	called	the	return	value.
JavaScript	uses	quotes	(’	or	“)	to	signify	character	strings.
prompt	is	a	function	that	brings	up	a	dialog	box	for	the	user	type	in	a	character	string
and	returns	that	character	string.
parseInt	is	a	function	that	converts	a	string	to	a	number.
alert	is	a	function	that	brings	up	a	dialog	box	with	a	message.
The	+	operator	either	adds	(in	the	case	of	numbers)	or	concatenates	(in	the	case	of
strings).

Apply	What	You	Have	Learned

1.	 Create	a	new	JavaScript	program	that	asks	the	user	for	two	values.	Add	these	values

together	and	display	the	result.
2.	 Try	to	rewrite	the	program	you	just	created	so	that	it	doesn’t	use	variables.	Hint:

make	the	return	value	of	your	functions	be	the	parameter	to	other	functions.	It	also
might	help	to	combine	code	a	piece	at	a	time,	eliminating	a	single	variable	each	time.

This	part	covers	many	of	the	the	basic	principles	of	programming	needed	to	start
programming	in	JavaScript.

8.1	A	Short	History	of	JavaScript

JavaScript	was	created	by	Brendan	Eich	in	1995,	while	he	was	working	for	Netscape
(Netscape	is	now	known	as	Mozilla).	JavaScript	was	a	revolution	in	the	way	that	the	web
worked	because	it	moved	the	web	from	being	primarily	a	group	of	interlinked	documents
to	being	a	truly	immersive	and	interactive	environment.	Many	developers	(including
myself)	were	initially	skeptical	of	the	usefulness	of	JavaScript	when	it	first	came	out.	Over
the	years,	however,	it	has	proved	its	usefulness.	When	it	was	first	released,	several	other
vendors	tried	to	compete	with	JavaScript	by	having	their	own	scripting	language.	The
biggest	of	these	was	VBScript,	implemented	by	Microsoft	starting	in	version	3	of	Internet
Explorer	3.	However,	in	Internet	Explorer	11,	VBScript	support	has	been	more-or-less
officially	removed.

There	are	other	technologies	that	also	make	web	pages	more	dynamic,	such	as	Java,	Flash,
Silverlight,	ActiveX,	and	other	plug-ins,	but	these	are	not	nearly	as	integrated	into	HTML
documents	as	JavaScript.	These	other	technologies	usually	work	by	taking	a	specific	area
of	your	web	page	away	from	the	browser,	and	handling	it	itself.	JavaScript,	on	the	other
hand,	works	within	the	web	page	itself.	These	other	technologies	were	developed	to
augment	areas	where	JavaScript	fell	short,	such	as	animation,	video,	and	integration	with
other	parts	of	your	computer	(such	as	your	camera)	which	are	not	normally	part	of	the
browsing	process.	JavaScript,	however,	has	been	slowly	taking	over	these	tasks	as	well,
though	you	will	still	see	a	lot	of	places	where	these	other	technologies	are	useful.

One	confusing	thing	about	JavaScript	is	the	name.	As	mentioned	in	the	previous
paragraph,	there	is	another,	much	different	web	programming	language	called	Java.	These
are	not	the	same	thing,	nor	are	they	even	very	similar.	It	is	important	to	always	refer	to
JavaScript	by	its	full	name,	because	it	works	and	acts	very	differently	from	Java.

Over	the	years,	support	and	standardization	of	JavaScript	has	increased	dramatically.	In
the	early	days	of	JavaScript,	each	browser	handled	JavaScript	very	differently,	and	it	was
difficult	to	write	JavaScript	that	worked	everywhere.	Now,	twenty	years	later,	the	situation
is	much	improved.	JavaScript	was	standardized	by	the	ECMA,	under	the	name
ECMAScript.	Though	it	is	standardized	under	a	different	name,	this	is	the	same	language
as	JavaScript.

JavaScript	is	now	by	far	the	most	standard	way	of	developing	interactive	web	pages.	It	is
installed	on	every	major	browser,	and	most	of	the	inconsistencies	between	the	versions
have	been	worked	out.	It	is	also	supported	by	numerous	third-party	developers	who	write
programming	libraries	(add-in	functional	modules)	that	provide	JavaScript	programmers
with	the	ability	to	do	just	about	anything	imaginable.

8.1.1	Technology	Becomes	Politicized

Many	great	companies	eventually	wind	up	as	shadows	of	their	former	selves.	Tech	giants
who	made	great	leaps	forward	and	set	the	standards	of	innovation	sometimes	deteriorate
into	soulless,	self-centered,	self-important	clubs,	focusing	more	on	themselves	than	on
using	their	technology	to	improve	the	world.

It	is	sad	that	a	pioneering	company	such	as	Netscape,	who	basically	invented	the	modern
browser	more	than	once,	is	now,	instead	of	inventing	the	next	generation	of	web
technologies,	engaged	in	petty	politically-correct	inquisitions.	The	creator	of	JavaScript,
Brendan	Eich,	has	been	responsible	for	much	of	Netscape	and	Mozilla’s	development	both
in	their	technology	and	as	a	company.	However,	he	was	kicked	out	of	Mozilla	in	2014
because	of	a	small	contribution	he	made	to	an	unpopular	political	organization.	This
matches	with	the	general	shift	in	technological	leadership	from	Mozilla	to	Google	Chrome
over	the	last	several	years.	The	priorities	of	Mozilla	have	obviously	shifted	from	being
about	making	the	best	technology	to	placating	the	powerful.

Mozilla,	once	the	great	underdog	of	the	Internet	who	pushed	the	envelope	and	challenged
the	status	quo	time	and	again,	is	now	just	a	club	for	self-important	technologists.

8.2	A	Simple	JavaScript	Program

Instead	of	describing	what	JavaScript	looks	like	and	how	it	works,	we	will	begin	our	study
of	JavaScript	by	just	entering	in	an	example	program,	and	afterwards	describing	how	it
works.

Type	the	following	program	into	your	text	editor	and	save	it	as	an	HTML	file:

Figure	8.1:	A	Simple	Web	Page	with	a	JavaScript	Program

<html>	

<body>	

<h1>Simple	JavaScript	program</h1>	

	

<script	type=”text/javascript“>	

	

//	This	is	a	program	in	JavaScript	

	

var	person_age_string;	

var	person_age_number;	

var	age_in_twenty_years;	

	

person_age_string	=	prompt(“What	is	your	age?”);	

person_age_number	=	parseInt(person_age_string);	

age_in_twenty_years	=	person_age_number	+	20;	

	

alert(“In	20	years	you	will	be	“	+	age_in_twenty_years	+	

			”	years	old“);	

	

</script>	

</body>	

</html>

After	entering	this	program,	load	it	in	your	browser.	It	will	open	up	a	dialog	box	asking
you	what	your	age	is.	It	will	then	open	up	another	dialog	box	telling	you	what	your	age
will	be	in	twenty	years.	Pretty	simple,	right?	If	your	browser	did	not	do	these	things,
double-check	to	make	sure	you	entered	the	code	in	exactly	the	same	way	it	is	listed.	If	it
still	doesn’t	work,	see	Section	A.7.

So	let’s	look	at	what	this	code	does.

The	first	thing	to	notice	is	the	<script>	tag.	This	tag	tells	the	browser	that	what	occurs
between	the	<script>	start	and	end	tags	is	JavaScript	code.	The	browser	will	start	running
this	code	as	soon	as	it	comes	across	the	end	tag,	even	before	it	finishes	loading	the	page.
There	are	two	possible	attributes	to	the	<script>	tag.	The	one	used	here	is	the	type
attribute,	which	tells	the	browser	what	language	the	script	will	be	in.	This	should	always

be	text/javascript.	The	<script>	tag	can	take	another	attribute,	src,	which	tells	the
browser	to	look	in	another	file	(designated	by	the	value	of	src)	for	the	JavaScript	code
instead	of	it	being	in	the	web	page	itself.

After	the	<script>	tag,	there	is	a	JavaScript	single-line	comment.

Figure	8.2:	A	Single-Line	JavaScript	Comment

//	This	is	a	program	in	JavaScript

Whenever	JavaScript	code	has	two	slashes	together,	from	that	point	to	the	end	of	the	line
is	considered	a	comment	and	ignored	by	the	browser	(see	Section	6.6.5	for	more
information	about	comments).	Another	type	of	comment	you	will	see	in	JavaScript	starts
with	/*	and	ends	with	*/,	and	is	intended	for	multi-line	comments.

The	first	set	of	programming	statements	start	with	the	word	var:

Figure	8.3:	Variable	Declarations	in	JavaScript

var	person_age_string;	

var	person_age_number;	

var	age_in_twenty_years;

var	tells	JavaScript	that	we	need	a	temporary	storage	space,	called	a	variable,	to	hold
some	data	and	gives	that	temporary	storage	space	a	name.	Therefore,	var
person_age_string	says	that	person_age_string	is	going	to	be	the	name	of	a	temporary
storage	space	which	we	will	use	to	hold	data.	The	way	programmers	state	this	is	that	var
person_age_string	creates	a	variable	called	person_age_string.	This	is	also	referred	to
as	defining	or	declaring	a	variable.	When	we	refer	to	person_age_string	later,	it	will
refer	to	this	variable.

After	this	is	a	semicolon	(;).	In	JavaScript,	semicolons	are	used	to	separate	statements
from	each	other.	So	when	we	see	a	semicolon,	we	known	we	have	come	to	the	end	of	a
statement.

The	next	two	statements	are	just	like	the	first,	defining	the	variables	person_age_number
and	age_in_twenty_years.	Notice	that	we	are	using	underscores	(_)	within	the	names	of
our	variables.	This	allows	us	as	programmers	to	see	the	words	spelled	out,	but	it	makes
sure	that	the	computer	knows	that	they	are	all	one	word.	For	instance,	if	I	said	“I	am	going
to	the	bus	stop,”	you	know	that	“bus	stop”	is	really	one	word.	However,	computers	are	not
that	smart.	Therefore,	if	you	were	talking	to	a	computer,	you	would	need	to	say,	“I	am
going	to	the	bus_stop”	(notice	the	underscore),	so	that	the	computer	knows	that	bus_stop

should	be	treated	as	one	word.

The	next	statement	has	a	lot	more	action	in	it.	Here	is	the	code:

Figure	8.4:	Prompting	the	User	for	Input

person_age_string	=	prompt(“What	is	your	age?”);

There	are	several	important	things	going	on.	First	of	all,	notice	the	equal	sign	(=).	In	most
programming	languages	(including	JavaScript),	the	equal	sign	is	a	command	that	says	to
put	whatever	value	is	on	the	right	side	of	the	equal	sign	into	the	variable	on	the	left	hand
side.	It	does	not	say	that	these	two	things	are	equal	already;	it	says	to	assign	the	right-hand
value	to	the	left-hand	variable.	This	is	known	as	an	assignment	statement.

The	left-hand	side	of	this	statement	is	one	of	the	variables	we	just	defined.	This	statement
says	that	we	should	put	a	new	value	into	that	variable.	The	right-hand	side	of	this
statement	tells	what	the	value	should	be.

The	right-hand	side	is	where	things	get	interesting.	prompt(“What	is	your	age?”)	tells
the	computer	to	put	up	a	dialog	box,	ask	the	given	question,	and	then	give	back	the	value
the	user	entered.	This	is	called	a	function	because	it	accesses	functionality	that	is	defined
somewhere	else.	Functions	in	JavaScript	start	with	the	name	of	the	function	(prompt	in
this	case),	then	an	opening	parenthesis	((),	then	the	function	parameters,	and	then	a
closing	parenthesis	()).	A	parameter	(also	referred	to	as	an	argument)	is	a	set	of	values
that	alters	how	a	function	performs	its	task.	In	this	case,	the	function	has	one	parameter,
“What	is	your	age?”.	This	is	a	character	string,	like	we	discussed	in	Section	4.4.	In
JavaScript,	a	string	is	enclosed	in	either	double-quotes	(”)	or	single-quotes	(’)	and	is
treated	as	a	single	value,	although	you	can	also	access	the	characters	individually	if	you
need	to.	We	say	that	the	parameter	is	passed	to	the	function	because	the	function	will
receive	whatever	value	we	put	here.	The	prompt	function	can	take	either	one	or	two
parameters.	The	first	parameter	is	the	text	you	want	to	display	to	the	user	in	front	of	the
input	box.	The	second	parameter	(which	we	are	not	using	here)	gives	a	default	value	to	the
user.	If	a	function	takes	more	than	one	parameter,	each	parameter	is	separated	by	a	comma
(,).	So,	if	we	wanted	to	give	the	user	a	default	age,	we	would	write	it	like	this:
prompt(“What	is	your	age?”,	“25”)	Remember	that	prompt	is	working	with	character
strings,	not	numbers,	which	is	why	we	put	our	default	value	in	quotes.	The	code	does	not
continue	until	the	function	is	finished,	which,	in	this	case,	means	that	the	user	has	typed	in
a	value	and	clicked	“OK.”	When	the	user	does	type	something,	that	value	is	then	used	as
the	value	of	the	function.	We	say	that	the	function	returns	that	value.

Therefore,	to	use	the	terminology	we	have	discussed	so	far,	we	say	that	the	code
prompt(“What	is	your	age?”)	calls	the	function	prompt	with	a	parameter	“What	is
your	age?”	and	returns	whatever	the	user	types	as	the	value	of	that	function.

Then,	since	the	prompt	function	returns	whatever	the	user	types,	the	value	that	the	user
types	gets	stored	into	the	variable	person_age_string.	Now,	why	did	we	call	the	variable

person_age_string?	Since	we	have	no	control	over	what	the	user	types,	we	are	getting
what	he	types	back	as	a	string.	We	want	the	user	to	type	in	a	number,	but	in	reality	he	can
type	anything	he	wants.	Therefore,	the	prompt	function	always	returns	a	string.	Hopefully,
the	user	did	what	we	asked	and	typed	in	a	number.	But	no	matter	what,	prompt	returned	a
string.	We	named	the	variable	person_age_string	so	we	remember	that	it	is	holding	a
string,	not	a	number.

Now	the	program	needs	to	add	20	years	to	whatever	age	the	user	typed.	That	isn’t
currently	possible,	because	we	are	holding	the	string	that	the	user	typed	in,	but	we	need	a
number.	The	next	line,	person_age_number	=	parseInt(person_age_string),	does	the
conversion	we	need.	parseInt	is	a	built-in	function	that	takes	a	string	and	parses	it	into	a
number.	Parsing	is	the	process	of	taking	a	string	and	converting	it	into	a	more
computerized	representation	that	is	easier	for	computer	programs	to	manipulate.	In	this
case,	we	are	taking	a	string	and	converting	(parsing)	it	into	a	number.	parseInt	is	short
for	“parse	integer,”	where	an	integer	is	a	whole	number	(i.e.,	1,	2,	3,	4,	etc.).	If	you
wanted	a	number	with	decimals	in	it,	you	would	used	parseFloat,	which	is	short	for
“parse	a	floating-point	number,”	with	a	floating-point	number	being	a	number	with	a
decimal	point	in	it	(i.e.,	31.25,	0.002,	23.12,	etc.).

We	then	take	the	value	from	the	parseInt	function	and	store	it	into	the
person_age_number	variable.	Now	we	have	the	value	we	need	in	a	variable	as	a	number!
Since	it	is	a	number,	we	can	perform	computations	with	it!

age_in_twenty_years	=	person_age_number	+	20	tells	the	computer	to	add	20	to	the
value	in	the	variable	person_age_number,	and	then	store	the	result	in
age_in_twenty_years.	In	JavaScript,	+	and	=	are	considered	operators,	and	the	values
that	they	operate	on	are	called	operands.	Operators	are	special	built-in	operations	in	the
language.	They	differ	from	functions	because,	as	we	will	learn,	you	can	write	your	own
function,	but	the	operators	of	a	language	are	essentially	fixed.	Operators	are	used	to	do
special	tasks	(such	as	assignment)	or	in	places	where	making	a	function	call	would	look
funny.	In	math,	for	example,	it	is	more	natural	to	write	2	+	3	than	it	is	to	write	something
like	add(2,	3)).

Now	we	now	have	the	value	we	are	looking	for;	all	we	need	is	to	display	it.	The	next	line
of	code	displays	the	value.

Figure	8.5:	Displaying	Results

alert(“In	20	years	you	will	be	“	+	age_in_twenty_years	+	

”	years	old“);

This	piece	of	code	has	several	strange	features.	First	of	all,	it	uses	the	plus	sign	(+)	with
strings.	How	would	you	add	strings?	Well,	in	JavaScript,	when	the	plus	sign	is	used	with
strings,	it	no	longer	means	addition,	but	rather	concatenation.	Concatenation	means
joining	two	things	together.	In	this	case,	we	are	joining	strings	end-to-end.	There	is	one

problem—age_in_twenty_years	is	not	a	string	but	a	number!	JavaScript	handles	this
automatically	by	converting	anything	that	is	added	to	a	string	into	a	string	before	the
addition	takes	place.	So,	the	plus	sign	indicates	addition	if	it	has	numbers	on	both	sides
but	concatenation	if	there	is	a	string	on	either	side	of	it.	In	addition,	concatenation	will
convert	the	other	value	into	a	string	if	it	isn’t	one	already.

Another	thing	to	note	is	that,	in	JavaScript,	strings	have	to	be	one	line	only.	Therefore,	if
you	need	to	break	a	statement	into	more	than	one	line,	never	do	it	in	the	middle	of	a	string.

Another	interesting	feature	of	this	code	is	that	it	combines	several	operations.	It
concatenates	three	items	together	and	then	passes	the	resulting	string	to	the	alert
function.	In	most	programming	languages	(including	JavaScript),	you	can	combine	as
many	operations	and	functions	together	as	you	want	to	give	you	the	final	value.

Finally,	this	code	introduces	the	alert	function,	which	displays	a	popup	to	the	user.	The
alert	function	returns	when	the	user	clicks	on	the	“OK”	button.

8.2.1	Practice	Questions

1.	 What	is	a	variable	and	how	do	you	declare	it	in	JavaScript?
2.	 What	are	the	two	different	functions	of	the	plus	sign	in	JavaScript?
3.	 What	do	the	prompt	and	alert	functions	do?

8.2.2	Practice	Activity

In	this	activity	we	will	try	to	modify	the	program	in	this	section.	Be	sure	that	the	program
is	working	before	you	begin	the	activity.	Test	your	program	after	each	step	to	make	sure	it
is	still	working.	If	you	wait	until	the	end,	and	it	doesn’t	work,	you	won’t	know	where	you
made	the	mistake.

1.	 Add	an	alert	before	your	prompt	that	simply	says	“hello.”
2.	 Change	the	number	of	years	added	to	25.	Be	sure	to	change	the	final	alert	as	well	so

it	says	the	right	thing!
3.	 Can	you	figure	out	how	to	combine	the	lines	with	the	prompt	and	parseInt	into	one

another	so	that	the	output	of	prompt	becomes	the	input	of	parseInt?	What	variable	is
no	longer	needed	in	this	case?

8.3	Moving	the	JavaScript	to	Its	Own	File

Just	like	CSS,	JavaScript	can	either	be	embedded	within	your	HTML	file	or	stored	in	a
separate	file.	My	recommendation	is	to	always	keep	your	JavaScript	in	a	separate	file
unless	you	have	a	specific	reason	to	include	it	in	your	page	because	sometimes	the
interaction	between	JavaScript	and	HTML	can	lead	to	unexpected	results.	For	instance,
the	browser	can	confuse	some	parts	of	JavaScript	for	HTML	tags.	By	keeping	JavaScript
in	a	separate	file,	these	issues	are	avoided.

In	order	to	put	your	JavaScript	into	a	separate	file,	all	you	need	to	do	is	copy	the	code
between	the	<script>	start	and	end	tags	and	paste	them	in	a	new	text	document	with	the
extension	.js.	Then,	modify	your	<script>	tag	to	have	a	src	attribute	(keep	the	type
attribute	the	way	it	is)	with	the	relative	URL	of	your	new	JavaScript	file.	If	we	named	our
JavaScript	file	application.js	and	put	it	in	the	same	folder	as	our	HTML	file,	the	HTML
would	look	like	this:

Figure	8.6:	HTML	File	Referencing	External	JavaScript

<!DOCTYPE	html>	

<html>	

<body>	

<h1>Simple	JavaScript	program</h1>	

	

<script	type=”text/javascript”	src=”application.js“></script>	

	

</body>	

</html>

The	application.js	file	would	look	like	this:

Figure	8.7:	Short	JavaScript	File	Referenced	from	HTML

//	This	is	a	program	in	JavaScript	

	

var	person_age_string;	

var	person_age_number;	

var	age_in_twenty_years;	

	

person_age_string	=	prompt(“What	is	your	age?”);	

person_age_number	=	parseInt(person_age_string);	

age_in_twenty_years	=	person_age_number	+	20;	

	

alert(“In	20	years	you	will	be	“	+	age_in_twenty_years	+	

			”	years	old“);

Keeping	your	JavaScript	in	a	separate	file	has	other	advantages	too.	First	of	all,	it	makes
your	HTML	pages	easier	to	read	because	they	only	have	one	language	in	them—HTML.
By	keeping	your	languages	separated	in	their	own	files,	you	keep	more	of	your	sanity
intact.	Another	reason	is	that	it	allows	you	to	share	JavaScript	programs	and	JavaScript
program	pieces	between	multiple	web	pages.	Therefore,	you	don’t	have	to	write	the	same
code	over	and	over	again.	This	also	means	that	if	you	change	your	code	in	one	place,	you
don’t	have	to	search	for	and	make	the	same	change	on	every	other	page,	a	process	which
is	both	tedious	and	error-prone.	If	you	have	a	large	JavaScript	application,	separating	your
JavaScript	can	actually	make	your	pages	load	faster	because	your	browser	only	has	to	load
your	JavaScript	once	rather	than	have	it	take	up	space	implanted	in	the	middle	of	each	file.

Chapter	9
Basic	JavaScript	Syntax

All	languages,	whether	human	or	computer,	have	what	is	called	a	syntax.	The	syntax	of	a
language	are	the	ways	in	which	words	and	symbols	are	allowed	to	go	together.	For
instance,	consider	the	English	sentence	“I	ate	the	the	apple.”	That	sentence	has	a	syntax
error—I	put	two	“the”s	in	a	row.	That’s	simply	not	allowed	(and	non-sensical)	in	English.

But	syntax	has	a	larger	role	than	simply	telling	you	how	not	to	form	sentences.	It	also	tells
you	what	a	sentence	means.	For	instance,	if	I	say,	“I	have	a	yellow	banana	and	a	red
apple,”	you	know	that	the	word	“yellow”	describes	my	banana,	and	the	word	“red”
describes	my	apple.	You	know	that	because	English	syntax	tells	you	what	it	means	for	an
adjective	to	be	in	front	of	a	word—it	means	that	the	adjective	describes	the	word.

The	syntax	of	a	programming	language	is	very	similar.	As	usual,	what	makes
programming	languages	different	from	human	ones	is	that	the	syntax	is	stricter	and	more
exact.	The	computer	will	never	understand	what	you	mean,	only	what	you	tell	it.	If	I	tell
you,	“I	have	a	banana	yellow,”	you	might	figure	out	what	I	mean.	The	computer,	in	most
cases,	will	not.

Note	that	in	order	to	run	the	programs	in	this	chapter,	you	must	create	an	HTML	wrapper
for	them	just	like	you	created	in	Section	8.3.	It	is	recommended	that	you	keep	the
JavaScript	in	a	separate	file	and	merely	reference	it	through	the	src	attribute	of	the
<script>	tag.

Review

In	this	chapter	we	covered	the	basics	of	JavaScript	syntax.	We	have	learned:

Syntax	is	the	way	that	the	structure	of	a	program	or	sentence	indicates	its	meaning.
Every	language	has	its	own,	unique	syntax.
Types	of	syntactical	units	which	are	common	to	many	programming	languages
include	literals,	identifiers,	keywords,	operators,	functions,	expressions,	and	control
structures.
An	expression	is	a	sequence	of	literals,	identifiers,	operators,	and	functions	which
combine	to	yield	a	value.
JavaScript	assignment	statements	have	a	right-hand	side,	which	contains	an
expression	which	gives	the	value	to	be	assigned,	and	a	left-hand	side	that	says	where
(i.e.,	in	what	variable)	the	value	should	be	placed.
The	two	most	common	ways	for	a	control	structure	to	modify	the	flow	of	your
program	are	by	conditional	branching	and	looping.
The	if	statement	is	the	primary	method	of	conditional	branching	in	JavaScript.
Most	looping	in	JavaScript	is	accomplished	through	either	while	statements	or	for
statements.
The	basic	structure	of	a	loop	are	the	loop	initializers,	the	loop	condition,	and	the	loop
body.
Simple	loops	are	focused	around	a	single	loop	control	variable,	which	is	used	in	all

three	parts	of	the	loop’s	structure.
The	for	loop	allows	the	programmer	to	collect	all	of	the	manipulation	of	the	loop
control	variable	into	a	single	location,	which	is	easier	for	the	programmer	to	do
correctly	and	easier	for	others	to	read	and	understand.
Multiple	statements	can	be	placed	in	the	body	of	a	conditional	branching	statement	or
a	looping	statement.	The	curly	braces	denote	which	statements	belong	in	the	body	of
the	control	structure.
Conditional	branching	statements	and	loop	statements	can	be	placed	inside	of	other
branching	and	looping	statements	as	well	for	more	complex	processing.
The	var	statement	can	also	be	combined	with	an	assignment	statement	to	provide	an
initial	value	for	the	variable.

Apply	What	You	Have	Learned

1.	 Enter	the	code	for	the	quiz	game	in	Section	9.3.2.	Be	sure	to	create	an	HTML	file	that
loads	the	JavaScript	code.	Verify	that	the	game	works.

2.	 Create	your	own	quiz	game	with	at	least	three	questions.
3.	 Add	additional	code	to	this	game	to	give	someone	hints	if	they	answer	a	question

incorrectly.	If	this	is	your	first	time	programming,	this	may	be	harder	than	you	think.
Think	through	exactly	how	the	program	is	running,	and	what	you	would	need	to	do	to
get	it	to	give	hints	in	the	right	place.	Depending	on	how	you	decide	to	do	it,	you	may
need	to	embed	an	if	statement	within	the	body	of	your	loop.

4.	 Enter	the	code	for	adding	up	the	numbers	1	through	6	in	Section	9.3.3.	Be	sure	to
create	an	HTML	file	that	loads	the	JavaScript	code.	Verify	that	it	works.

5.	 Modify	the	code	so	that	you	ask	the	user	what	number	range	they	want	to	use	for	the
additions.	Don’t	forget	to	use	parseInt!

6.	 In	the	previous	example,	it	might	be	possible	for	someone	to	enter	an	invalid	range
(i.e.,	the	start	of	the	number	range	is	greater	than	the	end	of	the	number	range).	Add
if	statements	to	account	for	this,	either	by	alerting	the	user	or	just	fixing	the
problem.

9.1	Elements	of	Syntax

While	every	programming	language	has	its	own	syntax,	there	are	certain	types	of
syntactical	units	(i.e.,	pieces	of	syntax)	which	are	common	to	nearly	all	programming
languages.	For	instance,	nearly	every	programming	language	has	a	statement	separator—a
symbol	which	tells	the	programming	language	that	you	have	ended	a	statement.	In
JavaScript	(and	many	other	languages),	the	semicolon	(;)	performs	this	function.	Because
programming	languages	need	to	know	where	statements	begin	and	end,	most	of	them
include	a	syntactical	unit	in	the	language	which	says	that	we	are	done	with	a	statement.

Standard	elements	of	syntax	which	are	included	in	JavaScript	include:

Literals
A	literal	is	how	you	write	a	specific	value	in	the	language.	For	instance,	in
JavaScript,	2	is	a	literal	meaning	the	number	2,	and	“2”	is	a	literal	meaning	the	string
that	has	one	character,	which	is	the	“2”	digit.	We	will	discuss	how	to	write	different
types	of	literals	as	we	learn	what	they	are.	For	now,	numbers	and	character	strings	are
the	main	types	of	literals	we	are	concerned	with.

Identifiers
An	identifier	is	a	programmer-defined	name.	The	names	of	variables,	for	instance,
are	identifiers.	Each	programming	language	has	rules	as	to	how	identifiers	should	be
named,	usually	restricting	you	to	only	using	certain	characters	for	names.

Keywords
A	keyword	looks	like	an	identifier,	but	is	defined	by	the	programming	language.	var
is	a	keyword	that	we	have	seen	so	far,	which	indicates	that	the	next	identifier	will	be
the	name	of	a	new	variable.	Many	syntactical	units	are	indicated	by	certain	keywords.
In	JavaScript,	keywords	are	also	reserved	words,	which	means	that	you	are	not
allowed	to	have	an	identifier	with	the	same	name	as	a	keyword.

Operators
An	operator	is	something	(usually	a	symbol	like	+	or	-)	that	performs	a	task	that
would	be	inconvenient	or	unnatural	to	write	as	a	function.	The	values	that	an	operator
uses	to	perform	a	function	are	called	operands.	So,	for	2	+	3,	+	is	the	operator,	and	2
and	3	are	the	operands.

Functions
A	function	is	a	way	of	grouping	code	together	to	perform	as	a	unit.	We	will	discuss
functions	in	more	detail	in	Chapter	10.

Expressions
An	expression	is	a	combination	of	functions,	keywords,	operators,	identifiers,	and
literals	which	work	together	to	produce	a	value.	For	example,	5	+	2	+	3	is	an
expression	that	produces	the	value	10.

Control	Structures
A	control	structure	(also	called	a	flow	control	statement)	is	used	to	modify	the
flow	of	a	computer	program	from	its	normal,	sequential	nature.	For	instance,	if	you
wanted	to	only	perform	a	task	if	someone	checked	a	certain	checkbox,	you	would
need	to	use	a	control	structure	to	make	sure	that	it	only	ran	when	it	was	supposed	to.

Keep	in	mind	that	the	goal	of	this	book	is	to	provide	you	with	a	practical	introduction,	not
a	comprehensive	list.	There	will	be	aspects	of	the	syntax	that	we	skip	over,	briefly
mention,	or	oversimplify.	In	fact,	I	can	guarantee	you	that	if	I	gave	you	all	of	the	details,
you	would	put	the	book	down	and	find	something	else	to	do!	This	is	not	a	hindrance,
however.	It	is	actually	very	rare	for	a	programmer	to	know	all	of	the	details	of	a	syntax.
Some	of	the	details	cover	situations	that	the	programmer	would	never	think	to	do,	but	are
included	by	the	person	who	created	the	language	for	the	sake	of	completeness.	So,	in	any
language,	you	are	almost	always	a	student	and	rarely	a	master.	The	few	who	are	masters
are	usually	the	ones	writing	the	languages	themselves.	What	is	in	this	book	should	serve
you	well	for	a	long	time,	but	keep	in	mind	that	there	is	always	more	to	learn.

9.2	Assignment	Statements

In	Chapter	8	we	covered	assignment	statements	quite	a	bit.	Assignment	statements	are	the
foundation	of	most	programming	languages.

An	example	assignment	statement	is	below:

Figure	9.1:	A	Simple	Assignment	Statement

x	=	2	+	3;

Assignment	statements	have	two	sides—the	left-hand	side	and	the	right-hand	side.	The
left-hand	side	is	either	a	variable,	or,	as	we	will	see	in	Chapter	13,	some	other	reference	to
a	location	that	can	hold	a	value.	For	this	chapter,	the	left-hand	side	of	an	assignment	will
be	a	variable.

The	right-hand	side	of	an	assignment	statement	is	an	expression.	As	already	mentioned,	an
expression	is	a	combination	of	operators,	functions,	literals,	and	identifiers	that	yield	a
value.	In	this	case,	2	+	3	yields	the	value	5.	Therefore,	the	value	of	the	right-hand	side	is
5.	The	value	that	is	generated	on	the	right-hand	side	then	gets	stored	in	the	left-hand	side.

Expressions	can	be	simple—you	can	just	have	a	literal	value	(i.e.,	2).	You	can	use
variables	in	expressions,	too.	In	fact,	you	can	use	the	same	variable	in	the	expression	that
receives	the	assignment.	Take	a	look	at	the	following	code:

Figure	9.2:	A	Left-Hand	Side	Variable	Being	Used	in	the	Right-Hand	Side

var	x;	

x	=	10;		//	x	currently	has	the	value	10	

x	=	x	+	13;	//	x	now	has	the	value	23

If	you	look	at	the	last	statement,	the	expression	is	x	+	13.	Since	the	value	of	x	is	currently
10	(the	value	that	was	assigned	in	the	previous	line),	then	the	value	of	the	expression	is	10
+	13,	or	23.	Since	this	is	an	assignment	statement,	the	value	of	the	expression	on	the	right-
hand	side	(23)	is	now	assigned	to	the	variable	on	the	left-hand	side	(x).	Now,	the	value	of
x	is	23.

Expressions	can	also	be	grouped	together	using	parentheses	in	order	to	tell	the
programming	language	which	operations	you	want	to	have	happen	first.	For	instance,	look
at	the	following	code:

Figure	9.3:	Expressions	with	Groupings

var	x;	

x	=	(2	+	10)	*	3;

Here,	2	+	10	is	evaluated	first,	which	gives	the	value	12,	and	then	12	*	3	gets	evaluated,
giving	36.	This	number	(36)	is	then	stored	in	the	variable	x.

You	can	also	include	functions	in	your	expressions.	For	instance,	we	can	do	the	following:

Figure	9.4:	A	Function	in	an	Expression

var	x;	

x	=	“123”;		//	This	is	the	string	“123”,	not	the	number	123	

var	y;	

y	=	parseInt(x)	+	12;

The	last	line	of	this	code	combines	a	function	call	with	the	+	operator.	The	function	call
takes	the	value	in	x	and	returns	its	integer	value,	and	then	that	value	is	added	to	12,
yielding	135.

Expressions	can	also	be	contained	within	a	function’s	arguments.	Take	a	look	at	the
following	code:

Figure	9.5:	A	Function	Argument	as	an	Expression

var	x;	

x	=	parseInt(“12”	+	“3”);

Here	we	have	“12”	+	“3”	as	an	expression	which	yields	the	value	“123”	(because	“12”
and	“3”	are	both	strings).	This	then	gets	passed	into	the	parseInt	function,	which	then
yields	the	number	123,	which	is	then	stored	in	x.

9.3	Control	Structures

Control	structures	modify	the	flow	of	your	program.	Normally,	you	think	of	your	program
as	going	step-by-step,	one	statement	to	the	next.	Control	structures	are	syntactical	units
which	cause	the	flow	of	your	program	to	be	altered	in	some	way.	The	two	basic	control
structures	that	every	programming	language	has	to	modify	that	flow	are	conditional
branching,	which	causes	the	computer	to	either	perform	one	section	of	code	or	another,
and	looping,	which	causes	the	computer	to	perform	a	section	of	code	repeatedly.

9.3.1	The	if	Statement

The	if	statement	is	the	primary	way	that	JavaScript	programmers	do	conditional
branching.	The	if	statement	has	the	following	basic	form:

Figure	9.6:	The	Structure	of	the	If	Statement

if(some_condition)	{	

			//	Put	the	code	to	perform	if	some_condition	is	true	here	

}	else	{	

			//	Put	the	code	to	perform	if	some_condition	is	not	true	here	

}

First	notice	the	use	of	curly	braces	({	and	}).	In	JavaScript,	curly	braces	are	used	to	group
statements	together	into	blocks.	The	if	statement	potentially	has	two	blocks—one	to
perform	if	the	condition	is	true,	and	one	to	perform	if	the	condition	is	false.	You	can	put
any	number	of	statements	inside	the	blocks.

The	second	thing	to	notice	is	the	some_condition	after	the	if	statement.	if	statements	use
conditional	expressions	to	decide	which	block	to	perform.	A	conditional	expression	is
just	like	any	other	expression,	except,	rather	than	the	value	of	the	expression	being	a
number	or	a	string,	it	is	a	boolean	value.	A	boolean	value	is	simply	a	value	that	is	either
true	or	false.	Boolean	expressions	usually	compare	two	values	to	determine	if	they	are
equal	or	if	one	is	greater	than	the	other,	or	some	similar	operation	that	can	be	true	or	false.

To	make	it	more	clear,	here	is	a	program	that	uses	an	if	statement:

Figure	9.7:	An	Example	if	Statement

var	my_age;	

	

//	Prompt	for	an	age	and	convert	it	into	an	integer	

my_age	=	parseInt(prompt(“What	is	your	age?”));	

	

if(my_age	>	17)	{	

			alert(“You	are	old	enough	to	vote!”);	

}	else	{	

			var	years_to_vote;	

			years_to_vote	=	18	-	my_age;	

			alert(“You	have	“	+	years_to_vote	+	

						”	years	left	before	you	can	vote.”);	

}

Here,	the	conditional	expression	is	my_age	<	17.	What	this	does	is	look	at	the	variable
my_age,	and	if	the	value	of	my_age	is	greater	than	17,	then	the	value	of	the	expression	is
true.	If	the	value	of	my_age	is	not	greater	than	17,	then	the	value	of	the	expression	is
false.	The	>	operator	works	just	like	the	math	operators,	except	that	the	value	it	gives	is	a
boolean	(true/false)	value	rather	than	a	number	value.

Notice	what	happens	in	the	code.	If	you	your	age	is	over	17,	then	it	just	gives	an	alert.
However,	if	your	age	is	17	or	under,	it	then	performs	multiple	tasks—first,	it	performs	a
calculation	to	see	how	many	years	you	have	left	before	you	can	vote,	and	after	that	it
displays	the	answer.

Common	boolean	operators	(operators	which	yield	true	or	false)	include:	

Operator Meaning Examples
== Equality 2	==	2	yields	true;	2	==	3	yields	false
!= Inequality 2	!=	2	yields	false;	2	!=	3	yields	true
< Less-Than 2	<	2	yields	false;	1	<	2	yields	true
> Greater-Than 2	>	2	yields	false;	3	>	2	yields	true
>= Greater-Than-Or-Equal-To 2	>=	2	yields	true;	1	>=	2	yields	false
<= Less-Than-Or-Equal-To 2	<=	2	yields	true;	3	<=	2	yields	false

Oftentimes,	conditions	need	to	be	combined.	Let’s	say	that	we	want	to	know	if	both	of
these	are	true—you	are	exactly	18	years	old	and	your	name	is	Fred.	You	could	do	this	in
one	of	two	ways.	The	first	way	is	to	embed	one	if	statement	inside	another	one,	like	this:

Figure	9.8:	An	if	Statement	Embedded	in	an	if	Statement

var	my_age;	

var	my_name;	

	

my_name	=	prompt(“What	is	your	name?”);	

my_age	=	parseInt(prompt(“What	is	your	age?”));	

	

if(my_age	==	18)	{	

			if(my_name	==	“Fred“)	{	

						alert(“Your	name	is	Fred	and	you	are	18!”);	

			}	

}

Note	that,	first,	I	don’t	have	an	else	branch	on	these	if	statements.	The	else	branch	is
actually	optional.	If	the	condition	is	false,	and	there	is	no	else	branch,	it	will	just	skip	it
and	go	on	to	the	next	statement.	The	other	thing	to	note	is	that	we	can	have	an	if
statement	within	a	code	block	on	a	condition.	In	JavaScript,	any	code	can	go	within	these
blocks.

However,	this	takes	a	lot	of	typing.	It	would	be	nicer	if	we	could	combine	the	two	if
statements	into	a	single	statement.	We	can	do	this	by	combining	the	boolean	expressions.
Boolean	expressions	can	be	combined	with	two	operators,	&&	(which	is	pronounced	“and”)
and	||	(which	is	pronounced	as	“or”).	&&	yields	a	true	value	if	both	of	its	operands	are
true,	and	||	yields	a	true	value	if	either	of	its	operands	are	true.	We	can	therefore	combine
these	statements	into	a	single	if	statement	using	&&:

Figure	9.9:	Combining	Conditions

var	my_age;	

var	my_name;	

	

my_name	=	prompt(“What	is	your	name?”);	

my_age	=	parseInt(prompt(“What	is	your	age?”));	

	

if(my_age	==	18	&&	my_name	==	“Fred“)	{	

			alert(“Your	name	is	Fred	and	you	are	18!”);	

}

The	one	other	boolean	operator	that	we	need	to	cover	is	the	!	(pronounced	“not”)	operator.
The	!	operator,	instead	of	having	two	operands,	only	has	one,	which	appears	on	the	right
side	of	the	operator.	This	operator	returns	the	opposite	of	whatever	boolean	value	is	on	its
right.	It	is	also	best	to	use	the	!	operator	with	parentheses	so	it	is	obvious	to	you,	to	the
computer,	and	to	other	people	reading	your	code,	what	expression	you	are	applying	it	to.

So,	for	instance,	if	I	wanted	to	find	out	if	the	variable	my_value	is	not	between	3	and	10,	I
can	write	!(my_value	>=	3	&&	my_value	<=	10).	The	expression	in	parentheses	will
yield	true	if	the	value	is	within	range,	and	then	the	!	operator	will	cause	it	to	return	the
opposite.

9.3.2	The	while	Statement

Now	that	we’ve	looked	at	conditional	statements	with	the	if	statement,	it	is	now	time	to
look	at	looping	statements.	Loops	are	used	to	repeat	a	section	of	code	a	certain	number	of

times	or	until	a	certain	condition	is	reached.	Let’s	say	you	have	a	quiz	game,	and	you	want
someone	to	keep	trying	answers	until	they	got	the	right	one.	You	would	use	a	loop	because
you	would	want	the	code	to	keep	asking	them	the	question	and	reading	answers	until	they
reach	the	right	answer.

