Beginning

Python

Visualization

Crafting Visual Transformation Scripts

Learn how to process, organize, and visualize data
[from various sources using the Python programming
language and supporting packages.

Shai Vaingast

Apress®

Beginning Python
Visualization

Crafting Visual Transformation
Scripts

Shai Vaingast

Apress-

Beginning Python Visualization: Crafting Visual Transformation Scripts
Copyright © 2009 by Shai Vaingast

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1843-2
ISBN-13 (electronic): 978-1-4302-1844-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Frank Pohlmann, Michelle Lowman

Technical Reviewer: C. Titus Brown

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editor: Ami Knox

Associate Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Dina Quan

Proofreader: Liz Welch

Indexer: Julie Grady

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.
apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

This book is dedicated to my wife, Orna Vaingast.

Contents at a Glance

Aboutthe AUhor. XV
About the Technical Reviewer e XVi
ACKNOWIBAgMENTSo Xvii
INtrodUCHION Xviii
CHAPTER 1 Navigating the World of Data Visualization........................ 1
CHAPTER 2 The Environment................ 31
CHAPTER 3 Python for Programmers.t 53
CHAPTER 4 Data Organization....................... ..., 101
CHAPTER 5 Processing TextFiles.............................iiiiiiiil. 135
CHAPTER 6 GraphsandPlots............................. ... 183
CHAPTER 7 MathGames..................... ... i 221
CHAPTER 8 Science and Visualization...................................... 249
CHAPTER 9 Image Processingt 285
CHAPTER 10 Advanced File Processingoooiiin.. 319
APPENDIX Additional Source Listingl 343

Contents

Aboutthe AUhor. XV
About the Technical Reviewer e XVi
ACKNOWIBAGMENTSt Xvii
INtrodUCHION Xviii
CHAPTER 1 Navigating the World of Data Visualization 1
GatheringData............ 2

Case Study: GPSData...................... ..., 2

Scanning Serial Ports 3

RecordingGPSData, 5

Data Organization i 6

FileFormat 6

File Naming Conventionso, 7
Datalocation................ 7

Data Analysis 8

Walking Directoriescoo i 8

Reading CSVFiles 9
AnalyzingGPSData.......................c i 12

ExtractingGPS Data. i 14

Data Visualization 17

GPS LocationPlot............l 18

Annotatingthe Graph. 20

Velocity Plot. 22

Subplots. 23

TeXt 23

Tying ltAll Together ... 25

Final Notes and References...................o iiiiii... 29

vii

viii CONTENTS

CHAPTER 2

CHAPTER 3

The Environment ... 31
Operating Systems 32
GNU/LINUX . .o 32
WINdows 33
Choosing an Operating System............................... 35
Then Again, Why Choose? Using Several Operating Systems 36
The Python Environment.............. 37
VerSIONS. 37
Python ... 38
Python Integrated Development Environments. 39
Scientific Computing............. 41
Plotting. 42
Image Processing. ... 43
Additional Python Packages.oo .l 43
Installation Summary............ 44
Additional Applications 45
Editors ... 45
A Short Listof TextEditors................................... 47
Spreadsheets 48
Word Processors ...t 48
Image VIBWerS 49
Version Control Systems. i 49
LiCENSING. ..o 51
Final Notes and References.....................c i iiiiin... 52
Python for Programmers 53
WhatIs Python?....... 53
Interactive Python L. 54
Invoking Python 54
Entering Commands i, 55
The Interactive Help System 56
Moving Around 57
Running Scripts ... 58
DataTypes 60
Numbers ... 60
SHINGS ..o 65

BOOIBANS 67

CHAPTER 4

CONTENTS
Data Structures ... 68
LiStS . 69
Tuples 72
Dictionaries. ... 74
SBlS L 78
Variables 80
Statements 81
Printing. ... 81
Userlnput 84
COmMMENtS. .. 85
Flow Controlo 85
Some Built-in Functions. 92
Defining Functions. o 93
Generators.o 94
Generator Expressions 95
Object-Oriented Programming ...t 96
Modules and Packages. i 97
The import Statement..........., 98
Modules Installed ina System................................ 99
ThedirStatement 99
Final Notes and References................. ..., 99
Data Organization.. 101
File Name Conventions.ottt 102
Date and TimeinaFileName............................... 102
Useful File Name Titles o 104
File Name Extensions L. 104
INnConclusion o 105
Other Schemes. ... 107
FileFormats 108
CSVFileFormat 109
BinaryFiles......... ... 117
Readme Files o 123
INLFIIES .o 123
XML 125
OtherFileFormats................ o i, 126
Locating DataFiles il 126
Organization into Directoriesoooes. 126
SearchingforFiles.............. ... i 127

INdeXiNg.o 128

ix

CONTENTS

Catalogs. 131
Filesvs.aDatabase........................coiiiit, 133

Final Notes and References................... 134
CHAPTER5 Processing TextFiles...................................... 135
Textand Strings. ... 136
Splitting Text. 136
Joining Strings 137
Converting StringstoNumbers 137
FindandReplace.................. i 143
Stripping Strings. 144
String Formatting.............. 145
String Conditionals. 146
MoreonStrings ... 147

FileS . 147
OpeningaFile..............c i 147
ClosingaFile ... 148
Writing Text. 148
Reading Text............. 149
Working with Text Filescoii i 150
Example: Character, Word, and Line Count.................... 151
Example:headand tail 152
Example: Splitting and Combining Files. 153
Example: Searching InsideaTextFile 155
Example: Working with Comments........................... 156
Example: Extracting Numbers froma TextFile................. 157
CSVFIleS . .. o 159
ThecsvModule 159

The csv.reader Object. ... 160

The csv.writer Object 161
More csv Functionalityl 161
DictReader and DictWriter Objects 162
Dateand Time ... 163
TimeModule...... ... 164

The struct_time Tuple..............c. o 165
Parsing and Formatting Dateand Time 165

The Epoch: “Linearizing” the TimeBase...................... 168

Additional Time and Date Functions. 173

CHAPTER 6

CONTENTS
Regular EXpressionst 173
Regular Expression Patterns 173
Special SEquUeNCes. 175
Alternatives. 175
RaNgesS. 175
When to Use Regular Expressions. 175
Internationalization and Localization 176
Locale. ... 177
Unicode Strings ... 178
Final Notes and References.....................c.iiiiiii.. 181
GraphsandPlots.. 183
The Matplotlib Package, 183
Interactive Graphs vs. Image Files 184
Interactive Graphs 185
Saving GraphstoFiles. 187
Plotting Graphs. ... 189
Linesand Markers. ...t 189
Plotting Several Graphson One Figure. 191
Line Widths and Marker Sizes............................... 192
CO0lOrS. . 193
Controllingthe Graph il 194
AXIS. .. 194
Gridand Ticks. 195
Subplots. ... 196
Erasingthe Graph 197
Adding Text. 197
Tile. ..o 198
Axis Labelsand Legend 198
TextRendering.............coo i 199
Mathematical Symbols and Expressions 200
More Graph TYPeS.o 201
BarCharts............co o 201
Histograms i 204
PieCharts 206
Logarithmic PlotS. 207
PolarPlots. ... 208
StemPlots........ .. . 209

Additional Graphs. ... 210

Xi

Xii

CONTENTS

CHAPTER 7

CHAPTER 8

Getting and Setting Values. o i, 213
Setting Figure and Axis Parameters.......................... 215
Patches 217
Example: Adding ArrowstoaGraph.......................... 218
Example: Some Other Patches 219
Final Notes and References................... 220
MathGames... 221
Modulesmathandcmathl 221
Example: ANewton Fractal 224
Modulerandom 228
Using random to Solve Probability Questions.................. 229
Random Sequences. ...t 232
Module NUMPy. 233
Array Creation. 234
Slicing, Indexing, and Reshaping 235
N-Dimensional Arrays....... ... 236
Math Functions. 239
Array Methods and Properties............................... 241
Other Useful Array Functions................................ 247
Final Notes and References.....................ccooiiiiiiina... 247
Science and Visualization................................. 249
Finding Your Way: Variables and Functions 250
SCIPY. . 250
Linear Algebrao i 251
Solving a System of Linear Equations 251
Vector and Matrix Operations. 252
Matrix Decomposition.................. 253
Additional Linear Algebra Functionality 254
Numerical Integration...............coo i 254
More Integration Methods 257
Interpolation and Curve Fitting 258
Piecewise Linear Interpolation............................... 258
Polynomials......... 260
Uses of Polynomials.................. 261

Spline Interpolation 266

CHAPTER 9

CONTENTS
Solving Nonlinear Equations, 267
Special FUNCLiONS. 268
Signal Processingcoviiii i 268
Functions where, select, and find............................ 269
Functions diffand split 273
Waveforms 274
Fourier Transform 275
Example: FFT of a Sampled Cosine Wave 276
Window Functions 277
Fiering 279
Filter Design 279
Example: Heart-Rate Monitor................................ 281
Example: Moving Average ...t 283
Final Notes and References. ...t 284
Image Processing.. 285
Reading, Writing, and DisplayingImages 286
Reading Imagesfrom File.............. 286
Image Attributes. ... 287
Displaying Images 288
Converting File Formats oi... 289
Image Manipulation.................. 291
CreatingNew Images ..o, 291
CopyandPaste..............coviiiiii e 292
CropandResize. ... 292
Rotate............ i 293
Image Annotation. 294
Annotating with Geometrical Shapes......................... 294
Text Annotations. 295
Image Processing ... 300
Matrix Representation and Colors. 300
Example: Counting Objects (Five Parts)....................... 303
Image Arithmetic 312
Image Filtering. o 315

Final Notes and References. ..., 317

Xiii

Xiv CONTENTS

CHAPTER 10 Advanced File Processing 319
Binary Files and Random AcCessccoiiiii.. 319
Example: Reading the Nth Field. 321
Example: Efficient Tail Implementation 322
Example: Creating a Fixed-Size File.......................... 323
Example: Recording Time-Based BinaryData 323
Object Serialization 325
The PickleModule 325
Command-Line Parameters................... ... il 327
ATGV .o 327
Example: Creating a Fixed-Size File (Stand-Alone Script) 328
OptParse Modulec i 329

The FilelnputModule. 332

File and Directory Manipulation. 333
Moduleglobo 334
Additional os Module Functionality........................... 334
Additional os.path Module Functionality 335
Module shutil 336

File COMPresSiONttt 337
Example: A CompressedtarFile............................. 338
Comparing Files............oo i 339
Module filecmp. ... 339
Module difflib L 341

Final Notes and References.....................c. it 342
APPENDIX Additional Source Listing.................................. 343
Nudge Subplotso 343
Magic SqQuare ArmrOWS 345
Fractal Function Source Code ..., 347

About the Author

SHAI VAINGAST has been an engineer, an engineering manager, and
a director of engineering since 1993. He has worked in the defense
industry and in the medical device industry while being heavily
involved with data processing and visualization. He has several
patents.

Xv

XVi

About the Technical Reviewer

C. TITUS BROWN is a professor of Computer Science and Engineering and Microbiology and
Molecular Genetics at Michigan State University, where he studies developmental biology.
Dr. Brown has been using Python for about a decade, and he is the author of several Python
bioinformatics packages as well as several testing tools. You can visit his blog at ivory.idyll.
org/blog/.

Acknowledgments

I’d like to thank the following individuals for their contribution to the book (in alphabetical
order): Shai Ayal, C. Titus Brown, Ehud Cohen, Bryan Crouse, Kylie Johnston, Michelle Lowman,
Rich Lundeen, Frank Pohlmann, Ami Saguy, Sam Saguy, Janet Vaingast, Motty Vaingast, Orna

Vaingast, and Arnon Zeira.

Xvii

Xviii

Introduction

I was always drawn to math and computers, ever since I was a kid playing computer games
on my Sinclair ZX81. When I attended university, I had a special interest in numerical analy-
sis, a field that I felt combines math and computers ideally. During my career, I learned of
MATLAB, widely popular for digital signal processing, numerical analysis, and feedback and
control. MATLAB’s strong suits include a high-level programming language, excellent graph-
ing capabilities, and numerous packages from almost every imaginable engineering field. But
I found that MATLAB wasn’t enough. I worked with very large files and needed the ability to
manipulate both text and data. So I combined Perl, AWK, and Bash scripts to write programs
that automate data analysis and visualization. And along the way, I've developed practices and
ideas involving the organization of data—for example, ways to ensure file names are unique
and self-explanatory.

With the increasing popularity of the Internet, I learned of GNU/Linux and the open
source movement. I made an effort to use open source software whenever possible, and so I've
learned of GNU-Octave and gnuplot, which together provide excellent scientific computing
functionality. That fit well on my Linux machine: Bash scripts, Perl and AWK, GNU-Octave and
gnuplot.

Knowing I was interested in programming languages and open source software, a friend
suggested I give Python a try. My first impression was that it’s just another programming lan-
guage: I can do most anything I need with Perl and Bash, resorting to C/C++ if things got hairy.
And I'd still need GNU-Octave and gnuplot, so what'’s to gain? Eventually, I did learn Python
and discovered that it is far better than my collection of tools. Python provides something that
is extremely appealing: it’s a one-stop shop—you can do it all in Python.

I've shared my enthusiasm with friends and colleagues. Many who expressed interest with
the ideas of data processing and visualization would ask, “Can you recommend a book that
teaches the ideas you're preaching?” And I would tell them, “Of course, numerous books cover
this subject!” But they didn’t want numerous books, just one, with information distilled to
focus on data analysis and visualization. I realized there wasn’t such a title, and this was how
the idea for this book originated.

Who This Book Is For

Although this book is about software, the target audience is not necessarily programmers or
computer scientists. The reader’s main line of work is research or R&D, in his or her field of
interest, be it astrophysics, signal and image processing, or biology. The audience includes

INTRODUCTION

¢ Graduate and PhD students in exact and natural sciences (physics, biology, and chem-
istry) working on their thesis, dealing with large experimental data sets. The book also
appeals to students working on purely theoretical projects, as they require simulations
and means to analyze the results.

¢ R&D engineers in the fields of electrical engineering (EE), mechanical engineering, and
chemical engineering: engineers working with large sets of data from multiple sources.
In EE more specifically, signal processing engineers, communication engineers, and
systems engineers will find the book appealing.

e Programmers and computer enthusiasts, unfamiliar with Python and the GNU/Linux
world, willing to dive into a new world of tools.

¢ Hobby astronomers and other hobbyists who deal with data and are interested in using
Python to support their hobby.

The book can be appealing to these groups for different reasons. For scientists and engi-
neers, the book provides the means to be more productive in their work, without investing a
considerable amount of time learning new tools and programs that constantly change. For
programmers and computer enthusiasts, the book can serve as an appetizer, opening up their
world to Python. And because of the unique approach presented here, they might share the
enthusiasm the author has for this wonderful software world. Perhaps it will even entice them
to be part of the large and growing open source community, sharing their own code.

It is assumed that the reader does have minimal proficiency with a computer; namely he
or she must know how to manipulate files, install applications, view and edit files, and use
applications to generate reports and presentations. Background in numerical analysis, signal
processing, and image processing, as well as programming, is of help, but not required.

This book does not intend to serve as an encyclopedia of programming in Python and the
covered packages; nor does it try to be complete. It serves as an introduction to data analysis
and visualization in Python and covers most of the topics associated with that field.

How This Book Is Structured

The book is designed so that you can easily skip back and forth as you engage topics.

Chapter 1 is a case study introducing the topics discussed throughout the book: data anal-
ysis, data management, and, of course, data visualization. The case study involves reading GPS
data, analyzing it, and plotting it along with relevant annotations (direction of travel, speed,
etc.). A fully functional Python script will be built from the ground up, complemented with lots
of explanations. The fruit of our work will be an eye-catching GPS route.

If you're new to data analysis and visualization, consider reading Chapter 2 first. The
chapter describes how to set up a development environment to perform the tasks associated
with data analysis and visualization in Python, including the selection of an OS, installing
Python, and installing third-party packages.

If you're new to Python, your next stop should be Chapter 3. In this chapter, I swiftly
discuss the Python programming language. I won’t be overly rehashing basic programming
paradigms; instead I'll quickly overview the Python programming building blocks.

Xix

XX

INTRODUCTION

Regardless of your Python programming experience, I highly encourage you to read Chap-
ter 4 before proceeding to the next chapters. Organization is the key to successful data analysis
and visualization. This chapter covers organizing data files, pros and cons of different file
formats, file naming conventions, finding data files, and automating file creation. The ideas in
Chapter 4 are used throughout the book.

From here on out you have several options. If you intend to process text and data files,
proceed to Chapter 5. Chapter 5 covers text files from all aspects: I/0 operations, string pro-
cessing, the csv module, regular expressions, and localization and internationalization. If
Chapter 5 leaves you wanting to know more about file processing, proceed to Chapter 10.
Chapter 10 includes advanced file processing topics: binary files, command-line arguments,
file and directory manipulation, and more. Both Chapters 5 and 10 are complemented with
numerous examples.

If graphs and plots are your heart’s desire, skip directly to Chapter 6. In Chapter 6 I exam-
ine matplotlib and explore its capabilities.

If you're interested in the numerical aspects of data, it is advised you read Chapter 7
first. Chapter 7 discusses the basic building blocks for scientific computing. Chapter 8 builds
on Chapter 7 and includes more advanced topics such as numerical analysis and signal
processing.

Image processing is an important aspect of data processing. Chapter 9 deals with tools
available as part of the Python Imaging Library (PIL) package and shows how to further
expand the package and perform more complex image processing tasks.

Chapter 10 covers advanced file processing topics including binary files and random
access, object serialization, command-line parameters, file compression, and more.

Finally, the Appendix provides additional source code listings used in the book.

Downloading the Code

The source code for this book is available to readers at waw.apress.comin the Source Code sec-
tion of this book’s home page. Please feel free to visit the Apress web site and download all the
code there. You can also check for errata and find related titles from Apress.

Contacting the Author

You can contact me at shai.vaingast@gmail.com.

CHAPTER 1

Navigating the World of Data
Visualization

A Case Study

As an engineer, I work with data all the time. I parse log files, analyze data, estimate values,
and compare the results with theory. Things don’t always add up. So I double-check my analy-
sis, perform more calculations, or run simulations to better understand the results. I refer to
previous work because the ideas are similar or sometimes because they’re dissimilar. I look at
the graphs and realize I'm missing some crucial information. So I add the missing data, but it’s
noisy and needs filtering. Eventually, I realize my implementation of the algorithm is poor or
that there is a better algorithm with better results, and so back to square one. It’s an iterative
process: tweak, test, tweak again until I'm satisfied with the results.

Those are the tasks surrounding research and development (R&D) work. And to be honest,
there’s no systematic method. Most of the time, research is organized chaos. The emphasis,
however, should be on organized, not chaos. Data should be analyzed and presented in a
clear and coherent manner. Sources for graphs well understood and verified to be accurate.
Algorithms tested and proven to be working as intended. The system should be flexible. Intro-
ducing new ideas and challenging previous methods should be easy and testing new ideas on
current data fast and efficient.

In this book I will attempt to address all the topics associated with data processing and
visualization: managing files and directories, reading files of varying formats, performing
signal processing and numerical analysis in a high-level programming language similar to
MATLAB and GNU-Octave, and teaching you Python, a rich and powerful programming lan-
guage, along the way.

In a nutshell, Beginning Python Visualization deals with the processing, analysis, manipu-
lation, and visualization of data using the Python programming language. The book covers the
following:

2

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

¢ Fundamentals of the Python programming language required for data analysis and
visualization

¢ Data files, format, and organization, as well as methods and guidelines for selecting file
formats and storing and organizing data to enable fast, efficient data processing

» Readily available Python packages for numerical analysis, signal and image processing,
graphing and plotting, and more

Gathering Data

We spend a considerable time recording and analyzing data. Data is stored in various formats
depending on the tools used to collect it, the nature of the data (e.g., pictures vs. sampled
analog data), the application that will later process the data, and personal preferences. Data
files are of varying sizes; some are very large, others are smaller but in larger quantities. Data
organization adds another level of complexity. Files can be stored in directories according to
date, grouped together in one big directory or in a database, or adhere to a different scheme
altogether. Typically, the number of data files or the amount of data per file is too large to
allow skimming or browsing with an editor or viewer. Methods and tools are required to find
the data and analyze it to produce meaningful results.

Case Study: GPS Data

You just got a USB GPS receiver for your birthday! You’d like to analyze GPS data and find out
how often you exceed the speed limit and how much time you spend in traffic. You’d like to
track data over a year, or even longer.

Some hardware background: most USB GPS receivers behave as serial ports (this is also
true for Bluetooth GPS devices). What this means is that once a GPS is connected, and assum-
ing it’s installed properly, reading GPS data is as simple as opening the COM port associated
with the GPS and reading the values. GPS values are typically clear text values: numbers and
text. Of course, if you're planning on recording data from your car, it would make a lot of sense
to hook it up to a laptop rather than a desktop.

We would like to record, analyze, and visualize the GPS data, in Python. First things first:
recording GPS data.

Note If you wish to follow along with the remainder of the chapter by means of issuing the commands
yourself and viewing the results, you might first want to refer to Chapter 2 and set up Python on your system.
That being said, it's not necessary, and you can follow along to get an understanding of the book and its
purpose. In fact, | encourage you to come back to this chapter and read it again after you’ve had more expe-
rience with Python.

Python is an interpreted programming language. What this means is each command
is first read and then executed, in contrast to compiled programming languages, where the
entire program is evaluated (compiled) and then executed. One of the important features of

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

interpreted programming languages is that it’s easy to run them interactively. That is, perform
a command, examine the results, perform more commands, and examine more results, and so
on. The ability to run Python interactively is very useful, and it allows you to examine topics as
you learn them.

It’s also possible to run Python scripts, that is, noninteractively, and there are several ways
to do that. You can run scripts from the interactive Python prompt by issuing the command
execfile('scriptname.py'). Or you can enter python scriptname.py at the command-line
interface of your operating system. If you're using IPython, you can issue the command run
scriptname.py instead; and if you're running IDLE, the Python GUI, you can open the script
and press F5 to execute it. The . py extension is a common convention that distinguishes
Python scripts from other files.

Back to recording GPS data. To be able to access the serial port from Python, we’ll be
using the pySerial module. PySerial, as the name suggests, allows seamless access to serial
ports. To use pySerial we must first read the module to memory, that is, import it using the
import command. If all goes well, we’ll be presented with the Python prompt again.

>>> import serial

Note To distinguish between interactive sessions and Python scripts, when code starts with >>>, it
means that the code was run on Python interactively. In case the ellipsis symbol (. . .) appears, it means that
this is a continuation of a previously interactively entered command. Lines of text following the symbols ...
or >>> is Python’s response to the issued command. A code listing that does not start with >>> is a script
written in an editor, and in order to execute it you will have to save it under scriptname.py (or some other
name) and execute it as described previously.

Scanning Serial Ports

Next, we need to find the serial port parameters: the baud rate and the port number. The baud
rate is a GPS parameter, so it’s best to consult the GPS manual (not to worry if you can’t find
this information, I'll discuss later how to “guess” what it is). As for the port number, this is
determined by your operating system. If you’re not sure how to find the port number, or if the
port number keeps changing when you plug and unplug your GPS, you can use the short pro-
gram in Listing 1-1 to identify active serial ports.

Listing 1-1. Scanning Serial Ports with scanport.py

import serial

found = False
for i in range(64):
try:
ser = serial.Serial(i)
ser.close()
print "Found COM", i+1
found = True

4 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

except serial.serialutil.SerialException:
pass

if not found:
print "No ports found, make sure GPS is connected."”

Note Short programs are typically referred to as scripts.

Run scanport.py and note the result:

>>> execfile('scanport.py"')
Found COM 5

This is a rather quick introduction to Python! First, let’s dissect scanport.py line by line.
The first line, import serial, loads the pySerial module. We then assign to the Boolean vari-
able found the value False; this variable will be used as an indication of whether a serial port
was found or not. We proceed with the for loop: the loop goes over the values between 0 and
63 as implied by range(64) (most systems have less than 64 virtual COM ports). The function
range(N) returns a list of values from 0 to N-1. Our approach to seeing what ports are available
is rather simple: try and open the port, and if all goes well, that port is a candidate. If it was not
possible to open the port, just ignore that port. And so this is exactly how it’s coded!

This is a common motto in Python: It’s Easier to Ask Forgiveness than Permission, or
EAFP. The idea is this: Try and perform an operation. If all goes well, great. If not, handle it
with the except clause, or more figuratively, ask forgiveness. This is eloquently coded with the
try/except mechanism.

In our case, the function that’s most likely to fail (raise an exception) is the one that tries
to open a nonexistent port: ser = serial.Serial(i). The function Serial() is part of the serial
module (notice case sensitivity). To access functions within modules, you specify the mod-
ule name, dot (.), and the function name. So to call the function Serial() within the module
serial, write serial.Serial(). The function Serial() takes one parameter: the port number.
Python, like C, starts counting at 0, so remember to subtract 1 from your virtual COM port
when passing a parameter to the function. My GPS turned out to be connected to COM5, so a
call to serial.Serial(4) will allow me access to the GPS. If the port is successfully opened, no
exception is raised, and the opened port is associated with the variable ser.

The next line in the try block, ser.close(), tries to close the port. Closing the port renders
it accessible to other applications, including your own. If you neglect to close the port, Python
will close it for you once the variable associated with it, ser, is no longer in use. We also print
out a message saying the port is a good candidate and set the found flag to True.

If the block of commands under try fails, the block of commands under except is exe-
cuted assuming the except condition is met. In our case, if an exception occurred, and if the
exception is of type serial.serialutil.SerialException, which means the port could not be
opened, we want to simply disregard it. This is done using the pass statement, which does
nothing.

Lastly, once the for loop is complete, and in case no port was found, a message indicating
that is printed.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Note The indentation (tabs) in Python is important because it groups commands together. This is also
true when using Python in an interactive mode. All lines with the same indentation are considered one block.
Python’s indentation is equivalent to C/C++ curly braces—{}.

Recording GPS Data

Let’s start gathering data. Enter code in Listing 1-2 and record it in the file record gps.py.

Listing 1-2. record gps.py

import time, serial

change these parameters to your GPS parameters
ser = serial.Serial(4)

ser.baudrate = 4800

fmt = "../data/GPS-%4d-%02d-%02d-%02d-%02d-%02d.csv"

filename = fmt % time.localtime()[0:6]
f = open(filename, 'wb")
while True:
line = ser.readline()
f.write(line)
print line,

This time, we’ve imported another module: time. The time module provides access to
date and time functions, and we’ll use those to name our GPS data files. We also introduce
an important notion here, comments! Comments in Python are denoted by the # sign and
are similar to C++ double slash notation, //. Everything from that point onward is considered
aremark. If the # sign is at the beginning of a line, then the entire line is a remark, usually
describing the next line or block of code. The exception to the # sign indicating a remark is if it
is quoted inside a string, as follows: "#".

Don’t forget to change the port number to point at your serial port (minus 1) and set
the proper baud rate. Determining the baud rate is not complex either—best to consult the
manual. Mine turned out to be 4800, but if you're not sure, you can tweak this parameter. The
script record_gps.py will print the output from the GPS on screen so you can change the baud
rate value (in multiples of 2, for example 4800, 9600, and so on) until you see some meaningful
results (i.e., text and numbers).