The	most	basic	looping	structure	in	JavaScript	is	the	while	statement.	The	while
statement’s	overall	structure	looks	like	this:

Figure	9.10:	Basic	Structure	of	a	While	Statement

while(some_condition)	{	

			//	Perform	tasks	here	

}

The	while	statement	tells	JavaScript	to	repeat	the	code	in	the	given	block	until
some_condition	is	false.	It	checks	some_condition	before	each	time	it	runs	the	block	of
code,	and,	if	the	condition	is	true,	it	runs	the	loop.	If	the	condition	is	false,	then	it
considers	the	loop	completed	and	moves	on	to	the	next	part	of	the	code.

Here	is	an	example	program	with	a	while	loop	that	will	repeat	until	the	user	enters	the
right	value:

Figure	9.11:	A	While	Loop	Example

var	answer;	

	

while(answer	!=	“Genesis“)	{	

			answer	=	prompt(“What	is	the	first	book	in	the	Bible?”);	

}	

alert(“You	got	the	answer	right!”);

What	this	will	do	is	start	out	by	creating	a	variable	called	answer.	By	default,	variables	in
JavaScript,	before	they	are	given	a	value,	are	given	an	empty	value	that	is	called
undefined.	After	defining	the	variables,	the	code	starts	the	while	loop.	When	it	first
starts,	it	evaluates	its	condition,	known	as	the	loop	condition.	The	condition	is	answer	!=
“Genesis”.	This	checks	to	see	if	the	variable	answer	is	different	from	the	character	string
“Genesis”.	Indeed,	undefined	is	different	from	“Genesis”,	so	the	condition	is	true.	This
means	that	we	can	proceed	with	the	loop.

After	the	loop	condition	comes	a	block	of	statements	wrapped	in	curly	braces	known	as
the	loop	body.	These	statements	are	executed	if	the	loop	condition	is	true.	Within	this
loop,	there	is	only	one	statement,	which	asks	the	user	to	answer	a	question,	and	stores	the

result	in	the	answer	variable.	When	the	computer	is	done	executing	the	body	of	the	loop,	it
re-evaluates	the	loop	condition	again	to	see	if	we	should	run	the	loop	again	or	if	we	are
done.

Let’s	say	that	the	user	had	erroneously	answered	the	question	by	typing	in	“Exodus.”
What	would	happen?	answer	would	have	the	value	“Exodus”.	When	it	evaluates	the	loop
condition,	answer	!=	“Genesis”	would	still	returns	true.	Therefore,	it	would	run	the	loop
body	again.

Now	let’s	say	that	this	time	they	type	in	“Genesis”	as	they	should.	What	happens	now?
Well,	“Genesis”	gets	put	into	answer.	Now	the	loop	body	is	complete	again,	so	it	re-
evaluates	the	loop	condition.	This	time,	the	condition	answer	!=	“Genesis”	is	false!
When	the	loop	condition	is	false,	it	transfers	control	to	the	first	instruction	after	the	loop
body.	In	this	case,	that	instruction	tells	the	user	that	they	entered	the	right	value.

One	thing	to	be	careful	of	when	writing	loops	is	to	make	sure	that	the	loop	condition	can,
eventually,	evaluate	to	false.	Otherwise,	what	will	happen?	It	will	loop	forever!	In
computer	terms,	this	is	known	as	an	infinite	loop.	You	should	always	double-check	to
make	sure	that	your	loops	will	eventually	terminate.	We	will	cover	infinite	loops	more	in
the	next	section.

9.3.3	The	for	Statement

One	common	reason	for	a	loop	is	to	perform	a	computation	a	specified	number	of	times.
Let’s	say	that	we	wanted	to	write	a	program	that	added	up	all	of	the	numbers	between	1
and	6.	This	can	be	easily	accomplished	through	a	loop.

Here	is	how	we	would	accomplish	that	with	a	while	loop:

Figure	9.12:	Adding	Up	the	Numbers	1	through	6	with	a	while	Loop

var	num	=	1;	//	This	holds	the	next	number	to	add	

var	sum	=	0;	//	This	holds	the	sum	total	so	far	

	

while(num	<=	6)	{		//	Check	if	we	are	done	

			//	Add	the	next	number	to	the	sum	

			sum	=	sum	+	num;	

	

			//	Go	to	the	next	number	

			num	=	num	+	1;	

}	

	

alert(“The	sum	of	the	numbers	1	through	6	is	“	+	sum);

The	way	that	this	works	is	that	it	begins	by	putting	starting	values	in	each	variable.	This	is
known	as	initializing	the	variables.	Oftentimes	a	program	succeeds	or	fails	based	on

whether	or	not	the	variables	were	initialized	to	the	right	values.	In	this	case,	num	is	set	to
the	first	number	we	want	to	add	in	our	sum.	The	variable	sum	is	set	to	zero.	It	is	set	to	zero
because	that	is	the	state	of	a	sum	before	anything	gets	added	to	it—a	sum	of	nothing	is
zero.

Next	the	loop	condition	is	evaluated.	Yes,	num	is	less	than	or	equal	to	6	since	its	value	is	1.
Next,	that	number	is	added	to	sum	and	assigned	back	into	sum,	which	is	now	1.	The	next
part	is	the	most	important	part—you	add	1	to	num	and	store	it	back	into	num	to	move	it	to
the	next	number.	The	value	of	num	is	now	2.	Notice	that	even	though	it	is	still	less	than	or
equal	to	6,	it	is	a	step	closer	to	terminating	the	loop.	Now	we	repeat	the	loop	condition	and
loop	body	again.	At	the	end	of	the	next	iteration	through	the	loop,	the	value	of	num	is,
again,	a	step	closer	to	terminating	the	loop.

After	running	the	loop	body	6	times,	the	value	of	num	is	7,	which	will	terminate	the	loop
and	give	the	answer.

Now	take	a	minute	to	think—what	would	happen	if	we	accidentally	left	off	the	code
which	added	1	to	num	at	the	end	of	the	loop?	num	would	never	increase,	and	so	it	would
always	be	1,	and	therefore	num	<=	6	would	always	be	true	and	the	loop	would	never,	ever
finish.	A	loop	that	never	finishes	is	known	as	an	infinite	loop.	An	infinite	loop	could	lock
up	your	browser,	or,	even	worse,	your	whole	computer.

When	you	have	a	simple	loop	like	this,	where	there	is	a	single	variable	which	is	used	to
manage	whether	or	not	the	loop	repeats,	that	variable	is	called	the	loop	control	variable.
However,	the	problem	is	that	while	loops	separate	out	the	loop	condition	from	the	location
where	we	increment	the	loop	control	variable.	Yet	another	location	to	manage	is	the	place
where	the	loop	control	variable	gets	initialized.	Having	these	important	parts	of	the	loop	in
different	places	can	be	dangerous	as	we	can	easily	forget	important	steps.	However,
another	flow	control	statement	is	available	which,	for	simple	loops,	keeps	all	of	the	steps
for	managing	the	control	variable	in	one	spot.	This	statement	is	the	for	statement.

The	structure	of	the	for	statement	is	like	this:

Figure	9.13:	Basic	Structure	of	the	for	Statement

for(loop_control_variable_initialization;	loop_condition;

loop_control_variable_modification)	{	

			//	Loop	Body	

}

The	three	places	where	we	used	the	control	variable	are	now	all	packaged	together	in	the
for	statement.	This	makes	the	process	of	writing	simple	loops	much	less	error-prone.

So,	if	we	rewrite	our	previous	program	using	a	for	statement,	it	looks	like	this:

Figure	9.14:	Add	Numbers	1	through	6	Using	a	for	Statement

var	sum;	

var	num;	

	

sum	=	0;	

for(num	=	1;	num	<=	6;	num	=	num	+	1)	{	

			sum	=	sum	+	num;	

}

As	you	can	see,	everything	we	do	with	our	loop	control	variable	is	contained.	One	other
thing	that	the	JavaScript	syntax	allows	us	to	do	is	to	combine	our	variable	declarations	and
initializations	into	one	line.	Therefore,	we	can	rewrite	this	same	code	as:

Figure	9.15:	Example	of	Combining	Variable	Declarations	and	Initializations

var	sum	=	0;	

for(var	num	=	1;	num	<=	6;	num	=	num	+	1)	{	

			sum	=	sum	+	num;	

}	

alert(“The	sum	of	the	numbers	1	through	6	is	“	+	sum);

And	there	you	have	it!	This	syntax	allows	you	to	better	manage	your	loop	control
variables	by	keeping	all	of	the	management	code	in	one	place.	It	also	makes	the	code
easier	to	read.	while	statements	are	still	very	important,	especially	for	more	complicated
loops.	But	most	of	the	time	you	can	get	away	with	using	a	for	loop.

Chapter	10
Introducing	Functions	and	Scope

In	the	previous	chapter	we	learned	about	the	nuts	and	bolts	of	how	programming	works,
with	assignments	statements,	conditional	branching,	and	loops.	For	small	programs,	this	is
all	you	need.	In	fact,	you	can	do	any	possible	computation	you	might	need	to	do	with	only
these	features.	However,	as	your	programs	get	larger—even	just	a	little	bit	larger—you
will	need	tools	that	will	enable	you	to	get	more	work	done	with	each	line	of	code	and	to
organize	your	code	into	logical	blocks.	Imagine,	for	instance,	if	your	program	was	10,000
lines	long.	If	you	needed	to	change	a	line,	it	might	be	hard	to	find!

Likewise,	let’s	say	there	was	a	task	that	you	had	to	do	over	and	over	again.	If	you	had	to
type	out	the	code	for	it	each	time,	that	would	be	a	lot	of	wasted	effort!	In	addition,	let’s
say	that	you	found	an	error	(known	as	a	bug)	in	your	code	that	you	had	been	copying.	If
you	had	20	copies	of	the	code,	you	would	have	to	find	each	copy	and	fix	it.	This	is
tedious,	wasteful,	and	error-prone.

What	we	need	to	do	is	to	take	sections	of	code	and	package	them	up	into	a	unit.	Doing	this
will	make	our	code	both	better	organized	and	reusable.	The	JavaScript	language	uses
functions	to	organize	and	reuse	sections	of	code.

Review

In	this	chapter	we	discussed	what	a	function	is	and	how	we	can	use	functions	in	our	code.
We	have	learned:

The	function	operator	creates	a	function.
A	function	takes	parameters,	which	are	variables	that	refer	to	values	passed	to	the
function.
Function	parameters	are	positional,	which	means	that	the	order	that	they	are	defined
using	the	function	operator	is	the	same	order	that	the	function	call	must	use.
A	function	has	a	function	body,	which	is	the	code	that	tells	the	computer	what	to	do
when	the	function	is	called.
Functions	are	stored	in	named	variables	so	that	they	can	be	called.	Without	a	variable
name,	there	would	be	no	way	to	call	them.
Functions	can	call	other	functions.
Functions	can	be	used	to	organize	your	code	into	well-defined,	understandable	units.
Functions	can	be	used	to	minimize	the	amount	of	code	that	needs	to	be	written	by
moving	repeated	sections	of	code	into	a	function.
When	repeated	code	sections	are	moved	into	a	function,	this	also	makes	it	easier	to
fix	bugs	as	they	only	need	to	be	fixed	in	one	place.
A	variable’s	scope	refers	to	the	period	when	a	variable	becomes	active	and	the	places
from	which	it	can	be	accessed.
Variables	in	the	global	scope	can	be	accessed	from	anywhere	in	your	code.
Variables	in	a	function’s	local	scope	can	only	be	accessed	from	within	that	function.
If	a	function	has	a	local	variable	with	the	same	name	as	a	global	variable,	the	global

variable	is	hidden	from	view	during	that	function.
If	two	functions	have	a	local	variable	with	the	same	name,	these	refer	to	two	different
variables	because	they	each	exist	in	different	scopes.

Apply	What	You	Have	Learned

With	the	knowledge	you	have	learned	so	far,	you	can	now	start	making	real	programs.
Remember	your	tools—if,	while,	for,	and	function,	and	you	will	be	able	to	make	all	of
the	programs	listed	below.

1.	 Create	a	Celsius-to-Fahrenheit	converter.	It	should	ask	the	user	for	a	Celsius
temperature	and	return	a	Fahrenheit	temperature.	The	conversion	from	Celsius	to
Fahrenheit	is	to	multiply	the	Celsius	temperature	by	9,	divide	the	result	by	5,	and	add
32.	Be	sure	that	the	actual	conversion	is	contained	within	a	function.

2.	 Create	a	fuel	efficiency	calculator.	It	should	ask	for	the	number	of	miles	you	drove,
how	many	gallons	you	used,	and	the	price	per	gallon	of	fuel.	It	should	then	tell	you
the	number	of	dollars	per	mile	that	it	cost	you	to	drive.	The	formula	for	this	is	to	take
the	price	per	gallon,	multiply	by	the	gallons,	and	divide	by	the	number	of	miles.	Be
sure	that	the	formula	is	handled	in	a	function.

3.	 Implement	the	factorial	function.	The	factorial	function	takes	a	number,	and
multiplies	together	every	number	from	1	to	the	given	number.	For	instance,	the
factorial	of	6	is	6	*	5	*	4	*	3	*	2	*	1.	The	factorial	of	3	is	3	*	2	*	1.	Note	that
since	you	are	repeating	an	operation,	you	will	need	a	loop.	Be	sure	that	your	factorial
calculation	is	written	in	a	function	and	allow	the	user	to	enter	the	number	they	want
the	factorial	of.

4.	 Take	any	one	of	these	calculators	and	make	it	so	that	the	user	can	enter	as	many
values	as	they	want.	You	can	do	this	by	either	asking	the	user	afterwards	if	they	want
to	keep	going,	or	have	a	special	value	that	the	user	types	to	signal	that	they	are	done.
In	any	case,	make	it	so	that	the	user	can	keep	using	the	application	until	they	are
ready	to	be	finished.

10.1	Your	First	Function

You	already	have	some	experience	with	functions.	Remember	parseInt,	prompt,	and
alert?	These	are	known	as	built-in	functions	because	they	are	part	of	JavaScript	itself.
However,	you	can	define	your	own	functions	that	you	can	call	in	the	same	way.

To	begin	our	discussion	of	functions,	let	me	show	you	a	program	that	illustrates	how
functions	work.	Remember	to	wrap	this	and	the	other	programs	in	this	chapter	in	an
HTML	file	like	we	described	in	Section	8.3.	Here	is	the	program:

Figure	10.1:	An	Example	of	Using	Functions

var	square_a_number	=	function(num)	{	

			var	value	=	num	*	num;	

			return	value;	

};	

	

alert(“The	square	of	3	is	“	+	square_a_number(3));	

alert(“The	square	of	4	is	“	+	square_a_number(4));

What	this	program	does	is	define	a	function	which	takes	a	single	value	and	returns	that
value	squared	(i.e.,	multiplied	by	itself).	It	then	uses	that	function	twice,	giving	it	different
numbers	to	square.	The	function	is	defined	using	the	function	keyword.

After	the	function	keyword	comes	a	parameter	list—a	list	in	parentheses	of	all	of	the
parameters	that	the	function	can	take.	The	function	we	are	defining	takes	a	single
parameter,	which	we	have	named	num.	This	means	that	the	value	that	is	sent	to	the
function	gets	stored	into	num	for	the	duration	of	the	function,	so	we	have	a	name	to	call	it
by.	Since	it	is	in	the	parameter	list,	we	do	not	use	the	var	keyword	to	define	it.	So,	in
short,	function(num)	tells	JavaScript	to	define	a	function	that	takes	a	single	parameter,
and	name	that	parameter	num.	When	we	use	num	within	the	function,	we	will	be	working
with	whatever	value	was	sent	when	the	program	was	called.

We	could	have	used	any	valid	name	instead	of	num,	but	num	seemed	like	an	appropriate
name	for	a	number.	Then,	within	the	curly	braces,	is	the	block	of	code	that	defines	what
the	function	will	do.	In	this	case,	we	are	creating	a	new	variable	called	value,	multiplying
num	by	itself,	and	then	storing	it	into	value.	Then,	the	return	statement	tells	JavaScript
what	to	give	back	to	the	code	that	called	our	function.	In	this	program,	the	return
statement	says	that	the	result	currently	in	value	should	be	given	as	the	result	for	the
function.

The	function	operator	defines	a	function.	However,	we	need	to	be	able	to	call	the
function	from	our	code.	It	therefore	needs	a	name.	How	do	we	name	something	in
JavaScript?	We	store	it	in	a	variable.	Therefore,	the	code	var	square_a_number	=

function(num)	{	/*	code	goes	here	*/	};	defines	a	function	with	a	single	parameter,
and	then	stores	that	function	into	the	newly-created	variable	square_a_number.	As	usual,
don’t	forget	the	semicolon	(;)	at	the	end	of	the	assignment	statement,	or	JavaScript	might
get	confused.

Now	that	we	have	the	variable	square_a_number	which	contains	our	function,	we	can	call
it	exactly	like	we	called	other	functions	like	parseInt.	square_a_number(5)	will	yield	25,
and	square_a_number(6)	will	yield	36.

10.1.1	Practice	Questions

1.	 In	the	same	file	as	the	square_a_number	function,	define	another	function	called
cube_a_number	that	returns	the	cube	of	a	number	(i.e.,	the	number	times	itself	and
times	itself	again).

2.	 Call	the	alert	function	a	few	times	giving	it	the	results	of	the	cube_a_number
function,	like	we	did	for	square_a_number.

3.	 The	body	of	the	square_a_number	function	creates	a	variable	called	value	to	store
the	temporary	result	of	the	calculation.	However,	because	the	calculation	is	so
simple,	we	don’t	really	need	this	variable.	Can	you	rewrite	square_a_number	so	that
it	doesn’t	use	a	variable?

4.	 Remove	the	existing	calls	to	alert	from	the	program.	Now,	ask	the	user	to	type	in	a
number,	then	call	square_a_number,	and	then	show	the	result	to	the	user.

5.	 Take	the	program	you’ve	just	written	and	put	the	interactions	with	the	user	in	a	for
loop	that	runs	three	times	so	that	it	will	ask	the	user	for	a	number	and	give	the	result
three	times.

10.2	More	Function	Examples

To	make	sure	that	you	grasp	the	concept	of	a	function,	let’s	do	another	example.	Let’s	say
that	we	wanted	to	have	a	function	that	summed	up	a	range	of	numbers,	like	all	of	the
numbers	between	2	and	12.	This	would	be	similar	to	the	code	we	wrote	in	Section	9.3.3,
but	it	would	take	the	start	and	end	values	as	parameters.	How	would	we	write	that?	Well,
we	would	need	a	function,	but	that	function	would	also	need	to	have	a	loop	inside	of	it	to
loop	through	all	of	the	numbers	from	the	start	to	the	finish.	The	code	would	look	like	this:

Figure	10.2:	A	Function	with	an	Embedded	while	Loop

var	sum_range	=	function(range_start,	range_end)	{	

			var	sum	=	0;	

			for(var	num	=	range_start;	num	<=	range_end;	num	=	num	+	1)	{	

						sum	=	sum	+	num;	

			}	

			return	sum;	

};	

	

var	start_val	=	parseInt(prompt(“Enter	the	first	number“));	

var	end_val	=	parseInt(prompt(“Enter	the	last	number“));	

var	result	=	sum_range(start_val,	end_val);	

alert(“The	sum	of	all	of	the	numbers	between	“	+	start_val	+	“	and	“	+

end_val	+	“	is	“	+	result);

This	function	has	a	few	differences	from	our	previous	function.	First	of	all,	it	has	two
parameters	instead	of	one—range_start	and	range_end.	Functions	can	have	as	many
parameters	as	you	want.	It	can	even	have	zero,	which	would	be	indicated	by	writing
function().	In	this	case,	we	need	two	values	because	we	need	both	a	start	and	an	end
value	for	the	range.	In	JavaScript,	parameters	are	positional,	which	means	that	the	order
that	you	define	them	with	the	function	keyword	is	the	same	order	as	the	values	that	you
have	to	give	when	the	function	is	called.	In	other	words,	since	range_start	is	the	first
parameter,	the	first	value	in	the	function	call	gets	placed	here.	Since	range_end	is	the
second	parameter,	the	second	value	that	is	sent	to	the	function	call	gets	placed	here.	So,
calling	sum_range(start_val,	end_val)	tells	JavaScript	to	run	the	function	sum_range,
put	the	value	of	start_val	into	range_start,	and	put	the	value	of	end_val	into
range_end.	It	then	runs	the	function	and	returns	the	value,	which,	in	this	case,	is	placed	in
the	variable	result.	Next,	we	have	a	for	loop	embedded	in	the	function.	Just	like	any
block	of	code	in	JavaScript,	we	can	embed	any	type	of	statement	or	operator	within	a
function.

For	this	small	program,	since	we	only	use	the	sum_range	program	once,	it	doesn’t	save	us
a	lot	of	typing.	But	can	you	see	how,	if	we	needed	it	in	several	different	parts	of	the
program	and	used	it	over	and	over	again,	putting	that	code	into	a	function	will	save	a	lot	of

typing	and	headaches	in	the	future?	Even	though	this	example	doesn’t	save	us	any	typing,
using	functions	still	has	a	distinct	advantage—it	separates	out	different	components	of	our
application.	In	this	program,	we	have	both	user	interaction	(prompting,	receiving	input,
and	displaying	output)	as	well	as	computation	(summing	all	of	the	numbers	in	a	range).
By	putting	the	computation	in	a	function,	we	have	made	both	parts	clearer.

Imagine	if	we	had	simply	stuck	all	of	the	code	together	without	a	function.	It	might	be
difficult	to	even	understand	what	the	program	was	trying	to	do.	Instead,	by	separating	out
a	piece	into	a	function	with	an	easy-to-understand	name	(i.e.,	sum_range),	then	we	make	it
clearer	what	the	whole	program	is	doing.	You	can	look	at	it	and	say,	“Oh	yes,	this	piece	of
code	with	the	name	sum_rage	sums	up	numbers	within	a	range.	And	look!	Over	here	we
use	the	function	with	the	two	inputs	from	the	user.”

Again,	this	is	not	as	big	of	an	issue	with	small	programs,	but	when	you	write	programs
with	many	thousands	of	lines	of	code,	having	the	code	broken	up	into	manageable,
understandable	components,	each	with	a	small,	well-defined	task	makes	the	code	much
easier	to	understand	and	modify.

10.2.1	Practice	Questions

1.	 Create	a	function	that	takes	three	parameters	and	returns	the	largest	of	the	three
parameters.	You	will	have	to	use	several	if	statements	to	accomplish	this.

2.	 Create	a	function	called	multiply	which	will	take	two	parameters	and	perform	the
same	function	as	the	*	operator.	However,	don’t	use	the	*	operator	in	your	code.
Instead,	perform	the	task	by	repeated	adding	of	the	first	parameter.	Be	sure	to	include
code	to	run	the	function	and	display	the	result	so	that	you	know	whether	you	did	it
correctly!

10.3	Functions	Calling	Functions

Functions	can	also	call	other	functions.	For	instance,	we	can	create	a	new	function	called
sum_squares_for_range	that	is	similar	to	the	sum_range	function,	but,	instead	of
summing	up	the	numbers	in	the	range,	it	calls	square_a_number	on	each	number	to	sum
up	the	squares	of	the	numbers	in	the	range.	Before	looking	at	the	code	below,	think	about
how	you	might	implement	such	a	function.

Figure	10.3:	A	Function	Calling	Another	Function

var	square_a_number	=	function(num)	{	

			var	value	=	num	*	num;	

			return	value;	

};	

	

var	sum_squares_for_range	=	function(range_start,	range_end)	{	

			var	sum	=	0;	

			for(var	num	=	range_start;	num	<=	range_end;	num	=	num	+	1)	{	

						sum	=	sum	+	square_a_number(num);	

			}	

			return	sum;	

};	

alert(“The	sum	of	squares	between	2	and	5	is	“	+	sum_squares_for_range(2,

5));

As	you	can	see,	just	as	we	can	call	a	function	from	anywhere	else	in	our	program,	we	can
call	a	function	from	within	a	function	as	well.	Using	this	feature,	we	can	make	functions
that	are	more	and	more	complex.	We	can	take	several	small	functions	that	we	often	use
together	and	write	a	larger	function	that	combines	them	in	an	interesting	and	useful	way.
Likewise,	if	we	have	a	large	function	that	is	difficult	to	understand,	we	can	try	to	break	the
function	up	into	well-defined	pieces	and	create	individual	functions	for	those	pieces.

10.4	Variable	Scopes

Now	that	we	know	how	functions	work	in	JavaScript,	we	need	to	talk	about	variable
scope.	The	scope	of	a	variable	refers	to	the	locations	within	a	program	where	the	variable
is	created,	is	active	and	available	for	use,	and	where	it	is	destroyed.	In	some	of	the	earliest
programming	languages,	all	variables	had	global	scope—meaning	that	the	variable	always
existed	throughout	the	whole	program	and	was	accessible	everywhere	within	the	program.
However,	this	quickly	led	to	problems.	We	have	created	temporary	variables	several	times
already	to	hold	intermediate	values,	such	as	the	sum	variable	in	the	sum_range	function.	If
all	of	your	variables	have	global	scope,	when	you	call	one	function	from	another	function,
if	both	of	them	use	the	same	name	for	a	temporary	variable,	then	your	temporary	result
will	be	overwritten	by	the	other	function!

If	all	variables	had	global	scope,	the	only	way	to	avoid	this	situation	is	to	make	sure	that
each	variable	had	a	unique	name.	This	would	be	tedious	and	time-consuming,	both	to	keep
track	of	the	variable	names	and	to	write	the	inevitably	excessively	long	names	that	would
result.	Programming	languages	quickly	adopted	new	scoping	policies	that	allowed
programmers	more	freedom.

The	type	of	scoping	that	JavaScript	does	is	called	function	scope.	This	means	that	in
addition	to	the	global	scope,	each	function	has	a	unique,	separate	scope.	If	we	declare	a
variable	var	myvar	outside	of	a	function,	that	variable	exists	within	the	global	scope,	and
is	called	a	global	variable.	Since	it	is	global,	I	can	access	myvar	from	anywhere	in	my
program.	If	we	instead	declared	var	myvar	from	inside	a	function,	then	myvar	would	only
be	available	within	that	function.	Such	variables	are	often	called	local	variables.
Parameters	to	functions	also	act	as	if	they	were	local	variables	in	the	function’s	scope.

To	illustrate	this,	take	a	look	at	the	following	program	in	which	we	modify	a	global
variable	inside	the	function:

Figure	10.4:	Modifying	Global	Variables

var	myvar	=	3;	//	Global	variable	

	

var	my_function	=	function()	{	

			myvar	=	5;	//	Writing	to	a	global	variable	

};	

	

alert(“myvar	=	“	+	myvar);	

my_function();	

alert(“After	calling	my_function,	myvar	=	“	+	myvar);

In	this	code,	when	it	starts,	it	creates	myvar	as	a	global	variable	(it	is	defined	outside	of
any	function),	and	sets	it	to	3.	Then,	it	calls	my_function().	This	function	sets	myvar	to	5

and	then	returns.	Now,	when	we	show	the	variable	again,	it	has	the	value	5.

Contrast	that	to	what	happens	in	the	next	program:

Figure	10.5:	Global	and	Local	Variables

var	myvar	=	3;	//	Global	variable	

	

var	my_function	=	function()	{	

			var	myvar	=	5;	//	This	version	of	myvar	is	now	*local*	

};	

	

alert(“myvar	=	“	+	myvar);	

my_function();	

alert(“After	calling	my_function,	myvar	=	“	+	myvar);

In	this	example,	because	myvar	has	the	var	keyword	in	front	of	it	in	the	function,	it	creates
a	local	variable	that	is	specific	to	that	function.	It	exists	nowhere	else.	Even	though	there
is	a	myvar	that	exists	in	the	global	scope,	during	the	function	myvar	will	refer	to	the	local
variable	with	the	same	name.	Therefore,	setting	the	local	variable	myvar	from	inside	the
function	has	no	effect	on	the	global	scope.	Both	alerts	will	give	the	same	value	because
the	modification	happened	to	a	local	variable.

Additionally,	if	there	was	another	function	that	also	had	a	locally-scoped	myvar,	it	would
be	a	different	variable	than	either	the	globally-scoped	myvar	or	the	myvar	that	is	locally
scoped	to	this	function.	Each	function’s	local	variables	belongs	to	that	function	and	cannot
even	be	referenced	outside	of	that	function.

Having	local	scopes	allows	functions	to	work	as	“black	boxes,”	meaning	that	the	person
who	writes	the	code	that	calls	a	function	doesn’t	have	to	care	about	the	details	of	how	that
function	is	implemented.	If	we	only	had	the	global	scope,	then,	before	I	called	a	function,
I	would	need	to	go	and	look	up	all	of	the	variables	it	was	using	to	make	sure	I	wasn’t	also
using	the	same	variable.	However,	if	a	function	writer	only	uses	local	variables,	then	if	I
used	that	function	in	my	program,	I	wouldn’t	have	to	worry	that	it	might	accidentally
overwrite	a	variable	I	am	using.	This	is	true	in	larger	programs	even	if	there	is	only	one
programmer.	You	will	not	remember	the	names	of	every	variable	you	use	in	your
functions.	But,	if	you	make	sure	that	you	only	use	local	variables	and	parameters	within
your	functions,	you	won’t	need	to	remember	all	of	the	variable	names	since	they	will	all
be	within	the	scope	of	the	given	function.

Occasionally,	you	will	need	to	use	the	global	scope.	In	fact,	this	is	what	we	are	doing	with
our	function	names.	In	JavaScript,	functions	are	stored	in	variables	just	like	any	other
value.	Therefore,	in	order	for	functions	to	call	each	other,	they	must	exist	in	the	global
scope.

Chapter	11
Recursive	Functions

In	Chapter	10	you	learned	that	functions	can	be	used	to	package	together	pieces	of	code
into	well-defined	units	that	can	be	reused	over	and	over	again.	In	this	chapter	we	are	going
to	go	into	more	detail	about	how	JavaScript	keeps	track	of	these	functions.

Review

In	this	chapter	we	learned	how	the	JavaScript	stack	worked	and	how	it	enables	us	to	write
recursive	functions.	We	have	learned:

JavaScript	uses	the	stack	to	keep	track	of	what	is	going	on	in	your	program.
Every	time	a	function	is	called,	JavaScript	pushes	a	bookmark	of	the	return	location
onto	the	stack	telling	it	where	to	go	when	the	function	completes.
Every	time	a	function	completes,	JavaScript	pops	a	bookmark	off	of	the	stack	to	find
out	where	it	should	resume	processing.
This	stack	system	allows	JavaScript	to	return	to	the	right	spot	in	your	code	even	if	a
function	is	called	from	more	than	one	location.
JavaScript	keeps	a	separate	list	of	local	variables	(the	local	scope)	for	every	time	a
function	is	called	even	if	it	is	the	same	function	called	more	than	once.
Every	time	a	function	is	called,	JavaScript	pushes	a	link	to	the	new	local	scope	onto
the	stack	as	well	so	it	knows	what	scope	is	currently	being	used.	This	scope	is	popped
at	the	end	of	the	function	along	with	the	return	location.
When	your	program	references	a	variable,	JavaScript	refers	to	the	current	local	scope
only	and	tries	to	look	up	your	variable	there.
Each	JavaScript	scope	has	a	link	to	a	parent	scope.	If	the	variable	you	reference
cannot	be	found	in	the	local	scope,	it	tries	to	look	it	up	in	the	parent	scope.
Using	the	var	keyword	causes	a	new	variable	to	be	created	in	the	current	local	scope.
If	there	is	not	a	current	local	scope,	it	creates	the	variable	in	the	global	scope.
Recursive	functions	are	functions	that	are	defined	in	terms	of	themselves.
Each	recursive	function	needs	at	least	two	cases—the	inductive	case	and	the	base
case.
Recursive	functions	are	best	used	when	each	step	of	a	problem	is	just	a	reduced	form
of	the	larger	problem.
The	JavaScript	stack	is	what	enables	recursive	programs	to	work	since	the	stack
keeps	a	separate	local	scope	for	every	time	the	function	is	called,	thus	allowing	the
function	a	separate	copy	of	each	variable	for	every	time	the	function	is	invoked.

Apply	What	You	Have	Learned

1.	 Figure	11.14	shows	the	stack	frame	for	the	code	in	Figure	11.13	at	one	particular
point	in	its	execution.	Make	similar	drawings	for	what	the	stack	and	scopes	look	like
after	every	function	call.	You	should	have	four	drawings	at	the	end.

2.	 In	Section	10.4	we	discussed	and	implemented	a	factorial	function.	Try	to	implement

the	factorial	function	as	a	recursive	function.	If	you	get	stuck,	use	the	code	in
Figure	11.13	as	a	template	to	help	you	out.

3.	 Print	out	your	factorial	function.	Circle	the	inductive	case	and	the	base	case.
4.	 Expand	the	program	in	Figure	11.13	so	that	a	user	can	enter	the	start	and	end	of	the

range.
5.	 Expand	your	factorial	program	so	that	a	user	can	enter	the	number	that	he	wants	to

make	a	factorial	of.
6.	 Expand	either	of	the	two	previous	programs	so	that,	after	the	program	produces	an

answer,	it	asks	the	user	if	they	want	to	keep	going.	Put	the	program	in	a	loop	so	that
the	user	can	run	the	calculation	as	many	times	as	they	want	and	only	stop	when	they
want	to.

11.1	The	Program	Stack

In	the	previous	chapter	we	talked	about	local	variables	(variables	defined	within
functions)	and	global	variables	(variables	defined	outside	of	functions).	We	mentioned	that
local	variables	are	specific	to	the	function	that	they	are	defined	in.	That	is,	if	we	have	a
global	variable	called	x,	and	a	function	has	a	local	variable	also	called	x,	these	refer	to
different	variables.	Therefore,	the	function	is	able	to	modify	their	local	x	without
modifying	the	global	x.	One	of	the	many	benefits	to	this	is	that	our	functions	can	be
developed	without	worrying	about	what	someone	else	working	on	another	part	of	the
program	has	called	their	variables.	Imagine	if	you	were	working	with	a	partner	developing
a	program	together.	If	you	both	had	to	agree	on	every	single	variable	name	(to	prevent	one
person	from	accidentally	clobbering	the	other	person’s	variables),	that	would	get	tedious
and	make	the	process	very	slow.	With	local	variables,	as	long	as	the	variable	is	defined
within	a	function,	it	doesn’t	matter	what	its	name	is.	You	may	still	have	to	agree	on	the
names	of	global	variables,	but	those	should	be	much	more	rare,	especially	in	large
projects.

So,	how	does	JavaScript	keep	track	of	local	variables?	It	turns	out	that	nearly	every
programming	language	keeps	track	of	local	variables	in	roughly	the	same	way—through	a
mechanism	known	as	the	program	stack,	or	just	the	stack.	The	stack	is	the	way	that	the
programming	language	keeps	track	of	what	is	currently	going	on	in	the	program.	It	is,
quite	literally,	a	stack	of	information	that	the	programming	language	is	keeping	about
what	is	happening	in	the	program.

For	instance,	when	a	program	calls	a	function,	it	has	to	remember	where	to	return	to	after
the	program	is	finished.	Therefore,	it	pushes	the	return	location	onto	the	stack	so	it
remembers	where	to	go	after	the	function	is	finished.	If	that	function	calls	another
function,	then	it	pushes	another	return	location	onto	the	top	of	the	stack.	When	the	second
function	finishes,	it	looks	at	the	top	of	the	stack	to	see	where	it	should	return	to,	pops
(removes)	the	value,	and	resumes	operation	at	the	point	indicated.	When	the	original
function	finishes,	its	return	location	is	now	back	at	the	top	of	the	stack	so	it	knows	where
it	should	return	to.

Figure	11.1	shows	some	functions	that	call	each	other.	It	includes	comments	showing
different	locations	that	the	program	will	be	executing	(marked	as	“Position	1”,
“Position	2”,	etc.)	so	that	we	can	discuss	the	flow	of	the	program	through	the	functions.

If	you	skip	the	declaration	of	the	variables	for	the	functions,	the	actual	code	starts	at
position	8.	For	our	purposes,	we	can	conceive	of	the	stack	being	empty	when	the	program
starts	running.

Figure	11.1:	Example	of	Functions	Calling	Each	Other

var	function_one	=	function()	{	

			//	Position	1	

			function_two();	

			//	Position	2	

			function_three();	

			//	Position	3	

};	

	

var	function_two	=	function()	{	

			//	Position	4	

			function_three();	

			//	Position	5	

};	

	

var	function_three	=	function()	{	

			//	Position	6	

			alert(“Hello“);	

			//	Position	7	

};	

	

//	Position	8	

function_one();	

//	Position	9

The	first	thing	it	does	is	call	the	function	function_one.	When	function_one	ends,	where
should	the	program	continue?	It	should	continue	running	at	position	9.	The	stack	looks
like	this:

Figure	11.2:	Stack	After	First	Function	Call

Return	Location:	Position	9	

Bottom	of	Stack

Now,	look	at	function_one.	The	code	starts	running	at	position	1	and	there	is	an
immediate	function	call	to	function_two.	Think	about	where	the	code	should	continue
running	after	function_two	finishes—it	should	continue	running	at	position	2.	Therefore,
that	position	is	pushed	to	the	top	of	the	stack.	The	stack	now	looks	like	this:

Figure	11.3:	Stack	After	Second	Function	Call

Return	Location:	Position	2	

Return	Location:	Position	9	

Bottom	of	Stack

Now,	what	does	function_two	do?	It	calls	yet	another	function,	function_three.	Since
the	next	place	it	should	start	executing	after	function_three	finishes	is	position	5,	that	is
now	pushed	onto	the	stack.

Figure	11.4:	Stack	After	Third	Function	Call

Return	Location:	Position	5	

Return	Location:	Position	2	

Return	Location:	Position	9	

Bottom	of	Stack

Now,	function_three	makes	its	own	function	call,	but	this	time	to	a	built-in	function.
Function	calls	to	built-in	functions	work	exactly	like	other	function	calls.	So,	where
should	function_three	resume	after	alert	finishes?	It	should	go	back	to	position	7,	and
the	stack	will	look	like	this:

Figure	11.5:	Stack	After	Built-in	Function	Call

Return	Location:	Position	7	

Return	Location:	Position	5	

Return	Location:	Position	2	

Return	Location:	Position	9	

Bottom	of	Stack

Now	things	get	interesting.	What	happens	when	alert	finishes?	How	does	it	know	where
to	go?	It	just	looks	at	the	top	of	the	stack!	The	top	of	the	stack	says,	“When	you	are	done,
return	to	position	7	in	the	code.”	JavaScript	then	removes	the	top	of	the	stack,	and
continues	operation	at	position	7.	Now	the	stack	looks	like	it	did	in	Figure	11.4.	But	then,
the	only	thing	left	to	do	at	position	7	is	to	return	from	the	function.	Therefore,	it	performs
the	procedure	again—it	looks	at	the	top	of	the	stack	to	see	where	it	should	return	to.	Now
it	says	to	return	to	position	5,	and	the	stack	is	back	the	way	it	looked	in	Figure	11.3.
Again,	the	only	thing	to	do	in	position	5	is	to	return,	and	the	stack	says	to	return	to
position	2.	We	therefore	return	to	position	2	and	remove	it	from	the	top	of	the	stack.	The
stack	is	then	back	to	looking	how	it	did	in	Figure	11.2.

Now	it	gets	really	interesting.	What	happens	at	position	2?	It	calls	function_three	again,
but	this	time	with	a	different	return	location	than	the	previous	occasion—position	3.	The
stack	now	looks	like	this:

Figure	11.6:	Stack	After	Second	Call	to	function_three

Return	Location:	Position	3	

Return	Location:	Position	9	

Bottom	of	Stack

Now	when	function_three	runs,	it	knows	to	go	back	to	position	3	instead	of	position	5
like	it	did	when	it	was	called	from	function_two.	So,	as	you	can	see,	the	stack	keeps	track
of	what	is	happening	in	the	program	and	helps	the	computer	know	how	and	where	to
return	from	function	calls.

Oftentimes,	what	happens	in	code	is	more	complicated	than	this.	Since	many	of	our
functions	have	return	values,	and	the	functions	are	actually	only	part	of	the	statement,	the
return	must	send	the	program	to	the	correct	place	in	the	middle	of	the	line	of	code.	This	is
the	same	idea	as	before,	only	that	the	positions	that	the	computer	keeps	track	of	are	more
complicated	than	just	line	numbers	like	we	had	for	the	example.	For	instance,	take	the
following	code:

Figure	11.7:	Complicated	Function	Call

var	square_a_number	=	function(x)	{	

			return	x	*	x;	

};	

	

var	y	=	square_a_number(square_a_number(2)	*	4);

In	this	case,	we	are	calling	a	function	several	times	in	the	same	line,	and	each	one	returns
to	a	different	place	in	the	line.	Don’t	worry.	JavaScript	knows	exactly	where	to	return	to
each	time.	Its	positioning	system	is	much	more	exact	than	our	crude	examples	above.

Also,	as	we	will	see	going	forward,	JavaScript	stores	much	more	information	in	the	stack
than	just	the	return	location.

11.2	Local	Variables	in	the	Stack

The	other	primary	thing	that	JavaScript	keeps	in	its	stack	is	a	list	of	the	local	variables
used	in	the	current	function.	To	talk	about	this,	let’s	look	at	a	function	that	will	sum	all	of
the	values	in	a	range,	which	we	will	call	sum_range.	For	instance,	if	you	give	it	the
numbers	3	and	7,	sum_range(3,	7)	will	calculate	3	+	4	+	5	+	6	+	7	and	give	25.

Let’s	look	at	what	this	looks	like	in	code:

Figure	11.8:	Summing	All	the	Values	in	a	Range

var	sum_range	=	function(r_start,	r_end)	{	

			var	total	=	0;	

			for(var	x	=	r_start;	x	<=	r_end;	x++)	{	

						total	=	total	+	x;	

			}	

	

			return	total;	

};	

	

var	result	=	sum_range(3,	7);	

alert(“The	sum	of	the	numbers	3	through	7	is	“	+	result);

In	this	example,	we	have	local	variables—r_start,	r_end,	x,	and	total.	Remember	that
local	variables	are	not	visible	to	the	global	scope.	The	way	that	JavaScript	does	this	is	by
keeping	the	list	of	current	variables	on	the	stack.

Therefore,	when	the	function	is	called,	not	only	does	the	return	location	get	put	on	the
stack,	but	it	also	creates	a	“scope”	(list	of	accessible	variables)	in	memory	and	links	the
stack	to	that	scope.

So,	when	we	call	sum_range,	the	stack	looks	a	little	more	complicated.	Figure	11.9	shows
how	the	stack	looks	when	the	sum_range	function	is	underway	when	it	first	begins	its	for
loop.

Figure	11.9:	Conceptual	Layout	of	Computer	Memory	in	a	Function	Call

Note	that	there	is	a	big	black	line	around	the	the	current	scope	and	the	current	location.
That	is	known	as	the	stack	frame.	The	stack	frame	is	all	of	the	data	that	is	packaged
together	on	the	stack.	The	scope	and	the	return	value	go	together	for	each	function	call,
and	together	they	make	up	a	stack	frame.

The	stack	frame	points	JavaScript	to	the	scope	that	is	currently	being	used	to	process
variables.	The	way	that	the	scope	works	is	that	when	you	refer	to	a	variable,	say	x,	in	your
program,	JavaScript	first	looks	on	the	stack	to	see	where	your	current	scope	is.	It	then
looks	for	that	variable	in	the	current	scope.	If	it	finds	it,	that	is	what	it	uses	for	the
variable.	Do	you	see	the	box	at	the	top	of	the	local	scope	that	says	“Parent	Scope”?	Each
scope	links	to	a	parent	scope,	which	tells	JavaScript	where	to	look	for	variables	if	they	are
not	in	the	current	scope.	In	this	case,	the	parent	scope	is	the	global	scope.	In	Chapter	12,
we	will	see	how	we	can	chain	together	even	more	scopes.

So,	when	a	function	is	called,	not	only	is	the	return	value	put	onto	the	stack,	but	a	brand
new	scope	is	created,	and	a	link	to	this	new	scope	is	also	placed	on	the	stack.

Let’s	look	at	another,	similar	program	which	will	declare	a	function	called
sum_squares_of_range.	This	works	just	like	sum_range,	except	that	it	will	square	each	of
the	numbers	in	the	range.	The	code	for	this	is	below:

Figure	11.10:	Summing	the	Squares	of	a	Range	of	Numbers

var	square_number	=	function(num)	{	

			var	x	=	num	*	num;	

			return	x;	

};	

	

var	sum_squares_of_range	=	function(r_start,	r_end)	{	

			var	total	=	0;	

			for(var	x	=	r_start;	x	<=	r_end;	x++)	{	

						total	=	total	+	square_number(x);	

			}	

	

			return	total;	

};	

	

var	result	=	sum_squares_of_range(3,	6);	

alert(“The	sum	of	the	squares	of	the	values	from	3	to	6:	“	+	result);

Figure	11.11:	Stack	Frame	with	Two	Functions	Active

In	this	program,	the	stack	gets	two	levels	deep.	First,	it	calls	sum_squares_of_range.	This
leads	to	a	situation	similar	to	the	previous	example.	Then,	to	calculate	the	square	of	each
number,	it	calls	square_number	on	each	of	them.	Figure	11.11	shows	the	stack	layout	after
the	first	call	to	square_number	just	before	it	returns.	Notice	that	all	of	the	local	variables
exist	for	both	functions,	but	they	are	only	reachable	from	within	their	own	functions.
When	the	square_number	function	is	active,	the	“current	scope”	points	to	the	local	scope
for	square_number,	which	has	its	variables	plus	a	link	to	the	global	scope.

Therefore,	when	square_number	sets	the	value	of	x,	it	only	affects	its	own	value	for	x.	The
x	from	sum_squares_of_range	is	not	even	visible	to	this	function.	Therefore,	even	though
we	are	assigning	a	value	for	x,	it	is	only	for	the	local	copy	of	x	that	is	specific	to	this
function.	When	the	function	returns,	it	will	remove	both	the	link	to	the	local	scope	and

return	location.	When	sum_squares_of_range	starts	executing	again,	its	own	scope	will
be	at	the	top	of	the	stack,	and	it	won’t	see	the	scope	of	square_number	at	all.

One	additional	thing	to	note	is	that	when	a	function	first	starts	executing,	the	local	scope
only	has	entries	for	the	parent	scope	and	the	parameters.	JavaScript	relies	on	the	var
keyword	to	create	new	variables	in	its	scope.	The	var	keyword	causes	JavaScript	to	look
in	the	current	scope	(and	not	any	parent	scope)	to	see	if	the	variable	exists	in	that	scope.	If
the	variable	does	not	exist,	JavaScript	creates	the	variable	in	the	current	scope.	If	the
variable	already	exists,	JavaScript	does	not	create	a	new	copy,	but	keeps	using	the	one	that
is	already	there.

11.2.1	Practice	Activity

1.	 Look	at	the	programs	you	wrote	in	Chapter	10	that	use	functions.	Pick	one	of	them.
2.	 Print	out	your	function.	Draw	lines	from	any	function	call	to	the	beginning	of	the

function	that	is	being	called.	Draw	lines	from	the	return	statements	to	the	place	in
your	program	where	the	program	returns.

3.	 Create	a	diagram	for	this	program	of	the	stack,	local	scope(s),	and	global	scope,
similar	to	the	one	in	Figure	11.11,	for	when	at	least	one	function	is	active.

11.3	Recursive	Functions

Now	that	we	know	how	stack	frames	and	local	variables	work,	it	is	time	to	learn	about
recursive	functions.	A	recursive	function	is	a	function	that	is	defined	in	terms	of	itself.
Think	about	the	program	back	in	Figure	11.8	that	summed	all	of	the	values	between	two
numbers.	In	the	program,	we	used	a	loop	to	go	from	one	side	of	the	range	to	the	other.	But
is	there	another	way	to	think	about	that	problem?	Another	way	to	pursue	it?

Think	about	summing	all	of	the	numbers	from	4	to	10.	Is	there	a	smaller,	similar	problem
that	works	the	same	way	that	we	might	be	able	to	use?	Indeed,	summing	all	of	the
numbers	from	4	to	10	is	the	same	thing	as	adding	4	to	the	sum	of	the	numbers	from	5	to
10.	So,	sum_range(4,	10)	gives	us	the	same	answer	as	4	+	sum_range(5,	10).
Likewise,	sum_range(5,	10)	gives	us	the	same	answer	as	5	+	sum_range(6,	10).

Defining	a	function	in	terms	of	itself	is	called	a	recursion.	How	might	we	write	a	program
that	uses	recursion?	Below	is	a	partial	implementation	of	what	that	might	look	like:

Figure	11.12:	Partial	Recursive	Definition	of	the	sum_range	Function

var	sum_range	=	function(r_start,	r_end)	{	

			var	value	=	r_start	+	sum_range(r_start	+	1,	r_end);	

			return	value;	

};

As	you	can	see,	the	function	is	defined	in	terms	of	itself.	However,	one	problem	you
would	realize	if	you	tried	this	function	is	that	it	never	stops!	There	is	nothing	in	the
function	that	makes	it	stop	when	it	gets	to	the	end	of	the	range	so	it	will	just	keep	on
going.

When	writing	recursive	programs,	there	are	two	main	situations	to	code	for—the	base
case	and	the	inductive	case.	The	inductive	case	is	the	one	we	have	already	written—it	is
the	case	that	uses	recursion	to	solve	the	problem.	The	inductive	case	gets	its	name	from
inductive	proofs	in	mathematics,	which	are	very	similar	to	recursive	functions.	The	case
we	are	missing	is	the	base	case—it	is	the	case	that	stops	the	recursion	to	return	an	answer.
In	our	program,	the	base	case	happens	when	r_start	and	r_end	are	equal.	When	this
happens,	we	don’t	need	to	recurse	anymore—we	know	what	the	answer	is!	When	the	start
and	end	of	the	range	are	equal,	we	just	return	that	number.

Therefore,	the	full	definition	of	our	sum_range	function	using	recursion	looks	like	this:

Figure	11.13:	Full	Recursive	Implementation	of	the	sum_range	Function

var	sum_range	=	function(r_start,	r_end)	{	

			//	Check	for	the	base	case	

			if(r_start	==	r_end)	{	

						//	Base	Case	

						return	r_start	

			}	else	{	

						//	Inductive	Case	

						return	r_start	+	sum_range(r_start	+	1,	r_end);	

			}	

};	

	

var	result	=	sum_range(3,	12);	

alert(“The	sum	of	the	numbers	between	3	and	12	is	“	+	result);

As	you	can	see,	there	is	now	an	if	statement	that	checks	for	the	base	case	and
immediately	computes	the	answer	if	it	is	found.	Otherwise,	it	proceeds	recursively.

However,	you	might	have	noticed	something	funny.	Here	we	are	using	local	variables,	but
we	are	using	the	same	local	variables	over	and	over.	Wouldn’t	these	variables	get
clobbered	each	time	we	call	the	function?	As	a	matter	of	fact,	they	don’t.	The	reason	for
this	is	that	JavaScript	creates	a	new	local	variable	scope	every	time	the	function	is	called.
Therefore,	each	time	that	sum_range	is	called,	there	is	a	new	local	scope	created.	So,	if
you	call	sum_range(2,	5),	it	will	create	4	local	variable	scopes,	one	for	each	time
sum_range	is	called.

Figure	11.14:	Stack	Frame	for	Recursive	Function	Call

After	the	third	call,	the	stack	would	look	like	Figure	11.14.	Notice	how,	after	the	third	call
to	sum_range,	there	are	exactly	three	copies	of	the	sum_range	local	scope	in	the	drawing,
each	of	them	with	the	global	scope	as	a	parent	scope,	and	with	it,	their	own	values	for
r_start	and	r_end.	This	is	how	the	computer	makes	recursive	function	calls	possible.

In	the	example	so	far,	there	wasn’t	a	reason	to	use	recursion.	In	fact,	with	all	of	the
function	calls,	stack	frames,	and	local	scopes	generated,	our	code	was	actually	much
slower.	Nonetheless,	there	are	many	times	when	recursion	is	either	the	only	way	to	solve	a
problem,	or	it	is	the	way	that	makes	the	most	sense,	or	it	is	the	easiest	to	write	a	program

for.	Programs	today	rarely	need	a	lot	of	optimization.	While	the	speed	of	the	program
itself	shouldn’t	be	discounted,	what	usually	counts	the	most	is	the	amount	of	time	the
programmer	takes	to	write	the	program.

Knowing	recursion	will	help	you	see	the	solutions	to	some	problems	more	easily.	When
you	become	comfortable	with	recursion,	you	begin	to	see	many	complicated	problems	as
merely	simple	problems	in	disguise.	Additionally,	knowing	recursion	will	help	you	better
understand	other	people’s	code	when	they	use	recursion.	The	best	time	to	use	recursion	is
when	you	can	envision	the	problem	as	being	the	same	problem	over	and	over	again,	with
each	step	just	being	a	smaller	version	of	the	previous	problem.

Chapter	12
Manipulating	Functions	and	Scopes

In	Chapter	10	we	learned	about	functions	and	how	they	create	local	scopes.	Chapter	11
went	into	further	depth	about	how	the	JavaScript	program	stack	helps	JavaScript	keep
track	of	where	it	is	in	the	program	and	what	local	scope	to	use.	In	this	chapter	we	are
going	to	go	deeper	and	show	how	functions	can	be	passed	as	parameters,	returned	as
values,	and	how	to	generate	new	functions	that	inherit	from	a	different	scope	than	the
global	scope.

Review

In	this	chapter	we	learned	several	advanced	ways	of	creating	and	using	functions.	We	have
learned:

Functions	can	be	passed	as	parameters	to	functions.
When	a	function	takes	another	function	as	a	parameter,	it	allows	the	function’s
processes	to	be	tweaked.
When	two	functions	look	almost	the	same	except	that	they	each	perform	a	slightly
different	process,	they	can	often	be	combined	into	one	function	that	takes	a	function
as	a	parameter.
When	a	function	takes	a	function	as	a	parameter,	it	is	known	as	a	higher-order
function.
Functions	can	return	other	functions	as	values.
Functions	can	create	new	functions	to	return	as	a	value.
When	a	function	is	created,	it	combines	and	stores	both	the	code	to	execute	and	a	link
to	the	scope	that	it	was	created	in.
The	link	to	the	scope	will	be	used	as	the	parent	scope	when	a	local	scope	is	created
for	each	function	invocation.
If	a	computer	programming	language	stores	a	link	to	the	active	scope	for	use	as	a
parent	scope	in	a	function	when	it	is	created,	it	is	said	that	the	programming	language
has	lexical	closure.
Currying	is	a	process	of	defining	new,	specific	functions	from	more	generic	or
higher-order	functions	by	pre-specifying	one	or	more	parameters.

Apply	What	You	Have	Learned

1.	 Modify	the	counter	program	in	Figure	12.8	so	that	it	takes	a	starting	value,	allowing
you	to	start	your	counter	at	any	value	you	want.

JavaScript	is	an	object-oriented	language,	which	means	it	brings	together	data	and
functions	into	organized	units	called	objects.	This	part	provides	an	introduction	to	how	to
create	and	manipulate	objects	in	JavaScript.

12.1	Functions	As	Parameters	to	Functions

Throughout	this	book	I	have	tried	to	emphasize	the	fact	that,	in	JavaScript,	functions	are
values	just	like	any	other	value.	We	have	seen	that	they	can	be	created	with	the	function
operator	and	assigned	to	variables	with	the	=	operator.	They	can	also	be	passed	as
parameters	of	functions	and	returned	as	the	result	of	functions.

In	Chapter	11	(Figure	11.10)	we	looked	at	a	function	called	sum_squares_of_range,
which	took	a	range	of	numbers,	squared	each	of	them,	and	return	the	sum	of	all	of	them.

The	code	is	repeated	below	for	your	reference:

Figure	12.1:	Summing	the	Squares	of	a	Range	of	Numbers

var	square_number	=	function(num)	{	

			var	x	=	num	*	num;	

			return	x;	

};	

	

var	sum_squares_of_range	=	function(r_start,	r_end)	{	

			var	total	=	0;	

			for(var	x	=	r_start;	x	<=	r_end;	x++)	{	

						total	=	total	+	square_number(x);	

			}	

	

			return	total;	

};	

	

var	result	=	sum_squares_of_range(3,	6);	

alert(“The	sum	of	the	squares	of	the	values	from	3	to	6:	“	+	result);

Let’s	say	that	instead	of	squaring	each	number,	we	wanted	to	cube	the	number	(multiply
the	number	by	itself	and	then	by	itself	again).	The	function	would	be	identical,	but	instead
of	calling	the	square_number	function,	it	would	instead	call	a	function	called
cube_number.

The	code	for	that	is	below:

Figure	12.2:	Summing	the	Cubes	of	a	Range	of	Numbers

var	cube_number	=	function(num)	{	

			return	num	*	num	*	num;	

};	

	

var	sum_cubes_of_range	=	function(r_start,	r_end)	{	

			var	total	=	0;	

			for(var	x	=	r_start;	x	<=	r_end;	x++)	{	

						total	=	total	+	cube_number(x);	

			}	

	

			return	total;	

};	

	

var	result	=	sum_cubes_of_range(3,	6);	

alert(“The	sum	of	the	cubes	of	the	values	from	3	to	6:	“	+	result);

As	you	can	see,	the	only	difference	between	sum_squares_of_range	and
sum_cubes_of_range	is	that	square_number	is	replaced	by	cube_number	in	the	new	code.
Wouldn’t	it	be	nice	if	we	could	have	just	one	function	for	both	of	them,	and	then	just	send
up	whichever	function	(we’ll	call	it	the	transformation	function)	that	we	want	to	apply	to
each	number?	Well,	in	fact,	you	can	do	just	that.	What	we	can	do	is	create	a	parameter	to
be	used	for	the	transformation	function.

The	new	code	looks	like	this:

Figure	12.3:	Summing	a	Range	of	Numbers	with	a	Transformation

var	square_number	=	function(num)	{	

			return	num	*	num;	

};	

	

var	cube_number	=	function(num)	{	

			return	num	*	num	*	num;	

};	

	

var	sum_range_with_transformation	=	function(r_start,	r_end,

transformation)	{	

			var	total	=	0;	

			for(var	x	=	r_start;	x	<=	r_end;	x++)	{	

						total	=	total	+	transformation(x);	

			}	

	

			return	total;	

}	

	

var	result_squares	=	sum_range_with_transformation(3,	6,	square_number);	

var	result_cubes	=	sum_range_with_transformation(3,	6,	cube_number);	

alert(“The	sum	of	the	squares	of	the	values	from	3	to	6:	“	+

result_squares);	

alert(“The	sum	of	the	cubes	of	the	values	from	3	to	6:	“	+	result_cubes);

As	you	can	see,	this	is	still	the	exact	same	code;	the	only	difference	is	that	square_number
is	replaced	with	transformation,	which	is	passed	in	as	a	parameter!	These	types	of
functions,	whose	functions	are	modified	by	other	functions	passed	in	as	parameters,	are
called	higher-order	functions.

12.1.1	Practice	Questions

1.	 Modify	the	program	in	Figure	12.3	so	that	you	add	a	function	that	raises	the	number
to	the	fourth	power	and	then	pass	it	into	sum_range_with_transformation.

2.	 Modify	the	program	again	so	that	it	simply	sums	the	numbers	from	3	to	6	without
any	transformation.	(Hint—create	a	function	that	just	returns	the	number	given.)

12.2	Functions	That	Return	Functions

Now	that	we	have	seen	functions	as	parameters,	we	will	look	at	functions	that	return
functions.	The	first	example	isn’t	useful	at	all,	but	will	illustrate	the	point:

Figure	12.4:	Function	That	Returns	a	Function

var	square_a_number	=	function(x)	{	

			return	x	*	x;	

};	

	

var	get_square_a_number_function	=	function()	{	

			return	square_a_number;	

};	

	

var	my_func	=	get_square_a_number_function();	

var	result	=	my_func(5);	

alert(“The	result	of	calling	my_func(5)	is	“	+	result);

In	this	program,	we	have	our	traditional	square_a_number	function.	However,	rather	than
using	it	directly,	we	have	another	function,	called	get_square_a_number_function,
which	returns	that	function.	Note	that	the	return	statement	on
get_square_a_number_function	does	not	call	square_a_number;	there	are	no
parentheses	after	the	function	name	that	would	indicate	a	function	call.	Instead,	the
function	itself	is	returned	from	this	function.

Then,	in	the	main	program,	the	value	returned	by	get_square_a_number_function	is
stored	in	my_func.	What	value	is	this?	The	square_a_number	function!	Therefore,
my_func	is	actually	holding	the	square_a_number	function	itself.	Since	my_func	is	holding
a	function,	it	can	be	called	as	a	function.	This	is	what	is	happening	with	my_func(5)—it	is
calling	the	function	stored	in	my_func,	which	is	the	number-squaring	function.	This	will,
as	expected,	return	the	number	25.

12.3	Functions	That	Create	Functions

Let’s	say	that	we	wanted	to	have	a	function	that	operated	as	a	counter.	That	is,	every	time
we	called	the	function,	it	would	give	us	the	next	number.	The	first	time	we	called	the
function	it	would	return	1,	then	2,	and	so	forth.	How	might	we	write	that	function?

Let’s	start	by	looking	at	a	way	that	does	not	work.

Take	a	moment	to	see	if	you	can	figure	out	what	is	wrong	with	the	following	program:

Figure	12.5:	A	Wrong	Way	to	Implement	a	Counter

var	next_value	=	function()	{	

			var	counter	=	0;	

			counter	=	counter	+	1;	

			return	counter;	

};	

	

var	first_value	=	next_value();	

var	second_value	=	next_value();	

alert(“First	value:	“	+	first_value);	

alert(“Second	value:	“	+	second_value);

If	you	haven’t	figured	it	out	yet,	try	putting	it	into	a	web	page	and	running	it.	What
happens?

The	problem	with	the	program	is	that	the	definition	of	counter	is	a	local	variable.
Therefore,	every	time	the	function	is	run,	it	will	create	a	brand	new	variable	named
counter	and	set	it	to	zero.	Because	of	this,	this	function	will	always	return	the	value	1.

One	way	around	this	is	to	make	the	counter	variable	into	a	global	variable	instead	of	a
local	one.	This	code	will	work	a	little	better:

Figure	12.6:	A	Counter	Function	Using	a	Global	Variable

var	counter	=	0;	

var	next_value	=	function()	{	

			counter	=	counter	+	1;	

			return	counter;	

}	

	

	

var	first_value	=	next_value();	

var	second_value	=	next_value();	

alert(“First	value:	“	+	first_value);	

alert(“Second	value:	“	+	second_value);

This	one	actually	behaves	the	way	we	want	it	to,	but	it	has	two	very	large	drawbacks.	The
first	drawback	is	that	the	counter	variable	is	a	global	variable.	This	means	that	the	person
using	the	next_value	function	has	to	know	about	the	counter	variable	so	they	don’t	use	it
themselves.	It	is	bad	programming	practice	for	the	user	of	a	function	to	have	to	know	so
much	about	how	a	function	is	implemented.	The	second	drawback	is	that	this	only	allows
for	one	counter	function	in	the	program.	In	order	to	get	a	second	counter	function,	we
would	need	to	recode	it.	It	seems	very	wasteful	to	write	the	exact	same	code	twice,	only
changing	the	variable	names.

In	order	to	solve	these	problems,	we	need	a	way	to	make	the	scope	of	counter	isolated
from	the	global	scope	and	to	be	able	to	create	new	instances	of	the	counter	function	on	the
fly	with	each	having	their	own	independent	counter	variable.	Both	of	these	can	be	solved
by	making	function-generating-functions.

12.3.1	Practice	Activity

Draw	out	the	stack	diagrams	for	a	call	to	next_value	in	both	of	the	listings	in	this	section.

In	Chapter	10	we	learned	that	the	function	operator	creates	a	new	function	with	the	given
code.	In	Chapter	11	we	learned	that	each	time	the	function	is	called,	a	new	local	scope	is
created	for	that	function.	We	also	looked	at	how	each	new	local	scope	has	a	link	to	a
parent	scope,	which,	so	far,	has	been	the	global	scope.	(Go	back	and	look	at
Figures	11.9	and	11.14	for	a	refresher.)	So	how	does	that	parent	scope	link	get	created,	and
can	it	point	to	anything	other	than	the	global	scope?

It	turns	out	that	the	parent	scope	points	to	whatever	scope	is	active	at	the	time	that	a
function	is	created.	So	far,	when	our	functions	have	been	created,	the	active	scope	has
been	the	global	scope.	That	is	why	the	parent	scope	on	our	functions	has	always	been	the
global	scope.	If,	instead,	the	function	had	been	created	while	another	function	was	active,
its	parent	scope	would	have	been	the	local	scope	that	was	active	at	the	time	it	was	created!
When	such	a	function	is	called,	it	still	creates	a	brand-new	local	scope	for	its	parameters
and	all	variables	declared	with	the	var	keyword.	However,	when	referring	to	any	variable
not	defined	in	its	local	scope,	it	will	look	to	its	parent	scope,	which	will	be	the	local	scope
that	was	active	when	the	function	was	created.	When	a	computer	programming	language
stores	the	scope	of	a	function	that	is	newly-created	for	use	as	a	parent	scope,	this	is	known
as	having	lexical	closure.

An	example	should	help:

Figure	12.7:	Example	of	a	Function	with	a	Local	Scope	as	a	Parent	Scope

var	create_function	=	function(x)	{	

			var	new_function	=	function()	{	

						return	x;	

			};	

	

			return	new_function;	

};	

	

var	my_func_a	=	create_function(12);	

var	my_func_b	=	create_function(20);	

	

var	my_val_a	=	my_func_a();	

var	my_val_b	=	my_func_b();	

	

alert(“The	result	of	calling	my_func_a	is	“	+	my_val_a);	

alert(“The	result	of	calling	my_func_b	is	“	+	my_val_b);

This	example	was	kept	very	short	so	you	could	more	easily	see	all	of	the	pieces	moving.
From	a	high	level,	the	create_function	function	takes	one	parameter	and	creates	a
function	that	always	returns	that	value.	Note	the	line	that	says	var	my_func_a	=
create_function(12);.	This	causes	create_function	to	build	a	new	function	that	will
always	return	the	value	12	and	stores	this	new	function	in	my_func_a.

How	does	create_function	do	this?	Well,	let’s	walk	through	the	code.

The	first	thing	that	the	create_function	function	does	is	to	create	a	function.	The
function	operator	can	be	used	anywhere	to	create	a	new	function.	It	then	stores	this
function	into	new_function,	which	is	a	local	variable	for	create_function.	It	then	returns
this	newly-created	function.

What	is	so	special	about	this	newly-created	function?	Since	it	was	defined	within
create_function,	its	parent	scope	is	the	local	scope	that	was	created	at	the	time	that
create_function	was	invoked.	Therefore,	each	time	that	create_function	is	run,	it	will
create	a	new	version	of	the	new_function	function	with	a	different	parent	scope	(i.e.,	the
one	that	was	created	when	the	create_function	function	was	called).	Now,	when
create_function	returns,	its	local	scope	is	no	longer	active,	but	it	is	not	destroyed
because	the	function	that	it	returns	still	refers	to	it.	It	will	just	lie	dormant	until	the	created
function	is	called,	and	then	it	will	become	the	parent	scope	of	the	created	function’s	new
local	scope.

Therefore,	when	you	call	create_function(12),	that	creates	a	new	local	scope	with	the
variable	x,	and	x	is	given	the	value	12	from	the	parameter	list.	When	the	function	that	will
be	stored	in	new_function	is	created,	the	current	local	scope	(with	x	as	a	local	variable)	is
linked	to	the	function	so	that	it	will	be	the	parent	scope	of	each	new	local	scope	created
from	calling	the	function.	This	function	is	then	returned	and	stored	in	my_func_a.	When
my_func_a	is	called	later	on,	it	creates	a	new	local	scope	for	the	function	call.	However,
the	parent	scope	is	set	to	the	scope	that	was	active	when	the	function	was	created—the
scope	that	has	x	set	to	12.	Therefore,	when	it	runs	the	code	return	x;,	it	first	looks	in	its
newly-created	local	scope	for	x	and	doesn’t	find	it.	It	then	goes	to	the	parent	scope	and
finds	x	defined	there.	If	it	did	not	find	x	in	the	parent	scope,	it	would	move	up	the	chain	to

the	global	scope.

Note	that	my_func_b	is	created	in	the	same	way.	However,	as	we’ve	mentioned,	every	time
a	function	is	called,	a	new	local	scope	is	created.	Therefore,	when	create_function(20)
is	called,	there	is	a	new	local	scope	created,	and	this	scope	has	x	set	to	20.	This	scope	gets
attached	as	the	parent	scope	for	the	function	that	is	created	and	stored	in	my_func_b.	When
my_func_a	gets	called,	the	parent	scope	is	the	one	that	has	x	set	to	12,	but	when	my_func_b
gets	called,	the	parent	scope	is	the	one	that	has	x	set	to	20.

We	now	have	two	different	functions	that	come	out	of	the	same	code.	These	functions
both	work	differently	because	they	have	different	parent	scopes	when	they	are	invoked.

Now,	let’s	get	back	at	the	problem	of	the	counter	functions.	We	wanted	a	function	that
would	create	a	new	counter	function	for	us.	So,	what	we	really	want	is	a	counter	function
that	can	be	attached	to	different	parent	scopes	that	each	have	their	own	current	count.

The	code	to	do	this	is	as	follows:

Figure	12.8:	A	Function	to	Create	Counter	Functions

var	create_counter	=	function()	{	

			var	current_val	=	0;	

			var	counter_function	=	function()	{	

						current_val	=	current_val	+	1;	

						return	current_val;	

			};	

			return	counter_function;	

};	

	

var	mycounter_a	=	create_counter();	

var	mycounter_b	=	create_counter();	

var	mycounter_c	=	mycounter_a;	

	

alert(mycounter_a());	//	1	

alert(mycounter_a());	//	2	

alert(mycounter_a());	//	3	

alert(mycounter_b());	//	1	

alert(mycounter_a());	//	4	

alert(mycounter_b());	//	2	

alert(mycounter_c());	//	5

This	code	is	very	similar	to	the	code	that	just	spits	out	the	value	from	the	parent	scope.
The	only	difference	is	that	we	manipulate	the	value	of	current_val	in	the	parent	scope
first	(we	add	one	to	it)	before	returning	it.	This	modification	is	kept	because	every	time
you	call	mycounter_a,	it	pulls	that	same	scope	in	to	be	the	parent	scope.	Since
current_val	is	not	declared	with	a	var	keyword	within	counter_function,	it	will	always
refer	to	current_val	in	its	parent	scope	whether	it	is	reading	or	writing	the	value.

Since	mycounter_a	and	mycounter_b	were	created	from	different	calls	to
create_counter,	they	each	maintain	different	parent	scopes	and	therefore	independent
values	for	current_val.	Note,	however,	that	mycounter_c	continues	on	just	as	if
mycounter_a	were	called	again.	Why	is	that?	It	is	because	mycounter_c	is	not	a	new
function.	It	is	the	same	function	as	mycounter_a	since	it	was	simply	assigned.

mycounter_a	and	mycounter_b	were	both	created	by	a	call	to	create_counter,	but
mycounter_c	simply	gets	the	same	function	that	was	in	mycounter_a.	Remember	that
functions	are	stored	in	variables	just	like	any	other	value	and	can	be	assigned	back	and
forth	to	different	variables,	and	these	assignments	do	not	change	the	underlying	values.
Therefore,	mycounter_a	and	mycounter_c	both	refer	to	the	exact	same	function.

12.4	Currying	Functions

In	Section	12.1	we	learned	how	to	take	multiple,	specific	functions,	and	combine	them
into	a	single	higher-order	function	that	takes	a	function	as	a	parameter.	In	this	section	we
will	look	at	the	reverse	process—taking	a	generalized,	or	higher-order,	function	and
creating	new,	more	specific	versions	of	it	by	specifying	one	or	more	parameters
beforehand.

Go	back	and	look	at	Figures	12.1,	12.2,	and	12.3.	You	will	notice	that	the	functionality	of
both	Figures	12.1	and	12.2	are	both	present	in	Figure	12.3.	You	might	rightly	conclude
that	the	function	sum_range_with_transformation	that	is	defined	in	Figure	12.3	is,
therefore,	more	powerful	than	the	individual	sum_cubes_of_range	and
sum_squares_of_range	functions	defined	in	the	other	programs.	However,	sometimes
calling	functions	that	take	another	function	as	a	parameter	can	be	confusing.	If,	for
instance,	a	programmer	usually	has	to	sum	the	squares	of	a	range,	but	only	rarely	has	to
sum	another	transformation,	it	might	be	useful	to	have	sum_squares_of_range	as	its	own
function.

Now,	we	still	want	to	make	use	of	our	sum_range_with_transformation	function.	The
reason	for	this	is	that	if	you	have	code	that	performs	a	task,	you	don’t	want	to	have	two
copies	of	it	lying	around.	If	you	find	a	bug	in	one	copy	of	the	function,	you	would	have	to
remember	to	fix	it	in	the	other	one.	If	you	find	a	better	way	of	implementing	the	function,
you	also	have	to	remember	(and	take	the	time)	to	rewrite	the	other	function	to	match.

We	want	to	have	the	ease	of	calling	sum_squares_of_range	but	maintaining	the	power	of
funneling	all	of	the	logic	through	sum_range_with_transformation.	The	way	to	do	this	is
with	currying.	Currying	a	function	means	that	you	are	taking	a	general-purpose	function
and	creating	a	special-purpose	function	from	it	by	fixing	one	or	more	parameters	to	a
constant	value.

For	instance,	if	we	wanted	to	build	on	the	program	in	Figure	12.3	to	make	a	special
function	called	sum_squares_of_range,	we	could	add	the	code	listed	in	Figure	12.9	to	do
it.

Figure	12.9:	Creating	a	Special-Purpose	Function	from	a	General-Purpose	Function

var	sum_squares_of_range	=	function(r_start,	r_end)	{	

			return	sum_range_with_transformation(r_start,	r_end,	square_number);	

};

As	you	can	see,	instead	of	writing	the	sum_squares_of_range	function	from	scratch	like
we	did	in	Figure	12.1,	we	used	sum_range_with_transformation	as	a	building	block	to
create	our	function.	This	allowed	sum_squares_of_range	to	become	a	simpler	way	of
writing	sum_range_with_transformation	with	some	of	the	parameters	built	in.

We	can	go	a	step	further	to	define	a	function-generating-function	where	you	create	a
custom	summing	function	based	on	a	transformation	function.	That	sounds	a	little	weird,
but	perhaps	an	example	might	help.	The	code	below	can	be	attached	to	the	end	of
Figure	12.3	to	produce	a	working	program:

Figure	12.10:	Creating	a	Special-Purpose	Function	Generator

var	create_summing_function	=	function(transformation)	{	

			var	summing_function	=	function(r_start,	r_end)	{	

						return	sum_range_with_transformation(r_start,	r_end,

transformation);	

			};	

			return	summing_function;	

}	

	

var	sum_cubes_of_range	=	create_summing_function(cube_number);	

	

var	result_cubes_currying	=	sum_cubes_of_range(3,	6);	

alert(“The	sum	of	the	cubes	(using	currying)	is	“	+

result_cubes_currying);

In	this	example,	the	create_summing_function	takes	the	transformation	as	its	argument
and	returns	a	brand	new	function,	which	uses	that	argument	as	the	last	parameter	to
sum_range_with_transformation,	so	that	it	provides	a	really	easy	way	to	create	new
transformation	functions.

12.5	Anonymous	Functions

Functions	are	just	values.	As	we	learned	way	back	in	Chapter	8,	you	often	don’t	even	need
to	create	variables	to	hold	each	intermediate	value.	Similarly,	we	don’t	always	need	to
store	functions	in	variables	either.

Just	as	typing	the	number	5	produces	the	value	5,	using	the	function	keyword	define	a
new	function.	Let’s	look	back	at	the	code	we	wrote	in	Figure	12.10.	Let’s	say	we	wanted
to	create	a	new	summing	function,	but	this	time	we	want	to	raise	the	members	of	the	range
to	the	fourth	power	before	summing	them.	Now,	we	could	create	a	separate	function	to
raise	a	number	to	the	fourth	power,	and	then	just	use	the	technique	in	Figure	12.10.
However,	an	easier	way	would	be	to	skip	naming	the	function	altogether	and	define	it
when	we	call	create_summing_function.	The	result	would	look	something	like	this,
which	would	be	appended	to	the	program	you	wrote	in	Figure	12.10:

Figure	12.11:	Using	Anonymous	Functions

var	sum_fourth_power_of_range	=	create_summing_function(function(x)	{	

			return	x	*	x	*	x	*	x;	

});	

	

var	new_result	=	sum_fourth_power_of_range(3,	6);	

alert(“The	sum	of	the	range	raised	to	the	fourth	power	is	“	+	new_result);

As	you	can	see,	where	in	Figure	12.10	we	used	a	named	function	for	the	transformation,
here	we	are	passing	in	the	function	directly.	The	function	we	are	passing	in	has	no	name.	It
is	defined,	and	rather	than	being	stored	in	a	variable,	is	simply	passed	as	a	parameter	to	a
function.	Functions	that	are	defined	within	the	code	and	not	given	a	name	are	known	as
anonymous	functions.

Chapter	13
Basic	Objects	and	Arrays

So	far,	while	programming,	we	have	basically	been	dealing	with	simple	values,	such	as
individual	numbers	and	strings.	However,	when	writing	computer	programs,	you	usually
have	to	deal	with	multiple	values	grouped	together.	For	instance,	think	about	a	bank
transaction—what	values	would	you	need	to	store?	You	would	need	to	know	when	the
transaction	happened,	how	much	the	transaction	was	for,	who	sent	the	money,	and	who
received	the	money.	Therefore,	you	would	need,	at	minimum,	four	values—the	timestamp
of	the	transaction,	the	amount,	the	account	number	it	was	coming	from,	and	the	account
number	that	it	was	going	to.

Now	we	could	represent	this	with	four	separate	variables.	We	could	have	something	like
this:

Figure	13.1:	Related	Variables

var	transaction_timestamp;	

var	transaction_amount;	

var	transaction_from_account;	

var	transaction_to_account;

Then,	if	we	had	to	pass	these	variables	into	a	function,	we	would	have	to	pass	them	as	four
separate	parameters.	Imagine	if	we	then	added	additional	data	that	went	with	the
transaction,	such	as	a	transfer	fee	and	the	currency	that	the	transfer	is	in.	The	number	of
variables	we	need	to	move	around	has	now	gone	up	to	6!	Not	only	that,	every	function
that	touches	the	data	has	to	be	rewritten	to	take	the	extra	parameters!

This	is	not	an	unusual	situation.	In	many	programs,	there	may	be	several	dozen	values	that
all	relate	to	each	other.	Passing	them	around	as	individual	values	can	quickly	get	out-of-
control.

Review

In	this	chapter	we	covered	the	basics	of	composite	values—objects	and	arrays.	We	have
learned:

Objects	hold	related	pieces	of	data	together	in	a	single,	cohesive	unit.
Each	value	in	an	object	is	placed	into	a	property,	which	is	a	name	that	is	used	to
access	the	value.
Sequences	of	data	are	called	arrays.
Each	array	holds	a	sequence	of	related	values.
Values	in	an	array	are	accessed	through	their	index.
Array	indexes	are	zero-based,	which	means	that	the	first	index	is	always	0,	and	the

last	index	is	always	one	less	than	the	length	of	the	array.
If	you	assign	a	property	to	an	object	or	access	an	array	index	which	does	not	yet
exist,	the	property	or	index	will	be	created	for	you	automatically.
Each	array	has	a	length	property	which	tells	you	how	large	the	array	is.
The	length	property	can	be	used	in	loops	to	control	the	number	of	times	the	loop
occurs.
Objects	and	arrays	can	be	embedded	within	each	other—a	property	can	have	an	array
value,	and	the	value	at	a	particular	array	index	can	be	a	full	object	(which	might	also
have	an	array).
Objects	and	arrays	both	have	special	syntax	({}	and	[])	to	make	typing	them	easier.

Apply	What	You	Have	Learned

1.	 Create	an	array	of	products	so	that	each	product	is	an	object	that	contains	a	name,	a
code,	a	description,	and	a	price.

2.	 Now	create	a	function	that	takes	two	parameters—a	product	array	and	a	single
product	code.	The	function	should	loop	looking	for	the	object	that	matches	the	code.
When	it	finds	the	object,	it	should	return	the	full	object	that	has	a	matching	code.

3.	 Now	add	user	interaction.	The	user	should	be	able	to	type	the	product	code,	and	the
program	will	look	up	information	about	that	product	and	display	it.

4.	 Extend	the	program	so	that	the	user	can	look	up	any	number	of	codes	that	they	want.

13.1	A	Basic	Introduction	to	Objects

In	order	to	package	pieces	of	data	together,	JavaScript	uses	objects.	An	object	is	simply	a
collection	of	named	values.	It’s	like	packaging	up	several	variables	into	a	single	unit.

Going	back	to	our	bank	transaction	example,	I	could	package	all	of	those	variables	up	into
a	single	variable	which	has	named	values	for	each	component.	Unlike	some	programming
languages,	JavaScript	does	not	care	how	many	values	you	pack	into	an	object,	and	you
don’t	have	to	tell	JavaScript	what	they	will	be	ahead	of	time.	You	usually	start	with	an
empty	object	and	simply	stash	whatever	values	you	want	in	there	using	whatever	names
you	want.	That	doesn’t	mean	that	the	names	don’t	matter—it	matters	a	great	deal	since
that	is	how	you	will	be	keeping	track	of	them,	but	JavaScript	itself	does	not	care.

Objects	in	JavaScript	can	be	generated	in	a	variety	of	ways.	The	first	way	we	will	look	at
is	using	the	new	keyword.	To	get	a	blank	object,	you	simply	type	in	new	Object().

Figure	13.2:	Using	the	new	Keyword

var	my_transaction	=	new	Object();

Objects	themselves	are	values,	and	can	be	stored	in	variables	and	used	in	expressions	just
like	any	other	value.

Now,	let’s	look	at	how	we	assign	values	to	objects:

Figure	13.3:	Assigning	Values	to	Objects

var	my_transaction	=	new	Object();	

my_transaction.timestamp	=	“2014-02-05”;	

my_transaction.amount	=	1000;	

my_transaction.from_account	=	“12345”;	

my_transaction.to_account	=	“54321”;

JavaScript	stores	values	in	objects	based	on	their	name.	These	values	are	often	called
attributes	or	properties	of	the	object.	So,	when	you	type	mytransaction.amount,	that
tells	JavaScript	to	look	up	the	amount	property	of	the	mytransaction	object.

This	is	the	information	we	would	need	for	a	bank	transaction.	However,	a	transaction
needs	information	about	the	accounts,	too.	What	would	a	bank	account	object	look	like?
Such	an	object	would	need	the	account	number,	the	name	of	the	person	on	the	account,
and	their	current	balance.	Therefore,	we	might	have	an	object	that	looks	like	this:

Figure	13.4:	A	Bank	Account	Object

var	my_account	=	new	Object();	

my_account.account_number	=	“12345”;	

my_account.owner	=	“Fred	Fredston“;	

my_account.current_balance	=	1200;

Now	let’s	say	that	I	want	to	define	a	function	that	processes	a	transaction	against	an
account.	What	I	want	it	to	do	is	to	take	my_transaction	and	apply	it	to	my_account	(i.e.,
give	the	money	in	my_transaction	to	the	balance	in	my_account).	To	do	this,	I	can	create
a	function,	which	takes	the	two	objects,	picks	out	the	values	it	needs,	and	processes	the
transaction.	If	the	account	number	matches	the	from_account	of	the	transaction,	it
removes	the	money	from	the	account,	and	if	it	matches	the	to_account	of	the	transaction,
it	gives	the	money	to	the	account.