Running record_gps.py (I'll get to how it works soon) yields GPS data:

>>> execfile('record gps.py')

$GPRMC, 140053.00, A, 4454.1740,N,09325.0143,W,000.0,128.7,300508,001.1,E, A*2E
$GPGGA, 140053.00, 4454.1740,N,09325.0143,W,1,09,01.1,00289.8,M,-030.7,M, , *5E
$GPGSA,A,3,21,15,18,24,26,29,06,22,,03,,,02.0,01.1,01.7%04

$GPGSY, 3,1,12,21,75,306,40,15,59,075,46,18,57,269,49,24,56,115,46%79
$GPGSV,3,2,12,26,48,059,43,29,27,188,48,06,25,308,41,22,18,257,33%7D
$GPGSV, 3,3,12,08,14,060,,03,11,320,32,09,06,144,,16,04,311,*7C

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

$GPRMC, 140054.00,A,4454.1740,N,09325.0143,W,000.0,128.7,300508,001.1,E,A*29
$GPGCA, 140054.00,4454.1740,N,09325.0143,W,1,09,01.1,00289.8,M,-030.7,M,,*59
$GPGSA, A, 3,21,15,18,24,26,29,06,22,,03,,,02.0,01.1,01.7*04

Data is being recorded to file as it is displayed. When you wish to stop viewing and record-
ing GPS data, press Ctrl+C. If you're running in an interactive Python, once you issue Ctrl+C,
be sure to close the serial port, or you won’t be able to rerun the script record gps.py. To close
the port, issue the following command:

>>> ser.close()
It’s also a good idea to close the file:
>>> f.close()

Let’s turn back so I can explain how record gps.py works. The heart of the script lies in
the following lines of code:

while True:
line = ser.readline()
f.write(line)
print line,

This is a straightforward implementation. The first line, while True:, instructs that the
following block should be run indefinitely, that is, in an infinite loop. That’s why you need to
press Ctrl+C to stop recording. The next three lines are then executed continuously. What we
do is read a line of text from the serial port, store it to file, and print it to screen. Reading GPS
data is carried out by the command line = ser.readline(). Writing that data to a file for later
processing is done by f.write(line). Printing the data to screen so the user has some visual
feedback is done with print line,. The reason for the comma following line is to suppress an
extra line break.

Data Organization

Let’s turn to selecting file format, file naming conventions, and data location. Now there isn’t
a good solution that fits all, but the methodologies and ideas are simple. The method I'll use
here is based on file names. I'll show you how to name data files in a way that lends itself easily
to automatic processing later on.

File Format

A file format is a set of rules describing the contents of a file. For the GPS problem, we’ll choose
the Comma Separated Values (CSV) file format. CSV files are text files with values separated by
commas. For example:

$GPGSV, 3,2,12,06,43,096,37,07,41,291,38,16,39,052,32,27,34,291,34*76

$GPGSV, 3,3,12,19,26,152,35,08,06,280, ,10,00,337,,00,00,000,*74

$GPRMC, 233547.32,A,4455.6446,N,09329.3400,W,030.1,272.5,040608,001.1, E,A*2E
$GPGGA, 233547.32,4455.6446,N,09329.3400,W,1,06,02.8,00299.0,M,-030.7,M, ,*5A

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

CSVis a popular format recognized by most spreadsheets and database applications and,
of course, text editors, seeing as they're really just text files. As it turns out, the data the GPS
outputs is already comma separated, so all that’s required is to save this information to a file,
asis.

File Naming Conventions

We turn to selecting proper file names for our data files. File names should be unique so that
files won’t be accidentally overwritten. File names should be descriptive, that is, tell us some-
thing about the contents. Lastly, we’d like the file name extension to tell us how to view the
file. The latter is typically achieved by selecting a proper extension, in our case, .csv. Here are
the naming conventions I chose for this example:

¢ File names holding GPS data will start with the text “GPS-".

¢ Next is the date and time in ISO format with the separating colons omitted and a
hyphen between the date and time: YYYY-mm-dd-HH-MM-SS, where YYYY stands for
year, mm for month, dd for day, HH for hours, MM for minutes, and SS for seconds. In
case a value is one digit and two digits are required, values will be padded with zeros,
for example, the month of May will be denoted by 05, not 5. For additional information
regarding the ISO format, refer to ISO 8601, “Data elements and interchange formats—
Information interchange—Representation of dates and times” (http://www.iso.org).

o All files will have a .csv extension.

Following these conventions, a file name might look like this:

GPS-2008-05-30-09-10-52.csv

Data Location

This is where we store data files:

¢ All data files are stored in directory data. All scripts are stored in directory src. Both
directories are under the same parent directory Ch1. So a relative path from src to data
is ../data.

e It’sagood idea to also add a Readme. txt file. Readme files are clear text files describing
the contents of a directory, in as much detail as deemed reasonable: the data source,
data acquisition system, person in charge of data gathering, reason for gathering the
data, and so on. Here’s an example:

Data recorded from a USB GPS receiver, connected to a Lenovo laptop T60.
Data was gathered via the serial port stored to clear text files (CSV).
Measurements were taken to estimate speed and time spent in traffic.
Gathered by Shai Vaingast.

Date: throughout 2008, see file timestamps.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Data Analysis

Once data is organized and accessible in files, the next step is to extract information. Informa-
tion can be a value, a graph, or a report pertaining to the problem at hand.

The idea is to use Python’s scripting abilities and the wide range of readily available pack-
ages to write a fully automated application to process, analyze, and visualize data. Scripts are
small pieces of code that are written relatively quickly in a high-level programming language.
The key word here is productivity, the ability to change and test algorithms and extract results
fast. Scripts might not be highly efficient in terms of processing speed, but written properly,
they should not slow down running times. For example, a script might generate graphs or
search the hard drive for data files, analyze log files, and extract the maximum and minimum
temperatures, or in our case, analyze GPS data.

Back to our GPS case study. The following is the algorithm we’ll follow:

1. Compile a list of all the data files.
2. For each file

a. Read the data.

b. Process the data.

¢. Plot the data.

Walking Directories

To compile a list of all the files having GPS data, we’ll use the function os.walk() provided with
the module os, which is part of the Python Standard Library. To use os, we issue import os.

>>> import os
>>> for root, dirs, files in os.walk('../data'):
print root, dirs, files

../data [] ['GPS-2008-05-30-09-00-50.csv', 'GPS-2008-05-30-09-10-52.CsV",
'Readme.txt"']

Note To be able to change directories within the Python interpreter, first issue import os. Then,
to change to a directory, issue os.chdir(directory path). To list directory contents, you can use
os.listdir(directory path). Some interpreters like IPython let you use, among other enhancements,
shell-like commands such as cd and 1s, which add considerably to usability.

The function os.walk() iterates through the directory data and its subdirectories recur-
sively, looking for files and folders, storing the results in variables root, dirs, and files. The
second line prints out the root directory for our search, in our case . ./data (notice the rela-
tive path), then the subdirectories, and lastly the files themselves, in a list. I've only recorded
two data files, but as time progresses, more data is added to this folder, and the number can

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

increase substantially. Since we have no subdirectories in folder data, the output correspond-
ing to dirs should be an empty list, which is denoted by [].

os.walk() is a bit of an overkill here. In our case, directory data doesn’t have any sub-
directories, and we could have just as easily listed the contents of the directory using the
os.listdir() function call, as follows:

>>> os.listdir('../data")
['GPS-2008-30-05-09-00-50.csv', 'GPS-2008-30-05-09-10-52.csv', 'Readme.txt']

However, os.walk() is very useful. It's not uncommon to have files grouped together in
directories and within those directories subdirectories holding more files. For example, you
might want to group files in accordance with the GPS that recorded the data. Or if another
driver is recording GPS data, you might want to put that data in a separate subdirectory within
your data directory. In those cases, os.walk() is exactly what’s needed.

Now that we have a list of all the files in directory data, we turn to process only those
with the . csv extension. This is done using the endswith() function, which checks whether a
string ends with “csv”. Files that do not end with “csv” are skipped using the continue state-
ment: continue instructs the for loop to skip current execution and proceed to the next
element. Files that do end with “csv” are read and processed. We also introduce a function to
create a full file name path from the directory and the file name, os.path.join(), as shown in
Listing 1-3.

Listing 1-3. Processing Only CSV Files

for filename in files:
create full file name including path
cur_file = os.path.join(root, filename)
if filename.endswith('csv'):
y = read csv_file(cur file)
else:
continue

only files with the .csv extension from here on

Reading CSV Files

Our next step is to read the files. Again, we turn to Python’s built-in modules, this time the csv
module. Although the CSV file format is quite popular, there’s no clear definition, and each
spreadsheet and database employs its own “dialect.” The files we’ll be processing adhere to
the most basic CSV file dialect, so we’ll use the default behavior of Python’s csv module. Since
we’ll be reading several CSV files, it stands to reason to define a function to perform this task.
Listing 1-4 shows this function.

Listing 1-4. A Function to Read CSV Files

def read csv_file(filename):
"""Reads a CSV file and returns it as a list of rows.

nun

10 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

data = []

for row in csv.reader(open(filename)):
data.append(row)

return data

The first line defines a function named read csv_file(). CSV file support is introduced
with the csv module, so we have to import csv before calling the function. The function takes
one variable, filename, and returns an array of rows holding data in the file. What I mean by
this is that every line read is processed and becomes a list, with every comma-separated value
as one element in that list. The function returns an array of such lists. For example:

>>> import csv

>>> x = read csv_file('../data/GPS-2008-06-04-09-03-45.csv")

>>> len(x)

3683

>>> x[10]

['$GPGSV', '3', '3', '12', '29', '10', 'O40', '', '16', 'O1', '302', '', '26', 'O1',
'037', '', '00', '00', '000', '*72']

>>> x[1676]

['$GPGSV', '3', '1', '12', '21', '86', '258', '43', '18', '66', '286', '20', '15',
50", '059', '45', '24', '44', '126', '43*72']

len(x) lets us know the size of the array of lists. It’s also a crude way for us to ensure that
data was actually read into the array.

The second line in the function is called a docstring, and it is characterized by three quotes
(""") surrounding the text in the following manner: """dosctring""". In this case, a docstring
is used to document the function, that is, what it does. Issuing the command help(funcname)
yields its docstring:

>>> help(read csv_file)
Help on function read csv_file in module _main_ :

read csv_file(filename)
Reads a CSV file and returns it as a list of rows.

You should use help() extensively. help() can be invoked with functions as well as mod-
ules. For example, the following invokes help on module csv:

>>> help(csv)
Help on module csv:

NAME
csv - CSV parsing and writing.

FILE
/usr/1ib/python2.5/csv.py

MODULE DOCS
http://www.python.org/doc/current/lib/module-csv.html

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

DESCRIPTION
This module provides classes that assist in the reading and writing
of Comma Separated Value (CSV) files, and implements the interface
described by PEP 305. Although many CSV files are simple to parse,
the format is not formally defined by a stable specification and
is subtle enough that parsing lines of a CSV file with something
like line.split(",") is bound to fail. The module supports three
basic APIs: reading, writing, and registration of dialects.

Next in our dissection is the line data = [] which declares a variable named data and ini-
tializes it as an empty list. data will be used to store the values from the CSV file.

The csv module helps us read CSV files by automating a lot of the tasks associated with
reading CSV files. I will discuss CSV files and the csv module in Chapters 4 and 5, so here I'll
only provide an overview.

These are the operations to perform in order to read CSV files using the csv module:

1. Open the file for reading.

2. Create a csv.reader object. The csv.reader object has functions that help us read CSV
files.

3. Using the csv.reader object, read the data from the file, a row at a time.
4. Append every row to variable data.
5. Close the file.

Let’s try this, a step at a time:

>>> f = open('../data/GPS-2008-06-04-09-03-45.csv")
>>> cr = csv.reader(f)
>>> for row in cr:

print row
['$GPGSA|) IA'J ‘3l) '21|) I18I) '15|) I24l) 'I) '22|) I‘) I‘) I‘) I‘) I‘) I‘)
'03.5', '02.2", '02.7*09']
['$GPGSV', '3', '1', '12', '21', '86', '267', '39', '18', '66', '286', '44', '15',
's1', '060", '43', '24', '45', '125', '30*7A']
['$GPGSV', '3', '2', '12', ‘06", '28', '300', '33", '22', '27', '265', '31', '03',
'18', '312', '27', '29', '15', '185', '31*7C']
['$GPGSV', '3', '3', '12', '09', 'i5', '138', '31', '16', '0O', '301',
‘o0', '332', '', '00', '00', '000', '*70']
['$GPRMC', '140706.24', 'A', '4455.6241', 'N', '09328.0519', 'W', '011.4', '152.7',
'040608', '001.2', 'E', 'A*25']
['$GPGGA', '140706.24', '4455.6241', 'N', '09328.0519', 'W', '1', '04',
'03.0','00295.1", 'M"', '-030.7"', 'M"', "', "*¥51"]
['$GPGSA', 'A', '3', '21', '18", '15', '24', ‘', "', v, ttyottyottyott,ott) '08.9',
'03.0', '08.4%04"]
>>> f.close()

First we open the data file and assign it to variable f. The opened file can now be referred
to by the variable f. Next, we create a csv.reader object, cr. We associate the csv.reader

1

12

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

object, cr, with the file f. We then iterate through every row of the csv.reader object and print
that row. Lastly, we close the file by calling f.close(). It is considered good practice to close
the file once you're done with it, but if you neglect to do so, Python will close the file automati-
cally once the variable f is no longer in use.

One of the things that you can do in Python is cascade functions. This means you can call
functions on results of other functions. This process can be repeated several times. Cascad-
ing (usually) adds clarity and produces more elegant scripts. In our case, since variable f isn’t
really important to us, we discard it after we attach it to a csv.reader object; so instead of the
preceding code, we can write the following:

>>> cr = csv.reader(open('data/CB401-2005-06-21-013504.csv"))
>>> for row in cr:
print row

The same holds true for variable cr, so if we're feeling particularly brave, we can use this
script:

>>> for row in csv.reader(open('data/CB401-2005-06-21-013504.csv"')):
print row

While the script might be shorter, there’s no performance gain. It is therefore suggested
that you cascade functions only if it adds clarity; there’s a good chance you’ll be editing this
code later on, and it’s important to be able to understand what’s going on. In fact, not cas-
cading functions might be useful at times because you might need access to intermediate
variables (such as f and cr in our case).

The csv.reader object converts each row we read into a row of fields, in the form of a
list. That row is then appended to a list of rows, data. This is also the value returned by the
function.

Note By now you've seen the dot symbol (.) used several times, and it might be a bit confusing, so an
explanation is in order. The dot symbol is used to access function members of modules as well as function
members of objects (classes). You've seen it in member functions of modules, such as csv.reader(), but
also for objects, such as f.read(). In the latter, it means that the file object has a member function read()
and that function is called to operate on variable . To access these functions, we use the dot operator. We'll
touch on this again in Chapter 3. Lastly, we use the ellipsis symbol (. . .) to denote line continuation when
interactively entering commands in Python.

Analyzing GPS Data

Let’s take a closer look at the GPS data.
¢ Each row seems to start with a text header stamp, beginning with the characters $GP.
¢ There are several header stamps, for example, $GPGSA and $GPRMC.

* Following the header are additional values, most of which are numeric.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Not being GPS savvy, I looked up the GPS format on the Internet. It turns out the for-
mat is known as NMEA 0183. NMEA stands for the National Marine Electronics Association;
see http://www.nmea.org for more information. The NMEA 0183 data format is described at
http://www.gpsinformation.org/dale/nmea.htm. There are a lot of header stamps in the for-
mat, and some might hold useful information for our task.

As mentioned earlier, several $GP header stamps appear in our data files, but which ones
exactly are of relevance is a different question. First, it would be nice to know which header
stamps from the NMEA standard are even present in our data files. One option would be to
open the files, look for the headers, and jot down every new header once we see it. Another, of
course, would be to use Python to do that for us.

Python is a very high-level programming language. As such, it has built-in support for
dictionaries (also known as associative arrays in Perl), which are data structures that have a
one-to-one relationship between a key and a value, very much like real dictionaries. Tradi-
tional dictionaries, however, often have several values for a key, that is, several interpretations
(values) for one word (key). You can easily implement this in Python’s using the dictionary
object as well by assigning a list value to a key. That way you can have several entries per one
key, because the key is associated with a list that can hold several values. In reality, it’s still a
one-to-one relationship. But enough about that for now, I'll cover dictionaries in more detail
in future chapters. What we want to do here is use a dictionary object to hold the number of
times a header is encountered. Our key will be the GPS header stamp, and our value will be a
number, indicating occurrence. We’ll increment the value whenever a key is encountered, as
shown in Listing 1-5.

Listing 1-5. Function 1ist_gps commands ()

def list gps commands(data):
"""Counts the number of times a GPS command is observed.

nnn

Returns a dictionary object.

gps_cmds = dict()
for row in data:
try:
gps_cmds[row[0]] += 1
except KeyError:
gps_cmds[row[0]] = 1

return gps_cmds

Some notes about this function. First, the docstring spans multiple lines, which is one of
the key benefits of docstrings. Docstrings will display all the spaces and line breaks as shown
in the function itself. Next we initialize a variable, gps_cmds, to be our dictionary. We then pro-
cess every list in the GPS data: we only care about the first element of every row, as that’s the
value that holds the GPS header stamps. We then increment the value associated with the key:
gps_cmds[row[0]] += 1. We use the += operation to increment the value by 1, similar to how
it's done in C (Python, however, does not use the ++ operator). If the key does not exist, which
will happen whenever we encounter a new header stamp, an exception will be raised. We

13

14

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

catch the exception with our except KeyError statement. In case of an exception, we set the
dictionary value associated with the key to 1.

The function list_gps _commands() can be written even more compactly using the diction-
ary method get(); see Chapter 3 for details.

Let’s analyze some GPS data:

>>> x = read _csv_file('../data/GPS-2008-05-30-09-00-50.csv")
>>> list gps_commands(x)
{"$GPGSA": 282, '$GPGSV': 846, '$GPGGA': 282, '$GPRMC': 283}

Turns out there are four distinct GPS headers being generated by my GPS. Of those, only
two interest me: $GPGSV, which holds the number of satellites in view (Hey! It’s really impor-
tant!), and $GPRMC, which holds location and velocity information.

So what we’d like to do is code a function that takes the GPS data and, whenever the
header field is $GPGSV or $GPRMC, extracts the information and stores it in numerical arrays that
will be easier to manipulate later on. Numerical arrays are introduced with the NumPy mod-
ule, so we have to issue import numpy. Since we’ll be using a lot of the functionality of NumPy,
SciPy, and matplotlib, an easier approach would be to issue import pylab, which imports all
these modules, as follows:

>>> from pylab import *

Note The name PyLab comes from Python and MATLAB. PyLab provides MATLAB-like functionality in
Python.

Extracting GPS Data

In the case of a $GPGSV header, the number of satellites is the fourth entry. In case of a $GPRMC
header, we have a bit more interesting information. The second field is the timestamp, the
fourth field is the latitude, the sixth field is the longitude, and the eighth field is the velocity.
Again, turn to the NMEA 0183 format for more details. Table 1-1 summarizes the fields and
their values in a $GPRMC line.

Table 1-1. $GPRMC Information (Excerpt)

Field Name Index Format

Header 0 $GPRMC (fixed)
Timestamp 1 hhmmss.ss
Latitude 3 DDMM.MMM
Longitude 5 DDDMM.MMM
Velocity 7 VVV.V

Some caveats regarding the information in $GPRMC. We first turn to the timestamp of an
arbitrary line:

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

>>> x[12]
['$GPRMC', '140055.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0', '128.7',
'300508', '001.1', 'E', 'A*28']

In this output, the timestamp appears as '140055.00". This follows the format hhmmss.ss
where hh are two digits representing the hour (it will always consist of two digits—if the hour
is one digit, say 7 in the morning, a 0 will be added before it), mm are two digits representing
the minute (again, always two digits), and ss.ss are five characters (four digits plus the dot)
representing seconds and fractions of seconds. (There’s also a North/South field as well as
an East/West field. Here, for simplicity, we assume northern hemisphere, but you can easily
change these values by reading the entire $GPRMC structure.)

Note In the ISO time format, we’ve used HHMMSS to denote hours minutes and seconds. Here we follow
the convention in NMEA, which uses hhmmss.ss for hours, minutes, and seconds and sets DD and MM to
angular degrees and minutes.

The timestamp string is a bit hard to work with, especially when plotting data. The first
reason is that it’s a string, not a number. But even if you translated it to a number, the system
does not lend itself nicely to plotting because there are 60 seconds in a minute, not a 100. So
what we want to do is “linearize” the timestamp. To achieve this, we translate the timestamp
as seconds elapsed since midnight, as follows: T = hh * 3600 + mm * 60 + ss.Ss.

The second issue we have is that hh, mm, and ss.ss are strings, not numbers. Multiplying
a string in Python does something completely different from what we want here. So we have to
first convert the strings to numerical values, in our case, float, because of the decimal point in
the string representing the seconds. This all folds nicely into the following:

>>> Yow = Xx[12]

['$GPRMC', '140055.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0', '128.7',
'300508', '001.1', 'E', 'A*28']

>>> float(row[1][0:2])*3600+float(row[1][2:4])*60+float(row[1][4:6])

50445.0

The operator [] denotes the index, so row[1] is the second field of row (counting starts at
zero) which is a string. The first two characters of a string are denoted by [0:2]; this is known
as string slicing. So to access the first two characters of the first field, we write row[1][0:2].
Upcoming chapters will include more about strings and methods of slicing them.

Next we tackle latitude and longitude. We face the same issue as with the timestamp, only
here we deal with degrees. Latitude follows the format DDMM.MMM where DD stands for
degrees and MM.MMM stands for minutes. We decide to use degrees this time. To translate
the latitude into decimal degrees, we need to divide the minutes by 60:

>>> Tow = x[12]

['$GPRMC', '140055.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0', '128.7',
'300508', '001.1', 'E', 'A*28']

>>> float(row[3][0:2])+float(row[3][2:])/60.0

44.902900000000002

15

16

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

For latitude information we require the fourth field, hence row[3]. This example also
introduces another notation, [2:], which means the slice of the string from the third character
until the end. Also notice that the code uses 60.0 and not 60. When dividing by 60, it’s implied
that you want an integer division; dividing by 60.0 means you want a floating-point division,
which is to say you care about the information past the decimal point. However, seeing as we
already specified that we want the information as a floating-point number as indicated by the
float() conversion, the result will be a floating point regardless. Still, it’s good practice to let
Python know what kind of division you really want.

Here are some examples to further illustrate the point:

>>> 100/60

1

>>> 100/60.0
1.6666666666666667
>>> float(100)/60
1.6666666666666667

Longitude information is similar to latitude with a minor difference: longitude degrees are
three characters instead of two (up to 180 degrees, not just up to 90 degrees) so the indices to
the strings are different.

Listing 1-6 presents the entire function to process GPS data.

Listing 1-6. Function process_gps_data()

from pylab import *

constant definitions
NMI = 1852.0

def process gps data(data):
"""Processes GPS data, NMEA 0183 format.

Returns a tuple of arrays: latitude, longitude, velocity [km/h],
time [sec] and number of satellites.

See also: http://www.gpsinformation.org/dale/nmea.htm."""
latitude

longitude
velocity

t_seconds
num_sats

I
—_— — — — —
S S S S

for row in data:
if row[0] == "$GPGSV':
num_sats.append(float(row[3]))
elif row[0] == '$GPRMC':
t_seconds.append(float(row[1][0:2])*3600 + \
float(row[1][2:4])*60+float(row[1][4:6]))
latitude.append(float(row[3][0:2]) + \

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

float(row[3][2:])/60.0)
longitude.append((float(row[5][0:3]) + \

float(row[5][3:])/60.0))
velocity.append(float(row[7])*NMI/1000.0)

return (array(latitude), array(longitude), \
array(velocity), array(t seconds), array(num sats))

Some notes about the process_gps data() function:

e NMI is defined as 1852.0, which is one nautical mile in meters and also one minute on
the equator. The reason the constant NMI is not defined in the function is that we’d like
to use it outside the function as well.

e We initialize the return values latitude, longitude, velocity, t_seconds, and num_sats
by setting them to an empty list: []. Initializing the lists creates them and allows us to
use the append() method, which adds values to the lists.

¢ The if and elif statements are self-explanatory: if is a conditional clause, and elif is
equivalent to saying “else, if.” That is, if the first condition didn’t succeed, but the next
condition succeeds, execute the following block.

¢ The symbol \ that appears on the several calculations and on the return line indicates
that the operation continues on the next line.

e Lastly, the return value is a tuple of arrays. A tuple is an immutable sequence, mean-
ing you cannot change it. So tuple means an unchangeable sequence of items (as
opposed to a list, which is a mutable sequence). The reason we return a tuple and not
a two-dimensional array, for example, is that we might have different lengths of lists to
return: the length of the number of satellites list may be different from the length of the
longitude list, since they originated from different header stamps.

Here’s how you call process_gps data():

>>> y = read csv_file('../data\\GPS-2008-05-30-09-00-50.csv")
>>> (lat, long, v, t, sats) = process gps data(y)

The second line introduces sequence unpacking, which allows multiple assignments.
Armed with all these functions, we’re ready to plot some data!

Data Visualization

Our next step is to visualize the data. We'll be relying on the matplotlib package heavily. We've
already imported matplotlib with the command from pylab import *, so there’s no additional
importing needed at the moment. It’s time to read the data and plot the course.

Our first problem is that the information is given in latitude and longitude. Latitude and
longitude are spherical coordinates, that is, those are points on a sphere, the earth. But we
want a map-like plot, which uses Cartesian coordinates, that is, x and y. So first we have to
transform the spherical coordinates to Cartesian. We’ll use the quick-and-dirty method shown
in Listing 1-7 to do this, one that’s actually quite accurate as long as the distances traveled are
small relative to the radius of the earth.

17

18

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Listing 1-7. “Quick-and-Dirty” Spherical to Cartesian Transformation

x = longitude*NMI*60.0%cos(latitude)
y = latitude*NMI*60.0

To justify this to yourself, consider the following reasoning: As you go up to the North
Pole, the circumference at the location you're at gets smaller and smaller, until at the North
Pole it’s zero. So at latitude 0°, the equator, each degree (longitude) means more distance trav-
eled than at latitude 45°. That’s why x is a function of the longitude value itself but also of the
latitude: the greater the latitude, the smaller a longitude change is in terms of distance. On the
other hand, y, which is north to south, is not dependent on longitude.

The next thing to understand is that the earth is a sphere, and whenever we plot an x-y
map, we're only really plotting a projection of that sphere on a plane of our choosing, hence
we denote it by (px,py), where p stands for “projection.” We'll take the southeastern-most
point as the start of the GPS data projection: (px,py) = (0,0). This translates into the code
shown in Listing 1-8.

Listing 1-8. Projecting the Traveled Course to Cartesian Coordinates

(lat-min(latitude))*NMI*60.0
(long-min(longitude))*NMI*60.0*cos(D2R*1atitude)

Py
pX

Some things to note:

* Variables py and px are arrays of floating-point values. We now operate on entire arrays
seamlessly. This is part of the NumPy package.

¢ D2R is a constant equal to 7t/180, converting degrees to radians.

* To set the y-axis at the minimum latitude and the x-axis at the minimum longitude, we
subtract the minimum latitude and minimum longitude values from latitude and lon-
gitude values, respectively.

GPS Location Plot

Now the moment we’ve been waiting for, plotting GPS data. To be able to follow along and
plot data, be sure to define the functions read csv_file() and process gps data() as previ-
ously detailed and set the file name variable to point to your GPS data file. I've suppressed
matplotlib responses so that the code is cleaner to follow.

>>> filename = 'GPS-2008-05-30-09-00-50.csv'

>>> y = read csv_file('../data/'+filename)

>>> (lat, long, v, t, sats) = process_gps_data(y)
>>> px = (long-min(long))*NMI*60.0*cos(D2R*1at)
>>> py = (lat-min(lat))*NMI*60.0

>>> figure()

>>> gca().axes.invert xaxis()

>>> plot(px, py, 'b', label='Cruising', linewidth=3)
>>> title(filename[:-4])

>>> legend(loc="upper left')

>>> xlabel('east-west (meters)")

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION 19

>>> ylabel('south-north (meters)')
>>> grid()

>>> axis('equal')

>>> show()

Figure 1-1 shows the result, which is rather pleasing.