It	might	look	like	this:

Figure	13.5:	A	Function	Taking	Two	Objects

var	process_transaction	=	function(account,	transaction)	{	

			if(account.account_number	==	transaction.from_account)	{	

						account.current_balance	=	account.current_balance	-

transaction.amount;	

			}	else	{	

						if(account.account_number	==	transaction.to_account)	{	

									account.current_balance	=	account.current_balance	+

transaction.amount;	

						}	else	{	

									//	Do	nothing	

						}	

			}	

};

Now	I	can	call	this	function	by	typing	process_transaction(my_account,
my_transaction);.	Notice	that	we	didn’t	have	to	pass	in	every	value;	we	only	had	to	pass
in	the	objects	which	contained	the	values	we	needed.

Another	important	point	is	that	when	we	passed	in	objects,	we	could	actually	modify	the
object	that	we	were	receiving.	Note	that,	unlike	in	previous	chapters,	we	didn’t	return	a
value.	Instead,	we	modified	the	account	object	itself.	The	result	is	the	modification,	not
the	return	value.	This	is	known	as	a	mutating	function	because	it	modifies	(i.e.,	mutates)
the	objects	passed	as	parameters	rather	than	return	a	value.	Note	that	this	only	works	with
objects.	Basic	values	(i.e.,	numbers,	strings,	etc.)	passed	directly	as	parameters	cannot	be

modified	like	this.

Note	that	if	a	function	doesn’t	have	a	return	value,	it	returns	the	special	value	undefined,
which	means	“no	value.”

In	any	case,	objects	allow	functions	to	manipulate	values,	not	just	process	them.	When	we
were	just	passing	in	numbers	and	strings,	even	if	we	modified	the	parameter	variable,	it
wouldn’t	modify	the	value	in	the	sending	function.	Now	that	we	are	using	objects	we	can
modify	the	properties	of	any	object	passed	in.	However,	we	cannot	replace	the	whole
object	with	a	new	one	(though	we	can	modify	all	of	its	properties).

13.1.1	Practice	Questions

1.	 Find	a	product	catalog	(of	any	kind).	Look	through	the	catalog.	List	out	the	data
items	that	it	has	for	each	catalog	item.	Pick	out	two	items	to	use	for	the	rest	of	this
practice.

2.	 Create	a	program	that	builds	two	objects—one	for	each	item	you	picked	out.	It
should	use	the	fields	you	listed	in	the	previous	step	(feel	free	to	skip	fields	if	they	are
complex	fields,	such	as	an	image).	Use	an	alert	function	to	show	some	of	the	pieces
of	data	you	have	put	in	your	objects.

3.	 Create	a	function	that	displays	all	of	the	information	about	a	single	item	that	takes
one	parameter—the	item	to	display.	It	should	display	each	property	defined	on	that
object.	Then	call	that	function	for	each	item.

4.	 Create	a	function	that	asks	the	user	for	the	values	to	be	placed	in	that	object	and	then
returns	a	new	object	with	those	values	assigned	to	properties	on	that	object.

13.2	Simplifying	Object	Creation

Now,	because	JavaScript	programmers	create	objects	using	new	Object()	all	of	the	time,
JavaScript	has	a	special	syntax	that	allows	you	to	create	a	new	object	more	quickly	and
easily:	{}.	This,	just	like	new	Object(),	creates	a	new,	blank	object.	Therefore,	we	could
have	started	our	code	with	this	instead:

Figure	13.6:	Getting	a	New,	Blank	Object

var	my_transaction	=	{};	

my_transaction.timestamp	=	“2014-02-05”;	

my_transaction.amount	=	1000;

However,	{}	has	a	few	more	tricks	available.	You	can	actually	use	it	to	specify	a	set	of
starting	attributes	at	the	beginning	so	you	don’t	have	to	assign	them	one-by-one.	The
syntax	looks	like	this:

Figure	13.7:	Getting	a	New	Object	with	Initial	Values

var	my_transaction	=	{	

			timestamp:	“2014-02-05”,	

			amount:	1000,	

			from_account:	“12345”,	

			to_account:	“54321”	

};

As	you	can	see,	with	this	syntax,	in	between	the	{	and	},	there	are	sets	of	named	values
that	will	be	our	object	properties.	Each	property	name	is	followed	by	a	colon	and	the	value
of	the	property	we	are	trying	to	set.	This	makes	initializing	objects	much	faster	and
cleaner	than	the	long	way.	Keep	in	mind	that	the	names	of	properties	should	generally	be
limited	to	the	same	types	of	names	that	are	allowed	for	variables	(i.e.,	don’t	put	spaces,
dashes,	or	special	characters	in	the	property	names).

13.2.1	Practice	Questions

For	practice	for	this	section,	modify	the	practice	work	of	the	previous	section	to	use	the
shorter	object	creation	syntax.

13.3	Storing	Sequences	of	Values	Using	Arrays

So	far	we	have	dealt	with	objects,	which	are	collections	of	named	values.	In	this	section
we	are	going	to	talk	about	arrays,	which	are	ordered	sequences	of	values.

In	Section	4.3	we	talked	about	how	computers	stored	sequences	of	values.	In	short,	it
stores	the	number	of	things	in	the	sequence,	and	then	it	stores	the	values	themselves.	Such
a	structure	in	JavaScript	is	called	an	array.	Arrays	in	JavaScript	aren’t	quite	stored	the	way
that	we	talked	about	in	Section	4.3,	but	it	is	a	helpful	way	to	think	about	them.

Why	would	we	need	a	sequence	of	values?	Let’s	say	I	wanted	to	store	the	ages	of	my
children.	I	could	do	that	with	an	object,	but	it	would	be	rather	awkward.	With	an	object,	I
could	do	this:

Figure	13.8:	A	Bad	Way	to	Store	a	Sequence	of	Values

var	children_ages	=	{	

			first_child:	11,	

			second_child:	8,	

			third_child:	7	

};

That	somewhat	works,	but	it	would	be	hard	to	use	such	a	structure.	For	instance,	if	I
wanted	to	write	out	each	of	their	ages,	it	would	be	hard	to	write	a	loop	to	go	through	each
child	and	write	out	their	ages,	especially	if	I	didn’t	know	how	many	children	there	were
ahead	of	time.

An	array,	on	the	other	hand,	allows	us	to	define	ordered	sequences	of	values.	So,	instead
of	our	awkward	object,	we	could	write	something	more	elegant	like	this:

Figure	13.9:	Storing	a	Sequence	of	Values	in	an	Array

var	children_ages	=	new	Array();	

children_ages[0]	=	11;	

children_ages[1]	=	8;	

children_ages[2]	=	7;

In	this	code,	children_ages	is	first	assigned	a	blank	array—that’s	what	new	Array()
does.	This	tells	JavaScript	to	make	an	empty	sequence	of	values	and	store	it	in	the	variable
children_ages.	In	the	next	line,	we	tell	JavaScript	that	the	first	value	in	the	sequence
should	be	11.	The	[]	notation	says	that	we	need	to	use	the	number	inside	the	brackets	to
tell	us	which	element	of	the	array	we	are	referring	to	and,	if	it	doesn’t	exist	yet,	to	create

it.	Therefore	[0]	says	to	refer	to	the	first	member	of	the	array	and	the	0	is	called	the	index
of	the	array.	Normally,	we	are	used	to	labeling	sequences	of	values	starting	with	a	1,	but
computers	usually	label	sequences	of	values	starting	with	a	0.	This	is	known	as	zero-
based	indexing.

The	code	children_ages[0]	=	11;	tells	JavaScript	to	look	in	the	children_ages	array
and	try	to	find	the	first	value.	Since	we	initialized	the	array	as	being	empty,	there	is	no
first	value	yet.	There	are	no	values	at	all.	That’s	all	right	because	JavaScript	knows	that	if
the	array	member	doesn’t	exist,	it	should	create	it.	Therefore,	it	will	create	a	space	for	a
new	value	at	index	0.	Next,	it	will	look	at	the	right	hand	side	of	the	equal	sign	and	see
what	the	value	of	the	expression	is.	In	this	case,	the	value	is	11	so	it	stores	the	number	11
at	index	0	of	children_ages.

The	same	thing	happens	with	index	1	and	2.	At	the	end	of	the	code,	there	are	three	values
in	children_ages—11,	8,	and	7.

13.4	Using	Arrays	in	Programs

Now	that	we	have	the	values	in	an	array,	they	are	much	easier	to	manipulate.	When	we
tried	to	store	the	values	in	an	object,	we	had	to	know	the	name	of	each	value	(i.e.,
first_child,	second_child,	etc.).	If	we	don’t	know	ahead	of	time	how	many	children	we
have,	we	won’t	know	what	to	name	the	variable.	By	storing	them	in	an	array,	each	value
gets	a	numbered	index	rather	than	a	property	name.	These	are	much	easier	for	a	computer
to	go	through	sequentially.

Let’s	say	we	wanted	to	go	through	an	array	of	children’s	ages,	and	find	the	age	of	the
oldest	child.	How	might	we	do	that?	Well,	when	we	say	we	want	to	“go	through	an	array,”
that	means	we	want	to	repeat	some	code	for	each	element	in	an	array.	What	sort	of
programming	structure	do	we	use	when	we	want	to	repeat	code?	A	loop,	of	course!

The	problem	is	that	we	have	to	know	when	we	are	finished.	That	is,	we	need	to	know	how
many	values	there	are	in	the	array	so	we	know	when	we	don’t	want	another	value.	Arrays,
in	addition	to	being	able	to	access	its	values	by	index,	also	works	in	some	ways	like	an
object.	It	has	a	few	special	properties	that	can	be	used	to	find	out	information	about	the
array.	The	most	important	property	that	an	array	has	is	the	length	property.	The	length
property	returns	the	number	of	values	that	the	array	holds.	So,	in	our	code,
children_ages.length	would	yield	3	since	it	holds	three	values.	Notice	that,	since
JavaScript	arrays	use	zero-based	indexing,	this	is	one	more	than	the	largest	index,	which	is
2.

Let’s	write	a	function	that	takes	an	array	of	ages	and	returns	the	largest	one:

Figure	13.10:	Finding	the	Largest	Value	in	an	Array

var	largest_age	=	function(age_array)	{	

			var	the_largest	=	0;	

			for(var	i	=	0;	i	<	age_array.length;	i++)	{	

						if(age_array[i]	>	the_largest)	{	

									the_largest	=	age_array[i];	

						}	

			}	

	

			return	the_largest;	

};

In	this	code,	the	for	loop	repeated	using	i	as	the	loop	counter.	i	starts	at	zero	since	the
array	indexes	start	at	zero.	At	the	end	of	every	loop,	i	increases	by	one	(i++	is	just	a	short
way	of	writing	i	=	i	+	1).	Incrementing	the	index	by	one	basically	means	“go	to	the	next
value	in	the	list.”	The	funny	part	of	the	for	statement	is	the	condition.	Here,	the	condition
is	i	<	age_array.length.	Since	the	array	length	is	one	greater	than	the	last	index	of	the

array,	this	condition	says	to	keep	going	as	long	as	we	have	a	valid	index	for	the	array.
When	i	finally	makes	it	to	age_array.length,	it	will	no	longer	point	to	a	valid	value,	so
we	should	stop	looping.

What	do	we	do	inside	the	loop?	We	are	simply	testing	each	value	(age_array[i])	to	see	if
it	is	greater	than	the	previous	value	(the_largest).	If	it	is	greater,	we	write	the	current
value	into	the_largest.	Otherwise,	we	ignore	it.

Then,	after	the	loop	has	completed,	we	return	the	value	of	the_largest	for	the	result	of
the	function.

The	way	that	this	would	be	used	in	a	program	would	be	like	this:

Figure	13.11:	Using	the	largest_age	Function

var	children_ages	=	new	Array();	

children_ages[0]	=	11;	

children_ages[1]	=	8;	

children_ages[2]	=	7;	

	

var	largest	=	largest_age(children_ages);	

alert(“The	oldest	child	is	“	+	largest	+	“	years	old“);

Just	like	we	were	able	to	simplify	object	creation	with	the	{}	syntax,	arrays	have	a	special
syntax,	too,	which	makes	them	easy	to	create.	In	JavaScript,	you	can	create	an	array	just
by	putting	in	a	list	of	numbers	in	square	brackets	([]).	For	instance:

Figure	13.12:	Using	the	Simpler	Array	Syntax

//	Create	an	empty	array	

var	empty_array	=	[];	

	

//	Creates	the	array	we	had	before	

var	children_ages	=	[11,	8,	7];	

	

//	Gets	the	largest	value	in	children_ages	

var	largest	=	largest_age(children_ages);	

	

//	Skip	the	variable,	pass	in	the	array	directly	

var	largest_inline	=	largest_age([11,	8,	7]);

Using	this	syntax	saves	us	a	lot	of	effort	in	programming.

13.4.1	Practice	Questions

1.	 Type	out	the	entire	largest_age	function.	Test	it	by	sending	it	different	arrays	and
making	sure	it	always	returns	the	largest	age.

2.	 Instead	of	creating	the	array	values	yourself,	have	the	user	type	the	values.	For	the
first	time	around,	have	the	user	type	in	exactly	three	values.	Make	sure	these	values
get	converted	to	numbers	before	storing	them	in	the	array!

3.	 Extend	your	program	so	that	the	user	can	type	in	as	many	values	as	they	want.
Remember	to	include	a	way	that	the	user	can	indicate	that	they	are	finished	either	by
asking	them	if	they	are	done	after	each	one	or	asking	the	user	to	type	a	special
sentinel	value	that	indicates	that	they	are	done.

13.5	Mixing	Objects	and	Arrays

While	objects	and	arrays	are	pretty	powerful	in	their	own	right,	you	can	increase	the
power	of	both	of	them	by	mixing	them	together.	The	values	held	in	object	properties	don’t
have	to	be	just	numbers	and	strings—they	can	be	any	JavaScript	value	including	other
objects	or	arrays!	Likewise,	array	values	don’t	have	to	just	be	numbers,	they	can	be	any
value	that	JavaScript	supports,	including	objects	and	other	arrays.	Mixing	and	matching
objects	and	arrays	gives	you	the	flexibility	to	represent	just	about	any	real	world	data	set.

For	instance,	let’s	say	that	I	wanted	to	put	more	information	about	my	children	than	just
their	age.	I	also	wanted	to	include	their	name	and	favorite	color.	In	addition,	let’s	say	that	I
really	want	the	list	of	children	to	be	on	a	larger	record	about	me,	not	just	sitting	by	itself	in
a	variable.	How	would	I	write	that?

Here	is	how	you	would	write	it	the	long	way:

Figure	13.13:	Building	a	Complex	Object

var	my_record	=	new	Object();	

my_record.name	=	“Jon“;	

my_record.children	=	new	Array();	

my_record.children[0]	=	new	Object();	

my_record.children[0].name	=	“Jim“;	

my_record.children[0].age	=	11;	

my_record.children[0].favorite_color	=	“blue“;	

my_record.children[1]	=	new	Object();	

my_record.children[1].name	=	“Jack“;	

my_record.children[1].age	=	8;	

my_record.children[1].favorite_color	=	“black“;	

my_record.children[2]	=	new	Object();	

my_record.children[2].name	=	“Joel“;	

my_record.children[2].age	=	7;	

my_record.children[2].favorite_color	=	“orange“;

As	you	can	see,	we	start	out	with	a	blank	object	in	the	variable	my_record.	We	then	add	a
name	to	the	object.	Next,	we	add	an	empty	array	to	the	object,	and	we	name	the	property
children.	Now,	to	access	this	array,	we	have	to	use	my_record.children.	Since
my_record.children	is	an	array,	we	can	use	indexes	on	it.	Therefore,
my_record.children[0]	refers	to	the	first	value	in	the	my_record.children	array.	Since
that	index	doesn’t	exist	yet,	it	gets	created.	But	what	is	stored	there?	It’s	a	new,	blank
object!	Therefore,	my_record.children[0]	now	refers	to	an	empty	object.	What	can	we
do	with	objects?	We	can	add	properties.	We	can	create	a	name	property	on	this	new,	empty
object	by	doing	my_record.children[0].name	=	“Jim”;.	We	then	set	the	age	in	the	same
way.	At	the	end	of	this	process,	we	have	an	object	that	has	an	array	of	objects.

Now,	if	we	wanted	to	use	our	largest_age	function,	we	would	have	to	rewrite	it.	Why?
Because	now	the	array	is	no	longer	an	array	of	numbers	but	of	objects.	Therefore,	for	each
object,	we	would	have	to	look	for	the	age	property.

The	code	would	look	like	this:

Figure	13.14:	The	largest_age	Function	Using	Objects

var	largest_age	=	function(child_array)	{	

			var	the_largest	=	0;	

			for(var	i	=	0;	i	<	child_array.length;	i++)	{	

						var	child	=	child_array[i];	

						if(child.age	>	the_largest)	{	

									the_largest	=	child.age;	

						}	

			}	

	

			return	the_largest;	

};

What	we	did	in	this	function	is	modify	our	loop	so	that	it	stores	the	object	temporarily	in	a
variable	called	child.	We	then	use	child.age	to	access	the	child’s	age.	Now,	instead	of
using	this	extra	child	variable,	we	could	have	just	done	it	directly	by	typing	in
child_array[i].age,	but	using	the	extra	variable	makes	for	much	less	typing	and	much
easier	reading.

To	call	this	function	on	our	list	of	children	from	my_record,	we	would	simply	write:
largest_age(my_record.children)

Figure	13.13	showed	the	long	way	to	build	a	complex	object.	However,	just	as	there	is	an
easier	way	to	write	simple	objects	and	arrays,	complex	objects	and	arrays	can	also	be	built
using	the	simplified	syntax.

Below	is	the	exact	same	object	that	we	built	in	Figure	13.13,	written	using	the	simplified
notation:

Figure	13.15:	Complex	Objects	Using	the	Simplified	Notation

var	my_record	=	{	

			name:	“Jon“,	

			children:	[

						{	

									name:	“Jim“,	

									age:	11,	

									favorite_color:	“blue”	

						},	

						{	

									name:	“Jack“,	

									age:	8,	

									favorite_color:	“black”	

						},	

						{	

									name:	“Joel“,	

									age:	7,	

									favorite_color:	“orange”	

						}	

]	

};

As	you	can	see,	this	takes	much	less	typing	and	is	much	easier	to	read.	It	takes	up	more
space	because	of	how	it	is	written,	but	you	don’t	have	to	do	it	that	way—JavaScript	does
not	care	how	much	or	little	space	is	used.	You	could	write	that	whole	complex	object	on
one	line	if	you	wanted	to,	but	I	think	the	clarity	that	comes	from	having	things	separated
out	is	worth	the	extra	space	it	can	take	up.

Chapter	14
Intermediate	Objects

So	far	we	have	created	objects	that	just	contain	data.	Objects	that	just	contain	data	are
sometimes	known	as	records—they	store	data,	but	they	don’t	do	anything.	In	Chapter	13,
we	wrote	functions	that	manipulated	these	records.	If	you	want	to	perform	an	action	(such
as	withdrawing	funds	from	an	account),	you	would	call	the	appropriate	function,	and	it
would	do	what	you	want.	This	is	a	fine	programming	style	and	works	well	for	many
situations.	However,	as	programs	get	larger	and	more	complex,	it	is	beneficial	to	make	the
functions	that	operate	on	the	objects	more	tightly	connected	to	the	objects	themselves.

In	Chapter	13,	we	grouped	together	several	related	variables	into	a	single	object.	This
made	several	improvements	to	our	code:

1.	 It	used	fewer	variables	since	the	values	were	all	properties	of	one	variable.
2.	 It	allowed	the	related	values	to	travel	together	to	functions	without	having	to	pass

them	individually.
3.	 It	made	the	code	more	understandable	because	the	related	values	were	packaged	into

a	single	unit.

Review

In	this	chapter	we	covered	the	basics	of	how	to	attach	functions	to	objects.	We	have
learned:

Since	functions	are	values,	functions	can	be	stored	as	attributes	of	objects	just	like
other	values.
Attaching	functions	to	objects	reduces	the	clutter	of	the	global	namespace.
If	a	function	is	called	through	an	object,	the	object	that	the	function	was	stored	on	is
passed	implicitly	through	the	this	parameter.
Structuring	code	in	this	way	makes	software	more	readable	because	it	follows	the
typical	English	subject-verb-object	sentence	structure.
Functions	that	create	and	initialize	new	objects	are	called	constructors.
Constructors	are	typically	stored	in	variables	starting	with	uppercase	letters	to
distinguish	them	from	other	functions.
Constructors	are	usually	named	according	to	the	type	of	object	they	are	creating.
Constructors	are	called	using	the	new	keyword.
Using	a	constructor	allows	you	to	create	a	lot	of	similar	objects	with	very	little	code.

Apply	What	You	Have	Learned

1.	 Create	a	constructor	Rectangle	which	creates	an	object	with	base	and	height
attributes.

2.	 Extend	your	Rectangle	constructor	to	also	have	two	methods:	find_area()	and
find_perimeter()	that	give	you	the	relevant	answers.	These	should	not	have	any
parameters	and	only	use	the	implicit	this	parameter.	If	you	have	forgotten	your

geometry,	for	rectangles,	area	=	base⋅height	and	perimeter	=	2⋅(base	+	height).	Be
sure	to	test	them	to	make	sure	they	work.

3.	 Create	a	new	constructor	for	a	Circle	that	takes	a	radius	as	a	parameter.	It	should
also	have	find_area()	and	find_perimeter()	methods.	If	you	have	forgotten	your
geometry,	area	=	π⋅radius2	and	perimeter	=	2⋅π⋅radius.	Be	sure	to	test	them	to	make
sure	they	work.

4.	 Create	a	function	called	biggest_area	that	takes	an	array	of	Rectangle	objects	and
tells	the	user	what	the	biggest	area	was	in	the	array,	using	the	find_area()	function.

5.	 If	your	biggest_area	function	only	uses	the	find_area()	function	of	the	object,
then	you	should	be	able	to	send	it	any	object	that	implements	a	similar	function.
Since	Circle	objects	also	have	a	find_area()	function,	try	interweaving	Rectange
and	Circle	objects	into	the	same	area.	Since	they	are	both	supposed	to	respond	the
same	way,	they	should	both	be	able	to	be	treated	equivalently	by	the	biggest_area
function.

14.1	Attaching	Functions	to	Objects

Packaging	together	related	values	into	an	object	like	we	did	in	Chapter	13	is	known	as
encapsulation.	However,	encapsulation	can	be	taken	further	by	also	adding	functions	to
our	objects.	Remember,	in	JavaScript,	a	function	is	actually	a	value	just	like	any	other
value.	Functions,	since	they	are	values,	can	also	be	stored	in	variables.	In	addition,
because	they	are	values,	they	can	also	be	stored	as	properties	of	an	object.

It	might	not	be	clear	at	this	point	why	this	is	beneficial,	but	hopefully	by	the	end	of	the
chapter	you	will	have	a	good	handle	on	it.	For	starters,	just	like	we	packaged	together
related	values	into	an	object,	we	can	also	package	together	a	related	function	into	an
object.

For	instance,	let’s	say	that	we	had	an	object	that	represented	a	car.	It	will	have	two	values
—the	number	of	miles	traveled	and	the	amount	of	gas	left.	Now,	let’s	say	we	have	a
function	that	drives	us	10	miles.	What	needs	to	happen?	Well,	that	function	would	increase
the	number	of	miles	driven	and	decrease	the	amount	of	gas	left.

Figure	14.1	has	the	code	for	such	an	object.

As	you	can	see,	the	drive_car	function	relates	several	different	values—the	number	of
miles	traveled,	the	amount	of	gas	left	in	the	tank,	and	the	car’s	gas	mileage.	Since	the
drive_car	function	is	so	tightly	related	to	the	car	abstraction,	it	makes	sense	to	just	attach
the	function	directly	to	the	my_car	object,	like	in	Figure	14.2.

Figure	14.1:	A	Simple	Car	Object

var	my_car	=	{	

			miles_traveled:	0,	

			gas_left:	10,	

			miles_per_gallon:	20	

};	

var	drive_car	=	function(the_car,	miles_driven)	{	

			the_car.miles_traveled	=	the_car.miles_traveled	+	miles_driven;	

			the_car.gas_left	=	the_car.gas_left	-	(miles_driven	/

the_car.miles_per_gallon);	

			if(the_car.gas_left	<=	0)	{	

						alert(“You	ran	out	of	gas!”);	

			}	

};	

	

drive_car(my_car,	50);	

drive_car(my_car,	100);	

drive_car(my_car,	200);	//	I’m	out	of	gas!

Figure	14.2:	Attaching	a	Function	to	an	Object

var	my_car	=	{	

			miles_traveled:	0,	

			gas_left:	10,	

			miles_per_gallon:	20,	

			drive:	function(the_car,	miles_driven)	{	

						the_car.miles_traveled	=	the_car.miles_traveled	+	miles_driven;	

						the_car.gas_left	=	the_car.gas_left	-	(miles_driven	/

the_car.miles_per_gallon);	

						if(the_car.gas_left	<=	0)	{	

									alert(“You	ran	out	of	gas!”);	

						}	

			}	

};

As	you	can	see,	we	assign	the	function	the	same	way	that	we	assign	the	rest	of	the	values.
We	could	have	also	done	it	the	long	way	by	typing	my_car.drive	=	function()	{	…},
but	this	way	is	simpler.

So	how	do	you	call	the	function	now	that	it	is	in	the	object?	Well,	all	function	calls	that	we
have	made	in	this	book	have	been	made	by	simply	typing	the	name	of	the	variable	which
holds	the	function	(usually	a	global	variable)	and	calling	it	by	adding	parentheses	and
listing	the	parameters	to	pass	to	the	function.	It	is	done	the	same	way	here.	The	only
difference	is	that	since	the	function	is	stored	in	the	object	rather	than	in	a	global	variable,
we	have	to	access	the	function	value	as	a	property	on	the	object.

So	we	would	write:

Figure	14.3:	Calling	a	Function	Attached	to	an	Object

my_car.drive(my_car,	50);

What	advantages	does	this	give	us?	Not	many	yet.	However,	one	important	thing	that	this
accomplishes	is	to	have	fewer	global	variables	since,	so	far,	we	have	usually	stored
functions	in	global	variables.	Now	the	function	is	only	stored	within	the	car	object.	For	our
simple	programs,	this	might	not	seem	important,	but,	in	large	projects,	the	number	of
functions	can	grow	to	thousands.	In	those	cases,	keeping	the	set	of	global	variables	to	a
minimum	is	essential	for	sanity.

Along	the	same	lines,	note	that	when	it	was	a	global	variable,	we	named	it	drive_car.	We
gave	it	the	longer	name	to	prevent	name	clashes—where	two	functions	accidentally	get
the	same	name.	When	you	put	functions	in	global	variables,	you	usually	have	to	give	them

very	long	names	to	prevent	someone	else	from	accidentally	calling	another	function	the
same	name.	This	is	not	the	case	when	the	function	is	stored	on	the	object	itself.
Additionally,	if	the	function	is	only	attached	to	the	object,	we	already	know	that	it	is
operating	on	a	car,	because	that	is	where	we	assigned	it.	Therefore,	we	shortened	the	name
of	the	function	to	just	drive,	which	makes	the	code	clearer	and	easier	to	write.

One	issue,	though,	is	that	the	drive	function	looks	a	bit	redundant.	The	code	is	calling	the
drive	function	on	the	object	but	is	also	having	to	pass	in	the	object	as	a	parameter.	It	turns
out	that	almost	every	function	you	define	on	an	object	requires	the	data	of	the	object	to	be
present.	Therefore,	if	you	look	up	a	function	on	an	object	using	a	property	(i.e.,
car.drive),	JavaScript	has	a	way	to	automatically	send	the	object	(i.e.,	car)	to	the
function	without	having	to	make	it	a	parameter.	JavaScript	has	a	special	variable,	always
named	this,	which	holds	the	object	that	was	used	to	look	up	the	function	if	there	was	one.
It	is	called	this	because	it	refers	to	“this	current	object	that	we	are	using.”

Therefore,	we	can	remove	the	parameter	the_car	from	the	function	because	it	will	be
automatically	passed	in	through	the	variable	this.

Taking	advantage	of	the	this	variable,	our	code	now	becomes:

Figure	14.4:	Writing	Functions	for	Objects	Using	this

var	my_car	=	{	

			miles_traveled:	0,	

			gas_left:	10,	

			miles_per_gallon:	20,	

			drive:	function(miles_driven)	{	

						this.miles_traveled	=	this.miles_traveled	+	miles_driven;	

						this.gas_left	=	this.gas_left	-	(miles_driven	/

this.miles_per_gallon);	

						if(this.gas_left	<=	0)	{	

									alert(“You	ran	out	of	gas!”);	

						}	

			}	

};	

my_car.drive(50);	

my_car.drive(100);	

my_car.drive(200);	//	Out	of	gas!

So,	while	most	parameters	to	functions	are	explicitly	passed	to	the	function	because	we
named	them	when	we	defined	the	function,	the	this	parameter	is	implicitly	passed	to	the
function—it	is	not	in	the	parameter	list.	Instead,	JavaScript	handles	it	automatically.

In	object-oriented	programming,	functions	which	are	defined	on	objects	and	make	use	of
the	this	variable	are	often	referred	to	as	methods,	or	also	as	messages.	Unlike	other
languages,	in	JavaScript,	the	distinction	between	a	function	and	a	method	is	only	in	the
way	that	you	use	it—if	your	function	makes	use	of	the	this	variable,	it	is	a	method.

You	can	also	think	of	methods	in	terms	of	human	language.	The	object	is	the	subject,	the
method	is	the	verb	or	command,	and	the	function	parameters	are	the	direct	object,	adverbs,
or	other	modifiers.

When	we	see	my_car.drive(50),	we	should	read	it	as	“dear	my_car,	please	perform	your
drive	function	using	50	as	your	parameter.”

So	far,	we	have	seen	that	using	functions	attached	to	objects	decreases	the	number	of
global	variable	names,	leads	to	shorter	function	names,	and	makes	programming	a	little
more	English-like.

14.2	Using	Objects	Productively

There	are	several	reasons	to	use	objects	in	your	code.	Because	it	follows	the
subject/verb/object	pattern	of	language,	it	is	much	easier	to	understand	code	written	in	an
object-oriented	style.	Therefore,	by	combining	functions	with	their	related	data,	you	make
your	program	easier	to	use	and	modify	because	the	code	is	clearer.

Objects	also	help	programmers	separate	code	into	clearly-definable	parts.	This	practice	is
known	as	modularization.	By	attaching	functions	to	the	objects	that	hold	their	data,	you
are	not	only	programming	the	computer,	you	are	communicating	to	future	programmers
(and	your	future	self)	where	the	divisions	between	ideas	within	the	code	are.	This	allows	a
programmer	to	focus	their	thoughts	and	actions	on	relevant	functions.	If	I	know	where	all
of	the	code	that	relates	to	my_car	lives,	I	can	easily	find	it	and	modify	it.	Because	all	of	the
functions	surrounding	my_car	are	defined	near	each	other,	when	a	change	needs	to	be
made	it	is	easier	to	find	related	functions	which	also	need	to	be	modified	in	tandem.

When	you	program	larger	programs,	it	is	sometimes	difficult	to	keep	track	of	what	is
happening	to	the	data	throughout	the	program.	If	you	remove	a	field	or	change	how	it	is
used,	how	will	you	know	if	you	modified	the	rest	of	the	code	to	use	it	correctly?	By
baking	all	of	the	code	related	to	an	object	into	the	object	itself,	it	is	easier	to	find	the
places	where	changes	need	to	be	made	when	the	code	for	an	object	is	modified.

Programming	is	not	just	about	making	your	programs	work.	You	also	must	make	them
understandable	and	modifiable	by	both	yourself	and	others.	Thinking	through	what	objects
you	need,	what	functions	they	need	to	work,	and	what	pieces	of	data	they	need	will	help
you	make	better	objects	which	will	help	you	both	now	and	in	the	future.	It	will	make	your
code	more	readable,	understandable,	and	maintainable.

Object-oriented	programming	has	more	benefits,	though,	than	just	the	fact	that	it	makes
your	code	easier	to	read	and	understand.	Object-oriented	programming	allows	you	to	use
objects,	not	based	on	the	data	they	contain,	but	based	on	the	functions	they	can	perform.

We	already	have	code	that	allows	us	to	drive	a	car.	Let’s	say	that	we	invented	a	new	kind
of	magic	car	that	is	not	limited	by	gasoline	at	all.	It	can	drive	any	number	of	miles	that
you	want.	Such	a	car	can	be	implemented	using	the	following	code:

Figure	14.5:	A	New	Object	that	Implements	the	Same	Interface

var	magic_car	=	{	

			miles_traveled:	0,	

			drive:	function(miles_driven)	{	

						this.miles_traveled	=	this.miles_traveled	+	miles_driven;	

			}	

};

This	object	isn’t	nearly	as	complicated	as	our	previous	object,	but	that’s	not	what	I	want	to
emphasize.	Do	you	notice	that	this	object	also	has	a	drive	method?	The	function	operates
differently	for	this	new	kind	of	car,	but	it	has	the	same	name	and	takes	the	same
parameters	as	the	drive	function	on	our	other	object.

This	allows	us	to	write	functions	and	methods	that	take	an	object	as	a	parameter	without
having	to	care	exactly	what	the	object	is.	In	other	words,	if	I	have	a	function	that	needs	to
use	the	drive	method,	that	function	doesn’t	have	to	care	which	version	of	the	drive
method	it	is	using.	Whether	it	is	a	car	or	a	magic	car,	as	long	as	my	function	uses	the
drive	method,	then	I	can	use	the	object	for	the	function.

14.3	Constructing	Objects

Having	a	single	object	with	a	function	attached	does	not	give	us	a	lot	of	progress.	Most
programs	have	lots	and	lots	of	similar	objects.	Building	objects	with	a	set	pattern	is	known
as	constructing	objects,	and	functions	that	construct	objects	are	known	as	constructors.
JavaScript	has	several	different	ways	of	constructing	objects.	However,	since	this	is	an
introductory	book,	we	will	only	look	at	one—constructor	functions.

A	constructor	function	is	a	function	that	is	called	with	JavaScript’s	new	keyword.
Constructor	functions,	by	convention,	are	named	starting	with	a	capital	letter	so	they	can
be	readily	identified	as	a	constructor	function.	Let’s	say	that	I	wanted	to	write	a
constructor	for	my	car	that	takes	the	starting	amount	of	gas	in	the	car.

Such	a	function	might	look	like	this:

Figure	14.6:	A	Car	Constructor

var	Car	=	function(starting_gas)	{	

			this.miles_traveled	=	0;	

			this.gas_left	=	starting_gas;	

			this.miles_per_gallon	=	20;	

	

			this.drive	=	function(miles_driven)	{	

						this.miles_traveled	=	this.miles_traveled	+	miles_driven;	

						this.gas_left	=	this.gas_left	-	(miles_driven	/

this.miles_per_gallon);	

						if(this.gas_left	<=	0)	{	

									alert(“You	ran	out	of	gas!”);	

						}	

			};	

};	

	

var	car_with_lots_of_gas	=	new	Car(50);	

var	car_with_little_gas	=	new	Car(10);	

	

car_with_lots_of_gas.drive(20);	

car_with_little_gas.drive(1000000);	//	Out	of	gas!	

car_with_lots_of_gas.drive(20);	//	This	car	still	has	gas!

Notice	that	we	created	the	car	by	saying	new	Car(50).	What	this	did	was	create	a	new
blank	object	and	set	it	as	the	this	object	for	the	Car()	function.	We	then	called	the	Car
function	with	50	as	the	parameter.	The	new	keyword,	rather	than	relying	on	the	function
returning	a	value	using	the	return	keyword,	instead	returns	the	newly-built	object	that
was	used	in	the	this	variable.

In	this	program,	the	Car	function	is	a	constructor.	It	works	together	with	the	new	keyword

to	build	a	new	object	for	use.	The	function	doesn’t	have	to	start	with	a	capital	letter,	but
most	JavaScript	programmers	follow	this	convention	to	make	sure	that	it	is	clear	which
functions	are	supposed	to	be	used	as	constructors.

In	some	programming	languages,	Car	would	be	considered	a	type	or	a	class.	A	class	gives
a	programmer	an	expectation	of	what	the	object	can	do—what	properties	it	will	have,
what	functions	it	will	have,	and	how	they	work	together.	This	is	somewhat	similar	to	a
constructor	in	JavaScript	because	the	constructor	sets	up	the	initial	properties	and
functions	on	an	object.	This	means	that	most	objects	that	are	made	by	a	constructor	will
have	similar	properties	and	functions.

Chapter	15
Interacting	with	Web	Pages

In	previous	chapters,	we	have	learned	how	objects	work	and	how	to	build	our	own	objects.
However,	JavaScript	also	comes	with	several	existing,	built-in	objects	for	you	to	use.
These	standard	objects	are	the	gateway	between	your	program	and	the	rest	of	the	system,
including	the	HTML	document,	the	screen,	computer	storage,	communication	facilities,
and	other	important	system	features.	In	this	chapter,	we	are	going	to	use	the	standard
document	object	to	interact	with	the	web	page.

Review

In	this	chapter	we	practiced	interacting	with	web	pages	using	JavaScript.	We	have	learned:

JavaScript	comes	with	built-in	objects	that	allow	us	to	interact	with	the	rest	of	the
system	and	the	network.
The	document	object	is	the	gateway	that	allows	us	to	interact	with	the	current	web
page.
The	DOM	is	the	list	of	objects	and	properties	that	can	be	used	when	interacting	with
an	HTML	page	and	its	elements.
The	id	attribute	of	an	HTML	tag	can	be	used	to	find	the	element	from	JavaScript	for
manipulation.
The	getElementById	method	of	the	document	object	allows	us	to	use	the	id	attribute
to	get	objects	which	represent	HTML	elements	in	our	page	and	store	them	in
variables	to	inspect	them	and	manipulate	them.
The	textContent	property	of	an	HTML	element’s	object	allows	us	to	retrieve	and	set
the	text	content	of	an	HTML	element.
Elements	can	be	created	using	document’s	createElement	method.
Newly-created	elements	can	be	added	into	a	page	using	an	element’s	appendChild
method.	This	adds	the	element	as	the	last	child,	or	sub-element,	of	the	given	element
object.
The	<input>	tag	can	be	used	to	allow	a	user	to	enter	in	data	for	processing.
The	value	property	of	the	<input>	tag’s	object	can	be	used	for	reading	or	setting	the
value	of	the	text	field.
The	<button>	tag	can	be	used	to	initiate	processing.	Be	sure	to	set	the
type=“button”	property	so	it	will	work	correctly.
Setting	a	<button>	element	object’s	onclick	value	to	a	function	will	cause	that
function	to	run	when	the	button	is	clicked.
Setting	the	defer=“defer”	attribute	on	<script>	tags	will	cause	it	to	wait	for	the
document	to	be	fully	loaded	before	executing	the	JavaScript.	This	should	be	added	to
all	<script>	tags	from	here	on	out.
An	API	is	the	list	of	standard	objects,	properties,	and	functions	available	to	a
programmer	from	the	system.
An	API’s	documentation	is	the	description	of	what	objects,	properties,	and	functions
are	available	and	the	details	of	how	they	work.

Apply	What	You	Have	Learned

1.	 Now	that	you	know	how	to	get	input	from	a	user	from	an	HTML	page	and	how	to
write	output	to	the	HTML	page,	rewrite	a	program	from	the	previous	chapters	to	use
<input>	tags	instead	of	the	prompt	function.

2.	 Create	an	HTML	page	that	just	has	an	empty	<body>	tag	with	just	an	id	attribute.
Write	JavaScript	to	build	a	page	with	a	heading,	a	paragraph,	and	a		list	with	two
items	in	it	using	only	JavaScript	code.

3.	 Create	an	HTML	page	that	has	an	empty		tag	with	just	an	id	attribute.	Write
JavaScript	that	uses	an	array	and	a	for	loop	to	populate	the		element	with	
elements.	Use	the	array	[“One”,	“Two”,	“Three”]	and	have	your	code	loop	through
each	element	of	the	array	to	add	a	new		element	for	each	member	of	the	array.

15.1	Using	the	JavaScript	Console

In	order	to	see	these	the	document	object	in	action,	we	are	going	to	use	the	JavaScript
console.	The	JavaScript	console	allows	you	to	type	JavaScript	code	one	line	at	a	time	and
see	the	results	immediately.	For	information	on	how	to	access	the	JavaScript	console	on
your	system,	see	Section	A.6.

Before	we	begin	using	the	console,	type	the	following	web	page	into	a	file	and	load	it	into
your	browser:

Figure	15.1:	Basic	HTML	File	for	Manipulation

<!DOCTYPE	html>	

<html>	

			<head>	

						<title>My	Document</title>	

			</head>	

			<body	id=”mainbody“>	

						<h1	id=”console_heading“>Using	the	JavaScript	Console</h1>	

	

						<h2	id=”subheading“>A	Heading</h2>	

	

						<p	id=”first_paragraph“>	

									This	is	my	first	paragraph.	

						</p>	

			</body>	

</html>

Now	that	you	have	your	web	page	loaded,	open	up	the	JavaScript	console	as	described	in
Section	A.6.	Now,	just	to	get	used	to	how	the	console	works,	enter	2	+	5	into	the	console
and	hit	enter.	What	happened?	It	should	have	given	7	as	the	result.	After	each	command,
when	you	hit	the	enter	key,	the	console	gives	you	the	value	of	what	you	typed.

Now	type	in	var	a	=	2	+	5;	and	hit	enter.	What	happened	this	time?	It	should	give	back
undefined.	Why	is	this?	The	value	7	got	loaded	into	the	variable	a,	but	the	result	of	the
variable	declaration	is	nothing.	So,	don’t	be	surprised	if,	after	declaring	a	variable,	the
result	is	undefined.	That	is	normal.

To	make	sure	that	a	received	our	value,	just	type	a	into	a	line.	It	should	return	the	value	7.
Now	we	are	going	to	intentionally	make	a	mistake.	Type	into	your	console	a	=	7	+;	and
hit	enter.	It	should	give	you	back	some	sort	of	error,	such	as	“Syntax	Error”	or	a	similar
error	message.	This	is	important	to	pay	attention	to.	If	you	are	using	the	console,	and	you
get	an	error	message,	pay	attention	to	it	because	you	probably	entered	something	wrong
somewhere.	Recheck	what	you	typed	to	make	sure	it	is	valid.	Programming	languages
tend	to	be	very	picky.	A	miscapitalized	word,	an	accidental	space,	or	a	misplaced

semicolon	will	prevent	your	code	from	working.

15.1.1	Practice	Questions

Before	moving	on	to	manipulating	the	web	page,	you	should	practice	with	the	JavaScript
console.

1.	 Use	the	alert	function	to	display	a	popup	message.
2.	 Use	the	prompt	function	to	get	a	value	from	the	user.
3.	 Enter	the	square_a_number	function	from	Chapter	10.	Because	the	console	processes

each	line	as	you	type	it,	you	will	need	to	put	the	whole	function	on	one	line.
4.	 Now	use	square_a_number	to	find	the	squares	of	3	and	6	in	the	JavaScript	console.

15.2	Finding	and	Modifying	Web	Page	Elements

Now	that	we	have	some	familiarity	with	how	the	JavaScript	console	works,	it	is	time	to
interact	with	our	web	page.	JavaScript	provides	a	special	object	called	document	that
provides	the	gateway	to	interacting	with	the	web	page.	In	JavaScript,	every	tag	on	the	web
page	is	represented	by	its	own	object	with	its	own	properties	and	methods.	Remember,	a
method	is	simply	a	function	that	is	attached	to	an	object.	The	list	of	standard	object	types
for	HTML	pages,	with	their	properties	and	methods,	is	called	the	Document	Object
Model,	often	known	just	as	the	DOM.	We	will	cover	some	of	the	more	common	methods
for	these	objects	in	this	chapter.

The	first	thing	we	are	going	to	do	is	to	look	up	one	of	our	HTML	elements.	Remember,	an
element	is	the	combination	of	a	start/end	tag	and	all	of	the	content	in-between.	Note	that	in
the	file,	we	added	id	attributes	to	several	of	our	tags.	This	makes	them	easy	to	look	up	in
JavaScript.	The	document	object	has	a	method	that	looks	up	HTML	elements	by	their	ID,
called	getElementById.	It	takes	one	parameter,	which	is	the	HTML	ID	to	look	up,	and
returns	the	given	HTML	element.	If	it	is	not	found,	it	returns	the	special	JavaScript	value
null,	which	is	considered	an	“empty”	value.	In	your	console,	type	in	the	following:
document.getElementById(“first_paragraph”)

This	will	yield	an	object	that	represents	the	HTML	element	of	the	first	paragraph.	Once
we	have	this	object,	we	can	make	modifications	to	it	that	will	be	reflected	in	the	web	page
itself.	Each	browser	will	display	this	value	differently	in	the	console,	but	they	are	all	the
same—they	are	a	JavaScript	object	that	represents	the	HTML	element	we	see	on	the
screen.	In	any	case,	we	don’t	just	want	to	display	the	value,	we	want	to	manipulate	it.	A
good	first	step	is	to	store	the	object	in	a	variable.	Therefore,	do	the	following:
var	x	=	document.getElementById(“first_paragraph”);

Now	the	object	representing	the	HTML	element	is	stored	in	our	variable	x.	What	can	we
do	with	it?	One	simple	thing	you	can	do	is	to	change	out	the	text.	HTML	elements	that
only	have	text	in	them	(i.e.,	they	have	no	child	elements)	can	have	that	text	accessed	or
changed	through	their	textContent	property.	Type	out	the	following:
x.textContent

It	should	give	back	the	value	“This	is	my	first	paragraph”,	though	possibly	with
some	extra	spaces.

15.2.1	Errors	with	textContent

There	are	a	few	older	browsers	that	don’t	support	textContent.	If	you	get	errors	trying	to
use	textContent,	first	double-check	and	make	sure	you	typed	it	correctly.	If	you	are	still
having	errors,	try	using	innerHTML	instead.	This	is	an	older	property	that	is	problematic,
but	it	should	work	in	browsers	that	don’t	support	textContent.

So,	now	that	we	can	access	the	textContent	property,	we	can	also	change	it.	Type	the
following	to	put	new	text	on	your	paragraph:

x.textContent	=	“This	is	a	changed	paragraph.”;

You	should	see	your	web	page	instantly	change	with	the	new	paragraph	text.

As	you	can	see,	if	we	attach	IDs	to	our	HTML	elements,	we	can	easily	find	them	and
manipulate	them	in	our	JavaScript	programs.

15.2.2	Practice	Questions

Use	the	JavaScript	console	to	accomplish	the	following	tasks:

1.	 Look	up	and	modify	the	text	for	our	<h1>	element.
2.	 Look	up	and	modify	the	text	for	our	<h2>	element.
3.	 Use	the	prompt	function	to	ask	the	user	for	a	string	and	store	that	in	a	variable.	Now

set	the	text	of	the	paragraph	to	that	value.

15.3	Creating	New	HTML	Elements

Now	that	we	have	looked	up	and	modified	an	HTML	element,	it	is	time	to	learn	how	to
create	a	new	element.	The	document	object	has	a	method	called	createElement	that	does
just	this.

Enter	the	following	code	into	the	console:
var	new_element	=	document.createElement(“p”);	

new_element.textContent	=	“This	is	a	new	paragraph”;

This	creates	a	new	element	but	doesn’t	add	it	to	the	page.	It	is	merely	floating	out	there,
only	existing	in	the	variable.	We	haven’t	told	the	document	where	we	want	it	to	go.

We	now	want	to	put	our	new	element	as	the	last	thing	in	the	<body>	element.	So,	first,	we
need	to	look	up	the	body	element:
var	body_element	=	document.getElementById(“mainbody”);

Now	we	need	to	tell	the	body	element	to	append	our	new	element	to	the	end	of	its	child
elements.	This	is	done	using	the	appendChild	method	of	our	body	element.	Type	the
following:
body_element.appendChild(new_element);

As	soon	as	you	type	this,	the	new	paragraph	should	appear!

15.3.1	Practice	Activity

To	practice	adding	HTML	content	to	web	pages,	we	are	going	to	create	an		tag	and
then,	through	the	JavaScript	console,	add	additional		tags	to	it.	If	you	get	confused	on
any	step	in	here,	go	back	through	the	previous	sections	to	find	out	how	to	do	each	step.

1.	 Start	out	by	altering	the	HTML	file	used	in	this	section	to	add	a		tag	in	it	with	at
least	one		tag	in	it.

2.	 Give	the		tag	an	id	attribute	so	you	can	find	it	with	JavaScript	in	the	next	step.
3.	 Open	up	the	JavaScript	console.	Use	the	getElementById	method	from	document	to

find	the		element	and	put	it	in	a	variable.
4.	 Now	use	the	createElement	method	from	document	to	create	a	new		tag	to	put

in	it.
5.	 Now	use	the	textContent	property	on	the	new	tag	to	set	it	to	whatever	text	you	want.
6.	 Now	use	the	appendChild	method	on	your		element	to	add	the	new		tag	to

the	end	of	your	list.
7.	 Practice	by	adding	yet	another		tag	to	the	list.
8.	 See	if	you	can	create	a	brand	new		tag	with	JavaScript	and	add	it	to	the	bottom

of	the	page.	Then	add	additional		tags	to	your	JavaScript-created		tag.	Note
that	if	your		tag	is	stored	in	a	variable,	you	won’t	need	to	look	it	up	with
getElementById.	Instead,	you	can	just	use	it	directly	from	its	existing	variable.

15.4	Communicating	with	Input	Fields

Up	to	now,	all	interaction	with	users	has	been	through	the	alert	and	prompt	functions.
However,	you	might	have	noticed	that,	on	the	web,	most	interaction	occurs	directly	within
the	web	page	itself.	This	is	done	almost	exactly	like	the	web	page	manipulation	that	we
did	in	the	previous	sections.	The	difference	is	that	we	are	going	to	be	working	with
<input>	tags.	The	<input>	element	object	works	just	like	the	objects	for	other	elements
that	we	have	seen,	but	has	a	special	attribute	called	value	that	represents	the	text	in	the
field.

To	get	a	feel	for	how	these	input	fields	work,	enter	the	HTML	from	Figure	15.2	into	a	file
and	load	it	into	your	browser.

One	thing	to	notice—be	sure	to	include	the	type=“button”	attribute	on	your	button.
Otherwise,	clicking	on	the	button	can	cause	the	page	to	reload	which	will	cause	you	to
lose	all	of	your	variables	that	you	have	created.

Figure	15.2:	HTML	File	With	Input	Fields

<!DOCTYPE	html>	

<html>	

			<head>	

						<title>Input	Fields	Example</title>	

			</head>	

			<body>	

						<h1>Input	Fields	Example</h1>	

						<form>	

									<p>	

												Input	Field	1:	

												<input	type=”text”	id=”field1”	/>	

									</p>	

	

									<p>	

												Input	Field	2:	

												<input	type=”text”	id=”field2”	/>	

									</p>	

									<button	type=”button”	id=”my_button“>Click	Me</button>	

									<p>	

												Results:	

													

									</p>	

									<p	id=”another_paragraph“>	

												Another	paragraph	

									</p>	

						</form>	

			</body>	

</html>

Now,	open	the	JavaScript	console.	The	first	thing	we	need	to	do	is	look	up	the	two
<input>	elements	and	store	them	into	variables.	To	do	this,	enter	in	the	following:
var	fld1	=	document.getElementById(“field1”);	

var	fld2	=	document.getElementById(“field2”);

Now	type	fld1	on	a	line	by	itself	to	make	sure	that	it	gives	back	an	HTML	element	as	a
value.	If	it	doesn’t,	you	mistyped	something.	Do	the	same	to	check	fld2.

Now	type	in	the	following:
fld1.value	=	“Hello”;

As	soon	as	you	type	this,	the	text	“Hello”	should	appear	in	the	first	field.	Go	into	the
second	field	and	type	in	the	text	“Goodbye”	into	the	web	page.	Now	type	this	into	the
JavaScript	console:
fld2.value

It	should	now	print	onto	the	console	the	value	that	you	typed	(“Goodbye”	if	you	followed
directions).	Now	we	know	how	to	set	and	read	values	from	<input>	elements!

Now	look	up	the		tag.	Remember,	the		tag	is	used	for	specifying	a	region	of
text.	In	our	case,	we	are	specifying	the	location	where	we	want	to	write	the	result.	In	any
case,	do	the	following	to	look	up	the		tag	so	we	are	ready	to	write	to	that	location	in
the	page:
var	results_span	=	document.getElementById(“results”);

Now	type	in	results_span	on	a	line	by	itself	so	that	you	can	see	if	you	correctly	retrieved
the		element.

What	we	are	going	to	do	is	read	a	number	from	each	input	field,	multiply	them	together,
and	write	the	result	into	the		element.

Start	out	by	typing	in	two	numbers,	one	in	each	input	field.	For	this	example,	let’s	assume
that	you	type	in	“5”	in	the	first	field	and	“7”	in	the	second	field.	Now,	remember,	since
this	is	typed	from	the	keyboard,	it	is	treated	as	a	string,	not	a	number.	Therefore,
fld1.value	will	be	the	string	“5”	not	the	number	5	and	fld2.value	will	be	the	string	“7”
and	not	the	number	7.	What	we	need	to	do,	then,	is	use	our	parseInt	function	to	convert
these	strings	into	numbers.

Type	the	following	in	the	JavaScript	console	to	read	the	values	of	the	fields	and	store	them
into	variables:
var	val1	=	parseInt(fld1.value);	

var	val2	=	parseInt(fld2.value);

Now,	val1	and	val2	should	have	the	numbers	that	you	entered	in	them.	You	can	verify
this	by	typing	the	variable	name	in	the	console	on	a	line	by	itself,	and	making	sure	it	gives
you	back	the	correct	value.

Now,	we	need	to	multiply	the	two	numbers	together.	Type	in	the	following	to	accomplish
this:
var	result	=	val1	*	val2;

result	now	has	the	result	(35)	in	it.

Now	we	just	need	to	write	the	value	in	result	back	into	the	page.	We	will	use	the
textContent	property	of	results_span	to	do	this.	JavaScript	will	automatically	convert
the	number	to	a	string	before	it	displays	it.	Here	is	the	code	to	do	this:
results_span.textContent	=	result;

15.4.1	Practice	Activity

Practice	your	skills	by	using	the	JavaScript	console	to	change	the	text	of	the	final
paragraph	in	the	HTML	file	to	the	value	typed	into	one	of	the	<input>	elements.

15.5	Adding	Functionality	to	Buttons

So	far,	we	have	been	able	to	manually	perform	some	JavaScript	processing	on	input	fields
within	a	document.	But	this	is	not	how	web	pages	usually	work.	Usually,	the	user	tells	the
computer	to	complete	a	function	by	clicking	a	button.	Therefore,	we	have	to	attach	the
functionality	we	want	to	the	button.

So,	to	start	with,	we	are	going	to	create	a	function	that	performs	the	tasks	that	we	did	in
the	previous	section.	For	readability,	I	am	going	to	write	it	out	in	several	lines.	However,
because	the	JavaScript	console	interprets	one	line	at	a	time,	you	must	type	out	the	whole
function	on	a	single	line.	Don’t	worry,	the	JavaScript	language	works	exactly	the	same
whether	it	is	one	line	or	many—that	is	why	it	uses	the	semicolon	to	separate	statements.
So,	as	long	as	you	type	everything	correctly,	it	will	work	just	fine	on	one	line.	Here	is	the
function:

Figure	15.3:	A	Function	to	Multiply	Two	Text	Fields

var	multiply_fields	=	function()	{	

			var	fld1	=	document.getElementById(“field1“);	

			var	fld2	=	document.getElementById(“field2“);	

			var	val1	=	parseInt(fld1.value);	

			var	val2	=	parseInt(fld2.value);	

			var	result	=	val1	*	val2;	

			var	results_span	=	document.getElementById(“results“);	

			results_span.textContent	=	result;	

};

Notice	that	it	uses	the	document	object.	This	works	because	document	is	a	global	variable.
Also	note	that	the	function	takes	no	parameters.	It	simply	works	from	the	document	global
variable.

Once	you	have	typed	the	function	(all	in	one	line)	into	the	console,	calling	the	function
should	perform	all	of	the	tasks.	To	test	it	out,	put	two	different	numbers	in	the	input	fields,
and	then,	in	the	JavaScript	console,	write:
multiply_fields();

This	should	multiply	the	two	numbers	and	write	the	result	in	the	results		tag.	If	it
did	not	work,	recheck	your	function.

Now,	we	want	this	function	to	run	whenever	a	user	clicks	on	our	button.	This	is	actually
very	easy	to	do.	<button>	tags	have	a	property	called	onclick.	If	you	set	onclick	to	a
function,	it	will	call	that	function	whenever	it	is	clicked!	For	right	now,	you	should	only
use	functions	that	take	no	parameters.

So,	to	get	this	set,	we	need	to	look	up	the	<button>	on	the	page	and	then	set	its	onclick

property.	Here	is	the	code:
var	btn	=	document.getElementById(“my_button”);	

btn.onclick	=	multiply_fields;

Note	that	we	are	not	calling	the	function	multiply_fields	here.	We	are	storing	the
function	itself	in	the	onclick	property	for	later	use.	Remember,	JavaScript	functions	are
themselves	values	and	are	stored	in	variables	and	properties	just	like	any	other	value.
Therefore,	we	are	storing	the	function	in	the	btn	object,	and	the	btn	object	will	call	the
function	when	it	is	time.

To	try	it	out,	put	in	two	values	and	click	the	button.	If	everything	was	set	up	right,	it
should	display	the	results	in	the	proper	place.

15.6	Putting	It	All	Together

Now,	what	we	really	want	is	to	have	all	of	this	functionality	load	with	the	web	page.	To	do
that,	we	are	going	to	need	to	put	all	of	our	code	into	a	JavaScript	file.	Create	a	text	file
called	multiply.js	in	the	same	directory	as	your	HTML	file.

Enter	the	following	code	into	multiply.js:

Figure	15.4:	Full	Code	for	Multiplying	Two	Fields

var	multiply_fields	=	function()	{	

			var	fld1	=	document.getElementById(“field1“);	

			var	fld2	=	document.getElementById(“field2“);	

			var	val1	=	parseInt(fld1.value);	

			var	val2	=	parseInt(fld2.value);	

			var	result	=	val1	*	val2;	

			var	results_span	=	document.getElementById(“results“);	

			results_span.textContent	=	result;	

};	

var	btn	=	document.getElementById(“my_button“);	

btn.onclick	=	multiply_fields;

Now	we	need	to	attach	it	to	the	HTML	file.	To	do	this,	add	the	following	tag	to	the	HTML
file	within	the	<head>	element:
<script	type=“text/javascript”	src=“multiply.js”	defer=“defer”>	

</script>

Notice	the	new	attribute	we	added—defer=“defer”.	This	attribute	changes	when	the
JavaScript	is	loaded	and	run.	Normally,	JavaScript	is	loaded	and	run	at	precisely	the	point
where	the	tag	is	included.	In	our	case,	that	would	mean	that	only	the	<head>	element	was
present,	since	the	tag	occurs	before	the	rest	of	the	page.	This	would	not	work,	because
document.getElementById(“my_button”)	would	return	null	(i.e.,	no	value),	because	it	is
not	yet	part	of	the	page.	The	attribute	defer=“defer”	tells	your	browser	to	wait	until	after
the	whole	page	is	loaded	before	running	the	JavaScript	code.

Now,	after	you	have	added	your	<script>	tag	to	the	HTML	file	and	have	saved
everything,	reload	your	page.	After	you	type	in	two	numbers	and	hit	the	button,	it	should
give	you	your	answer.

15.6.1	Practice	Activity

Now	that	you	know	how	to	add	functionality	to	a	web	page,	this	project	will	have	you	add
a	second	function	to	the	same	page.

1.	 Start	with	the	completed	file	from	this	section.
2.	 Next,	create	a	new	function	in	your	JavaScript	file	that	will	add	the	two	numbers

rather	than	multiply	them.	Call	the	function	add_fields.	Do	not	remove	the	existing
multiply_fields	code.	Just	add	a	new	function.

3.	 Now	add	a	second	button	to	the	page.	Be	sure	to	give	it	a	distinct	ID	so	you	can	find
it.	Do	not	remove	the	existing	button.

4.	 Now	add	code	to	your	JavaScript	file	so	that	it	will	find	the	new	button	and	attach
your	add_fields	function	to	the	button.

5.	 Test	out	your	new	page.	Be	sure	that	both	buttons	do	the	appropriate	operations.

15.7	A	Broader	View

This	chapter	introduced	you	to	the	Document	Object	Model	(DOM).	You	may	wonder
how	you	know	what	objects,	properties,	and	functions	are	available	to	you.	It	might	seem
mysterious	or	even	arbitrary	that	if	you	stick	a	function	in	the	onclick	property	it
magically	calls	that	function	when	a	button	is	clicked.	When	programmers	create	systems
such	as	JavaScript	and	the	DOM,	they	have	to	make	choices	about	how	things	are
represented	and	interacted	with—what	the	objects	and	properties	are	called	and	how	they
are	used.	The	names	of	these	objects,	functions,	and	properties	are	essentially	arbitrary—
they	are	whatever	the	programmer	decided	to	name	them.	Hopefully	the	names	make
sense	and	can	help	you	learn	how	to	use	them,	but	sometimes,	either	through	sloppiness	or
history,	things	wind	up	with	weird	names	that	don’t	make	sense.	This	is	fairly	normal	in
programming.

The	list	of	standard	objects,	properties,	and	functions	that	a	system	supports	is	called	its
Application	Programming	Interface,	or,	more	commonly,	its	API.	How	do	you	know
what	objects,	properties,	and	functions	are	available	in	an	API?	Usually,	this	is	done	by
programmers	writing	them	down	and	sharing	them	through	documentation.	Most
programming	systems	have	a	reference	which	lists	all	of	the	available	functions.	However,
these	are	usually	pretty	lengthy	since	system	developers	try	to	think	of	all	of	the	things
that	you	might	want	to	do	and	provide	functions	for	each	of	them.	Usually,	though,	most
APIs	are	focused	around	just	a	few	concepts,	and	once	you	learn	those,	the	rest	are	details
that	you	can	look	up	later.

Chapter	16
Conclusion

Congratulations—you	have	taken	the	first	steps	into	the	wide	world	of	programming.	This
book	introduced	you	to	the	basics	of	computers,	the	Internet,	web	pages,	CSS,	and
JavaScript.	However,	this	book	certainly	didn’t	teach	you	all	there	is	to	know	about	any	of
these	subjects.

Hopefully	now	you	have	a	basic	feel	for	what	it	is	like	to	write	and	run	a	program	and	the
kind	of	thought-work	required	to	make	a	program	run	successfully.	Where	you	go	from
here	is	up	to	you.	If	you	like	websites,	then	you	should	dig	deeper	into	the	topics	covered
here—HTML,	CSS,	and	JavaScript.	Learning	a	JavaScript	framework	like	JQuery	might
also	be	a	good	idea.	Other	than	that,	there	are	all	sorts	of	specialized	tools,	languages,	and
techniques	for	programming	different	devices	and	applications.	There	are	tools	and
languages	for	database	systems,	phone	apps,	e-commerce	apps,	games,	microcontroller
systems	(tiny	devices	with	small	chips),	and	desktop	applications.	Each	of	these	have	their
own	specialized	tools	and	languages.

Your	first	language,	however,	is	usually	the	hardest.	Once	you	get	used	to	the	idea	of
statements,	loops,	variables,	and	functions,	then,	even	if	different	languages	do	things
differently,	you	have	already	trained	your	mind	to	think	in	these	terms.	Learning
JavaScript	may	have	been	challenging,	but	it	should	make	your	next	language	much
easier.

Keep	in	mind	that	software	development	is	very	dynamic.	A	programmer	spends	much	of
his	or	her	life	staying	on	top	of	new	languages,	tools,	and	techniques	that	are	continually
changing.

In	order	to	continue	on	your	journey	learning	to	program,	you	should	check	out	the	other
books	in	the	Programmer’s	Toolbox	series	at
http://www.npshbook.com/site/otherbooks.	You	can	also	visit	the	npshbook.com
website	and	forum	to	ask	questions	and	learn	new	techniques	from	me	and	from	other
readers.

You’ve	got	a	good	start.	Now	build	on	it.

Chapter	17
Glossary

Below	are	the	definitions	of	the	bolded	glossary	terms	used	throughout	the	book,	plus
additional	terms	you	are	likely	to	run	into	when	reading	about	programming.	When	a	term
has	more	than	one	usage,	the	context	for	the	term	is	distinguished	in	parentheses.

absolute	path
An	absolute	path	is	a	relative	URL	that	starts	with	a	slash.	The	slash	indicates	that	the
relative	URL	should	ignore	the	path	component	of	the	base	URL	and	just	use	the
given	path	instead.	For	instance,	if	the	base	URL	is
http://www.npshbook.com/example/example.html,	an	absolute	path	of	/test.html
indicates	the	URL	http://www.npshbook.com/test.html.	See	also	URL,	fully-
qualified	URL,	base	URL,	relative	URL.

absolute	URL
See	fully-qualified	URL.

accessor
In	object-oriented	programming,	an	accessor	is	a	method	that	accesses	an	object’s
internal	properties.	In	object-oriented	programming,	it	is	usually	recommended	that
code	outside	of	the	object’s	own	code	should	not	directly	access	an	object’s	internal
properties	but	use	methods	(called	accessors)	to	retrieve	the	data.	This	allows	object
programmers	to	modify	the	way	that	their	object’s	internal	properties	are	stored	in
future	versions	of	the	object	without	adversely	affecting	other	code.	See	also	mutator.

anchor
In	a	URL,	the	anchor	is	a	piece	of	extra	data	that	is	passed	to	the	web	page	through
the	URL.	It	is	located	at	the	end	of	the	URL,	even	after	the	query	string	if	there	is
one.	The	anchor	starts	with	a	hash	symbol	(#),	and	everything	after	the	hash	symbol
is	part	of	the	anchor.	Hashes	were	originally	intended	to	reference	a	section	within	a
page	to	allow	browsers	to	open	up	not	just	to	a	specific	page,	but	also	to
automatically	scroll	to	a	specific	section	within	the	page	indicated	by	the	has,	and
marked	in	the	HTML	with	.	Now	it	is	also	used	as	a
generic	means	of	passing	in	data,	much	like	the	query	string.	In	JavaScript,	the
anchor	is	retrieved	through	window.location.hash.	See	also	URL.

anonymous	function
An	anonymous	function	is	a	function	that	is	not	given	a	name	but	is	just	used	as	a
parameter	in	a	higher-order	function.	See	also	function,	higher-order	function.

API
See	Application	Programming	Interface.

application	layer
The	application	layer	is	the	seventh	layer	of	a	networking	system	according	to	the
OSI	model.	The	application	layer	is	defined	by	each	individual	application	such	as
email,	web	browsing,	or	file	transfer.	The	application	layer	is	for	the	main	purpose	of
the	communication,	with	the	other	layers	mostly	just	supporting	this	layer.	See	also
OSI	model.

Application	Programming	Interface

An	Application	Programming	Interface	(API)	is	a	set	of	records,	objects,	functions,
and	classes	which	define	the	way	that	a	programmer	should	interact	with	an	existing
system.	An	API	is	primarily	a	set	of	documentation	of	existing	or	new	functionality
and	how	a	programmer	can	gain	access	to	it.	See	also	documentation.

argument
See	parameter.

arithmetic	and	logic	unit
The	arithmetic	and	logic	unit	is	the	part	of	the	Central	Processing	Unit	that	performs
math	and	logic	functions.	See	also	Central	Processing	Unit.

array
An	array	is	a	sequence	of	data	values	or	records,	usually	all	of	similar	types	of	data.
Each	element	of	an	array	is	referenced	by	its	position	in	the	array,	called	the	index,
with	zero	referring	to	the	first	element.	See	also	data	format,	zero-based	indexing.

ALU
See	arithmetic	and	logic	unit.

ASCII
ASCII	(the	American	Standard	Code	for	Information	Interchange)	is	a	way	of
representing	letters,	digits,	punctuation,	and	processing	codes	using	numbers.
Because	computers	only	process	numbers,	ASCII	allows	a	number	to	represent	a
letter	or	other	mark	on	the	screen.	In	ASCII,	each	letter	is	represented	by	exactly	one
byte.	While	ASCII	has	been	largely	superceded	by	UTF-8,	UTF-8	is,	for	the	most
part,	backwards	compatible	with	ASCII.	To	the	extent	that	it	is	covered,	ASCII	is
covered	in	this	book	because	it	is	by	far	the	simpler	of	the	two	systems,	and	ASCII	is
almost	entirely	compatible	with	UTF-8.	See	also	data	format,	Unicode,	UTF-8.

assignment	statement
An	assignment	statement	is	a	JavaScript	statement	that	is	specified	by	an	equal	sign
(=).	An	assignment	statement	has	an	expression	that	yields	a	value	on	the	right-hand
side	of	the	equal	sign	and	a	location	to	store	the	value	on	the	left-hand	side	of	the
equal	sign.	An	example	assignment	statement	is	myvar	=	myothervar	*	2;	See	also
expression,	syntax,	right-hand	side,	left-hand	side.

attribute	(HTML)
In	HTML	and	XML,	an	attribute	is	a	setting	used	to	modify	or	add	additional
information	to	a	tag.	While	attributes	have	many	purposes,	one	of	the	most	common
reasons	for	adding	attributes	is	to	add	a	class	or	id	attribute	that	can	be	used	for
specialized	styling	using	CSS.	In	the	following	markup,	the	<p>	tag	has	the	class
attribute	set	to	important:	<p	class=“important”>Important	text	here</p>	See
also	HyperText	Markup	Language,	Extensible	Markup	Language,	tag.

attribute	(object)
In	object-oriented	programming,	an	attribute	is	a	piece	of	data	tied	to	an	object.	For
instance,	if	an	object	represents	a	car,	that	object	might	have	attributes	for	where	it	is
located	on	the	map,	how	much	gas	it	has	left,	and	what	direction	it	is	going.

base	case
In	recursive	programming,	the	base	case	is	the	condition	that	stops	the	recursion	and
returns	a	simple	answer.	Recursive	functions	are	usually	setup	to	reduce	the	problem
to	a	simpler	and	simpler	problem	until	an	answer	can	be	provided	directly.	This
place/condition	where	an	answer	can	be	provided	directly	is	the	base	case.	Without	a

base	case,	a	recursive	function	would	never	be	able	to	stop	and	would	generate	an
infinite	loop.	See	also	recursive	function,	inductive	case,	infinite	loop.

base	URL
The	base	URL	is	the	starting	point	for	relative	URLs.	The	base	URL	is	usually	set	to
the	URL	of	the	current	document	being	viewed,	but	in	HTML	this	can	be	adjusted
using	the	<base>	tag.	See	also	URL,	fully-qualified	URL,	relative	URL.

BBS
See	bulletin-board	system.

binary
The	binary	numbering	system	is	a	system	that	only	uses	1s	and	0s.	The	first	few
numbers	of	binary	(starting	with	zero)	are	0	(zero),	1	(one),	10	(two),	11(three),	and
100	(four).	See	also	decimal,	octal,	hexadecimal.

binary	digit
See	bit.

binary	file
A	binary	file,	as	opposed	to	a	text	document,	is	a	file	which	is	not	readable	in	a	text
editor,	but	requires	a	more	specialized	program	in	order	to	read	and	manipulate	the
file.	See	also	text	document.

bit
A	bit	is	a	binary	digit—either	a	1	or	a	0.	In	the	binary	number	system,	1	and	0	are	the
only	digits.	Computers	are	able	to	work	more	easily	with	binary	digits	because	they
can	be	implemented	using	the	presence	or	absence	of	electrical	current.	See	also	byte,
binary.

block
A	block	is	a	grouped	sequence	of	statements.	In	JavaScript,	blocks	are	indicated	with
opening	and	closing	braces	({	and	}).	Blocks	are	used	to	designate	the	body	of	a
function,	a	branch	of	an	if	statement,	or	the	body	of	a	loop.	See	also	control
structure,	function.

bug
A	bug	is	an	error	in	the	program.

built-in	function
A	built-in	function	is	a	function	that	is	a	part	of	the	programming	system	and	doesn’t
need	to	be	added	by	the	programmer.	A	common	built-in	function	used	in	this	book	is
the	JavaScript	alert	function,	which	displays	messages	to	the	user.	See	also	function.

bulletin-board	system
A	bulletin-board	systems	was	a	popular	method	of	computer	communication	in	the
days	before	the	Internet.	Basically,	a	computer	would	call	a	main	computer	over	the
phone	lines,	and	the	user	would	directly	interact	with	the	main	computer	on	the	other
side.	The	user	could	leave	messages	and	files	for	other	users	to	pick	up	when	they
dialed	in.

byte
A	byte	is	a	sequence	of	8	bits,	and	therefore	has	the	ability	to	hold	a	number	between
0	and	255.	While	individual	bytes	are	rarely	used	in	computer	programs	anymore,
most	quantities	on	computers	are	given	in	terms	of	bytes,	such	as	the	size	of
computer	memory	chips	and	hard	drives.	See	also	bit,	binary.

Cascading	Style	Sheets

Cascading	Style	Sheets	is	a	text	file	format	which	specifies	how	HTML	(or	even
XML)	should	be	displayed	to	a	user.	It	uses	property	lists	to	define	what	style	should
be	used	to	lay	out	a	block	of	text,	and	then	it	uses	selectors	to	specify	which	tags	go
with	which	property	lists.

Central	Processing	Unit
The	Central	Processing	Unit	(CPU)	is	the	core	of	a	computer	which	actually	performs
all	of	the	data	processing.

chip
See	integrated	circuit.

class
In	object-oriented	programming,	a	class	is	very	similar	to	a	type	and	is	often	used
interchangeably.	Types	usually	refer	to	single-values,	while	classes	refer	to	whole
objects.	Types	are	typically	predefined	by	the	programming	language,	and	classes	are
generally	defined	by	the	programmer	(with	the	exception	of	a	few	built-in	classes).	A
class	describes	what	properties	are	available	on	the	instances	of	the	class	and	what
methods	can	be	called	on	them.	In	JavaScript,	objects	don’t	really	have	classes,	but
they	do	have	constructors,	which	serve	a	similar	purpose	of	defining	the	attributes
and	valid	functions	of	an	object.	See	also	constructor,	instance,	object.

CLI
See	Command	Line	Interface

client
A	client	is	a	computer	or	software	program	which	accesses	the	services	of	another
computer	across	the	network,	called	the	server.	See	also	server.

Command	Line	Interface
A	Command	Line	Interface	(CLI)	is	a	user-interface	that	allows	users	to	interact	with
the	computer	by	directly	typing	commands	and	getting	textual	output	on	the	screen.
Most	command	line	interfaces	have	at	least	some	amount	of	programmability,
allowing	users	an	almost	unlimited	flexibility	in	running	system	programs.	See	also
Graphical	User	Interface.

command	prompt
In	a	Command	Line	Interface,	the	command	prompt	is	the	text	that	sits	to	the	left	of
the	blinking	cursor.	What	the	prompt	actually	says	varies	based	on	your	computer’s
settings,	but	usually	it	has	things	like	the	name	of	the	current	directory,	the	name	of
the	computer,	the	name	of	the	current	user,	and	then	special	character	that	indicates
that	you	should	start	typing	(typically	either	#,	$,	or	>).	See	also	Command	Line
Interface.

comment
In	computer	programming,	a	comment	is	a	section	of	text	within	the	program	that	is
used	entirely	for	information	for	another	human	being	reading	the	program.	A
comment	is	ignored	by	the	programming	language	itself.	For	instance,	if	you	had	a
piece	of	code	that	is	complicated,	you	might	include	a	comment	to	tell	other
programs	(or	yourself	at	a	later	date)	why	the	code	is	so	complicated	and	what	you
are	trying	to	accomplish.

compression
Compression	is	a	process	which	reduces	the	size	of	a	value	(usually	a	string),	usually
by	removing	redundant	information	or	finding	simple	patterns	within	the	value.

computer
A	computer	is	a	piece	of	hardware	that	uses	programs	called	software	to	process	data.
It	is	called	a	computer	because	its	operation	primarily	consists	of	computation.	See
also	general-purpose	computer,	special-purpose	computer.

concatenation
Concatenation	means	combining	by	appending	to	the	end	and	usually	refers	to
sticking	two	strings	together.	For	example,	concatenating	“hello”	and	“world”
would	get	you	“helloworld”.

conditional	expression
A	conditional	expression	is	an	expression	which	yields	a	true	or	false	value.
Conditional	expressions	are	often	used	in	control	structures	to	determine	which
branch	of	code	to	follow,	or	to	serve	as	a	control	for	a	loop.	See	also	expression.

console
A	console	is	a	program	that	allows	direct	interaction	with	the	programming
environment.	A	console	allows	you	to	directly	enter	statements,	and	the	console	will
evaluate	and	execute	the	statements	immediately,	yielding	back	the	return	value	for
you	on	the	screen.

constructor
In	object-oriented	programming,	a	constructor	is	a	function	that	builds	a	new	object
instance	of	a	specific	class.	In	JavaScript,	since	there	are	no	classes,	the	constructor
itself	fills	the	role	of	the	class	by	setting	up	the	properties	and	functions	that	a
variable	should	have.	See	also	instance,	object,	class,	object-oriented	programming.

content
When	thinking	about	a	document,	the	content	usually	refers	to	the	actual	data	that	a
person	sees,	as	opposed	to	how	it	is	displayed.	For	instance,	the	content	would
include	the	text	on	a	page,	but	would	not	include	the	font	that	the	text	is	in,	the	line
spacing,	or	any	background	images.	See	also	presentation.

content	type
A	content	type	(also	called	a	MIME	type)	is	the	format	that	a	given	piece	of	data	is
in.	It	is	like	a	filename	extension,	but	it	is	used	for	any	stream	of	data,	not	just	files.
Content	types	are	often	used	for	data	streams	with	multiple	different	types	of	data
embedded	in	them,	such	as	emails	that	contain	attachments.	Content	types	are
specified	with	a	general	type	and	a	more	specific	subtype,	such	as	image/png,	which
means	that	it	is	an	image	(general	type)	and	is	specifically	formatted	as	PNG	image
(the	subtype).	Webpages	are	of	type	text/html.

control	structure
A	control	structure	is	a	statement	or	combination	of	statements	that	affect	the
sequencing	of	program	statements.	Control	structures	include	function	calls	(which
transfer	the	control	sequence	to	the	function),	return	statements	(which	transfer	the
control	sequence	back	to	the	calling	function),	looping	operations	such	as	while	and
for	(which	repeat	a	given	set	of	statements	until	a	condition	is	reached),	and
branching	operations	such	as	if	(which	choose	which	path	to	operate	based	on	a
condition).	There	are	other	control	structures,	as	well,	which	have	more	complicated
functionality.	See	also	flow	control	statement,	loop,	function,	syntax.

control	unit
The	control	unit	is	the	part	of	the	Central	Processing	Unit	that	interprets	instructions

and	directs	the	other	parts	of	the	CPU.	See	also	Central	Processing	Unit.
CPU

See	Central	Processing	Unit.
CSS

See	Cascading	Style	Sheets.
currying

Currying	refers	to	the	process	of	generating	a	function	by	specifying	one	or	more
parameters	of	another	function.	See	also	higher-order	function.

data	bus
The	data	bus	is	a	piece	of	hardware	that	manages	communication	between	system
components.	For	example,	a	data	bus	connects	the	Central	Processing	Unit	to	the
computer	memory.	See	also	Central	Processing	Unit,	memory.

data	format
A	data	format	is	a	way	to	structure	data	so	that	other	computer	programs	can	read	it.
Since	data	is	only	a	sequence	of	numbers,	a	data	format	defines	the	meanings	of
those	numbers	so	that	they	can	be	used	to	convey	information.	See	also	file	format.

data	transformation
A	data	transformation	is	a	process	of	converting	data	from	one	data	format	to	another.
Often	times	there	is	more	than	one	data	format	available	for	the	same	type	of	data.	A
data	transformation	converts	between	these	different	formats.	Data	transformations
can	also	manipulate	and	summarize	data	into	more	usable	forms.	See	also	data
format,	file	format.

data	link	layer
The	data	link	layer	is	the	second	layer	of	a	networking	system	according	to	the	OSI
model.	The	data	link	layer	deals	with	how	the	data	on	the	physical	layer	will	be
divided	and	interpreted.	It	usually	has	a	methodology	for	naming	each	local	device
(often	called	a	MAC	address).	See	also	OSI	model,	MAC	address.

data	structure
A	data	structure	is	a	conceptual	way	of	storing	information.	It	is	similar	to	a	record,
but	a	data	structure	can	also	refer	to	an	entire	set	of	different	types	of	records	that
work	together	to	accomplish	a	goal.	See	also	record.

decimal
Decimal	is	the	numbering	system	that	most	people	are	used	to	using.	It	uses	the	digits
0–9	to	make	numbers.	See	also	binary,	octal,	hexadecimal.

declaration
A	declaration	is	an	instruction	in	a	programming	language	that	gives	the	language
information	about	how	to	interpret	other	parts	of	a	program.	For	instance,	the
declaration	var	x;	is	a	declaration	that	tells	the	programming	language	that	x	will
now	refer	to	a	variable.	Other	sorts	of	declarations	can	include	what	version	of
JavaScript	is	being	used,	or,	in	HTML,	which	set	of	tags	are	being	used.	See	also
doctype	declaration.

directory
A	directory	(also	called	a	folder)	is	a	container	for	files	or	other	directories	usually
used	to	keep	files	on	a	computer	organized.	In	a	URL,	directories	are	indicated	by
slashes.	For	example,	in	the	URL	http://www.npshbook.com/example/test.html,
the	path	is	/example/test.html.	This	path	refers	to	the	test.html	document	in	the

example	directory.	See	also	URL,	fully-qualified	URL.
DNS

See	Domain	Name	System.
doctype	declaration

In	HTML	and	XML,	the	doctype	declaration	specifies	what	type	of	document	(i.e.,
what	set	of	tags)	is	being	processed.	An	HTML	doctype	declaration	looks	like	this:
<!DOCTYPE	html>	See	also	HyperText	Markup	Language,	Extensible	Markup
Language.

Document	Object	Model
The	Document	Object	Model	is	an	API	(a	set	of	objects,	functions,	and	object
classes)	that	describes	how	a	programmer	should	interact	with	an	HTML	page.	The
Document	Object	Model	was	built	to	simplify	and	standardize	this	interaction	not
just	within	JavaScript,	but	across	multiple	languages.	That	way,	once	you	learn	how
to	interact	with	web	pages	in	JavaScript,	your	API	knowledge	can	also	be	used	in
other	languages	that	manipulate	HTML.	See	also	API,	class.

documentation
Documentation	is	any	written	documents	or	program	comments	that	help	navigate
other	programmers	through	a	piece	of	code	or	a	system.	Documentation	is	important
because	most	code	will	be	handled	by	more	than	one	person,	so	any	information
future	programmers	may	need	to	update	programs	should	be	documented	somewhere.
Things	that	are	especially	important	to	document	are	the	purpose	of	functions,	the
parameters	used	in	a	function,	any	global	variables,	and	any	surprise	“gotcha”
encountered	while	building	the	program,	or	that	may	be	encountered	using	the	code
or	the	program.