GPS-2008-05-30-09-00-50

500 = T
.%‘ : : : : : : :
‘u-‘J 300_1 ;,...............,; :' :-_
I
£
=]
c : :] : : : :
£ 200 e -
5 i i i i i]
3 ; ; ; ; ; ;]
(73]
ol i i ; i i
500 400 300 200 100 0 —100

east-west (meters)

Figure 1-1. GPS data

We've used a substantial number of new functions, all part of the matplotlib package:
plot(), grid(), xlabel(), legend(), and more. Most of them are self-explanatory:

e xlabel(string value) and ylabel(string value) will print a label on the x- and y-axis,
respectively. title(string value) is used to print a caption above the graph. The string
value in the title is the file name up to the end minus four characters (so as to not dis-
play “.csv”). This is done using string slicing with a negative value, which means “from
the end.”

e legend() prints the labels associated with the graph in a legend box. legend() is highly
configurable (see help(legend) for details). The example plots the legend at the top-left
corner.

¢ grid() plots the grid lines. You can control the behavior of the grid quite extensively.

¢ plot() requires additional explanation as it is the most versatile. The command
plot(px, py, 'b', label='Cruising', linewidth=3) plots px and py with the color
blue as specified by the character 'b'. The plot is labeled “Cruising” so later on, when
we call the legend() function, the proper text will be associated with the data. Finally,
we set the line width to 3.

20

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

¢ The function axis() controls the behavior of the graph axis. Normally, I don’t call the
axis() function because plot() does a decent job at selecting the right values. How-
ever, in this case, it’s important to visualize the data properly, and that means to have
both x- and y-axes with equal increments so the graph is true to the path depicted. This
is achieved by calling axis('equal'). There are other values to control axis behavior as
described by help(axis).

e Lastly, gca().axes.invert xaxis() is a rather exotic addition. It stems from the way
we like to view maps and directions. In longitude, increasing values are displayed from
right to left. However, in mathematical graphs, increasing values are typically displayed
from left to right. This function call instructs the x-axis to be incrementing from right to
left, just like maps.

¢ When you're done preparing the graph, calling the show() function displays the output.

Matplotlib, which includes the preceding functions, is a comprehensive plotting package
and will be explored in Chapter 6.

Annotating the Graph

We'd like to add some more information to the GPS graph: we’d like to know where we’ve
stopped and where we were speeding. For this we use the function find(), which is part of the
PyLab package. find() returns an array of indices that satisfy the condition, in our case:

>>> STANDING KMH = 10.0

>>> SPEEDING KMH = 50.0
>>> Istand = find(v < STANDING KMH)
>>> Ispeed = find(v > SPEEDING KMH)

>>> Icruise = find((v >= STANDING KMH) & (v <= SPEEDING KMH))

We also calculate when we’re cruising (i.e., not speeding nor standing) for future process-
ing.

To annotate the graph with these points, we add another plot on top of our current plot,
only this time we change the color of the plot, and we use symbols instead of a solid blue line.
The combination 'sg' indicates a green square symbol (g for green, s for square); the combi-
nation 'or' indicates a red circle (r for red, o for circle). I suggest you use different symbols for
standing and speeding, not just colors, because the graph might be printed on a monochrome
printer. The function plot() supports an assortment of symbols and colors; consult with the
interactive help for details. The values we plot are only those returned by the find() function.

>>> plot(px[Istand], py[Istand], 'sg', label='Standing')
>>> plot(px[Ispeed], py[Ispeed], 'or', label='Speeding!")
>>> legend(loc="upper left')

Figure 1-2 shows the outcome.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

500 GPS-2008-05-30-09-00-50
= Cruising : : : 5
= = Standing
e e Speeding!
400 L :
7 : : : : : :
B 300 s . N e e]
E H N H H N H
=
£
[=]
= : : . : : :
3 H
2
100_._5 ____________________
0 560 40|0 360 200 160 (I) -100

east-west (meters)

Figure 1-2. GPS data with additional speed information

We’d also like to know the direction the car is going. To implement this, we’ll use the
text () function, which allows the writing of a string to an arbitrary location in the graph. So
to add the text “Hi” at location (10, 10), issue the command text(10, 10, 'Hi').One of the
nice features of the text() function is that you can rotate the text at an arbitrary angle. So to
plot “Hi” at location (10, 10) at 45 degrees, you issue text(10, 10, 'Hi', rotation=45).Our
implementation of heading information involves rotating the text “>>>" at the angle the car is
heading. We’ll only do this ten times so as not to clutter the graph with “>” symbols. Calculat-
ing the direction the car is heading at a given point, i, is shown in Listing 1-9.

Listing 1-9. Calculating the Heading

dx = px[i+1]-px[i]

dy = py[i+1]-py[i]
heading = arctan(dy/dx)

Instead of actually using the function arctan(dy/dx), we’ll use the function arctan2(dy,
dx). The benefits of using arctan2() over arctan() are twofold: 1) there’s no division that
might cause a divide-by-zero exception in case dx is zero, and 2) arctan2() preserves the angle
from -180 degrees to 180 degrees, whereas arctan() produces values between 0 degrees and
180 degrees only. The following code adds the direction symbols:

>>> for i in range(0, len(v), len(v)/10-1):
text(px[i], py[i], ">>>", \
rotation = arctan2(py[i+1]-py[i], -(px[i+1]-px[i]))/D2R, \
ha="center")

21

22 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Figure 1-3 shows the resulting graph.

GPS-2008-05-30-09-00-50

500 — T T T
= Cruising
= = Standing
e e Speeding!
400 -5 -
.%‘ : : : : : : :
‘u-‘J 300_1 ;,...............,; :' : ;_._
I
£
o
c : : ; : : : :
£ 200 S T . . e -
5 i i i i i i]
2 : : :]
(1]
o=]] " 2= ; |
500 400 300 200 100 0 —100

east-west (meters)

Figure 1-3. GPS graph with heading

Velocity Plot

We now turn to plotting a graph of the speed. This is a lot simpler:

>>> figure()

>>> t = (t-t[0])/60.0

>>> plot(t, v, 'k")

>>> plot([t[0], t[-1]], [STANDING KMH, STANDING KMH], '-g')
>>> text(t[0], STANDING KMH, \

... " Standing threshold: "+str(STANDING KMH))

>>> plot([t[o], t[-1]], [SPEEDING KMH, SPEEDING KMH], '-r')
>>> text(t[0], SPEEDING KMH, \

.. " Speeding threshold: "+str(SPEEDING KMH))

>>> grid()
>>> title('Velocity')

>>> xlabel('Time from start of file (minutes)')
>>> ylabel('Speed (Km/H)")

We start by opening a different figure with the figure() command. We proceed by chang-
ing the timescale units to minutes, a value easier for most humans to follow than seconds.
Selecting the proper units of measurement is important. Most people will find it easier to fol-
low the sentence “I drove for 30 minutes” as opposed to “I drove for 1800 seconds.” We also
set the time axis to start at t[0]. Next we plot the velocity as a function of time, in black. Good

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

graphs require annotation, so we choose to add two lines describing the thresholds for stand-
ing and speeding as well as text describing those thresholds. To generate the text, we combine
the text “Standing threshold” with the threshold value (after casting it to a string) and use the +
operator to concatenate strings. Last, of course, are the title, x and y labels, and grid. Figure 1-4
shows the final result.

Velocity
60 ; ; ; ;

50 Speeding threshold: 50.0 ,\ﬂ ﬂ

Speed (Km/H)

Time from start of file (minutes)

Figure 1-4. Velocity over time

Subplots

We’d also like to display some statistics. But before we do that, it would be preferable to
combine all these plots (GPS, velocity, and statistics) into one figure. To do this, we use the
subplot() function. subplot() is a matplotlib function that divides the plot into several smaller
sections called subplots and selects the subplot to work with. For example, subplot(1, 2, 1)
informs subsequent plotting commands that the area to work on is 1 by 2 subplots and the
currently selected subplot is 1, so that’s the left side of the plot area. subplot(2, 2, 2) will
choose the top-right subplot; subplot(2, 2, 4) will choose the lower-right subplot. A selec-
tion I found most readable in this scenario is to have the GPS data take half of the plot area,
the velocity graph a quarter, and the statistics another quarter.

Text

Sometimes, the best way to convey information is using text, not graphics. We’ll be limiting
our work to the statistics quarter for this section. Our first task is to get rid of the plot frame
and the x and y ticks. We just want a plain canvas to display text on. This is achieved by issuing
the following:

23

24

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

>>> subplot(2, 2, 4)
>>> axis('off")

The first call to subplot() selects our region of work as the lower-right quarter. The second
line removes the axes and hides the frame box.

It’s time to calculate some statistics. It appears that GPS data is being sent in regular inter-
vals, typically one second. So to calculate the time spent standing, in seconds, we calculate
the length of the vector Istand. Likewise, to calculate the time speeding, we can calculate the
length of Ispeed. To estimate how much these were in percent values, we divide the length of
the Istand and Ispeed vectors by the length of the velocity vector and multiply by 100. To cal-
culate the average speed, we use the mean() function, which is part of PyLab.

We also would like to calculate the total distance traveled. The distance can be calculated
as the sum of the distances between each two consecutive data points. The function diff()
returns a vector of the differences of the input vector.

>>> diff([1, 4, 0, 2])
array([3, -4, 2])

This is really useful because now to calculate the distance we can do the following:

>>> sum(sqrt(diff(px)**2+diff(py)**2))
1652.1444099624528

which in turn yields the total distance traveled.

To automate the whole process of printing the statistics, we store the text to be printed
in the variable stats, a list of strings. We also use a method of formatting strings similar to C’s
printf() function, although the syntax is a bit different. %s indicates a string; the %f indicates a
floating point number, in our case %. 1f indicates a float with one digit after the decimal point;
and %d indicates an integer. The following generates the statistics text:

>>> Total distance = float(sum(sqrt(diff(px)**2+diff(py)**2))/1000.0)
>>> Stand_time = len(Istand)/60.0
>>> Cruise time = len(Icruise)/60.0
>>> Speed time = len(Ispeed)/60.0

>>> Stand per = 100*len(Istand)/len(v)
>>> Cruise per = 100*len(Icruise)/len(v)
>>> Speed per = 100*len(Ispeed)/len(v)

>>> stats=['Statistics', \
'%s' % filename, \
"Number of data points: %d' % len(y), \
'Average number of satellites: %d' % mean(sats), \
'Total driving time: %.1f minutes:' % (len(v)/60.0), \
' Standing: %.1f minutes (%d%%)" % \
(Stand_time, Stand per), \
' Cruising: %.1f minutes (%d%%)' % \
(Cruise_time, Cruise per), \
' Speeding: %.1f minutes (%d%%)" % \
(Speed_time, Speed per), \
'Average speed: %d km/h' % mean(v),
'Total distance traveled: %.1f Km' % Total distance]

-

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

To print the text on the canvas, we again use the text() function, in a for loop, iterating
over every string of the stats list.

>>> for index, stat line in enumerate(reversed(stats)):
text(0, index, stat line, va='bottom")

>>> plot([index-.2, index-.2])
>>> axis([0, 1, -1, len(stats)])

We've introduced two new functions. One is reversed(), which yields the elements of
stats, in reversed order. The second is enumerate(), which returns not just each row in the
stats array but also the index to each row. So when variable stat_line is assigned the value
'Average speed...', the variable index is assigned the value 8, which indicates the ninth row
in stats. The reason we want to know the index is that we use it as location on the y-axis.
Lastly, the vertical alignment of the text is selected as bottom as suggested by the parameter
va="bottom' (va is short for vertical alignment).

Tying It All Together

Finally, Listing 1-10 shows the combined code to analyze and plot all GPS files in directory data.

Listing 1-10. Script gps. py

from pylab import *
import csv, os

constant definitions
STANDING _KMH = 10.0
SPEEDING _KMH = 50.0
NMI 1852.0

D2R = pi/180.0

def read csv_file(filename):
"""Reads a CSV file and returns it as a list of rows."""
data = []
for row in csv.reader(open(filename)):
data.append(row)
return data

def process gps data(data):
"""Processes GPS data, NMEA 0183 format.

Returns a tuple of arrays: latitude, longitude, velocity [km/h],
time [sec] and number of satellites.
See also: http://www.gpsinformation.org/dale/nmea.htm.

non

25

26 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

latitude
longitude
velocity
t_seconds
num_sats

I
—_— — — — —
S S S

for row in data:
if row[0] == "$GPGSV':
num_sats.append(float(row[3]))
elif row[0] == '$GPRMC':
t_seconds.append(float(row[1][0:2])*3600 + \
float(row[1][2:4])*60+float(row[1][4:6]))
latitude.append(float(row[3][0:2]) + \
float(row[3][2:])/60.0)
longitude.append((float(row[5][0:3]) + \
float(row[5][3:])/60.0))
velocity.append(float(row[7])*NMI/1000.0)

return (array(latitude), array(longitude), \
array(velocity), array(t seconds), array(num sats))

read every data file, filter, and plot the data
for root, dirs, files in os.walk('../data"):
for filename in files:
create full file name including path
cur_file = os.path.join(root, filename)
if filename.endswith('csv'):
y = read csv_file(cur file)
else:
continue

only files with the .csv extension from here on

process GPS data
(1lat, long, v, t, sats) = process gps data(y)

translate spherical coordinates to Cartesian
py = (lat-min(lat))*NMI*60.0
px = (long-min(long))*NMI*60.0*cos(D2R*1at)

find out when standing, speeding, or cruising

Istand = find(v < STANDING KMH)

Ispeed = find(v > SPEEDING KMH)

Icruise = find((v >= STANDING KMH) & (v <= SPEEDING KMH))

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

left side, GPS location graph
figure()
subplot(1, 2, 1)

longitude values go from right to left,
we want increasing values from left to right
gca().axes.invert xaxis()

plot(px, py, 'b', label=" Cruising', linewidth=3)
plot(px[Istand], py[Istand], 'sg', label=' Standing')
plot(px[Ispeed], py[Ispeed], 'or', label=' Speeding!")

add direction of travel
for i in range(0, len(v), len(v)/10-1):
text(px[i], py[i], ">>>", \
rotation = arctan2(py[i+1]-py[i], \
-(px[i+1]-px[1]))/D2R, ha='center")

legends and labels
title(filename[:-4])
legend(loc="upper left')
xlabel('east-west (meters)')
ylabel('south-north (meters)')
grid()

axis('equal')

top-right corner, speed graph
subplot(2, 2, 2)

set the start time as t[0]; convert to minutes
t = (t-t[0])/60.0
plot(t, v, 'k")

plot the standing and speeding threshold lines
plot([t[0], t[-1]], [STANDING KMH, STANDING KMH], '-g')
text(t[0], STANDING KMH, \

" Standing threshold: "+str(STANDING KMH))
plot([t[0], t[-1]], [SPEEDING KMH, SPEEDING KMH], '-1')
text(t[0], SPEEDING KMH, \

" Speeding threshold: "+str(SPEEDING KMH))

grid()

legend and labels

title('Velocity')

xlabel('Time from start of file (minutes)')
ylabel('Speed (Km/H)')

27

28 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

right-side corner, statistics data
subplot(2, 2, 4)

remove the frame and x-/y-axes. we want a clean slate
axis('off")

generate an array of strings to be printed

Total distance = float(sum(sqrt(diff(px)**2+diff(py)**2)) \
/1000.0)

Stand_time = len(Istand)/60.0

Cruise time = len(Icruise)/60.0

Speed time = len(Ispeed)/60.0

Stand per = 100*len(Istand)/len(v)

Cruise per = 100*len(Icruise)/len(v)

Speed per = 100*len(Ispeed)/len(v)

stats=['Statistics', \

'%s' % filename, \

'Number of data points: %d' % len(y), \

'Average number of satellites: %d' % mean(sats), \

'Total driving time: %.1f minutes:' % (len(v)/60.0), \

' Standing: %.1f minutes (%d%%)" % \

(Stand_time, Stand per), \

' Cruising: %.1f minutes (%d%%)' % \

(Cruise time, Cruise per), \

' Speeding: %.1f minutes (%d%%)' % \

(Speed time, Speed per), \

'Average speed: %d km/h' % mean(v), \

'Total distance traveled: %.1f Km' % Total distance]

5

display statistics information
for index, stat line in enumerate(reversed(stats)):
text(0, index, stat line, va='bottom")

draw a line below the "Statistics" text
plot([index-.2, index-.2])

set axis properly so all the text is displayed
axis([o, 1, -1, len(stats)])
show()

Figure 1-5 shows the final results.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

GPS-2008-05-30-09-00-50.csv
MNumber of data points: 1693

Average number of satellites: 12

Total driving time: 4.7 minutes:
Standing: 1.6 minutes (32%)
Cruising: 2.8 minutes (60%)
Speeding: 0.3 minutes (7%)

Average speed: 20 km/h

Total distance traveled: 1.7 Km

GPS-2008-05-30-09-00-50 Velocity
T T T T T T T T T
= Cruising 5o |Speeding thrgshoid: 50.0
= = Standing - : : :
500K . T
e e Speeding! I
3 X 3 E_‘—
: X 3 b \y el
;o 1o) T S R %
_ a :
g es
£ 300 ;
= 2
E : Time from start of file (minutes)
= . -
= 200f----: Statistics
5
2

wol Vi i

| | | | | |
400 350 300 250 200 150 100 50 O
east-west (meters)

Figure 1-5. Output of gps . py on some GPS data

Final Notes and References

The GPS problem described here is research in nature: a computation, an intermediate result,
not an end product. Research, or R&D work, especially feasibility studies, requires rapid
responses. This means using readily available tools as much as possible and combining them
to get the job done. If those tools are inexpensive, or free, that’s yet another reason to use them.

Throughout the book, we will examine different packages and modules and see how they
may be used to perform data analysis and visualization. The theme we’ll be using is open
software, including software published under the GNU Public License (GPL) and the Python
Software Foundation (PSF) license. Examples of these tools include GNU/Linux and, of course,
Python.

There are several benefits to developing data analysis and visualization scripts in Python:

¢ Developing and writing code is quick, appealing for research work.
» Readily available packages further increase productivity and ensure accurate results.

¢ Scripts introduce automation. Modifying an algorithm is easily done.

Scripts will be numerous and explained in detail, and I aim to cover most of the issues
you are likely to encounter in the real world. Examples include scripts to deal with binary files,
to combine data from different sources, to perform text parsing, to use high-level numerical
algorithms, and much more. Scripts will be written in Python: some will be simple one-liners,
others more complex. Special attention will be given to data visualization and how to achieve
pleasing results in Python.

29

30 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

If you'd like to read more about Python in general (and not necessarily for data analysis
and visualization), the Python official web site is an excellent resource:

¢ Python Programming Language—Official Website, http://www.python.org

CHAPTER 2

The Environment
Tools of the Trade

In the previous chapter we’ve seen a case study involving the collection, analysis, and visual-
ization of GPS data. Unless you're already familiar with Python and the packages we’ve used,
you should read this chapter and build yourself a development environment.

Analyzing and visualizing data requires several software tools: a text editor to write code,
Python to run and test the scripts, and perhaps a tool to present the results.

I've decided to break the discussion of software tools into two categories: general-purpose
software components and specific software components. The general-purpose software com-
ponents are merely a recommendation on my part on tools I think improve productivity. If
you're already comfortable with another software package, by all means use it over the one
suggested here. The specific software components category, on the other hand, is composed of
tools required to run the examples in the book. To clarify, whenever a component is a required
component, it is clearly mentioned.

The following is a suggested list of software components that I feel provides a solid devel-
opment environment.

General software components:

¢ An operating system (OS)
¢ A text editor
¢ Animage viewer
¢ Tools for presenting and viewing the results
¢ Aversion control system
Specific software components:
¢ Python with its built-in packages
¢ Additional Python packages for data analysis and visualization

This chapter introduces the different software components in a linear fashion, that is, it
builds things from the ground up—first the OS, then Python and Python packages, and lastly,
supporting software components.

31

32

CHAPTER 2 THE ENVIRONMENT

Although the chapter is organized in a linear fashion, feel free to skip the general software
components section if you already know what applications you’ll be using. You should, how-
ever, ensure you have the specific components (Python and additional packages) properly
installed; code presented in the book assumes that is the case.

Operating Systems

The development environment is built upon an operating system. There are several options
to choose from: UNIX-based operating systems (including GNU/Linux, Mac OS X, and oth-
ers) and Windows. Of those, we’ll focus on Linux and Windows. As for Mac OS, since it is a
UNIX-based operating system, most of the discussions regarding Linux apply to it as well. The
Python web site (http://www.python.org) is an excellent resource for all things Python, includ-
ing supported operating systems.

GNU/Linux

Linux is a generic term that describes UNIX-like operating systems based on the Linux kernel.
A Linux distribution is a collection consisting of the Linux kernel along with additional soft-
ware packages that together provide a full OS. Most distributions provide more than a basic
OS functionality; they provide additional software packages such as multimedia applications,
games, office productivity suites, and much more. A considerable portion of the packages in
most Linux distributions is based on the GNU project (http://www.gnu.org), hence the term
GNU/Linux.

There is a large number of Linux distributions (distros) available today, including

e Fedora project: http://www.fedoraproject.org
e Debian: http://www.debian.org
e Ubuntu: http://www.ubuntu.com

e Gentoo: http://www.gentoo.org

Most of these are excellent distributions, so if you plan on going the Linux route, spend
some time to acquaint yourself with these distributions to decide on the one that best suits
your needs (or should I say best fits your personality?).

It is especially important that you know how to install applications in the Linux distribu-
tion of your choice. Most distributions come with a package management tool (e.g., rpm/Yum
on Fedora, apt-get/APT on Debian, and emerge/Portage on Gentoo) that enables download-
ing applications and installing them on your Linux OS. Typically, package management tools
synchronize with an online repository and enable downloading and upgrading software. They
also take care of any version conflicts and perform the actual installation tasks such as copying
files and updating system information.

As a general rule, opt for using your Linux distribution’s built-in package management
tool to install the software components discussed in this chapter, Python and packages
included, over a manual install; this will ensure a stable Linux system.

In case a software application of your liking is not available via the package management
tool of your Linux distribution, you still have the option of manually installing that applica-
tion. This is not a trivial task and requires some Linux expertise. That being said, in the case of

CHAPTER 2 THE ENVIRONMENT

Python packages, a manual install is straightforward, and an example will be provided later in
the chapter in section “Manually Installing a Python Package.”

Windows

Of the Windows versions available today, any version from Windows XP upward should be
fine; previous flavors of Windows are growing obsolete, so support for applications running on
older versions of Windows is limited. That being said, most applications still do run on older
versions of Windows; however, you should check with the packages’ online documentation.

Unlike Linux, after selecting Windows as the OS, there’s still a decision to be made, and
that is what exact environment Python will be running on. There are three main options to
choose from:

¢ Stand-alone (natively)

e Cygwin
¢ Virtual machines (VMs)

Stand-Alone (Natively)

Unless you have a strong reason against it, this should be your preferred choice if you intend
on using Windows: installing Python natively without an additional environment. Python
comes as an executable file with an installer application. After downloading, double-click the
executable and install Python (more on Python installation shortly). Most other packages we’ll
be dealing with also come bundled in this fashion, so installing them should be simple as well.

In case you’d like to install a package that doesn’t come with an installer, you’ll have to
consult with that package’s documentation. By the way, regardless of whether you choose a
stand-alone approach or one of the other methods suggested next (or Linux), there are bound
to be packages that require a manual installation, so knowing how to do a manual package
install is of value.

Cygwin

Cygwin (http://www.cygwin.com) is an environment that runs in Windows and provides UNIX-
like functionality. It is an excellent software product even if you are a devoted Windows user.

Cygwin comes with a GUI installer that runs on Windows named Cygwin Net Release
Setup Program (setup.exe) that allows picking and installing software packages. The Cygwin
installer is actually a package management tool just like any other package management tool
in most Linux distributions. As you browse through the list of packages, you'll realize there’s
an extensive selection to choose from; however, that should not deter you. Install the default
options knowing you can always go back and add or remove applications; it’s as simple as
rerunning the Cygwin installer. After installing Cygwin, run it via Start » All Programs »
Cygwin » Cygwin Bash Shell.

Cygwin provides a great number of additional open source software packages, including
Python. If you want additional functionality—Bash shell, SSH, editors, viewers, version control
systems, X functionality, and more—then Cygwin is an excellent choice. The downside is that
it is a bit more complex for a less-experienced user than the stand-alone approach presented
earlier. There’s also a small performance hit using Cygwin compared with a native installation.

33

34

CHAPTER 2 THE ENVIRONMENT

For example, on my computer, a simple for loop summing values was 20 percent slower in
Python on Cygwin compared with a native Python installation.

Note Cygwin treats drives differently from Windows as it follows a UNIX directory structure. If you
installed Cygwin under c:\cygwin, then this directory is usually denoted as the topmost directory: /. To
access directories outside c: \cygwin, use the following notation: /cygdrive/disk. For example, if a file
is located in c:\data, it is accessible in Cygwin as /cygdrive/c/data.

Virtual Machines

The third option, which is a bit more exotic, is running a virtual machine (VM). A virtual
machine allows the user to run a Linux OS (or another OS for that matter) in the host operating
system, which is in this case Windows or Mac OS. This option is for the more experienced user:
installing and configuring a VM is not an easy task.

On Windows, there are several VMs available today including the open source Coopera-
tive Linux (coLinux, http://www.colinux.org) and the commercial VMware (http://www.
vmware.com), which has a free version as well. A popular VM on Mac OS is Parallels (http://
www.parallels.com), which allows for running both Linux and Windows alongside Mac OS.

Tip Running a virtual machine might be a good option in case you just want to try out Linux in general but
don’t want to go the full route of installing an 0S. If that is the case, there is also the option of running a live
CD, which basically means booting a full-fledged Linux OS from CD-ROM. There’s quite a large number of
live CDs available today, with one of the well-known ones being Knoppix (http://www.knoppix.net).

INSTALLING COLINUX

As mentioned, installing a Linux VM in Windows is not a trivial task. The process involves several steps that
require Linux and networking expertise. Here’s a set of steps to install coLinux in Windows XP:

1. First, install coLinux with an image of the Linux distribution of your choice.

2. Set up Internet connectivity on the target 0S (Linux) so that you can download and update packages.
Update and install packages as needed.

3. Set up a networking connection between the host 0S and the target 0S so you can transfer data files.

VM packages nowadays, both commercial and open source, automate these tasks and make the instal-
lation a lot more user friendly.

CHAPTER 2 THE ENVIRONMENT

One of the downsides of using a VM is that you pay a price in performance. That being
said, VM implementations and the increasing power of computing have made this a relatively
small price to pay.

Choosing an Operating System

From a data analysis and visualization perspective, Linux is a perfect match. The main reason
is that Linux comes with a strong command-line interface (CLI) compared with Windows,
which relies heavily on a graphical user interface (GUI).

Working with a significant number of files, CLI wins hands down. Consider renaming
a large number of files, say, pictures you took on your last vacation. Most cameras generate
files that follow a sequential naming scheme: DSB00001. jpg, DSB00002. jpg, and so forth, which
is rather cryptic. You, on the other hand, would like to rename these files to something a bit
more informative, such as Vacation2007-09-20-NNNNN. jpg, where NNNNN is the running index.
So a file named DSB00002. jpg will now be named Vacation2007-09-20-00002.jpg. You can per-
form this task with both a GUI and a CLI:

* With the GUI approach, this means a task of point, click, and rename for each and
every file. While this might be perfectly reasonable for a small number of pictures, as
the number increases, this becomes a tedious task.

e The CLI approach is to write a command to rename all the files. If you're familiar with
Bash, you might issue the following:

$ for fn in DSB*.jpg; do mv $fn ${Ffn/DSB/Vacation2007-09-20-}; done

(There are lots of ways to do it with a CLI, and this is just one I prefer. I will not be
discussing Bash in the book.) Again, for a small number of pictures, this seems like
overkill; however, once the number of files increases, this is the better approach.

Of course, renaming files is a simple task, one that Windows supports via its command
prompt as well (which is the Windows version of a CLI), but even this simple task is not trivial
in Windows, unless you install additional software or write some code to perform the task
(although recent versions of Windows also introduce shell capabilities enabling both GUI and
CLI interfaces). For more complex data management tasks, a CLI-centric approach is much
better than a GUI. An operating system built around CLI is usually a better choice for manag-
ing data files.

Tip There isn’t a right or wrong, whatever 0S you choose—the concepts (and code) presented in this
book will work just fine.

Here are some things to consider when choosing an OS:

35

36

CHAPTER 2 THE ENVIRONMENT

e Linuxis a stable and able operating system. The benefits of using Linux include low
cost (typically, none), solid CLI, and an active and supportive community. The main
disadvantage with Linux is that if you're not familiar with the OS, there is a learning
curve, although with today’s distributions the curve has leveled off significantly. Also,
support for hardware isn’t as all-encompassing as is the case in Windows. This might
prove a serious disadvantage if your work involves using an already existing piece of
hardware that isn’t supported in Linux to generate data.

¢ Windows is a widely popular operating system. Most users have experienced working
in Windows to some degree, so the learning curve is very shallow, if any. Support for
hardware is very good; most hardware vendors target Widows as their primary OS. The
drawbacks of using Windows are lack of a strong CLI and cost of the OS and additional
software applications.

e MacOS is gaining popularity: it combines the GUI experience with UNIX power.
Although relatively new in the data analysis and visualization scene, due to those two
traits, I have a feeling you'll see more and more of Mac OS being used. Mac OS down-
sides as I view them are cost and support for legacy hardware.

Table 2-1 summarizes the aforementioned pros and cons.

Table 2-1. Linux, Windows, and Mac OS as Development Environments for Data Processing and
Visualization

Linux Windows Mac0S
CLI Very good (native) Good (with Python) Very good (native)
Applications Full (mostly free) Full (possible additional cost) Full)(possible additional
cost
Learning curve Steep Gentle Gentle
Cost Low Medium Medium
Hardware support Good Very good Medium
Stability Very good Very good Very good

Then Again, Why Choose? Using Several Operating Systems

The nice thing about Python is that it eliminates the operating system from the equation.
Python is a complete environment, with a “batteries-included” approach: you should be pretty
much good to go, out of the box, after installing Python; the standard library provides full
functionality. What that means is that all of a sudden, Windows has a strong CLI as well: the
Python interpreter.

With that in mind, the selection of an OS becomes more of a personal preference than
anything else. I have both Linux and Windows and use both for data analysis and visualization:
my Linux machine is a stationary home server so I can’t use it to record GPS data when driv-
ing; my laptop runs Windows and does that for me.

If you require more UNIX-like functionality than Python provides but would still like to
use Windows, opt for Cygwin as discussed previously. Cygwin provides a host of GNU tools
ported to Windows. In fact, I use Cygwin’s X server and connect to my Linux machine if I'd like

CHAPTER 2 THE ENVIRONMENT

some interactive work-plotting data (the Linux machine is tucked under the desk and has no
monitor).

If you plan on using both Windows and Linux to analyze data on the same computer,
that is, dual-booting, think about how you’re going to transfer data between the Linux and
Windows partitions. There are several ways: having a shared partition that both Linux and
Windows can handle (FAT32, NTFS on some), transferring files through a USB device, or even
networking to another machine. Each has its benefits, but remember that you might be deal-
ing with a large number of files, so it would be best if you could access the data on a shared
resource.

Caution Installing an 0S is a time-consuming task, taking twice as long if you intend to dual-boot. You
should consult with the Linux documentation of your distribution on how to best achieve dual-booting, and
especially on what 0S (Linux or Windows) you should install first. Dual-booting is an advanced topic and is
not suggested for the beginner.

Using a dual-boot system can be annoying at times, especially since you have to reboot
to switch operating systems. Not to mention that the installation process is a bit risky: there
could be scenarios of lost data due to repartitioning of the hard disk (which can be avoided, if
you know what you're doing). This is exactly why a VM is a good alternative: data is safe from
repartitions, and actual reboots are not required. My PC is strong enough to run Linux as a
VM in Windows with excellent performance. If you’d like to use this setup, again, think about
how you're going to share data between the host OS and the target OS. A common (and good)
approach is to transfer files using a virtual network interface.

On Mac OS, the need for these solutions is somewhat less required; Mac OS is already a
UNIX-like OS.

The Python Environment

By now you should’ve already selected and installed the OS of your choice. You should also be
comfortable with downloading and installing packages. It’s now time to install Python. This
section discusses the installation of Python and Python packages to enable programming data
analysis and visualization scripts. A more detailed discussion on using Python both in an inter-
active shell and as a stand-alone application will be given in Chapter 3. In this chapter, I'll be
covering Python distributions, Python IDEs, and Python packages.

Versions

The book covers Python version 2.5 and should work on version 2.4 as well. As a general
rule, you should opt for the most updated Python version. Unfortunately, that’s not always
possible:

37

38

CHAPTER 2 THE ENVIRONMENT

¢ Some operating systems, for example the Gentoo Linux distribution, rely heavily on
Python for system administration, and upgrades require extensive testing to ensure the
system is stable. So although a new release of Python becomes available, you might not
be able to use it yet. There are workarounds to that such as installing several versions of
Python on one machine; again, refer to your Linux distribution for further information,
as this topic is beyond the scope of this chapter.

¢ At the time of writing, Python 2.6 was released. However, not all the packages used
in the book have caught up yet, so I've had to stick with Python 2.5. We already know
Python 3.0 is in the making, and a lot of the information regarding the upcoming
changes can already be viewed on the Python web site (http://www.python.org). When
applicable, I've tried to cover the differences between Python 2.6 and Python 3.0.

Tip Always make sure you're downloading and installing a version of a package that is compatible with
the version of Python you’re using. Some packages keep older versions if you need them for compatibility
reasons.

Python

You can download a Python implementation for your specific OS from http://www.python.
org/download/. Read carefully and select the package that fits your OS. Again, if you're run-
ning a Linux OS, opt for using that system’s package management tool over downloading and
installing from the Python web site. The same applies for Cygwin: use the Cygwin installer if
you can. On Windows, the common practice is to use the Python binaries distributed with an
installer from the preceding URL.

You can install Python from source code, that is, download the source code and compile
it on your OS. Personally, I have not found a reason to do this other than to satisfy my curiosity
that the code does indeed compile properly.

If you are wondering about Jython (an implementation of Python written purely in Java,
see http://www.jython.org) and IronPython (an implementation of Python on Microsoft’s
.NET platform, see http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython), I'm
afraid they’re not good options for this book. A lot of the code and examples rely heavily on
packages that do not run on Jython or IronPython.

Python Distributions with Scientific Packages

Another option is to use a Python distribution that already bundles a significant number of the
Python packages we’ll be using. Enthought Python Distribution (EPD, http://www.enthought.
com/) and Python(x,y) (http://www.pythonxy.com/) provide Python distributions that should
prove a good option if you don’t want the hassle of installing individual packages. Opt for this
option if you can’t wait to be past the installation phase and up and running code.

CHAPTER 2 THE ENVIRONMENT

Tip If you choose the distribution from Enthought or Python(x,y), you can skip the sections related to
SciPy, NumPy, matplotlib, and IPython later in the chapter. Both these distributions include those packages
out of the box.

Python Integrated Development Environments

An integrated development environment (IDE) is, simply put, an application that helps pro-
grammers write code. Typically an IDE is composed of the language engine (Python), an
editor, a debugger, documentation, and possibly additional productivity tools. While it is by all
means possible to use Python without an IDE, using one will greatly increase your productivity
and will enable a faster learning pace.

There is a wealth of Python IDEs, and a rather extensive list is provided in the books
Python in a Nutshell: A Desktop Quick Reference and Beginning Python: From Novice to Profes-
sional (see the references at the end of this chapter). In this chapter, we’ll limit our discussion
to IDLE and IPython (which isn’t really an IDE, more of a Python shell enhancement).

IDLE

IDLE (http://www.python.org/doc/2.6/1ibrary/idle.html) is a cross-platform Python GUI
IDE. If you installed from Windows binaries, IDLE is automatically installed; access it via
Start » All Programs » Python 2.5 » IDLE (Python GUI). IDLE is a capable IDE with the fol-
lowing features: seamless integration with the Python interpreter, an editor, a debugger, and
a help system. It’s an excellent environment to get up and running, especially if you're new to
programming.

One of the benefits of using IDLE is that you can write code in an editor, specifically
designed for Python, and then quite easily execute it in IDLE by pressing F5. With a CLI
approach, you’d have to invoke Python with the file you’d like to execute (more on this in
Chapter 3).

IPython

As you start working with a CLI, you'll realize there are some things you'd really like enhanced.
IPython (http://ipython.scipy.org/) provides an enhanced interactive Python shell and is
highly recommended mostly because data analysis and visualization is interactive in nature.
IPython is supported on most platforms. Here’s a short list of the added features that come
with IPython:

¢ Tab completion, which involves completion of variables, functions, methods, attri-
butes, and file names. Tab completion is achieved with the GNU Readline library
(http://tiswww.case.edu/php/chet/readline/rltop.html) and is highly addictive. It’s
very hard to go back to a regular CLI after you've been exposed to GNU Readline.

¢ Command history capabilities: issue the command history for a full account of the
commands you've recently typed. You can copy and paste those into a Python script
and save time and effort.

39

40 CHAPTER 2 THE ENVIRONMENT

¢ Seamless integration with system shell: you can use 1s -1 or cd /home/user, for
example.

¢ Colored output.

Note IPython is not required but is highly recommended. The code in the book will work without IPython
as well as with it.

IPython comes bundled with an installer for Windows and is available on most package
management tools as well on Linux and Cygwin. Depending on your OS, you might need to
install GNU Readline; on Windows, you’ll also need to install PyReadline (http://ipython.
scipy.org/moin/PyReadline/Intro). Consult with IPython’s installation documentation.

Note IPython should be installed after Python, GNU Readline, and PyReadline are installed.

CHARACTER COMPLETION WITH GNU READLINE

Character completion with GNU Readline is a welcomed addition to an interactive CLI. With IPython, character
completion can be used to complete

e Names of variables
¢ Names of methods and attributes

* File names

To invoke character completion, start by spelling out the first few characters of the word you wish to
write and then press the Tab key to have GNU Readline try and complete the word for you. The following is
from IPython:

In [1]: s = "A string"

In [2]: s.is

s.isalnum s.isalpha s.isdigit s.islower s.isspace s.istitle s.isupper
In [2]: s.is

After typing s.is, the user pressed the Tab key and was presented with a list of options. Had the user
spelled the word s. isd and pressed Tab, the entire s. isdigit would have appeared automatically at the
prompt.

The way GNU Readline works is that it tries to complete the word by searching for a variable, function,
method, attribute, or file name that matches the typed characters. In case of one option, that word is auto-
matically spelled out at the prompt. In case of several options, all the options are displayed. To select which
of the options you’d rather have completed, supply the next character and then press Tab again. In case of no
matches to the typed word, nothing happens.

CHAPTER 2 THE ENVIRONMENT

You can also use the character completion feature to explore methods and attributes of a class, or any
other namespace for that matter. In the following listing, the Tab key is pressed after a. is entered (notice the
dot).

In [1]: a = dict()

In [2]: a.

a._ class__ a.__hash__ a._ setattr a.itervalues
a._cmp__ a._ init a._ setitem a.keys
a._contains__ a. iter a._ str a.pop

a. delattr a. le a.clear a.popitem

a. delitem a. len a.copy a.setdefault
a. doc_ a. 1t a.fromkeys a.update

a. _eq a. ne a.get a.values

a._ ge a._new a.has_key a.pdf

a. getattribute a. reduce a.items

a._ getitem a._ reduce ex a.iteritems

a._ gt a._ repr a.iterkeys

Scientific Computing

A significant portion of the book is dedicated to the processing of data prior to visualization.
Two packages help us achieve that end: NumPy and SciPy. NumPy will be discussed in Chap-
ter 7, and SciPy will be reviewed in Chapter 8. These two packages, combined with matplotlib
(more on this package shortly) behave similarly to most high-end math packages such as the
open source GNU Octave (http://www.octave.org) and the commercial MATLAB (http://www.
mathworks.com). In fact, there’s even a name for these three packages working together: PyLab,
which is a combination of Python and MATLAB. A portal for SciPy and NumPy is located at
http://www.scipy.org.

SciPy, NumPy, and matplotlib are all open source software packages and are required to
run the code presented in the book.

NumPy

NumPy provides a powerful N-dimensional array that is the basis for most of the data process-
ing we’ll perform. You've already seen it in action in the GPS example in Chapter 1. NumPy
also provides additional numerical capabilities: linear algebra, Fourier transforms, and more.
NumPy is a mature and stable package and can be downloaded and installed from
http://numpy.scipy.org/. NumPy will be discussed in Chapter 7 and Chapter 8.

SciPy

SciPy builds on top of NumPy and adds additional scientific computing tools. These include
numerical integration, differential equations, interpolation, signal processing, optimization,
linear algebra, and more.

4

42

CHAPTER 2 THE ENVIRONMENT

Even if you're not interested in scientific computing, I encourage you to give SciPy a try—
it provides additional utility functions to NumPy that are very useful and used extensively in
the book.

SciPy can be downloaded and installed from http://www.scipy.org/ and will be reviewed
in Chapter 8.

Note SciPy relies on NumPy and should be installed after NumPy is installed.

Plotting

Visualization is the final step, displaying data graphically to the audience, portraying an idea,
and capturing information efficiently and elegantly. We now turn to two packages that allow
easy plotting and graphing.

Matplotlib

Plotting throughout the book will rely heavily on the matplotlib package, maintained at
http://matplotlib.sourceforge.net/. Matplotlib is a 2-D plotting package that interfaces well
with NumPy and SciPy. The package is cross-platform and works on Linux, Windows, and Mac
OsS.

Matplotlib can produce both interactive and hard-copy plots using various engines. You
can therefore use it both for interactive work, which is very useful in the early stages of an algo-
rithm design; or you can use it in an automatic mode, for example, batch processing, to plot
results to, say, a shared directory or a web server.

Matplotlib is both simple to use and highly customizable, yielding an excellent package
for our purposes. It allows a range of 2-D plot types and has excellent graph annotation capa-
bilities.

Tip Matplotlib has some additional toolkits available, out of which the one that is of interest especially in
light of Chapter 1 is the basemap toolkit. The basemap toolkit allows working with map projections. | will not
be covering the basemap toolkit in this book.

Gnuplot

An alternative package suggested here is gnuplot (http://www.gnuplot.info/). Gnuplotis a
widely popular plotting package that has been ported to numerous platforms including Linux,
Windows, and Mac OS. This renders gnuplot a very good graphing and plotting package. Gnu-
plot also supports both interactive and hard-copy graphs.

One of the benefits of gnuplot over matplotlib is 3-D graph support. If you require such
capabilities, opt for gnuplot.

CHAPTER 2 THE ENVIRONMENT

In order to use gnuplot interactively from the Python CLI, a software package to connect
the two is required. I have used the Gnuplot.py package (http://gnuplot-py.sourceforge.
net/) to do so with good results.

Note To use gnuplot from Python, be sure to install both gnuplot and Gnuplot.py. After installing Gnuplot.
py, you'll have to set the variable Gnuplot.GnuplotOpts.gnuplot_command to point to the location of the
gnuplot binary executable. Alternatively, you can edit a configuration file to permanently set this variable;
consult with Gnuplot.py’s documentation. In Windows, you’ll also require pgnuplot.exe, which is a part of
gnuplot for Windows and allows sending commands to wgnuplot (the Windows version of the gnuplot appli-
cation).

As mentioned previously, most of the examples in the book rely on matplotlib, so you'll
need to modify the code if you wish to use gnuplot solely. Unless you have a strong reason not
to use matplotlib, or that gnuplot is already installed on your system and heavily used, I sug-
gest you stick with matplotlib.

Image Processing

Image processing provides the final piece of the puzzle. It is an important part of data visu-
alization and will be discussed extensively in Chapter 9. We’'ll be using the Python Imaging
Library (PIL) to provide image processing support.

Python Imaging Library

The Python Imaging Library (http://www.pythonware.com/products/pil/) enhances Python
with excellent image processing capabilities. PIL supports most popular image file formats
and provides a wealth of functions for manipulating image data. PIL, combined with NumPy,
provides a very capable image processing environment for Python.

Additional Python Packages

Numerous Python packages are available, and more are being written every day. The following
are good sources of information on Python packages:

e The Python Package Index: http://pypi.python.org/pypi

e SourceForge: http://www.sourceforge.net

PySerial

In Chapter 1 we used pySerial to capture GPS data through the serial port. PySerial is available
athttp://pyserial.wiki.sourceforge.net/pySerial.

43

44

CHAPTER 2 THE ENVIRONMENT

Note In Windows, you will also need to install the Python Win32 Extensions (win32all) from http://
python.net/crew/mhammond/win32/Downloads.html as well as possibly a real-time library. Consult the
pySerial and Python Win32 Extensions documentation.

Example: Manually Installing a Python Package

As mentioned previously, some Python packages do not come with a stand-alone installer. In
that case, you’ll have to perform a manual install. Not to worry, this is easier than it sounds.

As a general rule, it’s best to read the documentation and follow the instructions. That
being said, most Python packages require a similar set of steps to install:

1. Download the package.

2. Unpack the package to a temporary directory. Most packages are distributed as com-
pressed files, with extensions such as .tar.gz or .zip, or even self-extracting . exe files.
You'll need to unpack the package to a temporary directory. (Occasionally, files having
the extension .tar.gz are downloaded as .tar.tar. If that is the case, rename the file
with the extension .tar.gz and continue to unpack as you normally would.)

3. Run python setup.py install in the temporary directory. Of course, this has to be
done after Python is installed and working properly on your system.

The following documents the steps I took to install pySerial on Cygwin:

$ tar zxvf pyserial-2.4.tar.gz
$ cd pyserial-2.4
$ python setup.py install

The first command unpacks the downloaded file to a newly created directory named
pyserial-2.4; the creation of the new directory is done automatically by the application tar
and is reported to the user. In case you're running Windows (and not Cygwin), you can use
a native Windows utility, such as 7-Zip (http://www.7-zip.org/), to unpack the files; the tar
application is available in Linux and usually comes preinstalled with the OS. The second
command changes directory to the temporary directory. The third command performs the
installation and ensures the package is properly installed.

You can also use the setuptools package (which includes the easy_setup tool), available
from http://peak.telecommunity.com/DevCenter/setuptools, for better control over install-
ing and maintaining packages, especially packages that depend on other packages. Another
benefit of the package is that you can also install Python packages without worrying about root
(superuser) permissions.

Installation Summary

Table 2-2 summarizes the Python packages discussed previously and indicates which software
is required to run the examples in the book.

CHAPTER 2 THE ENVIRONMENT

Table 2-2. Package Installation Summary

Software/Package Functionality Required?

Python Python programming language Yes

IDLE Python IDE No

IPython, Readline Python CLI enhancements No

NumPy N-dimensional arrays and math package Yes

SciPy Scientific tools Yes

Matplotlib Plotting and graphing package Yes

Gnuplot, gnuplot.py Plotting and graphing package No

PIL Python Imaging Library Partial (Chapter 9)
PySerial Serial interface Partial (Chapter 1)

Additional Applications

By now you should have a working development environment that includes the OS of your
choice, Python, and Python packages. We now turn to additional software applications to
complete an environment for developing and running data analysis and visualization scripts
in Python.

This section suggests tools to augment the development environment from the open
source software world. While there are excellent commercial applications as well, I will not be
covering those. The suggested applications are perfectly good for me, but you might have your
own preference, even an application that’s not mentioned here. By all means, use your favor-
ite; this section is mostly intended for those who require some starting points.

Editors

The number one tool in a developer’s arsenal is a text editor. Think of it as your Swiss Army
knife: it can be used to read, write, or modify scripts, view data files, as a scratchpad for ideas,
as a clipboard for intermediate copy and paste, and more. Basic text editors will soon frustrate
you as some are limited in the size of files they can edit, others do not allow several open files,
and yet others are missing syntax highlighting or bookmark capabilities.

Selecting the Proper Editor for You

Editors play a major role in your development environment. There’s a bit of a learning curve
with a new editor, so consider the following points when you select a text editor or switch from
your current one.

e Ease of use: This one is obvious. Is the editor easy to use and intuitive? Is there a learn-
ing curve, and if so, how long will it take you to master?

e Multiple file editing: You might be dealing with a considerable number of script files or
even examining data files in the editor. Having one application deal with all these files
removes clutter from your desktop and is generally easier to handle.

45

46

CHAPTER 2 THE ENVIRONMENT

e Maximum file size: What's the largest file you can open in the editor? Again, useful
when you'd like to view large data files.

o Syntax highlighting: Syntax highlighting is a feature that displays reserved or specific
syntax of a programming language in a different color or font so that the code is easier
to view. Most editors that support syntax highlighting have built-in support for several
programming languages, including Python. This feature is handy as it will highlight
possible syntax errors as well as make the code more readable.

* Line numbering: Errors and warnings typically return line information where they
occurred. Therefore, being able to know what line caused an error without counting
lines is important. Some editors also support a jump-to-line command, which can be
useful if your code is long. Lastly, line numbers are helpful when communicating with
another person.

e Most recently used files list: This is a nice feature that allows you to easily access one of
the files you've recently viewed or edited, without specifying its full path.

* Bookmarks: Bookmarks allow easy navigation and are especially useful with large files.

* Macro support and macro recording: Macros and the ability to record and play back
macros can boost productivity (see the sidebar “Recording Macros”).

e Autocompletion: This feature is similar to character completion, described previously
in the sidebar “Character Completion in Readline” (but usually with a different key-
stroke, such as Ctrl+space). It can boost productivity but requires some getting used to.

o Other features: The preceding is a list of features I consider important. You might have
different needs and different requirements, so jot them down and use those to select
the proper editor for you.

RECORDING MACROS

Macro recorders are a quick and effective way to perform automation without actually writing code. Suppose
you want to combine every two consecutive lines in a file into one line with && symbols in between. This is
not easily done with a search and replace (unless your search and replace also supports new-line characters).
Of course, you could write a Python script to do this, but let’s suppose in this particular case there’s no point
in automation simply because you’ll only do it once. This is exactly where you would use a macro recorder.

First, move your cursor to the beginning of the file (or press Ctrl+Home on some editors to get there).
Now start your macro recorder and perform the following actions: press End to reach the end of the line,
press Del to delete the line separator and combine the two lines into one long line, type &&, move down one
line with the down arrow, and press Home to get to the beginning of the next line. Stop your macro recorder
to finish the recording of your macro. This sequence combines two lines into one, adding && in between. Note
that I've used the keyboard and not the mouse; this is important, as most macro recorders in editors don’t
support mouse recording.

Next, run the macro N times where N is the number of lines in the file divided by 2 (remember you
combine two lines per run). Or you can run that macro for each pair of lines you want to combine. Some
editors have the option to run the macro to the end of file. The following figure shows a macro recorder in
Notepad++.

CHAPTER 2 THE ENVIRONMENT 47

 cHHERGE sEDh e Ayt BERENEE MDD E *

EET Run Macro Multiple Times (]
QR TIis 1sia simple L8 texr filg Macro to run ¢ | Current recorded macro (% |
2 to combine into one e
3 file with additional 2
4 s=ymbols in between ORLI'! L =
5 lines. @&m unktil end of file
i Run] I Cancel J
Marmal text rb char : 101 ln:2 Colil Sel:0 Dos\Windows | ANST INS

The macro is highly reliant on the location of the cursor. If you move the cursor to the end of the file and
run the macro, you might get some unintended results.

A Short List of Text Editors

Table 2-3 presents a short list of some popular text editors. Use this table as a starting point in
selecting an editor. This is by all means not a comprehensive list of available editors, so shop
around and use the Internet to find more.

Table 2-3. Short List of Open Source Editors

Editor 0S/Environment Notes

Notepad++ Windows Has all the features described previ-

http://notepad-plus.sourceforge.net/ ously in the chapter and more. Down-
side: available only in Windows, sorry
Linux folks.

SciTE Windows, X A very good text editor, especially if

Scintilla Text Editor you're developing on both Windows

http://www.scintilla.org/SciTE.html and X: you can use one editor for

both platforms. Lacks in the number
of open files and macro recording

capabilities.
GNU Emacs Windows, Linux, X, Avery rich editor. Runs on most any
http://www.gnu.org/software/emacs/ Cygwin, Mac OS platform including text-based CLI

(Linux), X, and Windows as well as
Cygwin. Has a bit of a learning curve if
you're new to Emacs.

Vim Windows, Linux, X, A very rich editor that runs on most

http://www.vim.org Cygwin, Mac OS any platform; has most of the features
described previously and more (e.g.,
hex editor).

GNU Nano Linux, Cygwin, DOS A text-based (nongraphical) light-

http://www.nano-editor.org/ weight editor. Missing some features

but makes up for that in size and
performance. A good candidate when
writing code over a telnet or SSH
connection.

48

CHAPTER 2 THE ENVIRONMENT

A BINARY EDITOR

At times it proves useful to edit binary files as well (see Chapter 10 for discussion of binary files). Binary

files typically cannot be viewed nor edited using regular editors (with maybe the exception of Vim). Hexedit
(http://people.mandriva.com/~prigaux/hexedit.html)is a useful utility that allows editing of
binary files. It displays the hex values as well as their ASCII representation (if such is available) and allows
editing of both the hexadecimal and ASCII values. | wouldn’t recommend writing binary files in hexedit, rather
using it to tweak or modify binary files. Hexedit is available with most Linux distributions as well as Cygwin.
To invoke hexedit, issue the following:

$ hexedit filename

While in hexedit, pressing F1 will bring up a help screen. To exit hexedit without saving, press Ctrl+C.

Spreadsheets

Spreadsheets are excellent tools for data processing and visualization. The ease in which a user
can import data from various file formats, organize it, and generate graphs is outstanding.

CSV, a most useful file format, is supported by virtually all spreadsheet applications. CSV
files are used extensively in data analysis and visualization, and being able to edit them easily
is a great benefit of spreadsheets.

Most spreadsheets come equipped with additional tools such as linear regression, statisti-
cal computations, financial functions, and more. A more experienced user may be able to use
macros to automate tasks or to update results when new data is entered. Because of these fea-
tures, spreadsheets will definitely complement your development environment.

Spreadsheets are not ideal for data processing. They're designed with an interactive point-
and-click (GUI) user in mind, which makes them less natural at script automation. They're
also limited in the amount of data they can process—you typically have to open the entire file
in the spreadsheet, and with large files that’s an issue. Lastly, they lack inherent documenta-
tion—it’s hard to capture and document the steps you took to reach a result.

Therefore, we will not be using spreadsheets in this book; however, I will mention their
usage when appropriate. For example, it is of value to know how to export and import data to
and from spreadsheets.

The following are open source spreadsheet applications:

e Gnumeric (http://www.gnome.org/projects/gnumeric/) is part of the GNOME desktop
environment project.

e Calc (http://www.openoffice.org/) is part of the OpenOffice.org project and is avail-
able on most platforms.

Word Processors

Finally, it might be of value to write a report or a presentation, displaying the results of your
work. And you might want to publish the results in HTML or PDF format. Again, several open
source applications are available, most notably the following:

CHAPTER 2 THE ENVIRONMENT

e AbiWord (http://www.abisource.com/) is a word processing application available for
Windows, GNU/Linux, and Mac OS.

o Write (http://www.openoffice.org/) is part of the OpenOffice.org project and is avail-
able on most platforms.

Image Viewers

If you plan on performing image processing tasks, an image viewing utility is required. Even
if you're not really performing an image processing task, for example, generating a hard-copy
graph in known file formats such as PNG and JPG, an image viewing utility is still a must.

Windows has built-in support for most popular image formats. On Linux, both GNOME
and KDE desktop environments come with built-in image viewers. Plus, it’s possible to open
an image using a web browser both on Windows and Linux, as browsers also support most
image formats.

Point of the matter: no need to install anything. Use your OS image viewer or web
browser.

Version Control Systems

Version control systems (VCSs) enable management of several revisions of a document (or
documents) with full history, tagging, and date capabilities. Most packages also support sev-
eral developers working together simultaneously on the same file.

A VCS allows going back to a previous working version, or checking the difference
between the current version and an older one, or even viewing a version of the document
based on date. It might hold such information as who edited the file or the tag assigned to the
document to mark its status.