DOM
See	Document	Object	Model.

Domain	Name	System
The	Domain	Name	System	(DNS)	is	a	system	that	allows	people	to	use	friendlier
names	for	computers	on	the	Internet.	Normally,	each	computer	on	the	Internet	is
assigned	an	IP	address,	which	is	just	a	sequence	of	numbers.	Not	only	are	numbers
hard	to	memorize,	but	these	numbers	can	change	if	a	computer	is	moved	to	another
network.	The	domain	name	system	allows	user-friendly	names	such	as
www.npshbook.com	to	be	used	instead	of	the	numeric	IP	address.	The	domain	name
system	works	behind	the	scenes	to	translate	the	hostname	into	an	IP	address	for	the
computer	to	connect	to.

domain-specific	language
A	domain-specific	language	is	a	programming	language	that	is	geared	toward	a
particular	application	(domain).	Such	programming	languages	often	limit	the
programmer	to	a	very	few	set	of	operations,	and	only	some	of	them	attempt	to	be
Universal.	A	configuration	file	can	be	considered	a	domain-specific	language	of
sorts.	However,	sometimes	a	domain-specific	language	is	simply	a	general-purpose
language	with	domain-specific	features	tacked	on.	See	also	general-purpose
computer,	special-purpose	computer,	Universal	programming	language.

DSL
See	domain-specific	language

element

In	HTML,	an	element	consists	of	a	start	tag,	an	end	tag,	and	all	of	the	content	and
tags	in-between	them.	See	also	tag,	start	tag,	end	tag,	markup	language,	HyperText
Markup	Language.

encapsulation
Encapsulation	is	a	programming	methodology	in	which	access	to	read	and
manipulate	data	fields	is	only	granted	through	functions	or	methods,	never	(or	rarely)
by	direct	access.	The	goal	of	encapsulation	is	to	(a)	make	sure	that	fields	are
synchronized	with	each	other,	(b)	make	sure	that	all	business	and	domain	rules	are
appropriately	followed	concerning	the	data,	and	(c)	make	sure	that	the	interface	(the
functions	or	methods)	do	not	have	to	change	even	when	the	underlying	data	fields
may	change.	For	instance,	a	bank	account	might	be	encapsulated	by	giving	the
programmer	no	direct	access	to	the	account	balance	but	giving	methods	to	check	the
balance,	deposit	money,	and	withdraw	money.	In	this	way,	it	can	ensure	that	if	the
programmer	calls	the	functions	to	withdraw	money,	for	example,	all	overdraft	rules
are	appropriately	applied	rather	than	relying	on	the	programmer	to	always	remember
to	apply	them.	This	also	allows	the	implementation	of	these	functions	to	change
without	drastically	impacting	other	parts	of	the	program.

encryption
Encryption	is	a	process	that	allows	two	parties	to	communicate	without	a	third	party
listening	in.	It	can	also	refer	to	a	method	of	digitally	signing	a	message	to	prove	the
identity	of	the	sender.

end	tag
In	HTML,	an	end	tag	marks	the	end	of	a	block	of	content	that	is	used	for	a	specific
purpose.	An	end	tag	looks	just	like	a	start	tag	but	begins	with	a	slash.	So,	if	the	start
tag	was	<p>,	then	the	end	tag	will	be	</p>.	See	also	tag,	start	tag,	markup	language,
HyperText	Markup	Language.

entity
In	HTML	and	XML,	an	entity	is	a	named	character,	symbol,	or	sequence	of
characters.	Entities	are	specified	by	starting	with	an	ampersand	(&)	and	ending	with	a
semicolon	(;).	For	instance,	©	is	an	entity	that	refers	to	the	copyright	symbol.

Ethernet
Ethernet	is	the	most	prominent	means	of	physically	connecting	two	devices	on	a	local
area	network.	See	also	data	link	layer,	network,	local	area	network.

expression
An	expression	is	a	combination	of	variables,	literals,	operators,	and	functions	that
yield	a	value	in	a	single	statement.	For	example,	2	+	3	*	5	is	an	expression,	as	is
(myvar	*	2)	-	myothervar	and	myfunc(myvar	+	1).	Individual	literals	and
variables	also	count	as	expressions,	too.	Anything	that	can	exist	on	the	right-hand
side	of	an	assignment	statement	is	considered	an	expression.	See	also	variable,
literal,	operator,	function,	assignment	statement,	right-hand	side,	syntax.

Extensible	Markup	Language
The	Extensible	Markup	Language	(usually	referred	to	as	XML)	is	a	text-based
markup	language	that	is	very	similar	to	HTML	with	the	primary	difference	being	that
there	is	not	a	predefined	set	of	tags	to	use.	Programs	utilizing	XML	get	to	make	up
their	own	tags	to	match	the	type	of	data	they	are	trying	to	convey.	XML	has	the
benefit	of	being	more	flexible	than	HTML,	at	a	cost	of	needing	different	programs	to

be	customized	to	understand	each	others’	sets	of	tags.	Many	file	formats	today	are
simply	predefined	sets	of	XML	tags.	XML	has	stricter	rules	than	standard	HTML	as
far	as	how	tags	are	formed,	which	makes	it	easier	and	faster	to	process.	For	example,
there	are	cases	where	HTML	allows	start	tags	without	corresponding	end	tags,	while
XML	always	requires	end	tags.	HTML	written	according	to	these	standards	is
sometimes	called	XHTML.	All	HTML	in	this	book	is	also	XHTML.	See	also	markup
language,	text	document,	HyperText	Markup	Language.

extension
See	filename	extension.

file	format
A	file	format	is	a	way	of	structuring	data	on-disk	so	that	the	data	can	be	read	back	by
a	computer	program.	A	file	format	defines	the	types	of	data	that	can	be	stored	within
a	file	and	how	it	is	structured	so	that	it	can	be	read	back.	Since	a	file	is	only	a
sequence	of	numbers,	there	is	no	way	to	tell	what	the	numbers	are	supposed	to	mean
apart	from	the	file	format,	which	tells	the	program	(actually,	the	programmer)	how
the	sequence	of	numbers	should	be	interpreted.	See	also	protocol,	data	format.

filename	extension
A	filename	extension	is	a	short	code	placed	at	the	end	of	a	filename	which	tells	the
computer	what	format	the	given	file	is	in,	and,	in	some	cases,	what	program	should
be	used	to	open	the	file.	The	filename	extension	is	separated	from	the	main	filename
by	a	period.	For	instance,	the	filename	mydocument.rtf	has	a	filename	extension	of
rtf,	which	means	that	the	file	is	in	Rich	Text	Format.	Other	common	filename
extensions	include	docx	for	word	processing	documents,	jpg	or	png	for	image	files,
and	html	for	web	pages.	See	also	content	type.

firewall
A	firewall	is	a	device	or	a	program	that	restricts	access	to	network	resources,	either
on	a	single	computer	or	across	a	network	of	computers.	The	firewall	is	meant	to
separate	“outside”	from	“inside”	communication,	so	as	to	limit	what	resources	an
outside	network	can	access.	Firewalls	provide	an	additional	layer	of	safety	and
security	to	computers	on	the	“inside”	of	the	firewall.

fixed-point	number
A	fixed-point	number	is	a	computer-stored	decimal	number.	It	is	called	a	“fixed
point”	because	of	the	way	it	stores	the	number—it	has	a	fixed	number	of	positions	to
the	right	and	left	of	the	decimal	that	it	can	store.	This	makes	the	range	of	numbers	it
can	cover	smaller	than	that	of	floating-point	numbers,	but	makes	the	calculations
more	exact	for	the	range	that	it	covers.	Fixed-point	numbers	are	often	used	to	store
money	amounts	for	that	reason.	See	also	floating-point	number.

Flash	Memory
Modern	computers	phased	out	Read-Only	Memory	(ROM)	for	flash	memory.	Flash
memory	is	like	ROM	in	that	it	is	not	erased	when	the	computer	turns	off,	but	like
RAM	in	that	it	can	be	altered.	Flash	memory	is	often	used	for	computer	bootup
instructions	as	well	as	USB-based	thumb	drives.	See	also	Random-Access	Memory,
Read-Only	Memory,	Universal	Serial	Bus.

floating-point	number
A	floating-point	number	is	a	computer-stored	decimal	number.	It	is	called	a	“floating
point”	because	of	the	way	it	stores	the	number—the	digits	of	the	number	are	stored

separately	from	the	location	of	the	decimal	point.	This	allows	it	to	store	numbers	that
are	very	large	or	very	small	but	sacrifices	some	amount	of	precision.	See	also	fixed-
point	number.

flow	control	statement
See	control	structure.

folder
See	directory.

for	loop
A	for	loop	is	a	type	of	loop	that	includes	some	amount	of	loop	initialization	and
control	management.	In	JavaScript,	it	takes	the	form,	for(initialization;	loop
condition;	loop	control)	{	loop	body	}.	It	is	basically	a	while	loop	that	gives	a
specific	area	for	loop	control	statements.	An	example	for	loop	should	illustrate	the
point:	for(var	i	=	0;	i	<	10;	i	=	i	+	1)	{	alert(i);	}.	This	code	will
display	each	number	from	one	through	nine.	The	initialization	creates	the	control
variable	and	sets	the	value.	The	loop	condition	checks	to	see	if	the	value	is	less	than
ten	before	executing	the	code.	Finally,	the	loop	control	increases	the	control	variable
to	go	to	the	next	number.	You	can	put	any	statements	you	want	for	the	initialization,
condition,	and	control	statements,	but	the	ones	in	the	example	are	fairly	typical.	See
also	loop,	loop	condition,	loop	body,	loop	control	variable.

fully-qualified	URL
A	fully-qualified	URL	(also	called	an	absolute	URL)	is	a	URL	that	contains	all	of	the
information	needed	to	access	a	remote	document	or	service.	As	opposed	to	absolute
URLs	and	relative	URLs,	fully-qualified	URLs	rely	on	no	contextual	information
whatsoever	in	order	to	connect.	A	fully-qualified	URL	usually	includes	the	protocol,
the	server,	and	the	document	path.	For	example,
http://www.npshbook.com/example/example.html	uses	HTTP	as	the	protocol,
connects	to	the	server	www.npshbook.com,	and	accesses	the	document	at	the	path
/example/example.html.	When	people	discuss	URLs,	they	are	usually	talking	about
fully-qualified	URLs.	See	also	URL,	relative	URL,	network	path.

function
A	function	is	a	sequence	of	steps	that	a	computer	can	perform	that	is	encapsulated	as
a	single	unit.	Functions	usually	consist	of	a	list	of	parameters,	which	serve	as	input	to
the	function,	a	sequence	of	instructions,	and	a	return	value,	which	is	usually	where
the	result	of	the	function	is	given.	Functions	are	used	for	several	purposes,	including
specifying	a	piece	of	code	that	can	be	run	multiple	times	from	different	parts	of	a
program	and	separating	a	program	out	into	logically	distinct	components.	See	also
parameter,	return	value.

function	scope
Function	scope	is	the	scope	created	by	a	function	definition.	Within	a	function,	all
variables	declared	using	the	var	keyword	get	put	in	the	function’s	scope	as	well	as	all
of	the	function’s	parameters.	These	variables	cannot	be	accessed	by	name	anywhere
outside	of	the	function	body.	For	more	advanced	programmers,	if	a	function	is
declared	within	another	function,	it	can	access	all	of	the	variables	in	the	enclosing
function.	Function	scopes	are	actually	created	when	the	function	starts	executing.
Therefore,	if	a	function	calls	itself,	each	execution	of	the	function	gets	its	own	unique
copy	of	the	scope.	This	will	cause	a	separate	copy	of	each	variable	to	exist	for	each

active	function.	See	also	function,	variable,	variable	scope,	recursive	function.
general-purpose	computer

A	general-purpose	computer	is	a	computer	that	can	be	loaded	with	software	that	can
perform	any	possible	calculation	(within	practical	limits).	See	also	special-purpose
computer,	Universal	programming	language.

global	scope
The	global	scope	is	a	scope	that	is	always	visible	to	every	function.	See	also	variable
scope,	global	variable.

global	variable
A	global	variable	is	a	variable	that	is	defined	in	the	global	scope,	and	thus	visible
within	every	function,	unless	that	function	has	a	local	variable	of	the	same	name.	See
also	variable	scope,	global	scope,	variable.

Graphical	User	Interface
A	Graphical	User	Interface	(GUI,	pronounced	like	gooey)	is	the	typical	type	of
interface	we	see	on	modern	computers—heavy	uses	of	icons,	media,	windows,	and
screen	management,	with	interactions	taking	place	primarily	through	an	interactive
device	like	a	mouse.	See	also	command	line	interface.

groupware
Groupware	is	a	set	of	software	applications	that	allow	a	user	to	interact	with	a	group.
Groupware	usually	includes	scheduling	and	messaging	applications	that	work
together.

GUI
See	Graphical	User	Interface

hexadecimal
Hexadecimal	is	a	numbering	system	that	consists	of	the	digits	0–9	as	well	as	the
letters	a–f	for	an	expanded	list	of	16	total	digits.	Hexadecimal	is	often	used	in
computer	programming	because	every	two	hexadecimal	numbers	represents	a	single
byte.	See	also	decimal,	binary,	octal,	byte.

higher-order	function
A	higher-order	function	is	a	function	that	either	takes	a	function	as	a	parameter	or
generates	and	returns	new	functions	as	a	result.	Higher-order	functions	are	often
difficult	to	grasp	but,	once	understood,	can	greatly	simplify	many	programming
tasks.

hostname
The	hostname	is	the	name	of	a	computer	or	group	of	computers	on	the	Internet.	For
instance,	in	the	URL	http://www.npshbook.com/,	http	is	the	protocol,
www.npshbook.com	is	the	hostname,	and	/	is	the	path.	This	means	that	the	URL	will
transmit	to	the	computer	or	group	of	computers	named	by	www.npshbook.com	using
the	HTTP	protocol,	and	ask	for	the	document	/.

HTML
See	HyperText	Markup	Language.

HTTP
See	HyperText	Transfer	Protocol.

HTTP	verb
The	HTTP	protocol	has	several	commands,	called	verbs,	that	it	can	receive.	The	two
main	verbs	are	GET,	which	is	usually	used	to	retrieve	documents,	and	POST,	which

is	usually	used	to	transmit	a	form	to	the	server.
hyperlink

A	hyperlink	is	a	short	piece	of	text	in	a	digital	document,	which,	when	clicked,	takes
the	viewer	to	another,	related	document.

HyperText	Markup	Language
HyperText	Markup	Language	(usually	known	simply	as	HTML)	is	a	specialized
markup	language	used	for	displaying	documents	on	the	web.	It	uses	tags	to	mark
different	pieces	of	content	for	different	purposes.	See	also	markup	language,	tag,	text
document.

HyperText	Transfer	Protocol
The	HyperText	Transfer	Protocol	(HTTP)	is	the	application	layer	protocol	used	on
the	Internet	for	transferring	web	content	(web	pages,	images,	etc.).	When	the	data
transfer	is	encrypted	using	SSL	or	TLS,	the	protocol	is	referred	to	as	HTTPS.	See
application	layer,	Transport	Layer	Security.

identifier
An	identifier	is	a	programmer-chosen	name	for	a	value.	Most	identifiers	in
programming	languages	refer	to	variable	names,	function	names,	or	property	names.
Identifiers	differ	from	keywords	and	operators,	which	are	fixed,	pre-specified	words
that	have	a	specific	meaning	in	a	language.	Programming	languages	have	rules	for
what	makes	a	valid	identifier,	but	usually	any	group	of	characters	without	spaces	or
special	characters	that	start	with	a	letter	can	be	used	an	identifier.	See	also	variable,
operator,	keyword,	syntax.

IMAP
IMAP	(the	Internet	Message	Access	Protocol)	is	one	of	the	application	layer
protocols	used	to	retrieve	email	from	an	email	server.	See	also	application	layer,
SMTP,	POP.

index
An	index	is	a	number	used	in	arrays	and	character	strings	to	specify	which	item	of
the	array	or	string	you	want	to	access.	See	also	array,	string,	zero-based	indexing.

inductive	case
In	recursive	programming	the	programmer	usually	tries	to	redefine	the	problem	into
simpler	and	simpler	problems	with	the	same	form	as	the	original.	For	instance,	in	the
factorial	function,	the	factorial	is	represented	in	terms	of	the	factorial	of	smaller
numbers.	The	conditions	that	cause	a	recursive	program	to	call	itself	with	a
simplified	version	of	the	problem	is	called	the	inductive	case.	See	also	recursive
function,	base	case.

infinite	loop
An	infinite	loop	is	a	loop	in	which	the	loop	condition	is	improperly	written,	such	that
the	loop	body	never	stops	executing.	See	also	loop,	loop	condition,	loop	body.

information	architecture
For	websites,	information	architecture	refers	to	how	web	pages	are	organized	and
how	users	can	navigate	through	the	website.	For	computer	programs,	information
architecture	refers	to	how	data	is	divided	into	data	structures	such	as	objects	and
arrays.

inheritance
See	subclass

initialization
Initialization	is	a	term	that	refers	to	the	beginning	steps	of	a	loop,	program,	or
function,	in	which	the	programmer	sets	initial	values	to	variables.	JavaScript	does	not
require	that	initialization	happen	at	the	beginning	of	a	program	or	function,	but	it	is
usually	good	programming	practice	to	do	so.	See	also	loop	initialization.

input
In	computer	hardware,	input	is	anything	that	comes	into	a	program	from	outside	of
the	computer.	Keyboards,	mice,	and	hard	drives	are	all	examples	of	input	systems.	In
computer	programming,	input	can	refer	to	anything	that	comes	into	a	section	of	a
program,	even	if	it	does	not	come	from	outside	the	computer.	For	instance,	the	input
of	a	function	can	refer	to	external	input	(such	as	keyboards)	as	well	as	the	function’s
parameters	and	global	variables.	See	also	input/output	system,	output.

input/output	system
An	input/output	system	is	a	set	of	hardware	specifications	for	allowing	devices	to	be
added	to	computers.	One	popular	input/output	system	is	the	Universal	Serial	Bus
(USB).	See	also	USB.

instance
In	object-oriented	programming,	an	instance	is	an	object	of	a	particular	class.	For
example,	I	might	have	a	class	of	Car	that	describes	the	basic	potential	features	of	a
car	and	then	thousands	of	Car	object	instances	that	are	used	to	model	traffic.	Each
instance	of	the	Car	class	has	the	properties	and	methods	that	the	Car	class	describes.
JavaScript	does	not	have	classes,	but	a	similar	concept	is	built	through	constructors.
See	also	object,	class,	constructor.

instruction	pointer
In	machine	language,	the	instruction	pointer	contains	the	memory	address	of	the	next
instruction	to	fetch	and	execute.	See	also	machine	language,	memory	address.

integer
An	integer	is	a	counting	number—a	number	with	no	decimal	points.

integrated	circuit
An	integrated	circuit	is	a	piece	of	silicon	with	numerous	transistors	and	other
miniaturized	semiconductors	packed	into	a	small	area.	Integrated	circuits	may	be	as
simple	as	a	few	transistors	wired	together	to	make	a	timer	or	a	few	billion	transistors
wired	together	to	make	a	modern	computer	microprocessor.

interface
In	object-oriented	programming,	an	interface	(also	called	a	protocol)	is	a	list	of
related	methods	that	an	object	or	class	may	implement	that	contribute	toward	a
similar	function	in	non-similar	objects.	For	instance,	beds	and	cars	have	very	little	in
common,	but	they	might	both	have	a	function	called	getLocation()	and
setLocation().	If	they	both	implemented	equivalently-named	functions	to
accomplish	similar	goals,	then	you	could	regard	that	as	an	interface.	Defining
interfaces	allows	people	to	write	general	code	that	allows	the	code	to	be	used	in	a
variety	of	circumstances	with	different	kinds	of	objects	so	long	as	the	objects	each
implement	the	same	interface.

Internet
The	Internet	is	the	worldwide	conglomeration	of	networks	operating	under	a	standard
set	of	protocols	for	locating	and	communicating	with	each	other.	See	also	network.

Internet	Protocol
The	Internet	Protocol	(IP)	is	the	network	layer	protocol	used	on	the	Internet	for
addressing	devices	and	routing	data	to	them.	See	also	network	layer,	Internet,
TCP/IP,	IP	Address.

IP
See	Internet	Protocol.

IP	Address
An	IP	address	is	how	a	computer	is	identified	on	the	Internet.	The	Internet	Protocol
uses	the	IP	address	to	ensure	that	data	arrives	at	the	proper	destination.	See	also
Internet	Protocol,	network	layer.

JavaScript
JavaScript	is	a	programming	language	that	is	widely	used	today	to	make	web	pages
more	interactive.

JavaScript	console
See	console

keyword
A	keyword	is	a	word	that	looks	like	an	identifier	but	has	a	specific	meaning	in	the
given	programming	language.	See	also	identifier,	syntax.

L-value
See	left-hand	side.

LAN
See	local	area	network.

left-hand	side
In	an	assignment	statement,	the	left-hand	side	refers	to	the	code	on	the	left-hand	side
of	the	equal	sign	(=).	The	goal	of	the	left-hand	side	is	to	yield	a	storage	location	that
can	hold	the	value	given	in	the	right-hand	side.	Therefore,	the	left-hand	side	is
interpreted	differently	than	the	right-hand	side.	On	the	right-hand	side,	myarray[0]
refers	to	the	value	that	is	held	in	the	first	element	of	myarray.	On	the	left-hand	side,
myarray[0]	refers	to	the	storage	location	that	is	the	first	element	of	myarray.	Storage
locations	specified	by	the	left-hand	side	of	assignment	statements	are	often	called	L-
values.	See	also	assignment	statement,	right-hand	side.

library
A	library	is	a	set	of	pre-built	functions,	objects,	and/or	other	programming	tools	that
assists	a	programmer	to	accomplish	specific	tasks.	For	instance,	many	websites	offer
JavaScript	libraries	that	provide	functions	that	a	programmer	can	call	to	retrieve	data
from	their	website.

link
See	hyperlink.

literal
A	literal	refers	to	a	value	that	is	entered	directly	in	a	programming	language	as
opposed	to	one	that	is	given	as	input	or	calculated	from	other	values.	For	instance,
the	statement	var	myvar	=	0;,	the	0	in	the	program	refers	to	the	number	0	itself.
Any	value	that	is	written	directly	into	a	program	is	considered	a	literal.

local	area	network
A	local	area	network	(LAN)	is	a	network	of	computers	within	a	modest	physical
proximity	that	are	all	managed	under	a	single	administration.	Most	home	and	office

networks	are	local	area	networks.	See	also	wide	area	network.
local	variable

A	local	variable	is	a	variable	with	a	non-global	scope.	In	JavaScript,	local	variables
have	function	scope.	See	also	variable,	global	scope,	function	scope.

loop
A	loop	is	a	sequence	of	statements	that	are	repeated.	Loops	generally	consists	of	two
logical	components—the	loop	condition	and	the	loop	body.	The	loop	body	is	the
sequence	of	statements	to	be	executed	repeatedly,	and	the	loop	condition	is	a
conditional	expression	that	controls	whether	or	not	the	loop	continues	repeating	or	is
finished.	See	also	conditional	expression,	loop	condition,	loop	body,	loop	control
variable,	for	loop,	while	loop.

loop	body
In	a	loop,	the	loop	body	is	a	sequence	of	statements	that	gets	executed	over	and	over
again.	In	most	types	of	loops,	the	sequence	of	statements	executes	until	the	loop
condition	evaluates	to	false.	See	also	loop,	loop	condition.

loop	condition
The	loop	condition	is	a	conditional	expression	that	controls	whether	or	not	the	loop
body	is	executed.	See	also	conditional	expression,	loop,	loop	body.

loop	control	variable
A	loop	control	variable	is	a	variable	that	is	used	to	gauge	the	progress	of	a	loop	and
determine	whether	or	not	it	is	finished.	A	loop	does	not	have	to	have	a	single	loop
control	variable—sometimes	a	loop	condition	is	controlled	by	a	variety	of	conditions
of	several	variables.	However,	most	loops	make	use	of	a	single	variable	to	determine
whether	or	not	it	should	keep	executing.	Therefore,	in	order	to	avoid	an	infinite	loop,
it	is	important	to	make	sure	your	loop	control	variable	is	modified	properly	in	the
loop	body	(or	in	the	loop	control	in	a	for	loop).	See	also	loop,	loop	condition,	loop
body,	for	loop.

loop	initialization
Loop	initialization	is	a	term	that	refers	to	setting	up	the	variables	in	order	to	execute	a
loop.	In	some	forms	of	loops	(such	as	the	while	loop),	loop	initialization	is	done
manually	while	in	other	loops	(such	as	the	for	loop),	at	least	part	of	the	initialization
is	part	of	the	loop	syntax	itself.	See	also	loop,	while	loop,	for	loop

MAC	address
The	MAC	(media	access	control)	address	is	how	a	computer	is	identified	on	a	local
network	(at	the	data	link	layer	level).	This	is	different	than	the	IP	address,	which	is
how	a	computer	is	identified	across	a	larger	network	such	as	the	Internet.	Computers
on	the	Internet	typically	have	both	a	MAC	address	and	an	IP	address.	The	MAC
address	allows	a	network	card	to	quickly	identify	which	packets	of	data	belong	to
that	network	card	without	the	complexities	of	understanding	the	Internet	Protocol.
See	also	IP	address,	internet	protocol,	data	link	layer,	packet.

machine	language
A	machine	language	is	the	set	of	instructions	that	a	computer	is	able	to	process
natively.	The	three	most	common	machine	languages	are	the	x86	platform	(used	by
most	desktop	computers),	the	PowerPC	platform	(used	by	many	gaming	systems),
and	the	ARM	platform	(used	by	many	smartphones).	Most	programmers	do	not	use
machine	language	but,	instead,	use	other	programming	languages	that	make	the	task

of	programming	easier.	See	also	programming	language.
markup	language

A	markup	language	is	a	text	document	that	has	certain	codes	written	into	it	that	tell	a
person	or	a	computer	program	how	to	interpret	each	piece	of	text.	Common	markup
languages	are	XML	and	HTML.	See	also	HyperText	Markup	Language,	Extensible
Markup	Language.

memory
The	memory	of	a	computer	refers	to	the	data	that	is	held	in	a	computer.	The	memory
is	a	sequence	of	storage	locations,	each	of	which	holds	8	bits	(one	byte)	of	data.	It
usually	refers	to	Random-Access	Memory,	which	goes	away	when	the	computer	is
switched	off.	See	also	Random-Access	Memory,	bit	byte,	memory	address.

memory	address
The	computer	memory	is	simply	a	very	large	sequence	of	bytes.	Each	byte	is	given	a
number	that	refers	to	its	position	in	the	sequence	of	bytes.	This	number	is	known	as	a
memory	address.	See	also	memory,	byte.

message
Another	term	used	for	method.	It	has	a	slightly	different	technical	meaning,	but	they
are	usually	used	interchangeably.

method
A	method	is	a	function	that	is	attached	to	an	object.	In	JavaScript,	this	is	done	by
setting	a	property	of	an	object	to	a	function.	When	a	method	is	called,	the	object	that
the	function	is	attached	to	is	passed	as	an	implicit	parameter	to	the	function.	In
JavaScript,	this	is	done	by	setting	the	special	variable	this	to	the	object.	See	also
function,	object.

microchip
See	integrated	circuit.

MIME	type
See	content	type.

modem
A	modem	(from	the	words	“modulator”	and	“demodulator”)	is	a	device	that	converts
a	digital	signal	to	an	analog	signal	for	transmission	over	phone	lines.

modularization
Modularization	refers	to	a	practice	in	programming	of	separating	out	a	program	into
simpler	pieces,	called	modules.	This	helps	to	better	organize	the	program,	to	reduce
the	amount	of	local	complexity	(since	the	units	are	thought	of	in	more	holistic	and
unified	ways),	to	reduce	the	amount	of	global	complexity	(since	the	interaction	points
between	the	modules	are	better	documented	and	understood),	and	to	make	the
program	more	understandable	(because	you	can	reasonably	understand	the	program
at	both	a	local	level	and	a	global	level).	Without	modularization,	oftentimes	programs
would	have	to	be	understood	simultaneously	at	a	broad	and	local	level	since	there
was	nothing	that	partitioned	the	system	into	parts.

mutating	function
See	mutator

mutator
In	object-oriented	programming,	a	mutator	is	a	method	that	changes	an	object’s
internal	properties.	In	object-oriented	programming,	it	is	usually	recommended	that

all	changes	to	an	object’s	properties	occur	through	mutators	so	that	only	the	object	is
responsible	for	maintaining	internal	consistency.	Otherwise,	if	an	object	needed	two
values	to	change	together,	and	someone	using	the	object	only	changed	one	of	them,
the	object	would	be	in	an	invalid	state.	Using	mutators	puts	the	burden	of	object
consistency	on	the	person	who	wrote	the	code	for	the	object	to	begin	with.	See	also
object-oriented	programming,	accessor.

name	clash
A	name	clash	is	when	a	programmer	accidentally	uses	the	same	name	for	two
different	things	(usually	variables).	Depending	on	the	programming	language	and	the
way	it	occurs,	this	can	either	prevent	the	code	from	running	(because	the	language
can’t	distinguish	between	the	two	uses	of	the	name)	or	causes	data	corruption
(because	two	parts	of	the	code	are	using	the	same	location	for	different	things).	See
also	variable.

network
A	network	is	a	group	of	computers	that	are	connected	together	so	that	they	can	send
data	to	each	other.	See	also	Ethernet,	local	area	network.

network	layer
The	network	layer	is	the	third	layer	of	a	networking	system	according	to	the	OSI
model.	The	network	layer	deals	with	moving	data	between	different	physical	network
segments.	The	most	common	network	layer	protocol	is	the	Internet	Protocol.	See	also
OSI	model,	Internet	Protocol.

network	path
A	network	path	is	like	a	fully-qualified	URL	but	without	the	protocol	specified.	It	is
also	like	a	relative	URL,	but	relative	only	to	the	protocol	of	the	base	URL.	A	network
path	is	indicated	by	starting	with	two	slashes	(//).	For	instance,	the	URL
http://www.npshbook.com/example/example.html	has	a	network	path	of
//npshbook.com/example/example.html.	Network	paths	are	often	used	when	a
document	can	be	accessed	by	more	than	one	protocol,	and	you	want	all	of	the	links
using	the	same	protocol.	For	instance,	if	a	document	can	be	accessed	via	either	HTTP
or	HTTPS	(using	http:	or	https:	as	the	protocol),	using	network	paths	for	links	will
keep	the	session	in	the	same	protocol	as	was	used	to	access	the	original	document.
See	also	URL,	fully-qualified	URL,	base	URL,	relative	URL.

nil
See	null.

null
Null	(also	called	nil)	is	often	used	in	programming	languages	to	represent	an	empty
value.	In	JavaScript,	you	can	set	values	to	null	if	you	don’t	know	what	the	value	is.
It	is	similar	to	undefined,	except	undefined	is	usually	assigned	by	the	system	itself
when	a	variable	has	not	been	set	to	anything.	In	other	words,	undefined	is	used	by
the	JavaScript	language	when	it	doesn’t	know	what	the	value	should	be,	and	null	is
used	by	programmers	to	specify	that	they	don’t	know	what	the	value	should	be.	null
and	undefined	are	equal	when	compared	using	==	but	not	equal	when	compared
using	===.	Most	programming	languages	don’t	have	separate	values	for	undefined
and	null	values.	In	other	programming	languages,	null	is	defined	as	the	number	zero.
See	also	undefined.

null-terminated	string

A	null-terminated	string	is	a	way	of	implementing	strings	such	that	the	last	value	is	a
sentinel	(usually	the	null	value)	signaling	the	end	of	the	string.	JavaScript	strings	are
not	null-terminated	(JavaScript	stores	the	count	of	the	characters	instead),	but	null-
terminated	strings	are	seen	on	a	number	of	programming	languages.	See	also	string,
null,	sentinel.

object
An	object	is	a	data	structure	that	can	contain	both	regular	data	and	functions.	In
JavaScript,	although	every	value	is	technically	an	object,	objects	usually	refer	to
custom-defined	objects	that	contain	multiple	values.

object-oriented	programming
Object-oriented	programming	is	a	method	of	programming	where	data	records	and
related	functions	(called	methods)	are	encapsulated	together	into	units	called	objects.
See	also	class,	subclass,	interface,	instance,	object,	accessor,	mutator,	constructor
attribute,	property.

octal
Octal	is	a	numbering	system	that	only	uses	the	digits	0–7.	It	is	commonly	used	in
computers	since	each	octal	digit	represents	exactly	three	bits.	See	also	binary,
decimal.

opcode
The	word	opcode	stands	for	“operation	code.”	In	machine	language,	an	opcode	is	part
of	a	machine	instruction.	It	is	a	number	that	refers	to	what	process	the	CPU	should
perform	with	the	instruction.	The	CPU	uses	the	opcode	to	know	what	operation	to
perform.	The	opcode	is	combined	with	other	operands	to	form	a	complete	machine
instruction.

operand
An	operand	is	a	value	that	is	operated	on	by	an	operator.	In	the	expression	2	+	3,	+	is
the	operator,	and	2	and	3	are	operands.	Operators	are	like	parameters	to	built-in
functions.	See	also	expression,	operator.

operator
An	operator	is	a	symbol	or	keyword	in	a	programming	language	that	tells	computes	a
value.	For	instance,	+	is	an	operator	that	adds	two	values,	and	==	is	an	operator	that
compares	two	values	and	yields	true	or	false	based	on	whether	they	are	equivalent.
See	also	operand.

OSI	model
The	OSI	model	is	a	way	of	thinking	about	the	different	needs	of	a	communication
system	broken	out	into	independent	layers.	The	OSI	model	is	what,	for	instance,
allows	wired	and	wireless	computers	to	interoperate	on	the	same	network	despite
having	very	different	ways	of	physically	connecting	to	the	network.	The	OSI	model
divides	the	needs	of	a	network	communication	system	into	seven	layers	which	can
each	act	independently	of	the	others.	See	also	physical	layer,	data	link	layer,	network
layer,	transport	layer,	session	layer,	presentation	layer,	application	layer.

output
In	computer	hardware,	output	is	anything	that	goes	from	the	computer	to	a	device
outside	of	the	computer.	Your	monitor,	speakers,	and	hard	drive	are	all	examples	of
output	systems.	In	computer	programming,	output	can	refer	to	anything	that	is	the
result	of	a	section	of	a	program,	especially	its	return	value,	and	any	global	variables

that	it	modified.	See	also	input/output	system,	input,	return	value.
packet

A	packet	is	a	piece	of	a	communication	sent	as	a	unit	across	the	network.	When
sending	or	receiving	data,	the	operating	system	or	network	can	decide	to	break	up	the
transmission	into	pieces	called	packets	and	send	each	packet	individually.	The
destination	computer	then	reassembles	the	packets	into	their	proper	order	before
sending	them	on	to	the	destination	program.

parameter
A	parameter	is	a	value	that	is	given	to	a	function	for	processing.	In	JavaScript,	for
instance,	the	function	call	alert(“hello	there”);	has	one	parameter—the	string
“hello	there”.	In	JavaScript,	each	parameter	is	assigned	to	a	local	variable	for	the
duration	of	the	function.

parent	directory
On	a	computer,	files	are	organized	in	a	hierarchy	of	directories.	If	a	file	is	in	a	given
directory,	the	parent	directory	is	the	directory	that	the	given	directory	is	located	in.
For	instance,	if	a	file	is	in	the	directory	/example1/example2/myfile.html,	the
directory	that	the	file	is	in	is	example2,	and	the	parent	directory	of	example2	is
example1.	See	also	director.

parse
Parsing	is	converting	specially-formatted	text	from	a	simple	string	to	something
easier	to	manipulate	as	data.	For	instance,	the	string	“25”	can	be	parsed	into	the
number	25,	and	the	string	“2016-03-01”	can	be	parsed	into	a	date.

peripheral
A	peripheral	is	an	external	device	attached	to	the	computer	such	as	a	mouse,
keyboard,	or	monitor.	Most	peripherals	today	use	USB	to	connect.	See	also	Universal
Serial	Bus,	intput/output	system.

physical	layer
The	physical	layer	is	the	lowest	layer	of	a	networking	system	according	to	the	OSI
model.	The	physical	layer	deals	with	the	physical	wires	between	devices	or,	in	the
case	of	wireless	communication,	the	necessary	physical	requirements	of	the	space.
See	also	OSI	model.

pica
In	typography,	a	pica	is	a	size	that	is	 	of	an	inch.	See	also	typography.

point
In	typography,	a	point	is	a	size	that	is	 	of	an	inch.	See	also	typography.

POP
POP	(the	Post	Office	Protocol)	is	one	of	the	application	layer	protocols	used	to
retrieve	email	from	an	email	server.	See	also	application	layer,	SMTP,	IMAP.

presentation
When	thinking	about	a	document,	the	presentation	usually	refers	to	the	way	that	data
is	displayed	on	a	page,	not	the	content	itself.	The	presentation	refers	to	fonts,	colors,
borders,	backgrounds,	placements,	spacing,	and	other	visual	effects	that	are	not
directly	tied	to	the	text	or	data	being	presented.

presentation	layer
The	presentation	layer	is	the	sixth	layer	of	a	networking	system	according	to	the	OSI
model.	The	presentation	layer	allows	for	the	adjustment	of	the	message	before	being

sent	to	the	application.	Two	common	uses	of	this	are	encryption	and	compression.
The	TLS	protocol,	for	instance,	is	a	presentation	layer	protocol	for	encryption	used
on	many	websites.	However,	oftentimes	the	presentation	layer	is	bundled	into	the
application	layer.	See	also	OSI	model,	application	layer,	TLS,	SSL,	encryption,
compression.

program	stack
See	stack.

programming	language
A	programming	language	is	a	method	of	conveying	instructions	to	a	computer	in	a
way	that	is	easier	for	programmers	to	use	than	the	machine’s	native	machine
language	but	that	is	still	precise	enough	to	be	translated	into	the	computer’s	own
machine	language.	See	also	machine	language.

property	(CSS)
A	CSS	property	is	a	setting	that	can	be	changed,	such	as	font-size	or	padding-left.

property	(object)
An	object	property	is	a	value	that	is	set	on	an	object.	The	property	name	is	the	name
that	the	value	is	referred	by,	and	the	property	value	is	the	actual	value	stored.	For
instance,	if	we	had	an	object	called	myobj,	then	the	statement	myobj.myprop	=
“myval”;	would	set	a	property	named	myprop	on	the	myobj	object	to	the	value
“myval”.

protocol	(networking)
A	protocol	is	a	system	of	conventions	used	to	facilitate	communication	or	usage.	In
ordinary	life,	a	common	protocol	is	shaking	hands	when	greeting	someone	or	saying
“hello”	and	“goodbye”	on	the	telephone.	On	computer	systems,	protocols	allow
components	and	software	built	by	independent	groups	to	work	together	by	sharing
the	same	conventions.	For	instance,	there	are	a	number	of	different	web	browsers
available	for	browsing	the	web,	but	they	are	all	able	to	do	so	successfully	because
they	all	follow	a	standard	protocol	for	exchanging	information	with	the	website.

protocol	(object-oriented	programming)
See	interface.

query	string
In	a	URL,	a	query	string	is	a	set	of	extra	data	that	is	passed	to	the	web	page	through
the	URL.	If	a	URL	has	a	question	mark	within	the	URL,	everything	after	the	question
mark	is	considered	part	of	the	query	string.	Query	string	data	is	usually	expressed	as
key=val	pairs	separated	by	ampersands	(&).	In	JavaScript,	the	query	string	can	be
accessed	in	JavaScript	through	window.location.search.	See	also	URL.

RAM
See	Random-Access	Memory.

Random-Access	Memory
Random-Access	Memory	(RAM)	is	the	typical	type	of	computer	memory.	It	refers	to
memory	that	can	be	both	read	from	and	written	to.	The	RAM	of	a	computer	is	wiped
when	it	is	turned	off	or	rebooted.	See	also	memory,	Read-Only	Memory.