A VCS is increasingly recognized as a required tool for a team of developers. But there’s
also a case to be made for even one developer. These management systems are growing in
popularity and for a good reason: they save time and help manage software projects. For this
reason, they’re good software to enhance your development environment.

The downside of using a VCS is that it’s not trivial to master and perhaps should be post-
poned until after you're comfortable with your programming environment. To help offset the
complexity involved with VCSs, some also provide a GUI front end.

WORKING WITH A VERSION CONTROL SYSTEM

In a nutshell, working with a version control system can be described as follows:
1. Check-out the project: create a local copy of the most updated version of the documents.
2. Modify your local copy: edit source code, fix bugs, and add features.
3. Review your changes: make sure the right files are modified.

4. Commit changes: save the changes you’ve made in the version control repository.

49

50

CHAPTER 2 THE ENVIRONMENT

When you check out a document from the VCS repository, the system ensures you have the most
updated version to work with. This is typically done once, and from here on you edit your local copy. You then
modify your document, and once you’re satisfied with the results, review the changes. Reviewing the changes
can be done by performing a dif+ of the file you have with the copy in the repository. You then commit your
changes (also known as checking in) and possibly add a description of the changes. Subsequent modifica-
tions follow steps 2 through 4.

The version control system notifies you in case of a conflict. For example, suppose you checked out
version 1 of the document, but by the time you wish to commit your changes, another developer has already
checked in his version of the document; the system will alert you of a possible conflict, because you're trying
to update a document which is now version 2, whereas you were working on version 1.

The system also maintains a full history of the project. So even if you're the only person working on
a project, the ability to go back to previous versions of the project is as simple as checking out an older
revision. Most systems allow checking out of documents based on date, revision, or even a tag that you’ve
previously supplied. Because the system maintains such a complete history, most developers feel that you
should commit changes as often as possible— you won’t be negatively affecting “good” releases.

One final note: if you can, choose to use text files over binary files. Performing a diff on text files is
supported by most VCS systems and is a valuable tool. With the binary version of the file (e.g., an execut-
able), a diff yields very little information other than that the current version is not identical to the one in the
repository.

Here's a set of commands | often use, working on a local copy I’'m continually editing, once I'm done
editing my local copy. With Mercurial, | issue

$ hg status

$ hg commit filename
$ hg push

$ hg update

The first command checks the status of the project: which files are modified. The second and third com-
mands check in the local copy and update the repository (where Mercurial stores the files). The last command
ensures | have the most updated version of the project in my local directory.

In CVS, | follow a similar set of commands:

$ cvs diff
$ cvs commit
$ cvs update

Here are some pointers to several open source VCS software applications:

e CVS (http://www.nongnu.org/cvs/) is a widely popular system with several graphical
user interfaces including web-based ones.

e Subversion (http://subversion.tigris.org/) is another widely popular system avail-
able on most platforms.

* Mercurial (http://www.selenic.com/mercurial/wiki/) is a lightweight VCS package
designed for distributed projects.

CHAPTER 2 THE ENVIRONMENT

Example: Directory Structure for the Book

In the process of writing this book, I've used a VCS system to control the documents, images,
source code, and data for each chapter. I've used the following directory structure: each chap-
ter has a directory of its own named ChXX, with XX being the chapter number. Within each
directory corresponding to a chapter, I've added four additional directories named doc, data,
images, and src. My actual writing was placed in directory doc; my data files in directory data;
images (such as those embedded in documents) in directory images; and source code in direc-
tory src.

Book

Ch1
data
images
34
doc

Ch2
data
images
34
doc

Another side benefit of this directory structure is that it is helpful in envisioning how a
project will look. If there’s something important you realized in the first piece of code (in my
case, the first chapter) but it doesn’t really belong there, simply dump the ideas and code in
the relevant directory for future processing.

Tip This directory structure is also apparent in the source code listing. Since the source code resides in
directory ChXX/src, and data files reside in directory ChXX/data, the relative path to directory data is
../data. Similarly, the relative path to directory images is . . /images.

The reason I decided on using a VCS system for the book is quite simple. I've handed over
documents of various revisions to editors, I've revisited others, and I've sent reviewers yet a
different version. Some would return responses to a revision that I've already updated, and so
I had to know what document they’ve edited. If you think about it, in a sense, there were really
several developers for one document, and managing them all is a lot easier with a version con-
trol system.

Licensing

Most of the software described in the chapter is open source and free (with the obvious
exception of Windows and other commercial packages: MATLAB and VMware, to name a
couple). That being said, there are limitations on what you can do with open source software,

51

52

CHAPTER 2 THE ENVIRONMENT

especially if you intend on distributing your applications. Several software licenses exist, and
I urge you to read each and every one. The same applies for commercial software: ensure you
read the license agreement.

The following is a list of some of the license agreements of the software described in this
chapter. It is neither complete nor comprehensive, and the licenses might change with time,
so be sure to check the most recent license documentation.

* GNU licenses, including GPL and LGPL, which cover a substantial number of the pack-
ages described in this chapter: http://www.gnu.org/licenses/licenses.html

o Linux distributions licenses: Refer to the respective web page of the distribution of your
choice

* Cygwin: Refer to the license documents installed in Cygwin, usually under c:\cygwin\
usr\share\doc\common-licenses as well as http://www.redhat.com/software/cygwin/

e VMware: http://www.vmware.com/

* Python: http://www.python.org/psf/license/

e Enthought (EPD): http://www.enthought.com/products/epdlicense.php

e [Python: http://ipython.scipy.org/

e Matplotlib: http://matplotlib.sourceforge.net/users/license.html

e SciPy and NumPy: http://www.scipy.org/License Compatibility

* Python Imaging Library (PIL): http://www.pythonware.com/products/pil/license.htm
e PySerial: http://pyserial.svn.sourceforge.net/

e Python Windows extensions (win32all): refer to the license agreement as part of the
package.

e Scintilla and SciTE: http://scintilla.sourceforge.net/License.txt

e Subversion: http://subversion.tigris.org/

Final Notes and References

By now you should have a full development environment, one that provides all the tools of
the trade. Experiment with your environment, get accustomed to it; in the following chapters
you'll be using it extensively.

The following provide additional useful information in building a Python development
environment should you want to investigate some more:

e Beginning Python: From Novice to Professional, Second Edition, by Magnus Lie Hetland
(Apress, 2008)

e Python in a Nutshell: A Desktop Quick Reference, Second Edition by Alex Martelli
(O’Reilly, 2006)

CHAPTER 3

Python for Programmers
The Building Blocks

Python is a very readable language. Assuming you’'ve had some previous experience in pro-
gramming, you should be able to read the code presented in the book without much trouble;
you’'ll understand what’s going on.

That being said, the book would be incomplete without coverage of the Python program-
ming language. From a book-design perspective, it stands to reason that this chapter appears
in the beginning. But that shouldn’t bind you; feel free to skip it and come back to it later.

Furthermore, this chapter does not cover the full extent of the language. Some Python
topics that I felt were not crucial for data analysis and visualization were left out of scope.

If you would like to learn more about the Python programming language, I've listed several
books in the “Final Notes and References” section at the end of the chapter; these books are
all Python oriented and should prove valuable resources.

Now to the chapter itself: I'll be taking you quickly through the Python building blocks
and complement the discussion with short examples. We’ll start by going through the basics
of invoking and using Python interactively and noninteractively, entering expressions, and
running scripts. We then look at the basic building blocks of most modern programming lan-
guages: data types, structures, variables, printing, flow control, and functions. We continue
with a brief discussion of object-oriented programming (OOP) and finalize with a discussion
of modules and packages.

What Is Python?

Python is an open source, object-oriented, high-level programming language. This is a rather
vague definition; if you're looking for a more accurate one, have a look at http://www.python.
org/ and http://www.python.org/about/. That being said, I think it’s easier to show what
Python is, rather than try and define it. This really is the purpose of this book in a narrow
sense: using Python effectively for data analysis and visualization and not just learning Python
for the purpose of knowing the language.

Python seemed to have developed a culture around it. You'll find such notions as
“Pythonic” or “Easier to Ask Forgiveness than Permission” (EAFP) or the “batteries included”
approach—all of which shows that Python is more than just a programming language.

54

CHAPTER 3 PYTHON FOR PROGRAMMERS

It is rumored that many developers first use the language as a simple tool to solve a
specific problem, but with time they are absolutely captivated to the point they start writing
haikus in Python. I'm afraid I'm not that artistic, so you won'’t be seeing any haikus in here.

Here are the language features I view as the most important for the topics presented in
the book:

e Open source: Yes, I view this as one of the fundamental aspects about Python. Python,
and its packages, have been developed by an active community. The language evolves
and changes, providing a dynamic environment built on discussion, on actual needs,
on real problems people have to solve. I think this approach ensures a good language
that hopefully will withstand the test of time.

¢ FEase of learning: It’s easy to learn Python, especially if you're familiar with other pro-
gramming languages—Python combines the best of several programming languages
and programming paradigms in one.

¢ “Batteries included” Python includes a great number of libraries as part of the standard
library (several will be explored in this book). Additional packages can be installed and
used seamlessly. You should be able to do most, if not all, of the work associated with
data analysis and visualization without ever leaving the Python environment.

* Versatility: Python is versatile in that it supports both the early stages of development,
as arapid application development tool, and later phases of the project, when more
structured programming paradigms are required.

o [nteractive nature: More about this in the next section.

Interactive Python

The ability to run Python interactively, with a command-line interface (CLI), is an envious
ability. The CLI allows both understanding of the workings of the programming language as
well as your code as you write it. It's not a new concept, and personally, the first programming
environment I ever used was also interactive in nature: Basic in Sinclair’s ZX-81 (see http://
en.wikipedia.org/wiki/Zx-81 for some nostalgia). At times, when I write C code, I just wish I
could do the same. ..

The interactive nature of Python is elegantly introduced in Guido van Rossum’s “Python
Tutorial” available at http://docs.python.org/tut/tut.html (Guido van Rossum is Python’s
creator). Nevertheless, here’s a short introduction to running Python interactively, from a data
analysis and visualization perspective.

Invoking Python
How you invoke Python depends on your platform:
¢ In Windows, assuming you’ve installed the binaries, click Start » All Programs »

Python 2.5 » Python (command line) or IDLE (Python GU]I) if you prefer a GUI envi-
ronment. You might have a newer version by now.

CHAPTER 3 PYTHON FOR PROGRAMMERS

¢ In Windows, under Cygwin, start a Cygwin bash shell and issue the following
command:

$ python
¢ In Linux, open a terminal and issue the same command:

$ python
To exit Python, either press Ctrl+D or enter

>>> exit()

Entering Commands

After starting Python in interactive mode, you're presented with version information along
with a short list of introductory commands, help, copyright, credits, and license, and the
Python prompt >>>.

Note Whenever you encounter the >>> prompt in any listings in the book, it is meant to indicate that the
command was issued interactively with the Python interpreter, and you should try it yourself by repeating the
same commands in your Python interpreter. Similarly, when you encounter three dots (. . .) at the beginning
of a line of code, it means that this is a continuation of the text entered interactively in the previous line.

Issue any of the these commands by entering the command name and pressing Enter
(from now on, I'll refrain from mentioning to press Enter or discussing how to erase charac-
ters; I assume you know how to use a CLI). Here’s the output from issuing the help command:

>>> help
Type help() for interactive help, or help(object) for help about object.

Python’s CLI allows entering statements and evaluating expressions. Some basic ones are
described here. Try them to get a feel for the interactive nature of Python:

>>> 14243+4+5+6+7+8+9

45

>>> 22%2

44

>>>a =4

>>> a*4

16

>>> 'a'*4

'aaaa’

>>> sqrt(a)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'sqrt' is not defined

55

56

CHAPTER 3 PYTHON FOR PROGRAMMERS

The first couple of lines use Python to do basic arithmetic. One of the nice benefits of
using interactive Python as opposed to using a calculator is that you can edit your previous
entries very easily. Plus, you can retrace your steps and find a typo. But that’s hardly the rea-
son for using Python, just an added bonus.

The third line is an assignment: we assign the value 4 to the variable a. The next line prints
out the value of a times 4. You'll learn more about variables, functions, and statements soon,
but for now, let’s examine the interactive environment and get you up to speed on how to
work with it efficiently.

The following line shows Python’s string capabilities. A string is typically enclosed in
quotes, so the next command multiplies the string 'a' by 4. Which is exactly that: "a' multi-
plied four times results in 'aaaa’'—pretty cool.

The last line shows what happens when the interpreter encounters a problem: it raises
an exception and reports the reason back to the user. In this particular case, the interpreter
doesn’t know of the function sqrt(); this can be easily remedied if we import the function by
issuing from math import sqrt, but that’s reserved for later.

The Result Variable

Whenever Python executes a statement, the result is stored in a special variable named . This
is useful when you're doing some manual calculations:

>>> 1+4243+4+5+6+7+8+9
45

>>>

45

>>> _ + 10

55

>>>

55

>>> /5

11

The result variable keeps on being updated, as shown in this example, so bear that
in mind.

The Interactive Help System

The interactive help system is a valuable tool both when learning the language and when pro-
gramming. Python has a considerable number of functions, modules, and packages, so a help
system is a must. As the name suggests, the help system is an interactive system. Invoking it is
straightforward (notice the required empty parentheses):

>>> help()

Enter quit to exit the system. Enter a function name to read about it (e.g., execfile).

If you enter sqrt, the help system will respond that there’s no documentation regarding
sqrt. The reason for this is that sqrt is part of the math module, and to view its help informa-
tion you'll have to enter math.sqrt instead. Refer to the “Modules and Packages” section later
in this chapter for discussion about modules.

CHAPTER 3 PYTHON FOR PROGRAMMERS

You can also view specific function help (noninteractively) using help(function):

>>> help(execfile)
Help on built-in function execfile in module _ builtin_ :

execfile(...)
execfile(filename[, globals[, locals]])

Read and execute a Python script from a file.
The globals and locals are dictionaries, defaulting to the current
globals and locals. If only globals is given, locals defaults to it.

In reality what happens when you issue the command help(function) is that that func-
tion’s docstring is printed. More about docstrings in the “Defining Functions” section later in
this chapter.

Moving Around

At times, it’s of value to know how to change the current working directory within the Python
interpreter. This is especially important if the code and data are located in different directories;
it might be easier to just switch to another directory as the situation requires.

Suppose you defined a function that accepts a file name as input, reads it, and does some
processing. Furthermore, this function was defined interactively, as you were using the inter-
preter. Now you'd like to run this function on some files, but the path to these files is long and
cumbersome. This is a situation where it'’d be much easier to switch to the directory where
the files reside and execute the function with the relatively shorter file name, that is, excluding
the path.

Module os provides us with this functionality. You've already seen the os module in
Chapter 1, but this time we use it to move around the interpreter:

>>> import os

>>> os.getcwd()

' /home/shai/python’

>>> os.listdir('.")

['src', 'data']

>>> os.chdir('src')

>>> os.getcwd()

' /home/shai/python/src’

>>> os.chdir('/home/shai/python/data")
>>> os.getcwd()

' /home/shai/python/data’

>>> os.chdir('../src")

>>> os.getcwd()

' /home/shai/python/src’

>>> 0s.listdir('/home/shai/python/data")
['GPS-2008-06-05-13-02-56.csv"]

In this listing I've used several functions. The first line imports the os module, containing
functions required to move around. I've then used several functions from the os module:

57

58

CHAPTER 3 PYTHON FOR PROGRAMMERS

¢ The function os.listdir(path) lists directory contents. The function must be supplied
with a string argument. If the string argument is an empty string (' ') or a string with a
single dotin it (‘. "), the function will return the contents of the current directory.

e To figure out what’s your current working directory, issue the command os.getcwd().
This function takes no arguments.

e Finally, I've shown the usage of the os.chdir(path) function. The function accepts one
string as an argument and, depending on the string, changes directories accordingly.
The function accepts both relative directory paths (such as '../src') as well as full
directory paths (' /home/shai/python/data").

Tip InIPython (see Chapter 2), you can use the commands cd, 1s, and pwd as you would in any Linux
shell instead of using the 0s module functions (it’s faster to type!).

Running Scripts

The interactive environment can only get you so far. Eventually, you will want to write pro-
grams (scripts) and run them either noninteractively or from within the Python interpreter.

There could be various reasons to write scripts, and most are due to the fact that you
might perform a task more than once. Say the accountants in your company use nonlinear
depreciation equations, and being their favorite programmer they ask you for a personal favor,
so you decide to write a web-based depreciation calculator. Or the clinical people in your
medical device company often require access to log files that are large and require processing,
so they ask you to write an end-of-day report per patient summarizing the day’s events based
on those log files, or . . . and the list goes on and on.

The path I typically follow is that I use the interactive environment in parallel to coding
the script. That is, I run Python interactively, run a few statements, assign some variables, plot
some graphs; if things look good, I copy over the commands I issued to an editor where my
script resides.

Tip InIPython you can issue the command history to view a list of recently entered commands.

The benefit of coding interactively is that you can examine the variables and data struc-
tures of your code, without additional debugging tools. If the script raises an exception, you
now have at your fingertips all the variables and data structures: you can reproduce the error
and possibly fix the bug.

Once your script is ready (well it’s never really ready, let’s just agree that it’s ready to be
test-driven), you have several options to run it:

CHAPTER 3 PYTHON FOR PROGRAMMERS

¢ Run the script from the GUI environment: running IDLE (Python GUI), select File »
Open and choose the script to run. This will open the Python script in the IDLE editor
(if it’s already open, there’s no need to reopen it). To run the script, press F5 or select
Run Module from the Run menu. The output should appear in the Python GUI shell.

¢ Run the script from Python’s CLI. Using execfile('path/to/filename.py") is my favor-
ite option when developing. The reason I prefer this method over the GUI environment
is that I like editing my code in an editor that is not part of an IDE.

Tip If you're using IPython, you could issue the command run path/to/filename.py instead of
execfile('filename.py"); the benefits are 1) you can use character completion to select the file name,
and 2) you can supply command-line parameters to the script: run path/to/filename.py parami param2.

¢ Invoke the script from the shell or a command window (noninteractive mode).

Even though you might have developed your script in interactive Python, it’s a good
idea to test your script in a shell as well, especially if you're distributing your code for
others to use: they might not want to run the code interactively. To run the script from
a Linux shell or Cygwin, use this command:

$ python path/to/filename.py
Or in Windows:
c:\python25\python.exe path\to\filename.py

In Windows, you could also set the PATH variable to include the Python directory path,
in this case, c:\python25, so invoking the script will not require a full path to the Python
executable:

path=%path%;c:\python2s
python path\to\filename.py

 Finally, it’s also possible to enjoy both worlds: interactive and noninteractive mode!
This is done by running the script with the -1 switch, which opens up a Python shell
after the script has run and lets you examine variables, interactively:

$ python -i somescript.py

Tip Since the backslash character (\) has a special meaning in strings (we’ll get to that later) and is also
used as a path separator in Windows, it’s best to use the slash (/) character whenever you’re working with
file names and file paths. If you can, opt to use relative paths (e.g., . . /data instead of c: \data); your code
will be portable across operating systems and much easier to read.

That’s it. I think we’re ready for the language itself now.

60

CHAPTER 3 PYTHON FOR PROGRAMMERS

Data Types

Python data types are similar to data types in other programming languages; you'll see here
strings and numbers just as you would in, say, Basic. But there are some niceties you should
know about even in those basic data types, for example, the long data type supports infinite
integer precision.

Numbers
We'll start off with numbers. Python natively supports int, long, float, and complex.

Int and Long

The data type int is equivalent to C’s long data type, and its precision is system dependent.

I run a 32-bit machine, so on my system, int defaults to a 4-byte integer. This means the maxi-
mum int I can represent on my system is 23!-1, and the minimum is -23!. If you’re uncertain
of the bit count on your system or if your code might be running on different platforms (e.g.,
both 32-bit and 64-bit platforms), you can use the following to determine the maximum int
value:

>>> import sys
>>> sys.maxint
2147483647

The data type long provides infinite integer precision. It’s not limited by the platform.
However, there is a price to be paid: performance. Long integer numbers are denoted in
Python with a trailing L character:

>>> 2*¥*70

1180591620717411303424L

>>> 2%%¥700
5260135901548373507240989882880128665550339802823173859498280903068732
1542970808221136665362775884512269829688561782177130194322501838038631
2781477065188084995522367112844459819166375788432271727129325173578137
6L

I've introduced the operator power, denoted by **, so 2**70 is 27°. Once you leave the
int range (4 bytes on a 32-bit machine, 8 bytes on a 64-bit machine), that is, your calculation
extends to a number greater than sys.maxint, Python automatically converts the number to a
long integer value, giving it infinite precision. So if your plan was to use an int, make sure you
didn’t accidentally cast it into a long. Here’s a possible pitfall:

>>> 2%%31-2
21474836461

Asyou can see, the result is a long, denoted by the trailing L. But surely this number is less
than sys.maxint! The problem is that the first calculation, 2%!, already exceeded sys.maxint,
and now any future computations are performed in infinite precision, denoted by the trailing L.

Once a number is long, it will keep on being treated as long unless you specifically convert
it back to an int using the int() function, assuming the number indeed can be represented as
an int.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Personally, I haven’t used long all that much. I typically use integer values when counting
things (for example, in loops) and 23!-1 is more than enough. However, had I required such
alarge number, I'd have to jump through a series of hoops in, say, C, but in Python it’s a lot
easier (not effortless, but still easier).

WHY NOT EFFORTLESS?

This is a bit off-topic and is an advanced discussion that assumes some knowledge of Python.

The reason it’s not effortless doing infinite precision with integers is that a lot of the functions we’re
used to working with in Python return int, and not long. To illustrate this problem, suppose you'd like to
compute a sum of numbers from 1 to N, where N is greater than 2% (yes, there are easier ways but I'm trying
to make a point here). A typical approach would be to use a for loop with an xrange () iterator as follows:

>>> total = 0
>>> for x in xrange(1000):
total += x
>>> total
499500
Note that I've used a variable named total and not sum because sum is a built-in function in Python.

Now the problem lies with the call to xrange ()—the iterator accepts only int values. So if you were
to replace the number 1000 with, say, 2**32, you’d get an error:

>>> xrange(2*¥32)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
OverflowError: long int too large to convert to int

which means you’d have to resort to other techniques such as (caution: this is a long run)

>>> X, total = 0, 0
>>> while(x < 2**33):
X +=1

total += x

It's definitely doable in Python, but it's not effortless. That said, doing the same in C is even harder.

Other Useful Bases

Bases that are powers of 2 are native to computing systems. One byte is 28 as opposed to, say,
a power of the decimal system. For this reason, the ability to convert values to and from bases
that are powers of 2 (such as the hexadecimal base or the octal base) to the decimal system is
important.

61

62

CHAPTER 3 PYTHON FOR PROGRAMMERS

Note The octal base is less popular nowadays. However, some octal notations are still active, for exam-
ple, file permissions in Linux systems.

Hexadecimal values are denoted with a leading 0x. Thus, 0x20 is 32 (decimal). You can use
both capital and noncapital letters for digits A-F:

>>> 0xaB
171
>>> Oxff
255

Octal values are denoted with a leading 0 (that’s a zero, not the character O). Thus 020 is
16 (decimal):

>>> 020
16

Regardless of how you enter numbers, that is, what base you’'ve used, they're still retained
as numbers in Python. Should you want to look up the different base representation, use the
oct() and hex() function calls. Both these functions return a string:

>>> hex(100)
'0x64 "'
>>> oct(100)
'0144'

You can also perform any other base conversion using the function int(str[, radix]),
which returns a number, not a string. In case radix isn’t specified, it is assumed to be 10:

>>> int('100")
100

>>> int('100', 3)
9

The argument to the function int() is a string and not a number. So in case you'd like to
convert 101 in base 3 to a decimal value, write int('101', 3) or int(str(101), 3).The latteris
more useful if you’d like to use a variable, that is, int(str(variable), base).

It’s possible to use higher bases than hexadecimal (base 16), using an increasing number
of letters from the alphabet as the new digits for the base. In base 17, the character g is added;
in base 18, the character h is used, and so on. So the number 'ggg" in base 17 should be 173-1:

>>> int('ggg', 17)
4912

>>> 17%%3-1

4912

“«

This support for bases is up to value 36, corresponding with the letter “z”.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Comparisons

You can compare values using the regular operators: > and < for greater than and less than,
respectively. Equality checks are done using a double equal sign (==) to differentiate from the
assignment symbol denoted by a single equal sign (=). Inequality is ! =, and you can also use >=
and <= for greater-than-or-equal and less-than-or-equal comparisons.

>>> 2*¥3 > §
True
>>> 2*%3 1=5
True

Some comparisons are not allowed, for instance, comparing a complex number
(described in the next section) with an integer value:

>>> 1413 > 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: no ordering relation is defined for complex numbers

Bitwise Operations

Bitwise operators are similar to C’s bitwise operators as shown in Table 3-1.

Table 3-1. Bitwise Operations

Operator Description Example

~ Bitwise not ~0x0ff+0x100 returns 0.

<« Shift left 1<<8 returns 256.

>> Shift right 256>>2 returns 64.

A Bitwise exclusive OR (XOR) oxff ~ 0xforeturns 15 (0x0f).

& Bitwise AND Ooxff & oxof returns 15 (0x0f).

| Bitwise OR ox0f | oxforeturns 255 (0xff).

Augmented Assignments

Augmented assignments introduce the operators +=, -=, *=, /=, %=, ¥*= , <<=, >>=, 8=, "=, and |=.

This is notation is similar to C/C++ syntax. That is, instead of writing a = a+1, you can write
a += 1.Similarly, instead of writinga = a>>1, you can write a >>= 1. Please note that Python
does not support the increment operator ++.

Float and Complex

Floating-point values have been around for quite some time, and there’s no escaping them.
Python’s float data type is equivalent to C’s double, so it’s really more accurate than C’s float
(C’s float has fewer bytes than C’s double).

63

64

CHAPTER 3 PYTHON FOR PROGRAMMERS

Floating-point values are represented with a dot or with the e or E character denoting
exponential notation. So if you want to ensure your value is a float, either add a leading dot
(or dot zero, or e/E) or explicitly do so with the function float():

>>> 2.0

2.0

55> 2

2

>>> float(2)
2.0

>>> 1e3
1000.0

The reason specifying a float is important is that you might get an integer operation
where you really want a floating-point operation.

>>> 2/3

0

>>> 2./3
0.66666666666666663
>>> 2/3.
0.66666666666666663
>>> 2.0/3.0
0.66666666666666663
>>> float(2)/3
0.66666666666666663
>>> float(2/3)

0.0

Note In Python 3.0, 2/3 will return a floating-point value; for an integer division, use 2//3 instead. See
http://www.python.org/dev/peps/pep-0238/ for more details.

In the first operation and the last operation, the division is integer division, returning the
value 0. As a general rule, whenever a floating-point number is introduced, any integers (both
int and long) are converted to a float, and from that point onward the calculation continues
with floating-point values. This is also known as promotion or coercion; long and int are pro-
moted to a float.

You can force a value into a floating-point value by using the f1loat() function. This works
on strings as well as numbers, as long as the conversion is possible.

The complex data type represents complex numbers and is composed of two floating-
point values, one representing the real part and one representing the imaginary part. The
imaginary part is appended with the trailing letter j (or J). Accessing the real and imaginary
parts is possible using the .imag and .real attributes, as follows:

CHAPTER 3 PYTHON FOR PROGRAMMERS

>>> a = 142]
>>> a.real
1.0

>>> a.imag
2.0

You can use most any operator on complex numbers just as you would on floating-point
numbers. Once a computation involving a complex number is encountered, the remaining
computation will remain a complex, that is, integers and floating-point values are promoted
to complex values. You can convert a number to a complex number using the complex(real[,
imag]) function. In case imag is provided, it holds the imaginary value of the complex number:

>>> complex(10)
(10+03)

>>> complex (10, 2)
(10+23)

The complex data type as well as examples on using it will be discussed in Chapter 7.

Strings

Per the classic Python definition, strings are an immutable sequence of characters. This means
a string is a sequence of characters, and it is unchangeable: you can’t change the characters. I
know that this might seem odd at first: you're probably thinking, “How do I work with strings if
I can’t modify them?” The answer is that you create new strings based on your current string.

Expressing Strings

There are several ways to express a string: single quotes, 'string'; double quotes, "string";
and triple-double-quotes, """string""" (phew), to name a few. And there are even more: raw
strings denoted by the letter r such as r"string" and Unicode strings denoted by the letter u,
for example, u"unicode".

To express a basic string, use single quotes as follows:

>>> 'split’
'split’

In case your string has a quote in it, you’ll have to escape it with a backslash (\):

>>> 'it\'s a split’
"it's a split"

The reason we escaped the quote that’s part of the word it 's is so that the quote before
the letter s won’t terminate the string.

Single quotes and double quotes are interchangeable. Therefore, we could’ve achieved the
same result, without escaping the quote that’s part of the word it's, by replacing the enclos-
ing quote (the ones at the beginning and end) with double quotes:

>>> "it's a split”
"it's a split”

65

66

CHAPTER 3 PYTHON FOR PROGRAMMERS

But what if we wanted a string that actually does have the backslash before the quote
as well—a string that looks exactly like this: it\'s a split? Well, one option is to escape the
backslash as well as the quote:

>>> "it\'"\\s a split second'
"it'\\s a split second"

>>> print '"it\'\\s a split second’
it'\s a split second

Notice how the interpreter represents that string differently from how it’s printed.
Well, this pattern can keep on going, making things harder to understand. Instead, we
could use a raw string:

>>> r"it\'s a split second"
"it\\'s a split second"

>>> print r"it\'s a split second"
it\'s a split second

A raw string means that everything following the character r and the starting quote and
before the ending quote should be taken literally. Have Python escape what needs escaping
and return a proper string back to me!

Note Raw strings will be used extensively in regular expressions so as not to escape special meaning
characters on several levels. See Chapter 5 for details.

Strings can also span multiple lines with a backslash:

>>> "it's a \
. split second"
"it's a split second"

This obviously could bring about more disasters—what if you really wanted that backslash
to appear, as well as the line break? Not to worry, time to use triple-double-quotes (or triple-
single-quotes, they're interchangeable):

>>> print """it's a \
. split second"""

it's a \

split second

If all this sounds too confusing, you're in good company. To acquaint yourself with these
caveats, launch Python interactively and experiment!
I haven’t talked about Unicode strings here; I'll touch on that in Chapter 5.

String Operations

So what can you do with strings? Table 3-2 lists some operations that can be performed on
strings, along with examples. In the examples, I've selected strings that don’t require escaping

CHAPTER 3 PYTHON FOR PROGRAMMERS

so they're easier to follow, but the same can be applied to any string expression described
previously.

Table 3-2. String Operations

Operator Description Example
Adding and Multiplying
stri+str2 Concatenates strings str1 and str2. 'split '+'second' returns

'split second'.

str¥n Concatenates the str string n times. 'second '*3returns
'second second second .

Indexing and Slicing

n and m are positive integer values less than the length of str. Negative values are counted from the
end of the string.

s[n] Retrieves the nth character of s "split'[3] returns 'i'.
s[n:m] Retrieves a string slice from nth character ~ split second'[6:12]
to the mth character, excluding the mth returns 'second"'.
character. If n or m are negative, they are "split second'[-6:-2]
counted from the end of the string. returns 'seco’.
s[:m] Equals s[n:m] with n=0. "split second'[:3] returns
"spl'.
s[n:] Retrieves a string slice from the nth 'split second'[6:] returns
character to the end. 'second".

You can check whether a character is in a string using the in operator:

>>> 'd' in 'abcde'
True

or count the number of characters in a string using the len() function:

>>> len('abcde")

5

Both in and len() operate on other sequences, as you'll soon see.

I'll discuss strings (including Unicode strings and raw strings) in more detail in Chapter 5.
Booleans

I've postponed discussion of Boolean values until after you've seen some other data types
because Booleans values shine in the context of other data types. Booleans can take two val-
ues: True (1) or False (0).

>>> a = True
>»>a>1
False

>>> a ==
True

>>> bool(5)

67

68

CHAPTER 3 PYTHON FOR PROGRAMMERS

True
>>> type(a)
<type 'bool'>

You can cast a value to a Boolean by using the bool () function. Empty strings, as well as
other empty sequences, and the value zero of any form are considered False:

>>> bool(0)
False

>>> bool(5)
True

>>> bool("")
False

>>> bool("s")
True

Logical Operations

Logical operations and, or, and not operate on Booleans. I assume you know how to use them.
Let’s see if you know the answer to the following.. . .

>>> 5> 1 and ((4 < 3) or 244 < 5 and not 6 < 2)

Data Structures

Python, being a high-level programming language, also provides additional, more complex,
data types, which I refer to as data structures. These include lists, tuples, dictionaries, and sets,
to name a few. Data structures make the programming experience a lot more enjoyable.

Python documentation does not necessarily differentiate between data types and data
structures the way I have. My purpose in this distinction is to split the discussion into two
categories: simple data types, which you're likely to encounter in popular programming lan-
guages (such as C), and more complex data types, or data structures, which you're likely to see
in higher-level programming languages such as Python and Perl. Regardless of the classifica-
tion presented in this chapter, both are built-in data types as far as Python is concerned.

In a sense, you've already been exposed to data structures: strings and complex num-
bers. The string is an immutable sequence, hardly a “simple” data type. By comparison, the
C programming language does not support a native string data type, rather an array of char-
acters, which is to show that strings aren’t really all that basic. But a string is still limited—it’s
a sequence of characters. What about sequences of other objects? And what about mutable
(changeable) sequences?

Not to worry, Python provides those as well. A [ist in Python is a mutable sequence of arbi-
trary data types. A tuple is quite similar to a list, only that it's immutable.

We’ll also talk about some more complex data structures that can make programming yet
more entertaining. You've already seen a dictionary object in Chapter 1, and we’ll explore that
data structure as well as the set object. Python is also an object-oriented-programming lan-
guage; therefore, a discussion of the class object will be presented after we have talked about
functions.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Lastly, there are also additional native data types and structures in Python, but most of
them will be left out of the scope for this book; they’re not a must for data analysis and visual-
ization (with the possible exception of file data types, which will be discussed in Chapter 5).

Lists

A list is a mutable sequence of objects. A list is denoted by brackets:

>>> [1, ‘hey', 1+27]
[1, ‘hey', (1+27)]

You can also create a list using the 1ist() function. This is useful when converting differ-
ent sequences to a list, say, from a string:

>>> list('some text")
['SI) 'O|, Iml) Iel, 1 I) 't|, Iel) IXI, ltl]

Alist can be modified. You can add another element to a list by using the + operator. The
+ operator concatenates lists, so you have to supply another list:

>>> [1, 'hey', 1+2j] + ['hey', ‘hey']
[1, 'hey', (1+2]), 'hey', 'hey']

The following, however, will fail, since you cannot add an integer to a list:

>>> [1, 2, 3] + 2
Traceback (most recent call last):
File "<stdin»", line 1, in <module>
TypeError: can only concatenate list (not "int") to list

The proper way to do this would be to form another list, made solely of the value 2:

>>> [1, 2, 3] + [2]
[1) 2) 3) 2]

If you're looking to add the value 2 to each and every element of the list [1, 2, 3], thatis,
to modify the list to [3, 4, 5], you'll get the details in the sections “The for Statement” and
“List Comprehensions” later in this chapter.

Alist is an object too, so you can also have a list inside a list:

1, 2
[[1, 2], [3, 4]]

Now things get trickier, both in describing the object and in actually performing opera-
tions. Say you'd like to add another list, [5, 6], to the preceding example. How exactly would
you like to add it? Should the updated list be [[1, 2], [3, 4], [5, 6]]or[[1, 2], [3, 4],
5, 6]or[[[1, 2], [3, 411, [5, 6]] (which really is shamelessly tricky)?

The way I like to describe the data structure [[1, 2], [3, 4]]is as alist of rows. The first
rowis [1, 2] and the second rowis [3, 4].

Here are some of the things you can do to concatenate lists:

>>> [[1, 2], [3, 4]] + [5, 6]

+
([1, 2], [3, 4], 5, 6]

69

70

CHAPTER 3 PYTHON FOR PROGRAMMERS

>>> [[1, 2], [3, 411 + [[5, 6]]
([1, 2], [3, 4], [5, 6]]

The first line adds the elements 5 and 6. The second line adds the row [5, 6].
Another option is to use a variable to hold the list, L, and use the append() and extend()
methods:

>>> L= [[1, 2], [3, 4]]
>>> L.append([5, 6])
>>> L

[[1, 2], [3, 4], [5, 6]]
>>> L.extend([7, 8])
>>> L

([1, 2], [3, 4], [5, 6], 7, 8]

The method append() adds an item to the list, in this case the list [5, 6]. The method
extend() adds elements from the sequence one by one to the list, in this case, the elements
7 and 8. It’s a bit hard to follow at first, but experiment with lists interactively to get a feel for
how to use them properly.

Lists can also be indexed, similarly to strings:

>»> L= [['hey') '1I:|J [21 3, 4]) ”]
>>> L[0]

['hey’, "1']

>>> L[1]

[2, 3, 4]

>>> L[1][1]

3

The last statement, L[1][1], requires some explanation. The statement L[1] returns the
second element in the list (indices start at 0, so index 1 is the second element). For our pur-
poses, let’s mentally assign L[1] to variable M. But variable Mis a list as well: [2, 3, 4].So
clearly we can index M as well: M[1] is 3. Instead of doing those two steps, we can write this
more compactlyas L[1][1].

Lists much like strings can also be sliced:

>»> L = [['hey', '1'], [2, 3, 4], "']

>>> L[:-1]

[['hey', '1'], [2, 3, 4]]
>>> L[2:]

("]

You can check whether an item is in a list using the in operator:

>>> 'hey' in ['hey', 'hey', 'split', 'second']
True

You can count the number of elements in a list using the len() statement:

>>> len([['hey', '1'], [2, 3, 4], "'])
3

CHAPTER 3

Since lists are mutable, they can be reassigned:

>»> L= [['hey') '1I:|) [21 3, 4]) ”]
>>> L[1] = [4, 5, 6]

>>> L

[["hey', "1'], [4, 5, 6], "']

or have items removed using the del statement:

>>> L = [['hey', "1'], [2, 3, 4], "']
>>> del L[0]
>>> L

([2, 3, 4], "']

PYTHON FOR PROGRAMMERS

Lists also have methods, functions that operate only on list objects such as append() and
extend(), shown previously. To use a method, follow the list object with a dot and the function
name with parentheses and parameters within (empty ones in case of no parameters):

>>> L = ['hey", 'hey', 'split', 'second']
>>> L.count('hey")

2

>>> L.sort()

> L

['hey', 'hey', 'second', 'split']

I've used the methods count (), which counts the occurrences of an item in a list, and
sort(), which sorts a list. Table 3-3 describes the list methods along with some examples. In

the examples, assume that L is ['second', 'second', 8].

Table 3-3. List Methods

Method Description Example
append(obj) Adds an element to the end of a list. L.append('hey") changes L
to ['second', 'second', 8,
"hey'].
count(val) Returns the number of times val L.count("'second") returns 2.
appears in the list.
extend(iterable) Adds elements to the list from iterable L.extend(xrange(2)) changes

(more on iterators and iterables later in
this chapter).

Returns the first index of val in the list.
If start is supplied, this method returns
the first index that is greater than start;
if stop is supplied, the index also has to
be less than stop.

index(val, [start,
[stop]])

insert(n, obj) Inserts an object at index n.

Lto['second', 'second', 8,
0, 1].

L.index("'second") returns 0.
L.index("'second', 1) returns 1.
L.index('second', 2, 3) raises
an exception x not in list.

L.insert(2, 'me') changes
Lto['second', 'second',
‘'me', 8].

Continued

I

72

CHAPTER 3 PYTHON FOR PROGRAMMERS

Table 3-3. Continued

Method Description Example

pop([n]) Returns the nth element in the list and L.pop() returns 8, and the
removes it. If n is not supplied, this modified listis ['second"',
method returns the last element. "second"].

L.pop(-3) returns 'second"', and
the modified listis ['second’,

8].
remove(val) Removes the first occurrence of val inx. L.remove('second') changes L
to['second', 8].
reverse() Reverses the list. L.reverse() modifies L to
[8, 'second', 'second'].
sort() Sorts the list. You can supply a sort func- L.sort() modifies L to
tion to the list; see help(list.sort). [8, 'second', 'second'].
Tuples

A tupleis an immutable (unchangeable) sequence of objects. A tuple is denoted by parenthe-
ses and can be created using the tuple() function:

>»> (1, 2, 3)

(1, 2, 3)
>>> tuple('hey")
(lhl) Iel) |yl)

Tuples don’t necessarily require parentheses; merely adding a comma suggests the
expression is a tuple:

> 1, 2
(1, 2)
>>> 1,
(1,)
>>> (1)
1

The expression (1) is not a tuple: it’s the value 1 within parentheses, which is treated
simply as 1.

Tuples behave similarly to lists, with the exception of modification: you can’t modify a
tuple. But you can create a new one based on an existing one:

>>> tuple([1, 2, 3])
(1, 2, 3)

>>> ¥ 2

(1, 2, 3, 1, 2, 3)

In the first statement, I've created a tuple based on a list. Note that tuple(1, 2, 3) would
raise an exception, because the function tuple() expects one argument, not three. In the pre-
ceding code I passed a list as an argument: [1, 2, 3].1could’ve also written tuple((1, 2,
3)), effectively achieving the same thing: the first outer set of parentheses in the expression

CHAPTER 3 PYTHON FOR PROGRAMMERS

is the function parentheses; the inner one is the tuple parentheses. In the second statement
listed, I've created a second tuple based on the first one, by multiplying the result variable.
Tuples can contain different data types and data structures:

»> ([1, 2], (3, 4))
([1, 21, (3, 4))

The preceding is a tuple containing a list and a tuple.
Tuples can also be indexed, similarly to lists and strings. Remember that indexing requires
brackets, not parentheses:

>>> ([1, 2], (3, 4))[0]
[1, 2]

>>> ([1, 2], (3, 4))[1]
(3, 4)

>>> ([1, 2], (3, 4))[1][0]
3

A tuple can be sliced, generating a new tuple:

>>> ([1, 2], (3, 4))[1:]
(3, 4),)
However, tuples cannot be reassigned:
>>>a = (["hey', '1'], '")
>>> a[0] =0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

But the lists within them can be changed, since lists are mutable:

>>> a = (['heyl) 1], ”)
>>> a[0][0] = "wow'
>>> a
(Cwou’, 2],)
Checking whether an item is in a tuple can be done using the in operator:

>>> 1 in (2, 3)
False

Finally, it's common practice to use tuples to perform multiple assignments, also known

as unpacking:

>»>a, b=1, 2
>»>a+b
3

73

74

CHAPTER 3 PYTHON FOR PROGRAMMERS

Dictionaries

Dictionaries are mutable sequences that connect a key with a value. The key must be unique,
whereas the value need not be. I like to use a phonebook analogy when I think about diction-
aries. Every phone number (key) has but one entry (value) associated with it, usually a person;
however, one person (value) can have several phones (keys). The key and value objects can be
most data types, with the exception of some (e.g., another dictionary).

There are several ways to create a dictionary: using the dict() function with a sequence of
(key, value) tuples or using the curly braces ({}) with colons separating keys and values:

>>> dict((('split', 8), ('second', 1)))
{"second': 1, 'split': 8}

>>> {'split':8, 'second':1}

{"second': 1, 'split': 8}

There are many parentheses in the first expression: the outermost are the parentheses for
the function dict(), the innermost are specific tuple pairs, and the ones in between denote
a tuple of tuples, because dict() can only accept one argument. A more readable approach
would be to pass dict() alist of tuples, instead of a tuple of tuples:

>>> dict([('split', 8), ('second', 1)])
{'second"': 1, 'split': 8}

Retrieving values from a dictionary is achieved using brackets:

>>> D = dict([('split', 8), ('second', 1)])
>>> D['split']
8

Checking for membership in a dictionary is done using the in operator, which defaults to
checking against the keys of the dictionary, not the values. If you wish to check against the val-
ues, use the values() method:

>>> D = dict([('split', 8), ('second', 1)])
>>> 'split' in D

True

>>> 8 1in D

False

>>> 8 in D.values()

True

Changing values and assigning new values is done using brackets as well:

>>> D = dict([('split', 8), ('second', 1)])

>>> D['python'] = 'snake'

>»>> D

{"python': 'snake', 'second': 1, 'split': 8}

>>> D['python'] = 'programming language’

>»> D

{"python': 'programming language', 'second': 1, 'split': 8}

CHAPTER 3 PYTHON FOR PROGRAMMERS

In the preceding example, the second assignment to the key 'python' has overwritten the
previous value, 'snake', with the value 'programming language'.

If you think about it, real-world dictionaries may have several entries for one key: the
word “Python” can mean the Python snake or the Python programming language. This behav-
ior can be mimicked in Python dictionaries as well; simply have the value contain a list:

>>> D = dict()

>>> D['python'] = ['snake', 'programming language']
>»> D

{"python': ["snake', 'programming language']}

Dictionaries are implemented using a hashing algorithm. This means that retrieving a
value from a key is extremely efficient. There’s a lot of information regarding hashing algo-
rithms and hashing functions on the Internet, so look that up if you're interested in knowing
how they work. There’s also good discussion on specific Python dictionary implementation in
the Python Cookbook (see “Final Notes and References”). Used properly, a dictionary can sim-
plify your code and make it a lot more efficient. In Chapter 4, I present an example of using a
dictionary to locate duplicate files on a hard drive.

Table 3-4 lists dictionary member functions. In the examples in the table, assume D is
{'second': 1, 'split': 8}.

Table 3-4. Dictionary Methods

Method Description Example
Functions
clear() Removes all items from the dictionary. D.clear() changesD to {}.
copy () Returns a shallow copy of D (see the D2 = D.copy().
“Variables” section later in the chapter).
fromkeys (K[, v]) Creates a dictionary from keys K. If v is {}.fromkeys(['split’,
provided, all values are set to v. 'second'], 8) returns
{'second': 8, 'split': 8}.
get(k[, def]) Returns the value associated with key k. D.get('first', 1) returnsi.

If k is not in the dictionary, this method
returns def if provided.

has_key (k) Returns True if k is a key. D.has_key('na") returns False.
items() Returns key-value tuples. In a sense D.items() returns [('second',
this is the opposite of dict(). 1), ('split', 8)].
keys() Returns the list of keys. D.keys() returns ['second"',
"split'].
pop(k[, def]) Returns the value associated with key D.pop('split") returns 8 and

k and removes it from the dictionary. If changesDto {'second"': 1}.
k is not in the dictionary, this method

returns def if provided; otherwise, it

raises an exception.

popitem() Returns an arbitrary key-value tuple and D.popitem() returns
removes the pair from the dictionary. ('second', 1) and changes
Dto{'split': 8}.

Continued

75

76

CHAPTER 3 PYTHON FOR PROGRAMMERS

Table 3-4. Continued

Method Description Example

setdefault(k[, def]) Returns the value associated with the D.setdefault('hey', 6)
key k. If k is not in the dictionary, this returns 6 and changes D to
method returns def if provided and sets {'second': 1, 'split': 8,

D[k] to def. "hey': 6}.

update(e) Updates the dictionary with data from See the upcoming example in
dictionary e. this section.

values() Returns the list of values. D.values() returns [1, 8].

Iterators

Iterators will be discussed later in the chapter. For reference purposes, I've listed dictionary iterator
methods in this table.

iteritems() Returns an iterator holding key-value
pairs.

iterkeys() Returns an iterator holding the
dictionary keys.

itervalues() Returns an iterator holding the
dictionary values.

While most of these member functions are easy to follow (with the exception of iterators,
which we’ll soon get to), I'd like to talk about two member functions that I feel require more
explanation: update() and get().

The method update() updates the dictionary with key-value pairs from another diction-
ary. For ease of discussion, I'll refer to the function call D1.update(D2). In case a key exists in
both dictionaries D1 and D2, the value associated with the key in the dictionary D1 is updated
with the value from dictionary D2. If a key from D2 does not exist in D1, it is added to D1 along
with its value. The following illustrates this behavior:

>>> D1 = {'second': 1, 'split': 8}
>>> D2 = {"'second': 3, 'hey': 7}
>>> D1.update(D2)

>>> D

{'second': 3, 'split': 8, 'hey': 7}

The value associated with the key 'second' was updated, and the key-value pair 'hey': 7
was added.

The next member function I want to talk about is get (). At first, this seems rather odd;
how is get () different from simply accessing the key using brackets? The difference is that if
you use brackets and the key is not in the dictionary, a KeyError exception is raised. The func-
tion get () allows checking whether a key is in a dictionary and as a side product also returns a
default value. A good way to show how this is useful is perhaps with an example.

Consider the function 1ist_gps commands () presented in Chapter 1 (I've removed the doc-
string), shown here in Listing 3-1.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Listing 3-1. Function 1ist_gps commands ()

def list gps commands(data):
gps_cmds = dict()
for row in data:
try:
gps_cmds[row[0]] += 1
except KeyError:
gps_cmds[row[0]] = 1
return gps_cmds

To further illustrate the example, let’s build a short list of GPS commands (L) to later sort
in a dictionary so you can try the example for yourself. First, we execute a set of commands
similar to those detailed in the function 1ist gps commands():

>>> L = ["$GPGSA', '$GPGSV', '$GPGSV', '$GPGSV', "$GPRMC', '$GPGGA']
>>> D1 = dict()
>>> for elem in L:
try:
Di[elem] += 1
except KeyError:
Di[elem] = 1
>>> D1
{"$GPGSA": 1, "$GPGSV': 3, '$GPGGA': 1, "$GPRMC': 1}
The approach is simple. We first try to access a key in the dictionary. If the key exists, we
increment the count. If the key doesn’t exist, an exception is raised, which means it’s a new
entry, so we set it to 1.

A second approach is to check whether a key exists in a dictionary using the in statement
and then follow up with an if sentence, as follows:

>>> L = ['$GPGSA', "$GPGSV', '$GPGSV', '$GPGSV', '$GPRMC', '$GPGGA']
>>> D2 = dict()
>>> for elem in L:
if elem in D2:
D2[elem] += 1
else:
D2[elem] = 1
>>> D2
{"$GPGGA': 1, '$GPGSA': 1, '$GPGSV': 3, '$GPRMC': 1}
It’s also possible to use the has_key() member function in a similar manner.

A much more elegant approach would be to use the get() method with a default value
ofo:

>>> L = ['$GPGSA', '$GPGSV', '$GPGSV', '$GPGSV', '$GPRMC', '$GPGGA']
>>> D3 = dict()
>>> for elem in L:

77

78

CHAPTER 3 PYTHON FOR PROGRAMMERS

D3[elem] = D3.get(elem, 0)+1
>>> D3
{"$GPGSA": 1, "$GPGSV': 3, '$GPGGA': 1, '$GPRMC': 1}

I chose the first approach in Chapter 1 because I think it’s clearer to those unfamiliar with
the language. However, the last approach presented here is a clear winner in my mind.

Sets

Our last data structure for now will be a set. Sets are sequences of unique items. To create a set,
use the set() function:

>>> set(['split', 'second'])
set(['second", 'split'])

>>> set(['split', 'second']*8)
set(['second", 'split'])

If you pass a duplicate to the set() function, it will not be added to the set. This is shown
in the second statement where a list multiplied by 8 is passed as an argument.

In a sense, you've already been introduced to sets: the keys in a dictionary form a set since
they are unique items.

Set operations are a bit different from the previous sequences you've seen. They are
derived from the math operations and include intersection, union, and differences, to name a
few:

>>> S1 = set(['split', 'second'])
>>> 52 = set(['split’, 8])
>>> S1 | S2

set([8, 'second', 'split'])
>>> S1.union(S2)

set([8, 'second', 'split'])
>>> S1 & S2

set(['split'])

>>> S1 - S2

set(['second'])

>>> Si.difference(S2)
set(['second'])

>>> S2.difference(S1)
set([8])

The operator | is equivalent to the member function union(). The operator & is equivalent
to the member function intersection(). The operator - is equivalent to the member function
difference(), and much like regular subtraction, the order is important: S1-S2 is different
from S2-S51.

Table 3-5 lists some set functions. In the examples, assume S1 equals set([8, 'hey']).

Table 3-5. Set Methods

CHAPTER 3

PYTHON FOR PROGRAMMERS

Method Description Example
add(obj) Adds obj to the set. S1.add(9) changes 51 to
set([8, 9, 'hey']).
clear() Removes all elements from the list. S1.clear() changes S1 to
set([1).
copy() Returns a shallow copy of S1 (see a S2 = S1.copy().
discussion of shallow copy in the “Vari-
ables” section later in the chapter).
difference(S2) Returns the difference of two sets. This ~ S1.difference(set([8]))

difference update(S2)

discard(v)

intersection(S2)

intersection_update(S2)

issubset(S2)
issuperset(S2)

pop()

remove(val)

symmetric_difference(S2)

symmetric_difference
update(S2)

union(S2)

update(S2)

is equivalent to S1-S2.

Similar to difference() but modifies
the list (not merely returns a copy).

Removes the element v from the set. If
v is not in the set, nothing happens (no
exception is raised).

Returns the intersection of S1 and S2.
This is equivalent to S1 & S2.

Similar to intersect() but modifies the
set (not merely returns a copy).

Returns True if S1 is a subset of 52 (all
elements of S1 appear in S2).

Returns True if S1 is a superset of S2
(all elements of S2 appear in S1).

Returns an arbitrary element and
removes it from the set.

Removes val from the set. If val is
not in the set, this method raises an
exception.

Returns the symmetric difference. This
is equivalent to (S1-S2) | (S2-S1).

Similar to symmetric_difference() but
modifies the set (not merely returns a
copy).

Returns the union of S1 and S2 (all

unique elements that appear in both
sets).

Similar to union() but modifies the set
(not merely returns a copy).

returns set(['hey']).

Si.difference_
update(set([8])) changes
Sitoset(['hey']).

S1.discard(8) changes S1
to set(["hey']).

Si.intersection(['hey'])
returns set(["hey']).

Si.intersection_
update(["hey']) changes
Sitoset(['hey']).

S1.issubset(set([" hey',8,
'na'])) returns True.

S1.issuperset(set([8]))
returns True.

S1.pop() returns 8 and
changes S1to set(['hey']).

Si.remove('hey') changes
Sitoset([8]).

S2 = set(['jude', 'hey']).
S1.symmetric_
difference(S2) returns
set([8, 'jude']).

Si.union(set(['na’, 8]))

returns set([8, 'na’,
‘hey']).
Si.update(set(['na’, 8]))
changes S1 to set([38,

'na', 'hey']).

79

80

CHAPTER 3 PYTHON FOR PROGRAMMERS

I find I use sets much less than dictionaries. However, using sets at times can be quite
elegant. Consider the example shown in our previous discussion about dictionaries that
enumerates GPS commands. Now suppose you don’t care how many times a GPS command
appears, only what types of GPS commands exist. Then this is easily done with a set:

>>> L = ["$GPGSA", "$GPGSV', '$GPGSV', '$GPGSV', '$GPRMC', '$GPGGA']
>>> S = set(L)

>>> S

set(['$GPGSA', '$GPGSV', '$GPGGA', '$GPRMC'])

Variables

Next topic of our discussion is variables. Variables in Python are similar to variables in most
other programming languages. Variable names can consist of characters, digits, and an under-
score, but they have to start with a character or an underscore and must not contain spaces. I
recommend you avoid odd variable names such as 02 (which is a legitimate variable name) as
it might lead to some confusing code. Consider 02 = 3; that just doesn’t look right.

An important concept regarding variables of data structures in Python is that of binding.
When you assign variable b to be equal to variable a, which we’ll suppose is a list, Python does
not copy the contents of a to b. Rather, it sets both a and b to refer to the same object. This is to
achieve speed and performance.