Read-Only	Memory
Read-Only	Memory	(ROM)	is	a	special	type	of	computer	memory	that	is	usually
only	available	for	reading.	For	instance,	the	instructions	that	help	a	computer	boot	up
used	to	be	held	in	ROM-based	memory.	Today,	flash	memory	is	usually	used	for	this

purpose.	ROM,	since	it	is	read-only,	is	not	wiped	when	the	computer	is	turned	off.
record

A	record	is	a	set	of	named,	related	values	that	are	stored	together.	For	instance,	a
record	about	a	person	could	have	their	name,	age,	and	hair	color.	In	JavaScript,
records	are	created	using	objects.	See	also	variable,	object.

recursive	function
A	recursive	function	is	a	function	that	calls	itself.	Recursive	functions	are	used	when
the	method	to	solve	a	problem	involves	figuring	out	the	answer	from	a	simplified	set
and	then	expanding	that	set.	As	an	example,	the	factorial	function	takes	a	number	and
multiplies	it	by	all	numbers	below	it	until	it	gets	to	1.	This	means	that	factorial(5)
could	just	be	written	as	5	*	factorial(4),	and	factorial(4)	can	be	written	as
4*factorial(3).	Each	step	of	the	factorial	simply	comes	up	with	a	factorial	of	a
smaller	number	until	it	gets	to	1.	The	1	is	called	a	base	case,	which	means	that	it	is
answered	directly	instead	of	recursively.	In	the	factorial	function,	the	factorial	is
coded	to	simply	return	the	answer	1	for	the	base	case	of	1.	Recursive	functions	are
possible	because	each	time	the	function	is	called,	it	gets	its	own	stack	frame—its	own
set	of	parameters,	local	variables,	and	return	location.	This	allows	each	invocation	of
the	function	to	have	its	own	working	scratch	pad	of	information	which	doesn’t
interfere	with	the	other	invocations	of	the	functions	that	are	active	at	the	time.	See
also	stack,	stack	frame,	base	case,	inductive	case.

refactor
In	computer	programming,	refactoring	refers	to	the	process	of	rewriting	how	a
computer	program	works,	usually	in	order	to	make	it	more	comprehensible,	less
error-prone,	or	more	flexible	for	future	expansion.	Refactoring	usually	involves
separating	out	different	core	components	that	had	been	previously	linked	together.
For	instance,	when	HTML	was	broken	out	into	separate	languages	for	content
(HTML),	presentation	(CSS),	and	interaction	(JavaScript),	this	was	an	instance	of
refactoring.

relative	URL
A	relative	URL	is	a	partial	URL	that	uses	the	current	base	URL	as	the	starting	point
for	the	URL.	In	URLs,	directories	are	separated	by	slashes	(/),	and	the	relative	URL
starts	in	the	same	directory	as	the	base	URL.	For	instance,	if	the	base	URL	is
http://www.npshbook.com/example/example.html,	then	a	relative	URL	of
test.html	would	refer	to	http://www.npshbook.com/example/test.html.	A
directory	of	..	refers	to	the	parent	directory	so	a	relative	URL	of	../test.html
would	refer	to	http://www.npshbook.com/test.html.	If	a	relative	URL	starts	with	a
slash,	it	becomes	an	absolute	path.	See	also	URL,	fully-qualified	URL,	base	URL,
absolute	path,	directory.

return	value
In	a	function,	the	return	value	is	the	final	value	yielded	by	the	function.	In	JavaScript,
the	return	value	is	specified	in	the	function	using	the	return	keyword,	which	also
returns	control	back	to	the	code	that	called	the	function.	The	return	value	can	be	used
as	a	value	within	an	expression,	assigned	to	a	variable,	or	ignored.	See	also	function,
expression,	variable.

right-hand	side
In	an	assignment	statement,	the	right-hand	side	refers	to	the	code	on	the	right-hand

side	of	the	equal	sign	(=).	The	goal	of	the	right-hand	side	is	to	yield	a	value	that	can
be	stored	to	the	location	specified	in	the	left-hand	side.	See	also	assignment
statement,	left-hand	side.

ROM
See	Read-Only	Memory.

scope
See	variable	scope.

Secure	Sockets	Layer
See	Transport	Layer	Security.

sentinel
A	sentinel	is	a	special	value	that	tells	a	program	that	it	has	reached	a	special	place	in
the	data	(such	as	the	end).	Oftentimes	the	null	character	(ASCII	0)	will	be	used	to
mark	the	end	of	a	sequence	of	letters.	See	also	data	format,	ASCII.

server
A	server	is	a	computer	or	a	group	of	computers	which	provide	a	service	to	other
computers	on	the	network.	Computers	who	connect	to	the	server	are	usually	called
clients.	See	also	client.

session	layer
The	session	layer	is	the	fifth	layer	of	a	networking	system	according	to	the	OSI
model.	The	session	layer	deals	with	starting	and	stopping	a	conversation	between
computers.	See	also	OSI	model,	Transmission	Control	Protocol.

SMTP
SMTP	(the	Simple	Mail	Transfer	Protocol)	is	the	application	layer	protocol	used	to
send	email	out	on	the	Internet	eventually	winding	up	on	the	destination	email	server
(it	may	have	to	be	sent	through	more	than	one	server	to	get	there).	This	is	a	different
protocol	than	the	one	used	by	a	user	to	receive	email	from	their	email	server,	which	is
usually	POP	or	IMAP.	See	also	application	layer,	POP,	IMAP.

special-purpose	computer
A	special-purpose	computer	is	a	computer	whose	computational	abilities	are	limited
to	specific	types	of	computational	operations	and	specific	ways	of	combining	them.
See	also	general-purpose	computer.

SSL
The	Secure	Sockets	Layer.	See	Transport	Layer	Security.

stack
The	stack	is	the	part	of	computer	memory	that	holds	the	call-specific	information	of
all	active	functions.	The	stack	usually	holds	things	like	parameters,	local	variables
and	the	point	in	the	code	to	return	to	when	the	function	is	finished.	Think	of	it	as	a
scratch-pad	for	active	functions.	It	is	called	a	“stack”	because	every	time	a	function	is
called,	the	information	for	the	new	call	(newly-created	local	variables,	the	parameter
list,	and	the	location	where	we	left	off	the	last	function)	is	placed	“on	top	of	the
stack.”	Then,	when	the	function	is	finished,	that	information	is	pulled	off	of	the	top	of
the	stack	to	let	the	previous	function	continue	running.	See	also	stack	frame.

stack	frame
The	stack	holds	information	about	all	active	function	calls	currently	in	progress.	A
stack	frame	is	the	information	for	a	specific	function	call.	The	stack	frame	usually
holds	information	like	function	parameters,	the	location	in	the	code	to	return	to	when

the	function	is	finished,	and	the	local	variables	being	used	by	the	current	call	of	the
current	function.	See	also	recursive	function.

start	tag
In	HTML,	a	start	tag	marks	the	beginning	of	a	block	of	content	that	is	used	for	a
specific	purpose.	Start	tags	are	wrapped	in	angled	brackets	so	that	they	can	be
recognized	by	the	computer	as	being	a	tag.	For	instance,	a	tag	marking	the	start	of	a
paragraph	looks	like	<p>.	See	also	tag,	end	tag,	markup	language,	HyperText	Markup
Language.

string
A	string	is	a	defined	sequence	of	displayable	characters.	In	JavaScript,	strings	are
designated	by	enclosing	them	in	double	or	single	quotes	(”	or	’).	Each	character	in	a
strings	is	usually	encoded	using	either	ASCII	or	a	Unicode-based	system	such	as
UTF-8	or	UTF-32.	See	also	null-terminated	string,	Unicode,	ASCII,	UTF-8,	UTF-32.

syntax
In	any	file	format	or	computer	programming	language,	the	syntax	of	the	language
refers	to	the	pieces	of	the	language	that	can	be	included,	and	how	they	can	be	validly
combined.	For	instance,	in	JavaScript,	the	syntax	includes	the	different	keywords
(such	as	if,	for,	function,	etc.),	the	different	literals	(such	as	numbers,	strings,	etc.),
other	parts	of	the	language,	and	how	they	can	be	combined	together	to	create	a	valid
program.	Syntax	only	refers	to	whether	or	not	a	computer	can	successfully
understand	the	program.	It	does	not	refer	to	whether	or	not	the	computer	successfully
performs	the	function	desired.

subclass
In	object-oriented	programming,	a	subclass	is	a	class	whose	default	properties	and
methods	are	“inherited”	from	another	class,	known	as	the	superclass.	Inheritance
allows	specialized	classes	to	be	built	quickly	and	easily	from	existing	classes	while
allowing	any	functionality	to	be	overridden	as	needed.	See	also	class,	object-oriented
programming.

superclass
See	subclass.

tag
In	a	markup	language,	a	tag	is	a	marker	that	indicates	a	specific	usage	for	a	piece	of
text.	In	HTML	specifically,	a	tag	is	written	using	angled	brackets	with	a	start	tag	at
the	beginning	of	the	content	block	and	an	end	tag	at	the	end	of	it.	Tags	indicate	the
start	and	end	of	pieces	of	content	used	for	a	specific	purpose.	For	instance,	the	<h1>
tag	is	used	to	mark	level-1	headings,	such	as	this:	<h1>This	is	a	Level	1
Heading</h1>	See	also	markup	language,	HyperText	Markup	Language,	start	tag,
end	tag.

TCP
See	Transmission	Control	Protocol.

TCP/IP
TCP/IP	refers	to	the	combined	usage	of	the	TCP	and	IP	protocols	as	the	foundation
for	communication	on	the	Internet.	See	also	Transmission	Control	Protocol,	Internet
Protocol.

text	document
A	text	document	is	a	file	that	consists	entirely	of	displayable	characters,	usually

encoded	in	ASCII	or	UTF-8	(see	Appendix	B	for	more	information	on	ASCII	and
UTF-8).	Text	documents	can	be	edited	using	any	standard	text	editor.	However,	text
documents	may	also	be	specialized	(such	as	HTML	web	pages)	and	have	specific
requirements	for	their	format.	In	such	cases,	it	is	usually	the	user’s	responsibility	to
make	sure	that	the	document	follows	the	proper	requirements.	See	also	binary	file.

TLS
See	Transport	Layer	Security.

transport	layer
The	transport	layer	is	the	fourth	layer	of	a	networking	system	according	to	the	OSI
model.	The	transport	layer	deals	with	breaking	up	data	into	packets,	making	sure	that
each	packet	is	delivered	appropriately,	and	making	sure	they	are	assembled	in	the
right	order	on	the	other	side.	See	also	OSI	model,	packet,	Transmission	Control
Protocol.

Transport	Layer	Security
Transport	Layer	Security	(TLS)	is	the	most	common	presentation	layer	encryption
method	on	the	Internet.	It	is	the	successor	to	the	previous	Secure	Sockets	Layer
(SSL)	protocol.	See	also	presentation	layer.

Transmission	Control	Protocol
The	Transmission	Control	Protocol	(TCP)	is	the	protocol	used	on	the	Internet	for	the
transport	layer	and	the	session	layer.	It	is	in	charge	of	starting	and	stopping
transmissions	as	well	as	making	sure	data	arrives	intact	on	each	side.	See	also
transport	layer,	session	layer,	TCP/IP.

Turing-complete	programming	language
See	Universal	programming	language.

type
A	type	describes	the	set	of	valid	values	and	available	operations	of	a	variable.	Types
are	usually	predefined	by	the	programming	language,	though	there	are	exceptions.
See	also	variable,	class.

typography
Typography	is	an	aspect	of	visual	design	that	focuses	on	the	way	that	words	are	laid
out	on	a	page.

undefined
A	variable	or	property	is	undefined	if	no	value	has	been	set	for	it.	It	literally	means
“no	definition.”	See	null	for	a	fuller	description.

Unicode
Unicode	is	a	system	for	representing	all	of	the	languages	and	writing	of	the	world
digitally.	Unicode	specifies	over	100,000	characters/symbols.	Unicode	specifies	a
number	for	each	character	but	does	not	specify	how	the	computer	represents	that
number.	Other	standards,	such	as	UTF-8	and	UTF-32,	define	how	those	numbers	are
represented	on	the	computer.	See	also	UTF-8,	UTF-32,	ASCII.

Uniform	Resource	Locator
A	Uniform	Resource	Locator	(URL)	is	the	standard	method	for	identifying	web
content.	For	instance,	http://www.npshbook.com/	is	the	URL	for	accessing	this
book’s	website,	and	http://www.amazon.com/exec/obidos/ASIN/0975283863	is	the
URL	for	buying	a	previous	book	of	mine,	Engineering	and	the	Ultimate.	See	also
protocol,	hostname,	path,	query	string,	anchor.

Universal	Serial	Bus
Universal	Serial	Bus	(USB)	is	a	specification	for	an	interface	that	allows	many
different	types	of	hardware	to	be	plugged	into	a	computer	and	used	with	minimal
setup.	See	also	input/output	system,	peripheral.

Universal	programming	language
A	Universal	programming	language	(also	called	a	Turing-complete	language)	is	a
programming	language	that	can	represent	the	entire	gamut	of	computable	functions
(within	practical	limits	of	memory	and	time).	Universal	languages	are	not	Universal
because	they	have	an	advanced	computation	set—in	fact,	you	can	make	a	Universal
language	just	with	basic	arithmetic	and	comparison	operators.	Universal	languages
are	universal	because	they	contain	sufficient	control	structures	(looping,	function
calls,	if	statements,	etc.)	to	build	new	computable	functions	out	of	any	starting	set	of
operators.	Universal	languages	are	all	equivalent	in	the	computations	that	they	can
perform,	though	they	may	not	be	equivalent	in	other	ways,	such	as	input	and	output
mechanisms	and	ease-of-use	for	particular	applications.	See	also	domain-specific
language,	general-purpose	computer,	special-purpose	computer,	control	structure.

URL
See	Uniform	Resource	Locator

USB
See	Universal	Serial	Bus.

UTF-32
UTF-32	is	another	character	encoding	based	on	Unicode.	This	encoding	uses	four
bytes	per	character.

UTF-8
UTF-8	is	a	popular	character	encoding	based	on	Unicode.	It	is	widely	used	because
of	its	backward	compatibility	with	ASCII.	Because	Unicode	specifies	over	100,000
characters,	it	takes	more	than	one	byte	to	record	each	character.	However,	ASCII
only	stores	one	byte	per	character.	In	order	to	combine	these	two	standards,	the	first
bit	of	the	byte	(which	is	unused	in	standard	ASCII)	is	set	to	1	if	the	character	needs
more	than	one	byte	to	hold	it.	This	makes	all	ASCII	files	work	in	UTF-8	settings,	but
it	means	that	it	is	harder	to	find	the	nth	character	of	a	string	because	you	have	to
check	each	letter	to	see	how	many	bytes	it	takes	up.	See	also	data	format,	Unicode,
ASCII,	string.

variable
A	variable	is	a	named	location	(named	by	an	identifier)	in	a	computer	program	that	is
used	to	store	a	value.	In	JavaScript,	variables	are	created	either	by	declaring	them	as
parameters	in	a	function	or	by	using	the	var	keyword.	Variables,	as	their	name
indicates,	can	vary	by	being	assigned	different	values	throughout	the	program.	See
also	syntax,	identifier.

variable	scope
A	variable’s	scope	refers	to	the	places	in	a	program	that	a	particular	variable	can	be
accessed.	Two	common	scopes	in	JavaScript	are	global	scope	and	function	scope.	For
instance,	a	variable	in	function	scope	cannot	be	directly	accessed	outside	of	the
function	itself.	See	also	global	scope,	function	scope.

virtual	private	network
A	virtual	private	network	(VPN)	is	a	system	that	bridges	together	computers	and

networks	across	the	internet	to	act	as	if	they	were	all	on	the	local	network.	This	is
usually	used	for	data	security	where	the	local	area	network	allows	for	access	to	more
secure	resources	than	are	available	across	the	Internet.	Therefore,	it	brings	certain
computers	and	networks	into	the	local	area	network	to	share	those	resources.

von	Neumann	architecture
The	von	Neumann	architecture	refers	to	the	idea	of	putting	both	the	program	and	the
data	it	is	operating	on	into	the	same	memory.	This	allows	for	far	more	flexibility	in
the	way	that	machines	are	built	and	used.

VPN
See	virtual	private	network.

WAN
See	wide	area	network.

whitespace
Whitespace	refers	to	any	non-printing	character	such	as	regular	spaces,	the	end-of-
line	character,	and	tabs.	In	HTML	and	XML,	all	whitespace	is	treated	together	as	if	it
were	a	single	space.	This	is	done	because	the	writer	of	HTML	does	not	know	the
screen	size	that	the	document	will	be	displayed	on	and	cannot	rely	on	the	spacing	in
the	output	matching	the	spacing	in	the	document.	Therefore,	document	authors	are
supposed	to	use	tags	and	stylesheets	instead	of	whitespace	to	ensure	proper	spacing.
See	also	text	document,	HyperText	Markup	Language,	Extensible	Markup	Language.

wide	area	network
A	wide	area	network	is	a	network	that	connects	two	local	area	networks	that	are
geographically	distant	from	each	other.	See	also	local	area	network.

while	loop
A	while	loop	is	a	type	of	loop	that	takes	the	form	while(loop	condition)	{	loop
body	}.	The	loop	condition	is	evaluated	before	each	iteration	of	the	loop	body.	If	the
loop	condition	is	true,	it	executes	the	loop	body.	If	the	loop	condition	is	false,	the
loop	body	is	skipped	and	the	program	goes	to	the	next	statement.	The	loop	is
evaluated	over	and	over	again	until	the	loop	condition	is	false.	See	also	loop,	loop
condition,	loop	body.

widget
A	widget	is	a	generic	term	for	a	somewhat	self-contained	user	interface	element.	A
text	field	is	a	widget.	A	drop-down	list	is	a	widget.

WiFi
WiFi	refers	to	the	most	prominent	protocol	used	for	attaching	a	device	to	a	wireless
network.	It	is	similar	to	Ethernet,	but	using	radio	waves.	See	also	Ethernet,	network,
local	area	network,	data	link	layer.

XHTML
See	Extensible	Markup	Language.

XML
See	Extensible	Markup	Language.

zero-based	indexing
Most	computer	programming	languages	(including	JavaScript)	start	their	array
indexes	at	zero.	This	means	that	the	first	value	of	an	array	has	an	index	of	zero.	This
also	means	that	the	last	value	in	an	array	has	an	index	of	one	less	than	the	length.	So,
for	an	array	with	four	items,	the	first	index	is	zero	(as	always)	and	the	last	index	is

three.	This	method	is	called	zero-based	indexing.	This	is	different	than	mathematics,
which	uses	the	number	one	to	refer	to	the	first	element	of	a	set	of	values.	See	also
array,	index.

Appendix	A
Operating	System	and	Browser	Specifics

JavaScript	is	a	great	programming	language	to	learn	because	it	can	be	used	on	any	modern
computer,	using	any	browser.	However,	there	are	some	minor	differences	between
computers	and	operating	systems	so	that	things	might	look	and	work	a	little	bit	differently
depending	on	which	computer	you	use.	When	the	main	chapters	reference	a	technique	or	a
feature	that	might	work	differently	on	different	computers,	this	appendix	has	the	details	on
how	to	use	that	feature	on	your	system.

However,	there	are	hundreds	of	different	systems	and	system	configurations,	and	I	can’t
possibly	list	them	all	in	this	book.	All	of	the	different	versions	of	Windows	(XP,	7,	8,	10,
etc.),	Mac	(El	Capitan,	Yosemite,	Mavericks,	etc.),	and	Linux	(Red	Hat,	Ubuntu,	CentOS,
etc.)	have	slightly	different	ways	of	doing	things.	Therefore,	this	appendix	will	cover	just
a	few	representative	systems,	which	should	give	you	enough	background	information	to
find	the	right	setting	on	your	own	system.	If	you	have	questions	on	how	to	do	this	on	your
system,	go	to	the	website	at	npshbook.com	and	look	through	the	FAQs	and	forum	posts.	If
you	are	still	having	trouble	after	that,	post	your	question	on	the	forums	and	see	if	another
developer	can	help	you!

You	will	find	that	developers	often	wind	up	with	much	different	settings	than	the	average
user.	The	reason	for	the	difference	is	simple—ordinary	users	want	all	of	the	messy	details
hidden	from	them.	Programmers,	on	the	other	hand,	use	the	messy	details	to	accomplish
tasks.	The	average	user	wants	to	know	less	about	what	is	going	on	behind	the	scenes	but
programmers	need	to	know	more.	Therefore,	the	defaults,	made	for	the	average	user,	focus
on	hiding	technical	information.	Programmers	tend	to	adjust	all	of	their	settings	to	show
all	of	the	gritty	details.

A.1	The	Browser	Location	Bar

The	location	bar	of	your	web	browser	is	at	the	top	of	the	window,	usually	at	the	center	or
the	left	(see	Figure	A.1.	For	most	web	browsers,	the	location	bar	also	doubles	as	a	search
bar.	You	can	use	the	location	bar	to	directly	type	in	or	view	a	URL,	or	if	you	enter	in
something	that	doesn’t	look	like	a	URL,	the	browser	will	try	to	use	a	search	engine	(like
Google	or	Bing)	to	search	for	the	terms	you	typed.

Figure	A.1:	Finding	the	Location	Bar

However,	many	locations	bars	have	stopped	actually	displaying	your	complete	location
and	hide	several	important	details.	Some	browsers	show	it	all,	some	browsers	hide	the
protocol	(i.e.,	http);	some	browsers	hide	everything	but	the	domain	name	(i.e.,
www.example.com).	Therefore,	you	should	know	how	to	get	the	location	from	the	location
bar	if	it	doesn’t	show	it	automatically.

In	most	browsers,	even	if	the	whole	URL	is	not	displayed,	if	you	copy	and	paste	the	URL
to	a	different	document,	it	will	paste	the	full	URL.	If	you	want	to	see	the	full	URL
displayed	while	you	browse,	several	browsers	have	options	for	that.	In	Safari,	for	instance,
if	you	go	to	the	“Safari”	menu,	then	click	“Preferences”	it	will	open	up	a	dialog	box.
Under	the	“Advanced”	settings,	there	is	a	checkbox	that	says	“show	full	website	address.”
If	you	click	that,	it	will	display	much	more	of	the	URL.	It	still	hides	the	protocol,	but	it
will	show	you	the	rest.

A.2	Getting	to	the	Command	Line

The	command	line	is	a	program	that	presents	you	with	a	screen	that	is	similar	to	a	pre-
1980’s	computer	screen—just	lines	of	characters	and	a	cursor	where	you	can	type.	There
is	no	mouse	interaction	and	no	pretty	pictures—just	you,	your	keyboard,	and	a	bunch	of
text	on	the	screen.	The	command	line	works	like	this:	your	cursor	starts	blinking	next	to	a
bit	of	text	called	the	command	prompt	(it	usually	ends	with	#,	$,	or	>).	It	is	waiting	for
your	command.	After	you	type	in	a	command,	the	computer	runs	it	and	spits	the	output	to
the	screen.	You	know	it	has	finished	because	you	will	see	another	command	prompt	as	the
last	line	of	text.

Sometimes,	if	the	command	you	run	is	interactive	(such	as	telnet),	the	program	itself	will
ask	you	or	allow	you	to	type	responses	or	to	control	it	in	some	way	while	it	runs.	You	will
know	when	it	is	finished	because	you	will	get	another	command	prompt.

The	command	line	can	be	a	programmer’s	best	friend.	It	allows	a	much	more	direct	access
to	the	computer	than	any	other	interface.	Rather	than	wading	through	screen	after	screen
of	options	and	choices,	the	command	line	gives	you	instant	access	to	the	computer’s
resources.	In	addition,	command	line	programs	tend	to	give	you	more	information	about
what	is	going	on	than	their	more	graphical	counterparts.

A	lot	of	people	are	intimidated	by	the	command	line	because	it	gives	you	no	prompting
and	no	help.	But	that	is	also	what	makes	it	powerful.	Programmers	often	make	their
programs	easy	to	use	by	limiting	the	user’s	options.	In	those	cases,	it	is	the	program	that
tells	the	user	what	to	do,	and	the	program	tries	to	prevent	the	user	from	doing	anything	out
of	the	ordinary.	The	command	line,	on	the	other	hand,	obeys	your	commands.	It	doesn’t
tell	you	what	to	do,	it	doesn’t	even	make	suggestions.	It	just	does	what	you	say.	That	is	a
little	scary,	but	it	is	also	empowering.

A.2.1	Getting	to	a	Command	Line	in	Windows

Windows	is	the	hardest	operating	system	in	which	to	find	a	working	command	line.	In
every	Windows	version,	Microsoft	attempts	to	bury	the	command	prompt	a	little	deeper,
and	the	command	line	tools	are	buried	even	further	down.	In	Windows,	the	command	line
is	a	program	called	cmd.exe.	When	you	hit	the	start	button,	you	can	usually	search.	Typing
in	cmd	will	usually	bring	up	the	program	that	you	want	(see	Figure	A.2).

Figure	A.2:	Getting	to	the	Command	Line	in	Windows

However,	in	Windows,	most	of	the	important	command	line	tools	are	missing,	so	you	have
to	tell	Windows	to	install	them.	In	Windows	10,	the	process	is	to	right-click	the	start
button	and	select	“Programs	and	Features.”	Then,	select	“Turn	Windows	features	on	or
off”	on	the	left-hand	side.	A	list	of	features	should	open	(see	Figure	A.3).	The	important
one	for	us	is	“Telnet	Client.”	Make	sure	that	is	selected,	and	then	click	“OK.”

Figure	A.3:	Activating	Telnet	in	Windows

In	other	Windows	versions,	the	process	is	very	similar,	but	it	usually	is	found	under	the
“Programs”	control	panel.

Sometimes,	the	settings	of	the	Windows	telnet	program	are	very	messed	up.	If	you	are
typing	but	can’t	see	anything,	that	means	that	your	settings	are	poorly	set.	There	are	two
possibilities.	The	first	possibility	is	that	it	is	actually	displaying	what	you	are	typing,	but	it
moved	it	to	the	top-left	of	the	screen	instead	of	putting	it	where	the	cursor	is.	The	second
possibility	is	that	your	telnet	has	“localecho”	set	to	“off.”	To	fix	that,	you	need	to	change
the	way	you	use	the	telnet	command.

If,	for	instance,	you	were	going	to	say	telnet	www.npshbook.com	80,	you	would	need	to
type	the	following	instead:

Figure	A.4:	Telnet	with	Turning	On	Local	Echo

telnet		

set	localecho		

open	www.npshbook.com	80

The	first	line	turns	on	telnet,	but	doesn’t	give	it	a	destination,	so	it	will	just	give	you	a	new
prompt.	The	second	line	turns	on	the	localecho	setting.	The	third	line	tells	the	program	to
go	ahead	and	initiate	the	connection.

A.2.2	Getting	a	Command	Line	on	a	Mac

The	Mac	makes	it	much	easier	to	get	a	command	prompt.	They	hide	the	command	prompt
so	that	unwary	users	don’t	accidentally	stumble	over	it.	However,	if	you	know	where	it	is,
it	is	not	hard	to	find.	To	find	it	on	most	versions	of	MacOS	X,	first	go	in	to	the
“Applications”	folder,	and	find	the	“Utilities”	folder.	Within	the	“Utilities”	folder	there	is
a	program	called	Terminal.app.	If	you	double-click	that	program,	it	will	open	up	a
command	line	for	you.

A.2.3	Getting	a	Command	Line	on	Linux

For	most	people	using	Linux,	getting	a	command	line	isn’t	much	of	a	problem.	Most
Linux	users	live	on	the	command	line.	If	you	don’t,	somewhere	on	your	desktop	there	is
some	menu	item	that	says	“Terminal”	or	“Console”	or	“SH”	or	“TTY”	or	“Prompt.”	If	it
has	an	icon,	it	probably	looks	like	an	old	green-screen	computer.	That	will	be	your
command	line.

A.3	Using	a	Text	Editor

A	text	editor	is	a	program	that	edits	documents	which	are	stored	as	one	long	string	of	text
(for	more	information	about	text	strings,	see	Chapter	4).	A	text	editor	is	not	the	same	as	a
Word	Processor.	A	word	processor	certainly	includes	long	strings	of	text,	but	it	also
includes	other	things,	such	as	formatting	features	(underline,	bold,	italic,	font	family,	font
size,	etc.)	and	non-text	elements	(such	as	images).	Historically,	word	processing	files	have
been	binary	files.	This	mean	that	the	formatting	functions	were	not	described	using	text,
but	using	raw	numbers,	since	that	is	the	normal	way	that	computers	operate	on	data.
Because	those	files	contained	raw	numbers	(as	opposed	to	text-encoded	digits),	they
cannot	be	properly	displayed	in	a	text	editor,	which	treats	the	entire	file	as	one	long	string
of	characters.	A	text	document	is	a	document	which	can	be	viewed	as	simply	a	long	string
of	text.	Some	file	formats,	such	as	HTML,	include	formatting	instructions	as	text	within
the	document.	These	files	can	be	opened	up	with	a	text	editor	(which	shows	the	bare
formatting	instructions	themselves)	as	well	as	on	a	special	viewer	(a	browser	in	the	case	of
HTML),	which	would	show	the	formatted	version	of	the	file.

There	are	numerous	text	editors	available,	each	with	their	own	advantages	and
disadvantages.	However,	one	of	the	goals	of	this	book	is	to	work	with	the	tools	you
already	have.	Therefore,	we	are	going	to	focus	on	the	text	editor	that	shipped	with	your
operating	system.	Each	section	below	tells	you	how	to	get	to	your	system-installed	text
editor.

A.3.1	Getting	Windows	Setup	Properly

The	first	thing	that	you	should	do	before	editing	text	documents	with	Windows	is	to	turn
file	extensions	on.	As	described	in	Section	4.5,	files	use	filename	extensions	to	tell	the
user	and	the	operating	system	what	format	the	data	is	in.	Unfortunately,	in	order	to	make	it
“easier”	on	nontechnical	users,	Windows	often	hides	these	extensions	and	just	uses	them
internally	to	show	the	user	an	icon	for	the	file	format.	This	makes	it	difficult	for	building
text	files	of	various	formats.	We	often	need	to	modify	the	extension	to	tell	the	operating
system	what	format	we	are	writing	in	and	to	know	precisely	what	the	format	of	the	file	we
are	looking	at	is.	Thankfully,	Windows	has	an	option	to	allow	displaying	of	filename
extensions.	It	works	slightly	differently	in	different	versions	of	Windows,	but	the	idea	is
the	same.

For	Windows	XP	and	Windows	7	do	the	following:

1.	 Open	up	any	folder	on	your	system,	such	as	your	“Documents”	folder.
2.	 Click	on	the	“Tools”	menu,	then	click	on	“Folder	Options.”	For	Windows	7	use	the

“Organize”	menu	in	the	toolbar	instead.
3.	 Click	on	the	“View”	tab.
4.	 Under	“Files	and	Folders”	there	is	an	option	called	“Hide	extensions	for	known	file

types.”	Make	sure	this	option	is	not	checked.
5.	 Click	on	“Apply”	and	then	“OK.”

For	more	recent	versions	of	Windows	do	the	following:

1.	 Click	on	the	Windows	“Start”	button.
2.	 Click	on	the	“Control	Panel”	button.
3.	 Open	up	“Appearance	and	Personalization.”
4.	 Click	“Folder	Options”	or	“File	Explorer	Options.”
5.	 Click	on	the	“View”	tab.
6.	 Under	“Advanced	Settings”	look	for	the	option	“Hide	extensions	for	known	file

types”	and	make	sure	the	checkbox	is	not	checked.
7.	 You	also	might	want	to	find	the	“Hidden	files	and	folders”	option	and	select	“Show

hidden	files,	folders,	and	drives.”	This	isn’t	needed	for	this	book,	but	I	didn’t	ever
know	a	programmer	who	didn’t	use	that	setting.

Now	you	will	be	able	to	see	the	filename	extensions	in	Windows!

A.3.2	Using	a	Text	Editor	in	Windows

The	text	editor	that	comes	standard	in	Windows	is	called	Notepad.	On	Windows	8	or
newer,	you	can	simply	type	in	“notepad”	on	the	start	screen	and	then	click	the	program	to
open	it.	On	earlier	Windows	versions,	you	need	to	click	“Start,”	then	go	to	“Programs,”
then	“Accessories,”	and	then	click	on	“Notepad”	to	open	it.

Once	you	have	the	program	open,	you	can	use	the	file	menu	to	create,	open,	and	save	text
documents.	Be	sure	to	pay	special	attention	to	the	file	extension	you	use	to	save
documents.	The	operating	system	will	use	this	extension	to	choose	the	program	used	to
open	the	file.	Generally,	if	you	save	a	file	with	an	extension	other	than	.txt,	you	will	not
be	able	to	open	it	back	up	in	Notepad	by	double-clicking	on	it.	Instead,	you	will	have	to
open	Notepad	first,	and	then	choose	“Open”	from	Notepad’s	menu	to	load	the	file.

When	you	save	files,	be	sure	to	set	the	file	extension	appropriately.	Use	.html	for	HTML
files,	.css	For	CSS	files,	and	.js	for	JavaScript	files.	See	Figure	A.5.

Figure	A.5:	Saving	an	HTML	File	with	Notepad

A.3.3	Using	a	Text	Editor	in	Mac	OS

The	text	editor	that	comes	standard	in	Mac	OS	is	called	TextEdit.	However,	TextEdit	also
acts	as	a	word	processor,	so	it	is	important	to	keep	in	mind	which	mode	it	is	in!	We	will
discuss	how	to	switch	modes	shortly.

To	open	up	TextEdit,	you	can	just	click	on	the	Spotlight	Search	icon	and	type	in	“textedit.”
Clicking	on	the	TextEdit	icon	will	open	up	the	application.	You	can	also	get	to	TextEdit
through	the	Finder,	by	going	to	“Applications”	and	clicking	on	“TextEdit.”

When	TextEdit	first	starts,	it	is	acting	like	a	word	processor,	not	a	text	editor.	If	you	are	in
TextEdit,	and	it	has	a	formatting	bar	(with	buttons	to	do	bold,	italic,	etc.),	you	are	in	the
wrong	mode.	When	opening	text	files	with	TextEdit,	be	sure	to	check	the	“Ignore	Rich
Text	Commands”	checkbox	in	order	to	open	the	file	as	a	text	file.	If	you	get	the	formatting
bar,	you	are	in	the	wrong	mode,	and	you	must	close	and	re-open	the	file.

When	creating	new	files	with	TextEdit,	you	can	easily	switch	from	wordprocessing	mode
to	text	editing	mode	if	it	starts	you	in	the	wrong	mode.	Just	click	on	the	“Format”	menu,
and	then	click	“Make	Plain	Text.”	Your	document	will	now	be	treated	as	a	text	document.
You	can	perform	this	action	anytime	before	your	first	save	without	causing	problems.

You	can	also	set	TextEdit	to	do	text	editing	by	default.	To	do	that,	go	into	the	“TextEdit”
menu,	and	then	click	“Preferences.”	Under	the	“New	Document”	tab,	set	the	format	to	be
“Plain	Text.”	Under	the	“Open	and	Save”	tab,	check	the	checkbox	that	says	“Display
HTML	files	as	HTML	code	instead	of	formatted	text.”

When	you	save	files,	be	sure	to	set	the	file	extension	appropriately.	Use	.html	for	HTML
files,	.css	For	CSS	files,	and	.js	for	JavaScript	files.	Also	note	that	to	open	a	text	file,	be
sure	to	open	up	TextEdit	first,	and	then	open	the	file.	Double-clicking	on	the	file	itself	may
open	it	up	in	some	other	application,	such	as	your	browser.

A.3.4	Using	a	Text	Editor	in	Linux

Since	there	are	so	many	different	distributions	of	the	Linux	operating	system,	I	cannot
describe	how	each	of	them	works,	so	I	will	cover	Ubuntu.	Text	editing	is	a	staple	of	Linux
usage,	so	finding	a	text	editor	should	not	be	a	problem	on	any	Linux	distributions.	Some
popular	text	editors	include	Atom,	Gedit,	and	Kate.	If	you	do	not	already	know	how	to	use
these,	do	not	try	to	use	Vi	or	Emacs	if	they	are	options.	They	are	both	powerful	programs,
but	take	a	lot	of	time	to	learn	to	use—even	just	how	to	open	and	save	a	file!

In	Ubuntu,	to	open	up	a	text	document,	click	on	“Applications,”	then	“Accessories,”	and
then	click	on	“Text	Editor”	(or	it	may	be	called	“gedit”).	This	will	open	up	the	Gedit
editor.

When	you	save	files,	be	sure	to	set	the	file	extension	appropriately.	Use	.html	for	HTML
files,	.css	For	CSS	files,	and	.js	for	JavaScript	files.	Also	note	that	to	open	a	text	file,	be
sure	to	open	up	your	text	editor	first,	and	then	use	your	text	editor	to	open	the	file.
Double-clicking	on	the	file	itself	may	open	it	up	in	some	other	application,	such	as	your
browser.

A.3.5	Text	Encoding	Problems

Sometimes	our	text	editors	come	up	with	some	interesting	surprises.	The	most	common
one	is	the	text	editor	being	set	to	write	out	using	a	different	character	encoding.	Be	sure,	in
the	“Save”	dialog	boxes,	that,	if	there	is	a	character	set	option,	that	it	is	set	to	either
“ASCII,”	“ANSI,”	or	“UTF-8”	(see	Figure	A.5).	Also,	be	sure	that	any	autocorrect
features	or	auto-quoting/smart	quoting	features	are	turned	off.	In	programming	languages,
if	the	language	wants	a	double-quote	character	(i.e.,	“),	the	fancy	curved	quotes	aren’t
going	to	work	(i.e.,	“).	However,	some	text	editors	will	auto-replace	one	for	the	other.	If
that	is	happening	to	you,	find	the	setting	that	is	doing	it,	and	switch	it	off!

To	switch	off	smart	quotes	on	the	Mac’s	TextEdit	program,	go	into	the	“TextEdit”	menu
and	click	“Preferences.”	The	setting	should	appear	under	“Options.”	Turn	off	all	of	the
smart	quoting,	smart	dashing,	and	spell-correcting	features.

A.4	Viewing	the	Source	of	an	HTML	Document

It	comes	as	a	surprise	to	people	first	learning	HTML	that	they	can	easily	see	the	HTML,
CSS,	and	JavaScript	code	of	any	website.	But,	in	fact,	it	is	true,	and	it	is	true	for	a	simple
reason—in	order	for	you	to	be	able	to	use	the	web	page,	you	have	to	receive	it	first.	In
addition,	every	major	browser	has	the	ability	to	show	you	the	things	that	it	downloaded.

A.4.1	Viewing	the	Source	in	Chrome

Chrome	offers	two	different	ways	to	view	the	source.	The	first	way	is	to	view	the	source
as	initially	downloaded.	In	order	to	do	this,	once	you	are	on	a	web	page,	first	click	on	the
“View”	menu;	then	click	on	the	“Developer”	submenu	and	next	click	on	“View	Source.”
This	will	pop	up	a	new	window	or	tab	with	the	source	code	to	the	page	as	it	was
downloaded.

However,	JavaScript	can	also	modify	the	page	while	you	are	looking	at	it.	Therefore,
Chrome	also	gives	you	a	way	to	view	the	HTML	of	the	page	as	it	appears	now.	This	tool
is	much	more	interactive	and	has	many	more	features	than	the	“View	Source”	menu
option.

To	make	use	of	this	tool,	right-click	(or	control-click	on	a	Mac)	anywhere	on	the	contents
of	the	web	page.	This	will	open	a	context	menu.	Towards	the	bottom,	click	on	the
“Inspect”	menu	item.	This	will	bring	up	the	web	page	as	a	tree	of	elements	(see
Figure	A.6).	This	view	is	the	way	that	the	browser	itself	thinks	of	the	code.

Figure	A.6:	Viewing	the	Source	Interactively	on	Chrome

A.4.2	Viewing	the	Source	in	Safari

Viewing	the	source	in	Safari	is	very	similar,	except	that	Safari	hides	the	menus	that
programmers	need	by	default	in	order	to	prevent	them	from	confusing	the	rest	of	their
users.	Therefore,	the	first	thing	you	need	to	do	in	Safari	is	turn	on	the	developer	tools.

To	turn	on	the	developer	tools	in	Safari,	go	to	the	main	“Safari”	menu	and	find	the
“Preferences”	menu	under	that.	This	will	open	up	a	dialog	box	with	several	tabs.	Click	on
the	“Advanced”	tab.	Towards	the	bottom,	there	will	be	a	preference	that	says,	“Show
Develop	menu	in	menu	bar.”	Check	that	box,	then	close	the	dialog	box.	You	will	notice	a
new	menu	for	Safari—the	“Develop”	menu.

Now,	just	like	for	Chrome,	Safari	will	let	you	look	at	either	the	HTML	source	code	as	it
was	originally	transmitted	to	you,	or	the	HTML	as	it	presently	exists	after	any	JavaScript
modifications	to	it.	To	view	the	source	code	as	you	downloaded	it,	just	right-click	on	the
contents	of	the	web	page,	and	click	“View	Source.”	To	view	the	source	code	as	it	presently
exists,	just	right-click	on	the	contents	of	the	web	page,	and	click	“Inspect.”

A.4.3	Viewing	the	Source	in	Internet	Explorer

To	view	the	source	code	of	a	web	page	in	Internet	Explorer,	simply	right-click	on	the	web
page	and	choose	“View	Source”	from	the	context	menu.

A.5	Finding	the	URL	of	an	Image	on	the	Web

Finding	the	URL	of	an	image	on	the	web	is	actually	really,	really	easy.	In	nearly	every
browser,	all	you	need	to	do	is	to	find	the	image	you	want	to	look	at,	right-click	on	it	(use
control-click	if	you	are	on	a	Mac),	and	there	will	be	a	menu	option	that	allows	you	to	copy
the	address	of	the	image	to	your	clipboard.	In	Chrome,	the	menu	option	is	called	“Copy
Image	Address.”	Note	that	we	don’t	want	to	copy	the	image	itself,	just	the	URL	(which
Chrome	calls	its	address).

In	Internet	Explorer,	the	process	is	a	little	different.	For	Internet	Explorer,	first	right-click
on	the	image	and	then	choose	“Properties”	from	the	context	menu.	This	will	open	up	a
popup	window	that	has	the	URL	of	the	image	in	it.	You	can	then	copy	the	URL	from	that
window.

Once	you	copy	the	image	URL,	you	can	paste	the	address	anywhere	you	like	using
control-v	on	Windows	or	command-v	on	a	Mac.

When	using	Safari	and	Chrome,	you	can	also	open	up	the	image	in	a	new	window	or	tab
using	the	menu	titled	“Open	Image	in	a	New	Tab.”	Then,	you	can	see	the	image	all	by
itself	and	copy	the	URL	from	the	address	bar	of	the	browser.

Every	once	in	a	while,	you	will	find	images	that	you	can’t	right-click	on	for	an	image
URL.	This	is	usually	either	because	the	image	is	a	background	image	(this	trick	only
works	for	foreground	images)	or	because	they	are	using	a	non-standard	method	of
displaying	the	image.	Nonetheless,	there	are	innumerable	images	on	the	web	whose	URLs
are	available	just	by	right-clicking	on	the	image.