>>>a = [1, 2]
>>> b =a

>>> b[0] = "hey'
>>> a

["hey', 2]

>»> b

['hey', 2]

In case you do want a real copy of the data structure, and not merely another reference,
you have several options:

¢ Some data structures provide the copy() method, such as dictionaries.

¢ In some cases, you can create another item using the constructor, for example,
L2 = 1ist(L1).

* You can use the copy module from the standard library:

>>> import copy

>>> a = [1, 2]

>>> b = copy.copy(a)
>>> b[0] = 0

>»>a, b

([1, 2], [o, 2])

CHAPTER 3 PYTHON FOR PROGRAMMERS

Note In case a variable is a more complex structure (e.g., a list of rows), it's not enough to use copy .
copy (), as the newly constructed list still points to the rows in the original list. In this case, you might want
to use copy.deepcopy() instead. For more information about shallow copy, deep copy, and lazy copy, see
http://en.wikipedia.org/wiki/Object_copy.

Statements

We now turn to Python statements. You've already seen the use of statements, but here I'll
cover more ground by talking about statements I haven’t discussed yet. Python is a rich
language that keeps evolving, so I will not be covering the entire language here. But the state-
ments I cover should be enough to get you going.

I've split the discussion into three statement categories: printing, user input, and flow
control. We'll have some off-track discussions about comments, iterators, and list comprehen-
sions as well.

Printing
One of the basic statements in most programming languages is the print statement. You can
use print to display Python objects:

>>> print(2**100)
1267650600228229401496703205376
>>> print(1+1j)

(1+17)

>>> print(0x20)

32

>>> print "String"

String

>>> print(['short list'])
['short list']

>>> print(('a', 'tuple'))

("a", 'tuple")

>>> print dict([('hey', 'jude'), (8, 1)])
{8: 1, 'hey': "jude'}

>>> print set([1, 2, 1])
set([1, 2])

Tip The function pprint from module pprint provides an alternative to the print statement, one
that formats the output in a “prettier” fashion, such as avoiding word breaks. This is especially useful
if you're displaying large data structures. To use it, import pprint and issue the command pprint.
pprint(object).

81

82

CHAPTER 3 PYTHON FOR PROGRAMMERS

Suppressing Line Breaks

If you follow a print command with a comma, the next print statement will continue on the
same line after printing a space:

>>> for i in [1, 2, 3]:

print i

1

2

3

>>> for i in [1, 2, 3]:
print i,

123

Format Specifications

The print statement is similar to C’s printf() function in that it accepts format specifica-
tions in the form %[flags][w][.pre]type. Other than the % and type fields, all parameters are
optional. The simplest use of the format specifications is with the % operator, as follows:

>>> print "%d" % 2**4
16

If more than one specifier is present, provide a tuple after the % operator:

>>> print "%d: %s=%d" % (1, 'hey', 8)
1: hey=8

The operator % is present after the string to be printed and before the tuple containing the
values to be formatted.

Note The function printf() (on which print is based) is a complex function with a considerable
number of options and parameters. This section is quite detailed and should provide most of your daily pro-
gramming needs. However, should you wish to explore print and printf() some more, a good source of
information is the prinft() manual page (also known as the man page). In any Linux (or Cygwin) prompt,
enterman 3 printf for an accurate overview. This is C-level documentation, but C programming skills are
not required.

There are several values type can have, but only one is allowed in each specification (e.g.,
the format specifier %sd will be interpreted as a string, followed by the character 'd"). Table 3-6
provides a distilled list of types.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Table 3-6. Print Format Specification Types

Character Type

d Integer

e E An engineering notation of a floating-point number with e or E, respectively (mantissa
and exponent are always present).

f Floating-point number

g Floating-point number in either f or e form, omitting trailing zeros and the decimal
point if it’s not needed

0 Octal

S String

X, X Hexadecimal (lowercase), hexadecimal (uppercase)

Note Starting from Python 3.0, print becomes a function and not a statement, and to use print you'll
have to add parentheses: print(obj).

We now turn to optional flags in the format specifier.

The value flags can take several of the following values: 1) a number, specifying the num-
ber of characters to left-align, 2) the character +, specifying that in case of a numeric value, the
sign must be present (either + or -), 3) the character -, specifying that the text should be left-
aligned, 4) the character #, which modifies behavior of some numeric types (out of the scope
of this discussion—refer to the documentation), and 5) the character 0, used to left-pad values
with zeros. Here are some examples:

>>> print "%d" % 2

2
>>> print "%5d" % 2
2
>>> print "%+5d" % 2
+2
>>> print "%-+5d**" % 2
42 **
>>> print "%05d" % 2
00002

The value w specifies minimum width. If the width of the object to print is less than w, the
output is left-padded with spaces. If it is greater than w, the value is displayed as is:

>>> print "%10s" % 'Really long string'
Really long string
>>> print "%10s" % 'shorter’

shorter

83

84

CHAPTER 3 PYTHON FOR PROGRAMMERS

The value pre is preceded with a dot and specifies the maximum number of decimal
points in floating-point numbers, the maximum number of characters to print in a string, or
the minimum number of digits in integers:

>>> print "%.2f, %.3s, %.4d" % (1.0/3, 'this will be truncated', 1)
0.33, thi, 0001

You can mix and match format specifiers. Here’s a print statement that makes use of
several format specifiers:

>>> print "%+08.3f" % (1.0/9)
+000.111

The + character forces the sign to appear in the output, the digit 0 takes care of the zero
padding, the digit 8 forces the output to be at least eight characters long (the plus symbol,
three digits, the dot symbol, and three more digits), the dot followed by 3 ensures at most three
digits are displayed, and lastly the character f announces that this is a floating-point number.

Employing print in this manner is especially useful when you want to create text output
that’s properly aligned and can be displayed in a report.

Format specifiers, with the use of the % operator, can also be used to format strings, not
only print them:

>>> s = "%+08.4f" % (1.0/3)
>>> S
'+00.3333"

User Input

We complement our output (printing) discussion with some input discussion, specifically,
user input. Other sorts of input, for example, files and command-line parameters, will be dis-
cussed in future chapters.

User input in Python is done using the raw_input([prompt]) function. The function prints
the prompt string, reads a string from the standard input, and returns it, stripped of end-of-line
characters. The prompt argument is optional:

>>> s = raw_input("How many times? ")
How many times? 7
>>> print "split "*s
Traceback (most recent call last):
File "<stdin»", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str’
>>> print "split "*int(s)
split split split split split split split

The function raw_input() returns a string, thus even though I've input a numeric value,
the function returns the string "7". I've converted the string to a number using the int()
function.

In Windows, it's common to see raw_input() at the end of a script. This ensures that the
command window stays open, waiting for user input and displaying the results of running the

CHAPTER 3 PYTHON FOR PROGRAMMERS

script. The default behavior in Windows is that this box is automatically closed, preventing the
user from reading the output, and so raw_input() overrides this behavior.

Comments

Comments start at the symbol # provided it’s not part of a string:

>>> print "Some text" # This is a comment
Some text
>>> # This entire line is a comment

>>> print "Text after this sign # is not a comment”
Text after this sign # is not a comment

Flow Control

Flow control statements control the behavior of a script. Python provides several flow control
statements, some similar to other programming languages. Typically, a flow control statement
is followed by a block, which is indented to the left.

if, elif, else

The if statement follows this syntax:

if Conditioni1:
Block1

elif Condition2:
Block2

elif Condition3:
Block3

else:
ElseBlock

Behavior is as follows: if Condition1 evaluates to True, the code in Block1 is executed.
Block1 can be more than one line long and must be indented to the same level. If Condition1 is
False, Condition2 is evaluated, causing Block2 to be executed if it is True. This continues on to
Block3, and so forth. If none of the conditions are met, the E1seBlock is executed.

The statements if, elif, and else should be left-aligned. Statements in each block should
be left-aligned as well, but further in than the if clause. The colon after the if, elif, and else
statements is required. Here’s an example:

>>> if 3 > 10:
print "Checked whether 3 is greater than 10"
.. print "It is!"
. elif ord('A") == 65:
print "Ordinal of 'A' is 65"

85

86

CHAPTER 3 PYTHON FOR PROGRAMMERS

. else:
print "All failed, nothing works"

Ordinal of 'A' is 65

Other than the if statement, all other statements (elif, else) are optional. In case of a
short if statement, you can write the block on the same line as the if statement:

>>> if 's' < '"t': print "Yeap"
Yeap

Conditions can be more complex and can include conditionals such as and and or:
>>> X = 25

>>> if x > 20 and x%2 ==
print "Odd *and* over 20!"

0dd *and* over 20!

The pass Statement

The pass statement does nothing, and can be used as a placeholder, for example, in multiple
if assignments:

>>> X = 0.2
>>> if x < 0.1:
print "Too small"
. elif x < 0.3:
cos pass
. elif x > 0.5:
print "large"
. else:
print "huge"

>>>
As you can see, nothing happened, which is exactly what I wanted.

Exceptions: try, else, and finally

Exceptions are Python’s mechanism of dealing with runtime issues. You've already seen
exceptions reported and also how to catch them, that is, prevent them from halting program
execution, in Chapter 1.

You can catch, or intercept, exceptions before they stop program execution with the
following syntax:

try:
TryBlock
except [ExceptionType1]:

CHAPTER 3 PYTHON FOR PROGRAMMERS

ExceptBlockl
except [ExceptionType2]:
ExceptBlock2
finally:
FinallyBlock

If an exception happens someplace inside the TryBlock, ExceptBlock1 is executed. In case
ExceptionTypel is specified, only exceptions that are of type ExceptionTypel are caught. You
can have several except clauses to deal with different types of exceptions. The FinallyBlock is
optional and executed after both the try and except section have completed execution.

First, let’s see an exception in action, without catching it:

>>> str = 'second '
>»>n="7"
>>> print str*n
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type

str

The reason for this exception is that the operator * doesn’t know how to multiply 'second
"by '7"' (it does know how to do 'second '*7, but that’s a different statement).

As you can see, the exception that was raised was a TypeError exception. Let’s catch it and
printit:

>>> str = 'second '

>»>n="7"

>>> try:
print str*n

. except TypeError, e:

print "Exception caught!"

. print e

... finally:
print "This will be run regardless"”

Exception caught!
can't multiply sequence by non-int of type
This will be run regardless

str

We’ve caught the exception in the except block, plus we printed what the exception was in
the second print line. Lastly, the code in the finally block was executed. Let’s run it again, this
time without triggering an exception:

>>> str="second '
»>n =17
>>> try:
print str*n
. except TypeError, e:
print "Exception caught!"
. print e
... finally:

87

88

CHAPTER 3 PYTHON FOR PROGRAMMERS

print "This will be run regardless"

second second second second second second second
This will be run regardless

Asyou can see, the code in the finally block was executed regardless of whether the
exception was raised or not.

Now let’s trigger an exception that’s not of the TypeError exception. I'll modify the line
print str*n to print 1/0, which raises a different exception:

>>> try:
print 1/0
. except TypeError, e:
print "Exception caught!”, e

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: integer division or modulo by zero

This time, the exception wasn'’t caught by the code (it didn’t print “Exception caught!”)
and was handled by the interpreter because it wasn’t of type TypeError.
If you don’t specify an exception condition, all exceptions are caught:

>>> try:
print 1/0
. except:
print "Exception caught!"

Exception caught!

As a general rule, try to make your exception specific, that is, try to specify the exception
condition. If the list of exceptions is too long, maybe wide-range exception catching (i.e., with-
out a condition) is a better approach.

Exceptions are a fundamental part of flow control. The EAFP concept is built around the
idea that it’s at times simpler to just try to perform an operation, later catching the exception
in case of an issue.

Exceptions can occur deep within your code. For instance, say function1() calls function2(),
which calls function3(). Now let’s suppose an exception occurred in function3(). In case
function3() doesn’t handle the exception with the try/except mechanism, the exception
moves to function2(). If function2() doesn’t handle the exception, function1() has a chance.
And finally, if function1() doesn’t handle the exception, the interpreter will issue an exception
and print the cause.

In the preceding scenario, in case function3() does handle the exception, it will not
resurface in function2(). However, if you wish to catch an exception and pass it to the call-
ing function, you can do that. That’s left out of the scope of this discussion; refer to the online
documentation for more details at http://docs.python.org/reference/executionmodel.html
under the section Exceptions.

CHAPTER 3 PYTHON FOR PROGRAMMERS

You can also raise exceptions of your own. This is of value if you write code and want to
ensure it’s being used properly. Suppose your algorithm only works on odd numbers; a good
approach would be to check whether a parameter passed to the algorithm is odd, and if not,
raise an exception:

>»>n =256
>>> if not n%2 ==
raise ValueError, "value must be odd"

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ValueError: value must be odd

In the preceding example, I've used an existing exception, ValueError. You can create
exceptions of your own or use existing exceptions. For more details and a list of existing excep-
tions, refer to Python’s online documentation: http://docs.python.org/library/exceptions.
html.

lterators

Before we move to the for statement, I'd like to cover an important concept, iterators. Iterators
are objects that return an element one at a time, instead of returning a full sequence. An object
that can be iterated over is known as iterable. Using iterators is more memory efficient than
using a sequence. For example, the function range(1000) creates a list of a thousand values,
whereas the iterator xrange() creates an iterator object that consumes much less memory:
calls to xrange () yield the values from zero to 1000, excluding the value 1000, one at a time.

Python relies heavily on iterators and provides a great number of iterators that work on
data structures I've covered. Iterators are best understood in the context of the for statement,
so let’s now take a look at this statement.

The for Statement

The for statement is one of the most versatile statements in Python. The statement follows the
following syntax:

for element in sequence:
ForBlock

In case of a one-line block, the ForBlock can appear on the same line as the for statement.
Indentation rules for blocks are the same as those described in the if statement (and for any
block for that matter—they must be indented to the same level).

The for statement assigns element to be a value from sequence and executes the ForBlock.
This happens for all the values in sequence:

>>> for elem in [‘hey', 'jude', 8]:
print elem,

hey jude 8

89

90

CHAPTER 3 PYTHON FOR PROGRAMMERS

If you're interested in a format similar to that of C’s for function, use the range() function:

>>> for x in range(10):
print x,

0123456789

The for statement can also operate on an iterator. The function xrange() creates an itera-
tor object, whereas the function range() creates a list. Both can be used in the context of a for
statement:

>>> for x in range(5):
print
for y in xrange(5):
print "%4d" % (x*5+y),

1 2 3 4

5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

In the preceding example, I've used both xrange() and range(), effectively yielding the
same result. Also, as the preceding code suggests, for loops can be nested.

The for statement shines in the context of iterators. Let’s cover a few.

The reversed(seq) iterator returns one element at a time from a sequence in reversed
order:

>>> for x in reversed(['split', 'second']): print x,
second split

The iterator enumerate(seq) returns both the index to the item in the sequence and the
item, as a tuple:

>>> for i, elem in enumerate(['split', 8, 'second']): print i, "-->", elem
0 --> split
1-->8

2 --> second

Some data structures provide iterators themselves. The iterator iteritems() returns a
(key, value) tuple and is used to iterate over items in a dictionary:
>>> d = {'split':8, 'second':1}
>>> for k, v in d.iteritems(): print k, "-->", v
second --> 1
split --> 8

CHAPTER 3 PYTHON FOR PROGRAMMERS

List Comprehensions

List comprehensions is a topic I've postponed until after we talked about the for statement.
They really do apply to lists, but they’re rather hard to explain unless you understand for
statements. List comprehensions are an efficient method to create lists from lists, but with a
slightly different notation than a regular for loop. List comprehensions follow this syntax:

[f(x) for x in list if condition]
The condition clause is optional:

>>> [x*x for x in range(10) if x > 5]
(36, 49, 64, 81]

>>> [x**2 for x in range(6, 10)]

(36, 49, 64, 81]

You can also write a nested list comprehension, similar to nested for loops:

>>> [(x, y) for x in range(3) for y in range(3)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

You'll encounter numerous uses of list comprehensions throughout the book.

The while Statement

The while statement complements for loops and is best used in case a condition has to occur
before the loop is terminated. You've seen the while statement in use in Chapter 1, which
allows recording of GPS data until a Ctrl+C is pressed, and also previously in this chapter. The
while syntax is as follows:

while condition:
WhileBlock

Aslong as condition evaluates to True, the WhileBlock is executed:

>>> import random
>>> while random.random() < 0.9: print "*",

* ko ko ok

This example will print a star as long as a random number between 0 and 1 is less than 0.9.
I've used the function random() from module random (see Chapter 7).

Statements break and continue

The statements break and continue are used to modify behavior within a loop or a block. The
statement break exits a flow control block, and the statement continue stops execution of the
block but picks up on the next iteration.

>>> for x in range(5):
if x == 3: break
print x,

91

92

CHAPTER 3 PYTHON FOR PROGRAMMERS

012
>>> for x in range(5):
if x == 3: continue

print x,

0124

In the first for statement, I've used the statement break when x is equal to 3, effectively
terminating the for loop. In the second for statement, I've merely skipped execution of the
block in case x is equal to 3, suppressing the print statement, but resuming on the next value.

Some Built-in Functions

Let’s now turn to built-in Python functions that weren’t covered in any of the previous sec-
tions. By built-in, I mean functions that do not require any import command prior to using

them. Table 3-7 presents these functions, in alphabetical order.

Table 3-7. Some Python Built-in Functions

Statement Description Example

all(s) Returns True if all elements of s are not ~ all(['hi', 2]) returns True.
False. all(['", 2]) returns False.

any(s) Returns True if some elements of s are any(["'", 2]) returns True.
True. any([]) returns False.

chr(n) Returns the ASCII value of n. chr(65) returns 'A'".

cmp(x, y) Returns -1ifx < y,0ifx == y,and1ifx cmp('a', 'bc') returns -1.
> Y. cmp(2, 1) returns 1.

ord(ch) Returns the ordinal value of ch. This is ord('A") returns 65.

range([i, 1j[, k)

the inverse of chr(n).

Returns a list starting at i (if supplied,
default is zero), ending right before j,
with an increment step of k (if supplied;
default is 1).

ord(chr(80)) returns 80.

range(5) returns [0, 1, 2,

3, 4].

range(2, 5)returns[2, 3, 4].
range(2, 5, 2)returns[2, 4].
range(5, 2, -2)returns [5,
3].

sorted(s) Returns sequence s, sorted. sorted('hey") returns ['e",
I)

sum(s) Returns sum of elements in s. sum(range(10)) returns 45.

type(obj) Returns the type of obj. type(1j) returns <type

zip(s1[, s2])

Returns a list of tuples, each composed
of elements at the same location in the
sequences. s2 is optional.

"complex'>.

zip(range(2), ['hey',
"jude']) returns [(0, 'hey'),
(1, 'jude")].

zip(range(2)) returns [(0,),

(1,)].

CHAPTER 3 PYTHON FOR PROGRAMMERS

Some of these functions are very useful. For example, have a look at the Newton fractal
example in Chapter 7 for an interesting use of the zip()function.

Defining Functions

Functions are a convenient way to reuse code. Functions in Python are similar to procedures,
subroutines, and functions in other programming languages. There’s no distinction between
a function that returns a value and a function that does not—both are considered functions.
(In some programming languages, if a function doesn’t return a value, it is named differently:
procedure or subroutine, for example.)

Functions are declared as follows:

def funcname(arguments):
FunctionBody

The keyword def defines a start of a function. The name of the function is funcname;
arguments are optional:

>>> def f1():

print "F1"
>>> f1()
F1
>>> def f2(n):

print "F2"*n
>>> f2(10)
F2F2F2F2F2F2F2F2F2F2

I've defined two functions: f1() and f2(). Function f1() requires no parameters, while
function f2() requires one parameter. Using the functions (calling them) requires the addition
of a set of parentheses.

You can also specify optional parameters using an assignment in the list of arguments in
the function name, as follows:

>>> def f3(n, s="F3"):

print s*n
>>> £3(2)
F3F3
>>> 3(2, 'F4lh)
F4!F4!

In the first call to £3(), the default value of s is "F3". In the second call, that value is
assigned the string 'F4!".
Functions can return values using the return statement:

>>> def f5(n):
return "f5"*n

93

94

CHAPTER 3 PYTHON FOR PROGRAMMERS

>>> f5(3)
'f5f5f5"

>>> a = f5(3)
>>> a
'f5f5f5"

The return statement doesn’t necessarily have to appear at the end of the function; how-
ever, the function ends execution when it reaches a return.

Functions are typically documented with docstrings (which are bold in the following
code):

>>> def f6(n=1, s="f6"):
"""Returns a string composed of the string s, repeated n times.

n and s are both optional."""
return s*n

>>> help(f6)
Help on function f6 in module _ main_ :

f6(n=1, s="f6")
Returns a string composed of the string s, repeated n times.

n and s are both optional.

>>> f6()

£6"

>>> f6(2, 'f7')
RVAVA

The benefit of using a docstring immediately after the function declaration is that execut-
ing help(funcname) returns the docstring, which is an excellent way to document a function.

Generators

Generators are functions used to create iterators. The main difference between a generator
and a regular function is that generators return one element at a time using the yield state-
ment, while functions return one element using the return statement (it could be a sequence
or tuple, but it’s essentially one object).

>>> def odd(s):
"""A generator function to iterate through odd elements of s.

nwun

i=o0

while(i < len(s)):
yield s[i]
i+4=2

>>> for i in odd(['hey', 'split', 'second', 8]):

CHAPTER 3 PYTHON FOR PROGRAMMERS

print i,
hey second
In the preceding example, I've defined an iterator named odd() that yields the odd ele-
ments in a list (i.e., the first, third, fifth, and so forth). I've implemented the iterator using a
while loop and proper indexing.
There are also other methods I could’ve used to implement the iterator, but it’s important
to understand that the motivation behind using an iterator is that of efficiency. A different

implementation could be one that makes use of the indexing operator with a step value of 2, as
follows:

>>> def odd(s):
"""A generator function to iterate through odd elements of s
for elem in s[::2]:
yield elem

non

While this might look like more elegant code, in my mind it’s not as good. The reason is
that the for loop creates an entire list (albeit half the size), and in case of large lists, this is not
memory efficient. The first implementation, on the other hand, is quite memory efficient.

It's also possible to implement the function odd() using a for loop instead of a while loop,
in which case I would suggest using the iterator xrange() (over a list comprehension) to avoid
creating additional large data structures.

Generator Expressions
Generator expressions, or genexps, are a compact method to implement simple generators.
Generator expressions follow this syntax:

(f(x) for element in sequence if condition)

In a sense, they are very similar to list comprehensions, with the difference being that they
are iterators and not lists, and hence are more memory efficient. Here’s an implementation of
the odd() generator function using a genexp:

>>> L = ['hey', 'split', 'second', 8]
>>> odd = (x for x in L[::2])
>>> for i in odd:
print i,
hey second
or in one big line:
>>> L = ['hey', 'split', 'second', 8]

>>> for i in (x for x in L[::2]):
print i,

hey second

95

96

CHAPTER 3 PYTHON FOR PROGRAMMERS

If I were a bit more conscious about memory usage, I'd notice that I've created another list
in the for loop: L[: :2], which probably is not a good idea (from a memory-conscious applica-
tion). A different approach is to use the xrange() iterator as follows:

>>> L = ['hey', 'split', 'second', 8]
>>> odd = (L[i] for i in xrange(0, len(L), 2))
>>> for elem in odd:

print elem,

hey second

This might be a bit less clear, but it is a more memory-conscious implementation. Alter-
natively, you could also use the enumerate() iterator, iterating over list elements and only
printing an element if the index is odd. Deciding whether an index is odd or even can be done

using the modulo (%) operator, which returns the remainder from dividing by a number, in our
case 2:

>>> L = ['hey', 'split', 'second', 8]
>>> odd = (elem for i, elem in enumerate(L) if not (i % 2))
>>> for elem in odd:

print elem,

hey second
Opt for using genexps over list comprehensions if you just want to iterate over items and

don’t require the list itself. Unless you're using really large data structures (on the order of
scale of the memory you have in your computer), using either is fine.

Object-Oriented Programming

Per the description I've given of the Python language in the beginning of the chapter, you can
deduce that Python is an object-oriented programming language. You've already seen this. For
example, the data structure list, whose methods are in essence member functions, is an object.

The purpose of this section is to quickly (very quickly!) go over the syntax of object-
oriented programming and to show how to implement a basic object. The reason I won’t be
covering OOP in detail is that this book mostly deals with using objects, rather than coding
them. If you'd like to know more about coding an object, refer to the online Python documen-
tation and the references at the end of this chapter.

The basic data structure to implement object-oriented programming in Python is a class.
Classes have functions, called methods, and variables, called attributes. Listing 3-2 shows a
simple class named 0dd that implements the odd functionality, that is, retrieves odd elements.

Listing 3-2. Listing of odd. py

class 0dd:
def _init (self, s=[]):
self.sequence = s
def odd(self):
return self.sequence[::2]

CHAPTER 3 PYTHON FOR PROGRAMMERS

The first line defines a class named 0dd. From here, functions and variables indented per
the usual block rules denote functions and variables belonging to class 0dd.

I've defined two functions. The first function is the constructor _init__ (double under-
scores on both sides). The constructor function is called whenever an object is instantiated, or
created. To instantiate a class object, call the 0dd class with parentheses. Here are some ways
you can instantiate the 0dd class object (be sure to execute the preceding script first):

>>> odd1 = 0dd()
>>> odd2 = 0dd('a string')
>>> odd3 = 0dd(['hey', 'split', 'second', 8])

The implementation I chose is that in case a parameter is provided, the variable self.
sequence is assigned this parameter. An important note here is the use of the argument self:
the word self is a convention and not a reserved word. Whenever you call a class property or
method, the argument self is passed automatically but not spelled out. That is, to instantiate
an 0dd object, you enter 0dd(s) and not 0dd(self, s).By passing the argument self (hidden),
Python identifies one created object from another. The analogy I like to use is that self is simi-
lar to C++’s this statement.

Another important concept here is that of scope. Had I not used the notation self.
sequence and written sequence instead, the local variable sequence, that is, local to the function
(and not the class), would have been updated. Once the function returned, that variable would
have disappeared. To ensure that the class variable sequence is updated (and not the func-
tion’s local variable), I've used the notation self.sequence.

The second function I defined is odd(), which returns the odd elements in a sequence. To
call the function, use the dot operator after the 0dd object, as follows:

>>> odd3 = 0dd(['hey', 'split', 'second', 8])
>>> odd3.odd()
['hey', 'second']

So far, I've only shown methods, but the class 0dd also contains a variable: sequence. To
access this variable, you can use the dot operator as well:

>>> odd3 = 0dd(['hey', 'split', 'second', 8])
>>> odd3.sequence
['hey', 'split', 'second', 8]

There’s a lot more to object-oriented programming in Python, including most of the con-
cepts that appear in other object-oriented programming languages such as inheritance and
operator overloading, to name a couple. Again, the references at the end of the chapter should
prove valuable resources should you need to learn more about object-oriented programming
and design in Python.

Modules and Packages

One of Python’s strong suits is the extensive number of packages readily available. You've seen
how to install packages in Chapter 2; now it’s time to see how to use them.

A module is a set of functions and data structures. In essence, it is similar to a class.
Accessing modules is performed using the module’s namespace, followed by a dot to access

97

98

CHAPTER 3 PYTHON FOR PROGRAMMERS

functions and variables. Packages are collections of modules. Accessing modules within pack-
ages is performed using the dot operator.

It’s also of value to know that it’s possible to extend Python with modules from C and
C++. From a Python user’s perspective, you just import a module and use it as is, regardless of
whether it was written in another programming language.