A.6	Opening	Up	the	JavaScript	Console

The	JavaScript	console	is	a	little	like	the	command	line	(Section	A.2),	except	that	instead
of	running	application	programs,	you	can	run	JavaScript	commands.	The	JavaScript
console	also	will	give	you	feedback	about	any	errors	that	the	JavaScript	interpreter	finds
while	it	is	trying	to	run	your	programs.	Since	you	are	new	programmers,	you	will	probably
make	a	lot	of	silly	mistakes	(like	putting	in	a	colon	when	you	meant	to	put	in	a
semicolon),	and	such	mistakes	will	break	your	entire	program.	Often,	the	only	way	to	find
out	the	problem	is	to	open	up	the	JavaScript	console	and	look	at	the	error	messages.

In	addition,	since	the	JavaScript	console	allows	you	to	enter	in	commands,	it	makes	it	easy
to	try	out	ideas.	If	you	want	to	try	to	see	if	some	small	piece	of	code	does	what	you	want	it
to	do,	you	can	type	it	in	the	console	and	get	immediate	feedback.

To	get	to	the	console	in	Google	Chrome	or	Safari,	first	open	up	a	web	page	(even	if	it	is
one	of	your	own).	Next,	right-click	(or	control-click	on	a	Mac)	on	the	page	content.	This
will	open	up	a	context	menu.	Click	on	the	“Inspect	Element”	menu	item.

This	will	open	the	“Developer	Tools”	window,	either	at	the	bottom	of	your	current	screen
or	in	a	new	window.	In	either	case,	the	Developer	Tools	window	will	be	tied	to	the
window	that	you	right-clicked	on.

In	Internet	Explorer,	the	process	is	almost	exactly	the	same,	except	rather	than	right-
clicking	on	the	page,	you	click	the	gear	icon	at	the	top	right	of	the	page,	and	choose
“Developer	Tools”	(see	Figure	A.7).	You	can	also	get	there	by	just	pushing	the	F12	key.

Figure	A.7:	Getting	to	Developer	Tools	in	Internet	Explorer

Developer	Tools	is	a	whole	suite	of	tools	to	help	you	analyze	your	HTML,	CSS,	and
JavaScript	code.	When	it	first	opens,	the	tab	at	the	top	labeled	“Elements”	is	open.	This	is
the	HTML	of	your	current	page,	arranged	as	a	tree	of	elements.	As	you	mouse	over	each
bit	of	HTML	on	this	tab,	it	will	highlight	the	relevant	portion	of	the	web	page	on	the	main
window.	To	the	right,	it	lists	the	styles	that	are	associated	with	that	element	and	which
selectors	caused	the	style	to	be	there.

The	tab	we	are	most	interested	in	for	this	section	is	the	“Console”	tab	along	the	top.	Click
on	that	tab	to	open	up	the	JavaScript	console.	It	should	have	a	prompt	that	lets	you	know
you	can	enter	in	JavaScript.	If	there	are	any	red	lines	above	the	prompt,	those	are	errors
that	the	browser	has	encountered	while	trying	to	load	the	page	and	run	the	JavaScript	code
on	the	page.

So,	the	first	thing	to	do	is	to	click	next	to	the	prompt	to	make	sure	that	the	input	line	is
active.	Next,	type	in	a	single	word	of	gibberish,	like	asdfasdfasdf,	and	then	hit	enter.	It
should	give	you	back	an	error,	which	says	something	like	Uncaught	ReferenceError:
asdfasdfasdf	is	not	defined.	This	is	one	of	the	many	error	messages	you	can	get.	This
one	in	particular	means	that	it	was	trying	to	look	up	a	variable	for	you	(the	variable
asdfasdfasdf),	and	it	couldn’t	find	it.

Now,	let’s	try	defining	a	variable.	Type	in	the	following:

Figure	A.8:	Create	a	Variable	in	the	Console

var	myvar	=	23;

After	this,	the	console	will	print	out	undefined.	After	each	line	you	type,	the	console	will
print	out	the	value	of	the	line	you	typed	out.	In	this	case,	assigning	a	variable	doesn’t	yield
a	value,	so	it	says	the	value	is	undefined.	The	variable,	myvar,	gets	a	value,	but	the	whole
statement	doesn’t	return	a	value.

Now,	if	we	want	to	see	what	is	in	myvar,	we	can	just	type	myvar	on	a	line	by	itself	and	hit
enter.	Then	the	JavaScript	console	will	print	out	23.

We	can	even	call	functions	with	the	console.	Type	the	following	in	the	console:

Figure	A.9:	Show	a	Popup	from	the	Console

alert(“Hello	There!”);

The	web	page	will	bring	up	an	alert	saying	“Hello	There!”

Basically,	anything	that	is	valid	JavaScript	can	be	typed	into	the	console.	In	addition,	we
can	also	make	use	of	any	variables	and	functions	that	were	defined	by	the	JavaScript
attached	to	the	web	page.

In	addition	to	the	JavaScript	console,	Google	Chrome	has	many	other	tools	for	you	to	use.
The	“Sources”	tab	allows	you	to	look	at	all	JavaScript	code	that	is	used	by	the	web	page.
The	“Network”	tab	allows	you	to	see	any	external	file	that	the	browser	tries	to	access
using	HTML	(with		tags,	for	instance)	or	using	JavaScript.	This	tab	gives	you	all	of
the	information	you	need	to	know	about	where	the	data	came	from,	how	big	it	is,	what	the
actual	data	is,	and	how	long	it	took	to	download	it.	There	are	several	other	tabs,	but	these
are	by	far	the	most	often	used.

Each	browser	has	its	own	way	of	accessing	a	JavaScript	console,	but	they	are	all	very
similar	to	Google	Chrome’s.

A.7	What	to	Do	When	a	Program	Doesn’t	Work

Every	programmer	has	experienced	it.	You	typed	in	a	program,	tried	to	run	it,	and	then
nothing	happens.	What	went	wrong?

I	can’t	diagnose	every	problem	you	will	have,	but	I	can	give	you	a	short	checklist	of	things
to	look	for.	There	are	some	basic	mistakes	that	are	made	over	and	over	again,	and	I	can
hopefully	cover	them	here.

If	you	put	in	a	program,	and	the	program	did	not	work	at	all,	or	it	did	not	work	the	way
you	wanted	it	to,	here	are	some	basic	things	to	check:

1.	 Did	you	save	your	file	as	a	text	file	with	the	proper	extension?	If	your	text	editor	has
a	formatting	toolbar	(with	bold,	italic,	etc.),	you	are	probably	not	saving	your	file	as	a
text	file.	Convert	your	file	to	text	mode	and	then	save	it	(see	Section	A.3).	Also	be
sure	that	you	have	file	extensions	turned	on	(see	Section	A.3.1).	If	file	extensions	are
off,	even	if	you	specify	a	file	extension,	it	will	add	a	new,	hidden	file	extension	that
you	don’t	want.

2.	 Did	you	type	in	the	program	correctly?	Computer	programs	are	very	sensitive,	and
every	character	matters.	Changing	one	little	character	can	be	the	difference	between
a	successful	and	an	unsuccessful	program.	Did	you	put	in	semicolons,	or	did	you
accidentally	type	a	colon	instead?	Did	you	misspell	a	variable	name	somewhere?	Did
you	get	both	the	opening	brace	and	the	closing	brace?	Any	mistake	like	this	will	cost
you	your	entire	program.	Check	carefully.	After	a	while,	it	becomes	second	nature.	I
can	now	look	at	a	page	of	code	and	spot	such	errors	immediately.	That	comes	with
experience—for	now,	you	have	to	hunt	and	check	everything.

3.	 Did	your	text	editor	substitute	in	curly	quotes	for	your	regular	quotes?	Some	text
editors	think	you	are	typing	a	document	and	want	to	make	your	text	fancy.	When	you
type	in	a	regular	double-quote	(”)	they	will	auto-substitute	curly	quotes	(“).	This
causes	programming	languages	to	go	bonkers	because	they	are	very	definite	about
the	characters	they	are	looking	for.	If	your	text	editor	is	doing	this,	see	Section	A.3.5.

4.	 Open	up	a	JavaScript	console	(see	Section	A.6).	Are	there	any	error	messages
displayed?	If	there	are,	you	can	click	on	the	filename	and	it	will	show	you	where	in
your	file	the	error	occurred.	Also,	you	can	search	the	Internet	for	the	error	message	to
get	help.

5.	 If	your	program	runs	a	little	before	it	stops	or	if	it	runs	but	runs	wrongly,	you	can
often	figure	out	what	is	wrong	by	adding	in	a	lot	of	alert()	messages	in	your	code,
so	you	can	follow	its	progress.	You	can	use	alert()	to	display	not	only	messages,
but	also	the	contents	of	variables.	This	allows	you	to	identify	exactly	what	is	going
on	in	the	code.

6.	 Check	your	value	types.	One	of	the	most	common	programming	errors	is	to	forget
what	type	of	value	is	stored	in	a	variable.	For	instance,	any	time	you	get	a	value	back
from	a	prompt(),	it	will	be	a	string.	If	you	wanted	a	number,	you	need	to	convert	it	to
a	number	first	(using	parseInt	or	a	similar	function).

7.	 Check	your	loops.	If	your	program	has	a	loop,	you	have	to	be	sure	that	there	is	some
way	to	get	out	of	the	loop.	If	there	is	not	a	condition	that	allows	it	to	exit,	then	you

have	not	properly	programmed	it.	Also	be	sure	that	the	things	you	want	it	to	do	every
time	are	inside	the	loop	body,	and	the	things	that	you	only	want	to	happen	once	are
outside	the	loop	body.

8.	 Search	engines	are	your	friend.	As	a	programmer,	I	always	have	a	search	engine
open,	and	check	the	Internet	to	see	if	someone	is	having	a	similar	problem.

9.	 Find	a	friend.	Preferably,	find	a	friend	that	has	done	some	programming	before.	No
matter	what,	you	will	each	find	mistakes	that	the	other	one	didn’t	see.	Two	heads	are
better	than	one.

10.	 Check	the	forums.	The	website	for	this	book,	www.npshbook.com,	has	a	reader	forum
for	anyone	with	a	question.	Be	sure	to	be	as	detailed	as	possible	with	your	question.
If	you	are	doing	an	exercise	from	this	book,	be	sure	to	say	which	one,	and	paste	your
code	into	your	message.	Don’t	worry	about	asking	dumb	questions—we’ve	all	been
at	the	beginning.

Appendix	B
Character	Encoding	Issues

B.1	A	Short	History	of	Character	Encodings

In	computer	programming,	the	problem	of	how	to	represent	character	strings	(i.e.,	lines	of
text)	is	an	ever-present	issue.	Generally,	a	string	of	characters	is	represented	by	an	array	of
numbers,	where	each	number	represents	one	character	(letter,	digit,	punctuation	mark,
etc.)	of	text.	The	problem	then	becomes	a	question	of	which	numbers	represent	which
characters.	If	every	program	had	its	own	way	of	converting	numbers	to	characters,	it
would	be	nearly	impossible	for	two	programs	to	communicate.	If	one	program	used	the
number	6	to	mean	the	letter	F,	but	another	program	used	6	to	represent	a	comma,	trying	to
get	those	two	programs	to	talk	to	each	other	would	require	code	to	translate	the	number
from	one	system	to	another,	which	would	be	a	lot	of	work.	In	addition,	if	every
programmer	had	to	solve	this	problem	for	their	own	program,	that	would	take	a	lot	of
effort	for	every	program	that	deals	with	character	strings	(which	is	basically	every
program).

Therefore,	early	on	in	computer	programming,	standards	were	developed	for	representing
character	strings.	Not	only	was	ASCII	developed	early	in	computing,	but	the	standards
were	already	in	place	before	computers	existed	thanks	to	telegraph	lines.	The	telegraph
was	a	machine	used	in	the	1800s	and	early	1900s	for	sending	and	receiving	messages	over
long	distances.	It	worked	by	sending	short	and	long	pulses	over	long	wires.	If	you	see
Morse	code	printed	out,	it	usually	uses	dots	for	the	short	pulses	and	dashes	for	the	long
pulses.	For	instance,	the	letter	A	is	represented	as	.-	in	Morse	code,	and	the	letter	X	is
represented	as	-..-.	In	Morse	code,	the	more	common	letters	have	shorter	codes,	and	the
less	common	letters	have	longer	codes,	making	it	easier	for	a	telegraph	operator	to	type
messages.

In	the	mid-1800s,	engineers	developed	the	automated	telegraph,	which	allowed	users	to
type	on	typewriter-like	machines.	However,	variable-length	codes,	which	were	great	for
manual	telegraph	operation,	made	these	machines	difficult	to	implement.	Therefore,	they
developed	a	new	code,	called	the	Baudot	code,	which	had	a	fixed-length	character	size.
Eventually,	the	need	for	lowercase	letters,	punctuation,	and	other	similar	needs	led	to	other
codes	with	more	expansive	alphabets.	In	the	1960s,	ASCII	was	developed	as	a	further
expansion	and	standardization	for	telegraph	systems.	Another	standard,	called	EBCDIC,
was	developed	for	IBM	mainframes	based	on	the	punch	card	system	of	early	computers.
However,	EBCDIC	has	pretty	much	been	completely	superceded	by	ASCII	and	Unicode.
ASCII	gained	wide	use	in	computers	both	because	it	was	already	an	international	standard
and	because	it	fit	nicely	in	the	8-bit	byte	that	was	popular	in	computers.

B.2	Unicode	and	International	Character	Sets

The	ASCII	system,	however,	is	far	from	perfect.	Its	primary	problem	is	that	it	only
represents	characters	from	the	English	language.	As	more	and	more	countries	started	using
computers,	each	of	them	had	their	own	language	with	their	own	alphabet!	Even	more,
some	of	the	alphabets	had	more	than	255	characters	in	them,	and	so	they	could	not	be
represented	by	a	single	byte.	In	the	beginning,	some	tried	to	accommodate	for	this	by
using	extensions	to	ASCII,	or	by	using	a	separate	character	set	for	each	language.
However,	as	the	importance	of	multilingual	documents	grew,	the	limitations	of	these
approaches	became	clear,	and	the	need	for	a	universal	code	that	contained	all	characters
from	all	languages	became	evident.	Therefore,	a	larger	list	of	characters	had	to	be	made	in
order	to	encompass	all	of	the	world’s	alphabets.

This	list	of	characters	is	called	Unicode,	which	currently	has	over	95,000	characters!
Unicode	assigns	a	number	to	each	character	for	reference,	but	does	not	by	itself	specify
how	those	numbers	are	to	be	encoded.	For	instance,	the	UTF-16	standard	uses	two	bytes
for	every	character,	but	the	UTF-32	uses	four	bytes	for	every	character.	They	all	represent
the	same	Unicode	numbers,	but	they	accomplish	that	in	different	ways.

When	Unicode	was	developed,	most	files	were	still	written	using	ASCII.	A	way	was
needed	to	bridge	the	gap	between	ASCII	and	Unicode.	Therefore,	developers	created	an
encoding	of	Unicode,	called	UTF-8,	which	looks	like	ASCII	and	uses	single	bytes	for
common	English	characters,	but	it	uses	multiple	bytes	for	non-English	characters.	This
allowed	easier	migration	between	older	programs	that	only	understood	ASCII	and	newer
programs	which	wanted	to	support	users	from	every	country.	If	your	document	only	used
English	characters,	it	was	identical	whether	it	was	encoded	in	ASCII	or	UTF-8.	The
differences	only	came	when	you	ventured	into	other	character	sets.	UTF-8	is	less	efficient
for	processing,	but	its	ability	to	interoperate	with	older	programs	has	made	it	the	default	in
many	applications.	JavaScript	uses	UTF-8	for	its	encodings	by	default.

B.3	An	Abbreviated	ASCII	Table

Because	ASCII	is	still	popular	and	is	the	same	as	UTF-8	for	English	characters,	this	book
provides	a	list	of	ASCII	character	codes	below.	These	are	also	important	for	some	of	the
programs	in	Appendix	C.	The	list	below	contains	ASCII	codes	in	decimal,	octal,	and
hexadecimal.	If	the	meaning	of	an	ASCII	code	in	enclosed	like	<this>,	it	is	a	non-
printable	character,	such	as	a	tab,	a	carriage	return,	or	a	control	sequence.	Control
sequences	are	used	to	embed	extra	communication	information	in	a	string	of	text	that	is
not	used	for	user	display,	such	as	a	record	separator,	or	to	mark	the	end	of	a	transmission.
The	lesser-used	ASCII	codes	are	skipped	in	the	table	below.

Decimal Hexadecimal Octal Meaning

0 00 000 <null>

9 09 011 <tab>

13 0d 015 <carriage	return>

30 1e 036 <record	separator>

31 1f 037 <field	separator>

32 20 040 <space>

33 21 041 !

34 22 042 “

35 23 043 #

36 24 044 $

37 25 045 %

38 26 046 &

Decimal Hexadecimal Octal Meaning

39 27 047 ’

40 28 050 (

41 29 051)

42 2a 052 *

43 2b 053 +

44 2c 054 ,

45 2d 055 -

46 2e 056 .

47 2f 057 /

48 30 060 0

49 31 061 1

50 32 062 2

51 33 063 3

52 34 064 4

53 35 065 5

54 36 066 6

55 37 067 7

56 38 070 8

57 39 071 9

58 3a 072 :

59 3b 073 ;

60 3c 074 <

61 3d 075 =

62 3e 076 >

63 3f 077 ?

64 40 100 @

65 41 101 A

66 42 102
B

67 43 103 C

68 44 104 D

69 45 105 E

70 46 106 F

71 47 107 G

72 48 110 H

73 49 111 I

74 4a 112 J

Decimal Hexadecimal Octal Meaning

75 4b 113 K

76 4c 114 L

77 4d 115 M

78 4e 116 N

79 4f 117 O

80 50 120 P

81 51 121 Q

82 52 122 R

83 53 123 S

84 54 124 T

85 55 125 U

86 56 126 V

87 57 127 W

88 58 130 X

89 59 131 Y

90 5a 132 Z

91 5b 133 [

92 5c 134 \

93 5d 135]

94 5e 136 ^

95 5f 137 _

96 60 140

97 61 141 a

98 62 142 b

99 63 143 c

100 64 144 d

101 65 145 e

102 66 146 f

103 67 147 g

104 68 150 h

105 69 151 i

106 6a 152 j

107 6b 153 k

108 6c 154 l

109 6d 155 m

110 6e 156 n

Decimal Hexadecimal Octal Meaning

111 6f 157 o

112 70 160 p

113 71 161 q

114 72 162 r

115 73 163 s

116 74 164 t

117 75 165 u

118 76 166 v

119 77 167 w

120 78 170 x

121 79 171 y

122 7a 172 z

123 7b 173 {

124 7c 174 |

125 7d 175 }

126 7e 176

Appendix	C
Additional	Machine	Language	Programs

If	you	enjoyed	the	machine	programs	in	Chapter	5,	this	appendix	has	a	few	others	you	can
try.	If	you	are	really	brave,	you	can	even	try	to	write	one	of	your	own!

C.1	Multiplying	Numbers

Since	this	machine	does	not	have	a	multiply	instruction,	multiplications	have	to	happen	by
repeated	addition.	Therefore,	this	program	will	take	two	numbers	and	multiply	them
together	by	repeated	addition.	The	numbers	that	are	multiplied	will	be	in	memory
locations	61	and	62,	and	the	result	of	the	multiplication	will	be	stored	in	location	63.

Here	is	the	program:

Figure	C.1:	Machine	Language	Program	to	Multiply	Two	Numbers
0			22

1			0
2			61

3			22
4			1

5			62
6			20

7			2
8			0

9			20
10			3

11			0
12			20

13			5
14			1

15			21
16			4

17			1
18			37

19			4
20			3

21			65
22			36

23			4
24			133

25			2
26			0

27			133
28			3

29			564
30			15

31			0
32			25

33			63
34			2

35			0
36			0

37			0
38			0

39			0
40			0

41			0
42			0

43			0
44			0

45			0
46			0

47			0
48			0

49			0
50			0

51			0
52			0

53			0
54			0

55			0
56			0

57			0
58			0

59			0
60			8

61			4
62			0

This	program	stores	the	first	number	in	register	0	and	the	second	number	in	register	1.	The
program	works	by	repeatedly	adding	the	number	in	register	0	the	number	of	times
specified	in	register	1.	Register	2	holds	the	results	so	far	and	register	3	holds	the	number
of	times	we	have	performed	the	addition	so	far.	Register	4	is	used	for	holding	comparison
values.	Register	5	holds	the	number	1	so	we	can	add	it	to	register	1	after	each	repetition.

C.2	Writing	to	the	Screen

This	program	introduces	a	new	piece	of	hardware—the	screen.	This	screen	will	be	based
on	really	old	types	of	screens—old-school	text	terminals.	If	you	haven’t	seen	them,	they
are	like	typewriters.	No	graphics,	no	windows,	just	text	on	the	screen.

The	way	the	screen	will	work	is	that	the	screen	will	read	the	last	row	of	numbers	in	the
Computer	Memory	page	(memory	locations	56–63)	and	display	a	single	line	of	text	based
on	those	numbers.	Each	number	will	represent	one	letter	to	be	displayed	on	the	screen,
based	on	the	ASCII	code	for	the	letter	(see	Chapter	4	and	Appendix	B	for	more	on	ASCII
codes).	In	addition	to	the	standard	codes,	we	will	also	treat	the	number	0	as	a	blank
character.	So,	if	the	last	line	of	of	the	computer	memory	was	72,	69,	76,	76,	79,	0,
0,	0,	the	screen	would	say	HELLO.	At	the	end	of	step	8,	if	any	of	these	numbers	have
changed,	the	screen	should	update	what	it	is	displaying.

So,	for	our	first	program	with	displays,	we	will	simply	read	the	number	in	memory
location	55.	If	it	is	greater	than	or	equal	to	100,	we	will	write	out	the	word	Big	onto	the
display,	and	if	it	is	less	than	100	we	will	write	the	word	Sm	to	the	display	(I	had	to
abbreviate	“Small”	to	make	the	code	fit).

Here	is	the	program:

Figure	C.2:	Machine	Language	Program	to	Multiply	Two	Numbers
0			22

1			0
2			55

3			20
4			1

5			100
6			37

7			0
8			1

9			97
10			27

11			0
12			20

13			2
14			83

15			25
16			56

17			2
18			20

19			2
20			109

21			25
22			57

23			2
24			0

25			0
26			0

27			20
28			2

29			66
30			25

31			56
32			2

33			20
34			2

35			105
36			25

37			57
38			2

39			20
40			2

41			103
42			25

43			58
44			2

45			0
46			0

47			0
48			0

49			0
50			0

51			0
52			0

53			0
54			0

55			0
56			0

57			0
58			0

59			0
60			0

61			0
62			0

63			0

C.3	Writing	a	Number	to	the	Screen

Now,	in	all	of	the	arithmetic	that	we	have	done,	we	have	ended	up	with	a	number	that	we
have	stored	in	memory.	However,	if	we	were	to	copy	that	number	to	the	screen,	we	would
get	weird	results	because	the	screen	would	think	that	it	was	an	ASCII	code	for	some	other
letter.	For	instance,	the	result	of	the	first	program	in	this	appendix	was	32.	If	we	copied	the
number	32	to	the	screen	area,	it	would	look	up	what	the	value	of	ASCII	code	32	is,	and	it
would	find	out	that	it	was	a	blank	space!	Therefore,	we	would	see	nothing	on	the	screen.

So,	if	we	had	a	number,	how	would	we	display	it	on	the	screen?	Well,	look	at	the	ASCII
codes.	The	digits	go	from	48	to	57.	If	it	was	a	single-digit	number	(i.e.,	less	than	10),	then
we	could	simply	add	48	to	the	number	and	that	would	be	the	answer.	For	multi-digit
numbers,	it	is	more	complicated	because	we	would	have	to	repeatedly	divide	by	10	for
each	digit.

However,	for	this	program,	we	are	just	going	to	do	the	single-digit	case.	We	are	going	to
load	a	single-digit	number	from	memory	location	55,	convert	it	to	its	ASCII	code,	and
write	it	to	the	screen.

Here	is	the	code:

Figure	C.3:	Machine	Language	Program	to	Multiply	Two	Numbers
0			22

1			0
2			55

3			20
4			1

5			100
6			37

7			0
8			1

9			97
10			27

11			0
12			20

13			2
14			83

15			25
16			56

17			2
18			20

19			2
20			109

21			25
22			57

23			2
24			0

25			0
26			0

27			20
28			2

29			66
30			25

31			56
32			2

33			20
34			2

35			105
36			25

37			57
38			2

39			20
40			2

41			103
42			25

43			58
44			2

45			0
46			0

47			0
48			0

49			0
50			0

51			0
52			0

53			0
54			0

55			0
56			0

57			0
58			0

59			0
60			0

61			0
62			0

63			0

C.4	Going	Further

Now	that	you	know	how	machine	language	works,	you	might	try	writing	your	own
program	using	this	simplified	system.	The	first	thing	you	might	try	is	combining	the
multiply	program	with	the	program	to	display	a	number	and	try	to	display	the	result	on	the
screen	(although	it	will	only	work	if	the	answer	is	a	single	digit).	The	possibilities,	though,
are	limitless,	though	your	imaginations	will	probably	require	more	than	an	8x8	grid	for
memory.

If	you	enjoy	this	sort	of	programming,	a	forthcoming	book	in	the	Programmer’s	Toolbox
series	is	tentatively	titled	Under	the	Hood:	Learning	How	Software	Works	at	the	Lowest
Levels.	It	is	about	assembly	language,	which	is	similar	to	machine	language	except	that
instead	of	writing	out	the	numbers,	you	would	write	out	the	opcode	itself.	In	addition,
while	the	machine	language	we	are	dealing	with	here	was	invented	as	a	learning	tool,
Under	the	Hood	covers	a	real	machine—the	x86	family	of	processors.

While	most	programmers	never	need	to	program	in	machine	language	anymore,	my	hope
is	that	doing	these	exercises	will	have	accustomed	your	mind	to	the	computer’s	way	of
thinking,	which	will	help	you	be	a	better	programmer	in	any	programming	language.

Contents

1	Introduction	
	 1.1	What	You	Will	Learn	
	 1.2	How	to	Use	This	Book	
	 1.3	Special	Note	for	the	E-book	Edition	
	 1.4	Using	the	Website	
	 1.5	For	Younger	Students	
2	A	Short	History	of	Computers	
	 2.1	The	Prehistory	of	Computers	
	 2.2	The	Idea	of	a	Computer	
	 2.3	The	Age	of	the	Computer	
	 2.4	Computers	in	the	Age	of	Networks	
3	How	Computers	Communicate	
	 3.1	The	Layers	of	Internet	Communication	
	 3.2	Communicating	Using	HTTP	
	 3.3	How	Computers	Are	Located	on	the	Internet	
4	How	a	Computer	Looks	at	Data	
	 4.1	What	Computer	Memory	Looks	Like	
		 4.1.1	Practice	Questions	
	 4.2	Using	Numbers	to	Represent	Data	
		 4.2.1	Practice	Questions	
	 4.3	Sequences	in	Data	
		 4.3.1	Practice	Questions	
	 4.4	Using	Numbers	to	Represent	Letters	
		 4.4.1	Practice	Questions	
	 4.5	What	Is	a	File	Format?	
		 4.5.1	Practice	Questions	
5	How	Computers	Work	
	 5.1	Parts	of	a	Computer	
	 5.2	A	Simplified	Paper	Machine	Simulation	
		 5.2.1	Doing	the	Simulation	in	a	Class	Setting	
	 5.3	A	Short	Program:	Multiplying	by	Two	
		 5.3.1	Setting	Up	the	Simulation	
		 5.3.2	Running	the	Simulation	
	 5.4	Adding	a	List	of	Numbers	
	 5.5	Machine	Opcode	Tables	
		 5.5.1	Opcode	Numbering	
6	The	HTML	File	Format	
	 6.1	A	Quick	Introduction	to	HTML	
		 6.1.1	Practice	Activity	

	 6.2	The	Parts	of	an	HTML	Document	
		 6.2.1	Practice	Questions	
	 6.3	Adding	Attributes	to	Tags	
	 6.4	Tags	that	Refer	to	Other	Documents	
		 6.4.1	Practice	Questions	
		 6.4.2	Practice	Questions	
	 6.5	Relative	URLs	
	 6.6	Other	HTML	Features	
		 6.6.1	Entities	
		 6.6.2	Lists	
		 6.6.3	Table	Tags	
		 6.6.4	Form	Tags	
		 6.6.5	Comments,	Declarations,	Processing	Instructions,	and	CDATA	Blocks	
7	Introduction	to	Cascading	Style	Sheets	
	 7.1	The	Origin	of	Cascading	Style	Sheets	
		 7.1.1	The	Progression	of	Technology	
	 7.2	The	Structure	of	a	CSS	Document	
	 7.3	Understanding	Selectors	
	 7.4	The	CSS	Box	Model	
	 7.5	Other	Capabilities	of	CSS	
8	Your	First	JavaScript	Program	
	 8.1	A	Short	History	of	JavaScript	
		 8.1.1	Technology	Becomes	Politicized	
	 8.2	A	Simple	JavaScript	Program	
		 8.2.1	Practice	Questions	
		 8.2.2	Practice	Activity	
	 8.3	Moving	the	JavaScript	to	Its	Own	File	
9	Basic	JavaScript	Syntax	
	 9.1	Elements	of	Syntax	
	 9.2	Assignment	Statements	
	 9.3	Control	Structures	
		 9.3.1	The	if	Statement	
		 9.3.2	The	while	Statement	
		 9.3.3	The	for	Statement	
10	Introducing	Functions	and	Scope	
	 10.1	Your	First	Function	
		 10.1.1	Practice	Questions	
	 10.2	More	Function	Examples	
		 10.2.1	Practice	Questions	
	 10.3	Functions	Calling	Functions	
	 10.4	Variable	Scopes	
11	Recursive	Functions	

	 11.1	The	Program	Stack	
	 11.2	Local	Variables	in	the	Stack	
		 11.2.1	Practice	Activity	
	 11.3	Recursive	Functions	
12	Manipulating	Functions	and	Scopes	
	 12.1	Functions	As	Parameters	to	Functions	
		 12.1.1	Practice	Questions	
	 12.2	Functions	That	Return	Functions	
	 12.3	Functions	That	Create	Functions	
		 12.3.1	Practice	Activity	
	 12.4	Currying	Functions	
	 12.5	Anonymous	Functions	
13	Basic	Objects	and	Arrays	
	 13.1	A	Basic	Introduction	to	Objects	
		 13.1.1	Practice	Questions	
	 13.2	Simplifying	Object	Creation	
		 13.2.1	Practice	Questions	
	 13.3	Storing	Sequences	of	Values	Using	Arrays	
	 13.4	Using	Arrays	in	Programs	
		 13.4.1	Practice	Questions	
	 13.5	Mixing	Objects	and	Arrays	
14	Intermediate	Objects	
	 14.1	Attaching	Functions	to	Objects	
	 14.2	Using	Objects	Productively	
	 14.3	Constructing	Objects	
15	Interacting	with	Web	Pages	
	 15.1	Using	the	JavaScript	Console	
		 15.1.1	Practice	Questions	
	 15.2	Finding	and	Modifying	Web	Page	Elements	
		 15.2.1	Errors	with	textContent	
		 15.2.2	Practice	Questions	
	 15.3	Creating	New	HTML	Elements	
		 15.3.1	Practice	Activity	
	 15.4	Communicating	with	Input	Fields	
		 15.4.1	Practice	Activity	
	 15.5	Adding	Functionality	to	Buttons	
	 15.6	Putting	It	All	Together	
		 15.6.1	Practice	Activity	
	 15.7	A	Broader	View	
16	Conclusion	

17	Glossary	

A	Operating	System	and	Browser	Specifics	
	 A.1	The	Browser	Location	Bar	
	 A.2	Getting	to	the	Command	Line	
		 A.2.1	Getting	to	a	Command	Line	in	Windows	
		 A.2.2	Getting	a	Command	Line	on	a	Mac	
		 A.2.3	Getting	a	Command	Line	on	Linux	
	 A.3	Using	a	Text	Editor	
		 A.3.1	Getting	Windows	Setup	Properly	
		 A.3.2	Using	a	Text	Editor	in	Windows	
		 A.3.3	Using	a	Text	Editor	in	Mac	OS	
		 A.3.4	Using	a	Text	Editor	in	Linux	
		 A.3.5	Text	Encoding	Problems	
	 A.4	Viewing	the	Source	of	an	HTML	Document	
		 A.4.1	Viewing	the	Source	in	Chrome	
		 A.4.2	Viewing	the	Source	in	Safari	
		 A.4.3	Viewing	the	Source	in	Internet	Explorer	
	 A.5	Finding	the	URL	of	an	Image	on	the	Web	
	 A.6	Opening	Up	the	JavaScript	Console	
	 A.7	What	to	Do	When	a	Program	Doesn’t	Work	
B	Character	Encoding	Issues	
	 B.1	A	Short	History	of	Character	Encodings	
	 B.2	Unicode	and	International	Character	Sets	
	 B.3	An	Abbreviated	ASCII	Table	
C	Additional	Machine	Language	Programs	
	 C.1	Multiplying	Numbers	
	 C.2	Writing	to	the	Screen	
	 C.3	Writing	a	Number	to	the	Screen	
	 C.4	Going	Further

Title	Page

NEW	PROGRAMMERS	START	HERE
An	Introduction	to	Computer	Programming	Using	JavaScript
by	Jonathan	Bartlett
New	Programmers	Start	Here	
An	Introduction	to	Computer	Programming	Using	JavaScript

Copyright	©	2016	Jonathan	Bartlett	all	rights	reserved.

Published	in	the	United	States	by	BP	Learning	in	Broken	Arrow,	Oklahoma.

This	book	is	part	of	a	BP	Learning	series	of	books,	The	Programmer’s	Toolbox.

Library	of	Congress	Control	Number:	2015902481

ISBN:	978-0-9752838-8-2

For	author	inquiries	please	send	email	to	info@bplearning.net.

Bookstore	bulk	order	discounts	available.	Please	contact	info@bplearning.net	for	more	information.

For	more	information,	please	see	www.bplearning.net.

1st	printing

Opening	Quote

Most	good	programmers	do	programming	not	because	they	expect	to	get	paid	or	get
adulation	by	the	public,	but	because	it	is	fun	to	program.	

—Linus	Torvalds

Acknowledgements

I	want	to	take	a	moment	and	thank	everyone	who	helped	me	write	this	book.	First,	I	want
to	thank	those	who	read	and	appreciated	my	first	programming	book,	Programming	from
the	Ground	Up.	The	encouragement	I	received	from	that	book	has	given	me	the
encouragement	to	continue	writing	and	educating	throughout	the	years.

Next,	I	want	to	thank	my	homeschool	summer	co-op	class	for	being	guinea	pigs	for	this
material.	Your	questions,	your	successes,	and	your	difficulties	all	informed	the	writing	of
this	book.	You	were	both	my	motivation	to	write	in	the	first	place,	and	the	first	proving
ground	for	the	material.

A	lot	of	thanks	goes	to	the	cover	artists—both	Branko	Balšić	for	the	cover	layout	and
Christopher	Doehling	for	the	robot	illustration.	I	also	want	to	thank	my	editor,	Heather
Zeiger.	My	family	and	friends	are	constantly	subject	to	my	bad	writing	habits,	but,	thanks
to	Heather,	the	readers	of	this	book	benefit	only	from	the	good	points	of	my	style.

I	would	also	like	to	thank	my	family,	my	friends,	and	my	church,	all	of	whom	are	essential
parts	of	my	life.	Thanks	especially	to	my	wife	who	puts	up	with	me	when	I	am	too
focused	on	my	writing	to	notice	what	the	kids	have	been	up	to	or	to	put	a	stop	to	whatever
trouble	they	have	found	themselves	in!

1If	you	already	know	HTML,	you	might	notice	that	there	are	a	few	extra	letters	and	numbers	in	the	response	that	aren’t
in	the	HTML	file	itself.	This	is	due	to	the	transfer	encoding,	which	sometimes	sends	the	HTML	in	chunks.	Those
numbers	and	letters	tell	the	browser	how	much	data	is	coming	in	the	next	“chunk.”	However,	since	we	haven’t	covered
HTML	yet,	you	probably	didn’t	notice	the	extra	numbers	and	letters	in	the	response.	In	any	case,	for	our	purposes	they
can	be	ignored.

	1 Introduction
	1.1 What You Will Learn
	1.2 How to Use This Book
	1.3 Special Note for the E-book Edition
	1.4 Using the Website
	1.5 For Younger Students

	2 A Short History of Computers
	2.1 The Prehistory of Computers
	2.2 The Idea of a Computer
	2.3 The Age of the Computer
	2.4 Computers in the Age of Networks

	3 How Computers Communicate
	3.1 The Layers of Internet Communication
	3.2 Communicating Using HTTP
	3.3 How Computers Are Located on the Internet

	4 How a Computer Looks at Data
	4.1 What Computer Memory Looks Like
	4.1.1 Practice Questions

	4.2 Using Numbers to Represent Data
	4.2.1 Practice Questions

	4.3 Sequences in Data
	4.3.1 Practice Questions

	4.4 Using Numbers to Represent Letters
	4.4.1 Practice Questions

	4.5 What Is a File Format?
	4.5.1 Practice Questions

	5 How Computers Work
	5.1 Parts of a Computer
	5.2 A Simplified Paper Machine Simulation
	5.2.1 Doing the Simulation in a Class Setting

	5.3 A Short Program: Multiplying by Two
	5.3.1 Setting Up the Simulation
	5.3.2 Running the Simulation

	5.4 Adding a List of Numbers
	5.5 Machine Opcode Tables
	5.5.1 Opcode Numbering

	6 The HTML File Format
	6.1 A Quick Introduction to HTML
	6.1.1 Practice Activity

	6.2 The Parts of an HTML Document
	6.2.1 Practice Questions

	6.3 Adding Attributes to Tags
	6.4 Tags that Refer to Other Documents
	6.4.1 Practice Questions
	6.4.2 Practice Questions

	6.5 Relative URLs
	6.6 Other HTML Features
	6.6.1 Entities
	6.6.2 Lists
	6.6.3 Table Tags
	6.6.4 Form Tags
	6.6.5 Comments, Declarations, Processing Instructions, and CDATA Blocks

	7 Introduction to Cascading Style Sheets
	7.1 The Origin of Cascading Style Sheets
	7.1.1 The Progression of Technology

	7.2 The Structure of a CSS Document
	7.3 Understanding Selectors
	7.4 The CSS Box Model
	7.5 Other Capabilities of CSS

	8 Your First JavaScript Program
	8.1 A Short History of JavaScript
	8.1.1 Technology Becomes Politicized

	8.2 A Simple JavaScript Program
	8.2.1 Practice Questions
	8.2.2 Practice Activity

	8.3 Moving the JavaScript to Its Own File

	9 Basic JavaScript Syntax
	9.1 Elements of Syntax
	9.2 Assignment Statements
	9.3 Control Structures
	9.3.1 The if Statement
	9.3.2 The while Statement
	9.3.3 The for Statement

	10 Introducing Functions and Scope
	10.1 Your First Function
	10.1.1 Practice Questions

	10.2 More Function Examples
	10.2.1 Practice Questions

	10.3 Functions Calling Functions
	10.4 Variable Scopes

	11 Recursive Functions
	11.1 The Program Stack
	11.2 Local Variables in the Stack
	11.2.1 Practice Activity

	11.3 Recursive Functions

	12 Manipulating Functions and Scopes
	12.1 Functions As Parameters to Functions
	12.1.1 Practice Questions

	12.2 Functions That Return Functions
	12.3 Functions That Create Functions
	12.3.1 Practice Activity

	12.4 Currying Functions
	12.5 Anonymous Functions

	13 Basic Objects and Arrays
	13.1 A Basic Introduction to Objects
	13.1.1 Practice Questions

	13.2 Simplifying Object Creation
	13.2.1 Practice Questions

	13.3 Storing Sequences of Values Using Arrays
	13.4 Using Arrays in Programs
	13.4.1 Practice Questions

	13.5 Mixing Objects and Arrays

	14 Intermediate Objects
	14.1 Attaching Functions to Objects
	14.2 Using Objects Productively
	14.3 Constructing Objects

	15 Interacting with Web Pages
	15.1 Using the JavaScript Console
	15.1.1 Practice Questions

	15.2 Finding and Modifying Web Page Elements
	15.2.1 Errors with textContent
	15.2.2 Practice Questions

	15.3 Creating New HTML Elements
	15.3.1 Practice Activity

	15.4 Communicating with Input Fields
	15.4.1 Practice Activity

	15.5 Adding Functionality to Buttons
	15.6 Putting It All Together
	15.6.1 Practice Activity

	15.7 A Broader View

	16 Conclusion
	17 Glossary
	A.1 The Browser Location Bar
	A.2 Getting to the Command Line
	A.2.1 Getting to a Command Line in Windows
	A.2.2 Getting a Command Line on a Mac
	A.2.3 Getting a Command Line on Linux

	A.3 Using a Text Editor
	A.3.1 Getting Windows Setup Properly
	A.3.2 Using a Text Editor in Windows
	A.3.3 Using a Text Editor in Mac OS
	A.3.4 Using a Text Editor in Linux
	A.3.5 Text Encoding Problems

	A.4 Viewing the Source of an HTML Document
	A.4.1 Viewing the Source in Chrome
	A.4.2 Viewing the Source in Safari
	A.4.3 Viewing the Source in Internet Explorer

	A.5 Finding the URL of an Image on the Web
	A.6 Opening Up the JavaScript Console
	A.7 What to Do When a Program Doesn’t Work
	B.1 A Short History of Character Encodings
	B.2 Unicode and International Character Sets
	B.3 An Abbreviated ASCII Table
	C.1 Multiplying Numbers
	C.2 Writing to the Screen
	C.3 Writing a Number to the Screen
	C.4 Going Further