The import Statement

The import statement loads a module, effectively allowing us to access the functions and vari-
ables within the module. You can issue the import statement in several ways:

import module

import module as name

from module import function

from module import function as name
from module import *

The first method, import module, loads a module with its namespace. To access the mod-
ule functions, use module. function(). The second method loads the module but renames it,
so to use its functions, use name.function(). The third statement imports only one function
from the module; to access it simply use its name: function(). You can have multiple func-
tions imported in this manner by separating the functions with commas. The fourth statement
is identical to the third, only the name of the function is now name; to call the function, enter
name(). Lastly, the last import statement loads all functions from a module; to access the func-
tions you enter their name (without the module name). Here are some examples:

>>> import math

>>> math.pi
3.1415926535897931

>>> math.sqrt(4)

2.0

>>> import math as m

>>> m.pi
3.1415926535897931

>>> m.sqrt(4)

2.0

>>> from math import sqrt
>>> sqrt(4)

2.0

>>> from math import sqrt as square_root
>>> square_root(4)

2.0

>>> from math import *
>>> sin(0)

0.0

Whether you'll be loading the entire module or just some pieces of the module is totally
up to you (and a function of the amount of memory you have). At times, though, it’s easier to
load entire modules, and yet at other times it’s important to be able to load modules with their

CHAPTER 3 PYTHON FOR PROGRAMMERS

namespace, for example, when two modules have the same function names (such as modules
math and cmath).

Modules Installed in a System

Before you start importing modules and reading about their functions, it would be valuable to
know what modules are currently installed and available in your system. Don’t forget that the
Python Standard Library is vast, with a substantial number of modules and packages to choose
from. Maybe a function you're looking for already exists in the standard library? Of course, you
can refer to the online documentation, but you can also refer to the interactive help system.

Invoke the interactive help system by entering help(). At the help prompt, enter modules.
This will provide a list of available modules in your system. Enter help(module) to read more
about that module.

The dir Statement

Another useful statement is the dir statement, which lists the contents of a specific object (for
example, a class) but in this context, it lists the methods and properties of a module as well:

>>> import math

>>> dir(math)

[' doc_', ' name_ ', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh',
'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', "hypot', 'ldexp', 'log'
, 'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']

This is very useful if you're exploring the functions in a module or if you forgot the exact name
of a function.

Final Notes and References

It is far beyond the scope of this chapter and this book to cover the entire Python program-
ming language. However, this chapter should get you up and running, and you’ll be able to
follow through with the rest of the book with very little need for additional references. That
being said, one of the purposes of the book is to introduce the language and provide additional
resources should you want to expand your knowledge.

I have found the following references of value, and I hope you find them useful as well:

e “The Python Tutorial” by Guido van Rosso, http://docs.python.org/tutorial/index.
html

¢ The Python Standard Library, http://docs.python.org/library/index.html

* Beginning Python: From Novice to Professional, Second Edition by Magnus Lie Hetland
(Apress, 2008)

¢ Dive into Python by Mark Pilgrim (Apress, 2004; free online version also available at
http://diveintopython.org/)

e Python in a Nutshell: A Desktop Quick Reference by Alex Martelli (O’Reilly, 2006)

e Python Cookbook: Recipes from the Python Community by Alex Martelli, Anna Martelli
Ravenscroft, and David Ascher (O’Reilly, 2005)

99

CHAPTER 4

Data Organization
Organizing Chaos

A preliminary step to designing and programming an algorithm is gathering data and sorting
it. When you first go out to test a thesis or write code to analyze network traffic, only part of the
information is readily available; some of the data is still unknown. First estimations are made
based on the first set of data files. As data is gathered, new insights and understandings arise,
resulting in possible changes to the processing script and data gathering application, such as
adding a previously unlogged parameter and graphing it over time. Some changes may include
data gathering over substantial longer time periods than originally anticipated. Consequently,
to accommodate for manageable data files, a reduction in the sampling rate is required, imple-
mented by logging only every nth value. Another plausible scenario is that of parsing log files,
where the generating application, for example, a web server, recently went through a software
upgrade altering the file format and the file name scheme.

The situation can get more complex. Some files may have an error due to a hardware mal-
function of the recording apparatus; or some portions of the file are corrupt due to hard drive
issues (back up!), or the application that stored the file had a bug and generated incorrect data.
By now, you realize you need to modify the erroneous data or remove it from your analysis, be
it manually or automatically.

In some cases, part of the data should be used as a teacher set to help define the algo-
rithm, while another set of data should be used as a tester set to estimate performance. In this
case, you may need to feed the algorithm additional information regarding the contents of the
files so that more complex tests can be carried out.

Documenting file contents is important so that the knowledge of what each file contains
is not lost. A few years from now I doubt you'll remember what each and every file is; but you
might be expected to reuse your previous work. So annotating, or note taking, is of value.
Ideally you'd like the annotations and documentation to reside with the data, and not in an
inaccessible notebook.

By now you have quite a number of different file types: varying number of parameters,
different file lengths, different logging periods, various file formats, several file name schemes,
clean and raw data, annotated data, and much more. Ideally, you’'d like to use data from all the
files, even if some of them have partial information or conform to a different file format; they
still hold valuable information. Or it could be that you’d like to use historical information to
ensure backward compatibility with older versions of the software.

101

102

CHAPTER 4 DATA ORGANIZATION

Alot of the work has many unknowns. Data gathering is an iterative process in nature,
and if you don’t manage your data files properly, you'll lose control. I'm not suggesting that we
stop and design an entire data management infrastructure from the get-go. On the contrary,

I think data should be gathered as I've described. However, following some simple guidelines
and conventions can make life a lot easier. The purpose of this chapter is to address all these
issues: file names, file formats, data organization, data cleaning, and annotation and data
documentation. I'll touch on each topic, suggesting guidelines and conventions to help man-
age data more easily for the programmer and the processing application.

File Name Conventions

Our first step in data organization is deciding on a file name convention. You'd be surprised at
the odd names people choose for their files. Not because they’re not inventive enough, rather
because they’'ve never given it much thought. File name conventions are also of value when
more than one person accesses the data. A good convention will help all data users locate files
and manage them: your administrator will find it easier to restore previously backed-up files if
he knows the file name pattern. A good naming convention should also have in mind scripts,
or programs, so that automation is easier to implement. For example, if the file names contain
the day of the week, it’s easier to have those limited to three letters, Sun, Mon, Tue, Wed, Thu,
Fri, Sat, instead of full day names, allowing the script that processes them to be less complex.

Date and Time in a File Name

We remember a lot based on date. “Remember that time when we ran that test? That was
when you joined the group, about a year and a half ago.” One of the best ways to capture
date and time information is to use it to name a file. Following this guideline allows easy file
searches. Instead of going through the files one at a time, opening them, and looking at the
contents, you can browse the directory contents and find data based on date. The following
are benefits of using date and time in a file name:

¢ Date is useful information. Just looking at the file name tells you a lot about the file.

¢ File names are almost guaranteed to be unique. This is important when your data log-
ging application is creating file names, because it won’t overwrite existing files. If you
want to further ensure uniqueness, include the time in seconds along with the date
information.

¢ File names are retained when copying or moving even if modifying. However, if you
rely on the operating system to record the file names, you will find that there are issues
with that: copying files using different media and/or over a network might not always
retain all the date information such as creation date. They will, however, retain the file
name.

¢ It’s easy to automate and write scripts in this manner. A script to display all the graphs
from last month is straightforward to implement.

¢ The convention is easily followed on a wide range of systems and programming
languages. The application that records the data can be written in C programming
language and not necessarily Python.

CHAPTER 4 DATA ORGANIZATION

We therefore would like our file names to embed the date and time, preferably up to a
second resolution. That being said, there are a lot of possible ways to denote date and time.
Personally, I follow the date and time format suggested in ISO 8601: YYYY-MM-DDThh:mm:ss (see
the section “Final Notes and References”) with some modifications, as it is not possible to
have a file name with colon (:) as is required by the format. Instead of colons, I use a dash (-).
Another possible modification is replacing letter T used to separate the date and time portions
in the ISO standard with a dash as well. The side benefit of those two replacements (replacing
both the colons and the T with a dash) is that now there’s a single field separator that separates
year, month, day, hour, minute, and second. This is quite valuable for automation and is easily
implemented in most programming languages. Some prefer keeping the character T as it does
help remind where the date ends and when the time starts, and it’s not all that complex to
manage either. Leaving the T or replacing it with a dash are both good options and mostly are
a matter of personal preference. As you'll soon see, we have a dedicated function for parsing
dates, strptime(), that can handle the T quite easily.

Python provides us with the split(substr) function, which splits a string into a list of sub-
strings once substr is encountered. In this case, split('-") will split the date-time format:

>>> a_date = "2008-04-02-22-14-14"
>>> a_date.split('-")
['ZOOSI, |04-’ |02|J |22-’ |14I; |14-]

The following example extracts the month as an integer:

>>> int("2004-04-12-11-11-11".split('-")[1])
4

In the latter example, I chose to operate directly on the string, not saving it in a variable.
The month is the second element in the list, hence to access it I index it: [1] (counting starts at
0). The function int() converts the string value to an integer.

If you follow the scheme where T is used instead of a dash, you can use the function
strptime(), which is part of the time module. I assume strptime() is short for string-parse-time;
regardless if it’s true, it helps to remember the function name:

>>> from time import strptime
>>> strptime("2003-06-28T09-29-22", "%Y-%m-%dT%H-%M-%S")
(2003, 6, 28, 9, 29, 22, 5, 179, -1)

Note Small and capital letters are used to distinguish between a date and time fields, mainly because the
character m can mean both month and minutes. So the convention is that time is denoted by caps (HH, MM,
SS) and date is denoted by small letters (yy, mm, dd). There’s one exception and that’s the year: when using a
four-digit notation (e.g., 2008), the characters are capitalized: YYYY.

As you can see, it’s quite easy to extract date and time information in Python from a file
name so long as one conforms to the convention. Processing all the files from, say, April 2008
can be done using a single split() command followed by an if statement.

103

104

CHAPTER 4 DATA ORGANIZATION

Useful File Name Titles

Another important aspect of a file name is a useful title. A short, descriptive title can be a time-
saver. SystemY or MarsTelescopeA are good candidates. Avoid titles that describe the data such
as Logfiles or TemperatureAndFlow. You want to describe the system more than the data; the
data will speak for itself when you analyze it. If you do want to describe the data, do so in addi-
tion to describing the system: Sys736Logs is a good option.

The following sample titles further clarify this point:

e PumpRawData is lacking system description. What if you have several pumps you want
to test for flow? One alternative is to use the pump’s serial number: Pump472RawData
(assuming 472 is the pump’s serial number).

e VoltageSys2AMay2008 is probably not a good title either. If you append the date
to this title, you might end up with a title that looks like this: VoltageSys2A-
May2008-2009-01-01-01-01-01. So which one is it—year 2009 or year 2008?

¢ VoltageCurrentSystem2A is OK; however, I'd opt to rename it to be less specific, or
should I say, more general: ElectricalDataSystem2A. The reason for the renaming is
that it’s possible you’ll decide to record additional values, say, power, as well as voltage
and current, and unless you want to rename your code to look for different headers,
having a file name titled VoltageCurrentSystem2A that also has power values will be a
bit misleading.

File Name Extensions

The last part of the file name convention is an indication of the file format, usually denoted
by the file name extension. File name extensions are typically three characters long (some are
less, such as .gz, and some are longer, such as .html). We'll try to follow a convention of three
characters for the extension, again because it will be easier for the processing application. I
suggest thinking about three distinct file name extension subcategories:

* Known file formats: Image formats follow very specific extensions: . jpg, .png, .bmp,
.tiff, and more. These file names have a meaning, so if you're recording data in those
file formats, use the known extensions. There are also known extensions for com-
pressed file formats, video file formats, and others, so use them accordingly.

o Text file formats: Here 1 suggest using either a . txt or a . csv extension. If the text file
format is not the Comma Separated Values (CSV) format, use the .txt extension, sug-
gesting it is viewable by most text editors. Exceptions to this guideline include files that
already have a known extension, for example, INI files: although they are text files, you
really want to capture that they're files holding initialization values. The same would
apply to batch files and shell scripts. But those typically are not data files.

* Binary file formats: Binary file formats are not as self-descriptive as CSV files. And
unlike CSV or plain text files, they are hard to view without knowing in advance the
specific file format. For this reason, binary file formats should be accompanied by a
header file that describes the contents and format of the binary files. However, it’s still

CHAPTER 4 DATA ORGANIZATION

valuable to know a bit more about the binary file format even if the exact format is
unknown. The following is the suggested convention: one character denoting whether
the data is signed (i), unsigned (u), or floating point () followed by the number of bits
used to store the data, as described in Table 4-1.

Table 4-1. Suggested Binary File Name Extensions

Description Precision Extension

Signed integers 8,16, 32, 64 .108, .116, .132, . 164 (respectively)
Unsigned integers 8,16, 32,64 .u08, .u16, .u32, .ub4 (respectively)
Floating point 32 (float) 32

64 (double) f64

e Other binary file formats: When binary files contain several values of different pre-
cisions, the convention described in the Table 4-1 is not feasible, at least not in a
three-character extension notation. In that case use .bin or .x.bin where x is a num-
ber. The reason for the x is that it's conceivable you’ll have several file formats of
varying precisions, and a good way to tell them apart would be to add an integer prefix.
Notice that they still all end with a .bin, enabling easy file distinction.

In Conclusion

Three items are important to file naming conventions: date and time in a file name, useful and
descriptive file name titles, and proper file name extensions. If you follow these conventions,
you'll find that writing scripts to manipulate these files is simple.

Using these conventions, we have file names that follow the scheme Title-YYYY-mm-dd-
HH-MM-SS. ext with the placeholders detailed in Table 4-2.

Table 4-2. Convention Scheme for File Name Title-YYYY-mm-dd-HH-MM-SS.ext

Placeholder Description

Title A descriptive title of your choice

YYYY Year the file was created

mm Month the file was created. In the case of January, mm is 01.

dd Day file was created. In the case of the 7th, dd is 07.

HH Hours in 24-hour notation. 11 p.m. would be represented as 23. Values are from
00 to 23.

MM Minutes. 5 minutes past the hour is 05.

SS Seconds. 7 seconds past the minute is 07.

ext An extension describing the file format, three characters long (if possible).

105

106

CHAPTER 4 DATA ORGANIZATION

Note In case of values occupying less than the assigned number of digits, a zero is added. So if the time
is 5 minutes past 1 o’clock, the value of hh will be 01 and the value of mm will be 05.

Example: Automating File Name Creation

Listing 4-1 presents an implementation, unique. py, that conforms to the file name conven-
tions suggested previously.

Listing 4-1. Creating a Unique File Name, unique.py

from time import localtime

a script to create unique file names based on title,

date and time stamp and an extension

datetime stamp = '%4d-%02d-%02dT%02d-%02d-%02d" % localtime()[:6]
title = 'SysAlogs'

ext = ‘csv
print 'Unique filename: %s-%s.%s' % (title, datetime stamp, ext)

Here’s the result I got from executing python unique.py:

Unique filename: SysAlLogs-2008-09-03T09-29-36.csv

Note We’re assuming that files are generated at a slower rate of one file per second and that there’s only
one application logging data, hence a file name based on seconds is unique. Also, in case of a system time
change, there’s a chance of files being nonunique. Before creating a file, we could check whether a file with
the same name exists, but for clarity reasons it’s left out of the script.

The function localtime() is part of the time module and provides a tuple of values rep-
resenting the year, month, day of the month, hours, minutes, seconds, week day, day of the
year, and daylight saving time (phew). We only require the first six arguments of localtime()
to create our unique file name. To access the first six elements of the tuple, we use the slicing
operator [:6]. So localtime()[:6] returns the very six elements we’re interested in for creating
our unique file name.

Next we use the % operator to format the string containing the timestamp:
"%4d-%02d-%02dT%02d-%02d-%02d" . The substring '%4d' means up to four digits; the substring
'%02d" means two digits, and in case there are less than two digits, padded with zeros. We
also use the % operator to output the final unique file name, which is composed of the strings
stored in variables title, datetime_stamp, and ext. In this case we use '%s' to format strings
instead of integers.

CHAPTER 4 DATA ORGANIZATION

Other Schemes

Unfortunately, automating file name creation and using the date and time mostly applies if
you're writing the application that generates the data files. That’s not always the case: you
might be using an embedded system’s output files and have no control of the source code. As
long as the system generating the files has a real time clock, and assuming you can change the
code, or later change the file names, following the preceding convention is doable.

On the occasions where a real time clock is unavailable, a different naming scheme should
be employed. One of the alternatives to using a timestamp in a file name is a running index.
That’s a bit more complex than using the date because now we have to figure out what'’s the
last index used. That being said, it’s still a good option: it provides consistency, and unless files
are randomly deleted, it also provides some sort of chronological order. Incidentally, that’s the
scheme used by most digital cameras.

Example: Running Index

Listing 4-2 is a suggested running index implementation. The script will look for files accord-
ing to a title and extension and determine a running index (up to 999). It will then create a file
accordingly. Repeatedly running the script will create files with incrementing index values.

Listing 4-2. Running Index Implementation

a script to create unique file names using a running index
from os.path import exists

index_stamp = 1

max_index = 999 # maximum number of files
title = '../data/SysALogs'

ext = "txt'

while index_stamp < max_index:
unique filename = '%s-%03d.%s' % (title, index_stamp, ext)
if exists(unique filename):
index_stamp += 1
continue
f = open(unique filename, 'wt')
f.write("Data")
f.close()
break

report status
if index_stamp >= max_index:

print "Could not create a unique filename"
else:

print "Created unique file: ", unique filename

The general operation of this script is as follows: first we create a file name string with the
current index. Next, we check to see whether the file exists by calling the function exists(),
which is part of the os.path module (more on os.path in Chapter 10). If the file exists, we

107

108

CHAPTER 4 DATA ORGANIZATION

increment the index and restart the loop; this is done with the statement continue. In case the
file name we’ve created does not exist, we proceed with writing the data to the file and break-
ing out of the while loop. Lastly, in case a unique file name was not available (we check up

to index 999, per variable max_index), the script reports that a unique file name could not be
created.

Notice that we choose to pad the running index with zeros as denoted by the substring
'%03d" in the line unique_filename = '%s-%03d.%s' % (title, index_stamp, ext).Thisis
generally a good idea and allows easier processing of file names, as they have identical lengths,
and the strings representing the file names can be easily sliced.

Note If you change the value of max_1index, be sure to change the format string accordingly. For
example, if max_index is 99999, replace %03d with %05d in the format specifications for unique_filename.
This can also be done automatically by calculating the number of digits using int(log10(max_index)+1)
and using the result in the format specifications (see the section “Example: Searching Inside a Text File” in
Chapter 5).

File Formats

Up to this point we’ve discussed the form of the file names. Now it is time to discuss the for-
mat of the contents, that is, file formats. As previously pointed out, you may not be able to
choose the file format used to store the data. Assuming you do have influence over the file for-
mat, the question is what format to use. A good file format is portable, easily recognizable, and
does not impact performance drastically, be it size or computation overhead, depending on
the nature of the application.

When you select a file format, consider the amount of data you’ll be dealing with. If you're
looking at large amounts of data, you want to be as efficient as possible in both storing the
data and accessing it, sacrificing a bit for portability and using a less self-descriptive file for-
mat. This means choosing a binary format. If the amount of data is not large and you want the
data to be self-descriptive and portable as much as possible, choose text file formats, specifi-
cally CSV. By large amounts of data, consider the following:

¢ How much storage space do you have? If you're running a desktop PC, a reasonable
size to be dealing with is less than 1 terabyte. Of course, this number is ever-changing
as storage space and processing power increase. At times you will find that due to
storage space limitations your only option is going with binary files. The reason for
this is that text representation is not as efficient as binary representations. 8-bit inte-
gers (characters) require 1 byte of storage in binary form and from 1 to 3 bytes in text
form used in CSV. Storing floating-point values, which typically require 4 or 8 bytes
in binary form, will now require a considerably larger amount of bytes. The value
0.00000095367431640625 (which is 2 to the power of minus 20) will now require 22
bytes to represent properly in a CSV file. And that’s not counting the separators and
delimiters.

CHAPTER 4 DATA ORGANIZATION

e How critical is performance to your application? The smaller the data files, the faster
you can process them. There’s no need to parse the data, simply read it. If performance
is your major concern, opt for binary file format.

Note The sentence “The smaller the data files, the faster you can process them” is not always correct.
In case of compressed files, data files are smaller but require more processing power to work with, hence
performance is worse, not better. However, assuming no compression, performance of binary files is usually
better.

So from a high-level file format category, you want to decide whether you'll be looking at
binary data or text data. Table 4-3 lists the pros and cons of using either.

Table 4-3. Pros and Cons of Binary and Text File Formats

Pros Cons
Text Self-descriptive (usually) Not storage efficient
Does not require specific knowledge Medium read/write access
of the file format Requires “text” parsers
Can be viewed by any text editor
Binary Relatively small storage space Not so self-descriptive
Fast read and write access Requires knowledge of the file format

Requires a specific application to view data

Text and binary are high-level categorizations. When dealing with text files, we will mostly
limit our discussion to plain text files and CSV files and touch lightly on other file formats.
When dealing with binary files, we’ll talk mostly about straightforward file formats such as
u16 and 132 and not complex file formats such as MP3 and GZ that might support compression
and/or encryption.

CSV File Format

The CSV file format is a text file format and can be viewed by any text editor. Furthermore,
most spreadsheet applications are capable of reading and writing CSV files, parsing the val-
ues properly into rows and cells. In CSV files, values are separated by commas; values are
strings that represent numbers, dates, titles, or any other textual fields. If the string value has

a comma in it, quoting is required, that is, the string will have beginning and ending quotes.
Alternatively, the comma in the field can be escaped (more on this in Chapter 5). CSV format
does not require a fixed number of fields per line (also called a row), which can be quite useful:
it allows easy annotation of headers or descriptions of the data, which in turn can later be read
by most any spreadsheet and/or editor with all the information recorded still intact and easily
accessible.

109

110

CHAPTER 4 DATA ORGANIZATION

The following are the contents of a valid CSV file:

System A

Data generated by loggeri
"Header, 1",Header 2
Value 1,1

Value 2,AA

Example: Stock Price Charts

Following a convention that stores a short description of the data in the beginning lines of the
CSV files can be very useful for annotating a graph or a report associated with the data in the
file.

To follow along with the example, ensure your directory structure is similar to that pre-
sented in Chapter 2 in the section “Example: Directory Structure for the Book.” Your base
directory should be Ch4; within Ch4 there should be three subdirectories named src, data, and
images. If you wish to use a different scheme, be sure to change the file path variable and the
call to function savefig() in the script in Listing 4-3, which appears a little later in this section.

For this example you can download data from the NASDAQ stock exchange web site
(http://www.nasdagq.com). Select a stock, for instance, the NASDAQ-100 (IXNDX) or your com-
pany’s stock chart, you wish to display on the intranet web site. You will be presented with a
chart of the stock. When you click the chart, the NASDAQ web site presents the actual values
used to create the chart. You can choose to download the file in Excel format: do so, and save
the file under directory Ch4/data/charts.xls.

If you open the file Ch4/data/charts.xl1s in a text editor, you'll notice that there’s header
information describing what each column means:

Date Open High Low Close/Last Volume
09/02/2008 1904.75 1912.72 1843.07 1850.14 0
08/29/2008 1897.56 1899.56 1866.81 1872.54 0
08/28/2008 1907.17 1921.19 1904.20 1915.12 0
08/27/2008 1886.76 1913.53 1881.54 1900.30 0

In reality, the file format is a form of CSV, the separator being a tab instead of a comma.
We can easily overcome this with Python’s csv module by specifying the delimiter to be tab
"\t'. Listing 4-3 shows our implementation, stock_charts.py, which reads a stock chart file
and presents a graph with the header information properly displayed. Be sure to save it in
folder Ch4/src. The result will be a PNG image, stock price.png, in directory Ch4/images.

Listing 4-3. stock_charts. py, Plotting NASDAQ charts.x1s File

from pylab import *
import csv
from time import gmtime, mktime

CHAPTER 4 DATA ORGANIZATION

modify the following to point to your data file
filepath = '../data/charts.xls’

read the entire CSV file and store it in an array of lists

use tab ('\t') as a delimiter

data = []

for row in csv.reader(open(filepath), delimiter="\t"):
data.append(row)

split the data to header and values
header = data[0]
values = array(data[1:])

the first column is date information in a string format
we transform it to a day of year format
notice that this will not work over year boundary (need to add 365)
yearday = zeros(len(values[:, 0]))
for i, day in enumerate(values[:, 0]):
market close time = (int(day[6:]), int(day[:2]), int(day[3:5]), \
16, 0, 0, 0, 0, 0)
yearday[i] = gmtime(mktime(market close time)).tm yday

plot the data
for i in range(1, 5):
plot(yearday, values[:, i], label=header[i], linewidth=3)

annotate the start and end dates
text(yearday[0], values[0, 1], values[0, 0])
text(yearday[-1], values[-1, 1], values[-1, 0])

grid()
legend()

ylabel('Stock price [USD]")

xlabel('Days from start of the year '+values[0, 0][6:])

title('NASDAQ-100 (IXNDX) Stock price, period %s-%s' % (values[-1, 0], values[0,0]))
savefig('../images/stock price.png")

We start by reading the CSV data file and passing a tab as a delimiter. The first line in vari-
able data is the header information, describing what each column means: Date, Open, High,
Low, Close/Last, and Volume. The remaining lines are the values to plot. We therefore split the
variable data into header and values, accordingly. We also convert the values to a NumPy array
using the function call array(). Using a NumPy array, the data will be easier to process and
plot; more about NumPy in Chapter 7.

The following is not so much an explanation of working with CSV files but is important to
fully understand the script.

Lhk

112

CHAPTER 4 DATA ORGANIZATION

Next is the so-called linearization process. Much like in the GPS example of Chapter 1,
data in charts.x1s is not linear. The information is stock prices on a daily basis; however,
stocks are not traded every day, weekends being the prime example but also holidays. If we
plot the information as is, neglecting these “holes” in the data, the picture presented will be
skewed. So instead, we need to choose a different time base, one that will take into consider-
ation nontrade days. I chose to use the day-of-the-year value: January 1 is 1, January 2 is 2, . . .
December 31 is 365 or 366 (leap year dependent).

Since I don’t want to get into the process of determining leap years or summing up the
days in each month, I've decided to use the time module again. The idea here is to use the
function gmtime() and as a side effect, retrieve the day-of-the-year value. Function gmtime()
receives a value representing the number of seconds elapsed since the epoch, a fixed point
in time (see more about the epoch in Chapter 5). While this sounds even more complicated
than calculating the day of the year, in reality it’s easier because of function mktime(). Func-
tion mktime() receives a tuple of nine values, detailed previously, and returns the number of
seconds since the epoch. So we first construct a tuple of those nine values, the first three being
year, month, and day, which are known to us, and arbitrarily assigning the hour to be 4 p.m.
(which coincides with the end of trade). We leave the remaining fields zero. We then feed this
number to gmtime() and receive a new tuple, now properly populated with the year of day, the
eighth element of the tuple, accessible with tm_yday, which we save in vector yearday.

Note The script does not take into account data over more than one year. To accommodate for this, you
could take into consideration the number of days in a year (365 or 366, depending on a leap year) and use
the lowest year as a baseline.

We then plot the data and annotate the graph. For the legend, we use the header values
of the CSV file stored in variable header. We also use actual values from the variable values
to annotate the start and end of period on the graph itself, the title, and the x-axis label (see
Figure 4-1).

Note If you look closely at the data in charts.x1s, you'll notice that it’s reversed, that is, backward in
time. One of the side effects of using the day-of-the-year value is that values are now plotted from lower to
higher values, that is, older times are on the left, and newer events are on the right. If you'd like to reverse
this behavior, issue the command gca() .axes.invert xaxis().

CHAPTER 4 DATA ORGANIZATION

NASDAQ-100 (IXNDX) Stock price, period 08/04/2008-09/02/2008

1980 :
: — Open
1960 w— High E
— | oW
1940k oot .| == Close/Last

1920 & _____________ i

: ; ; \/ /I ~09/02/2008
1900 5 5 - 1

1880

Stock price [USD]

1860 R S SPUUTURPPIRIVS PSRN FPPR:. N, NSRRI .
1840 i

1820} -

1809

i I I I i
15 220 225 230 235 240 245 250
Days from start of the year 2008

Figure 4-1. Stock price chart output

Example: Automatically Reading Yahoo! Financial Data

The following discussion is a bit off-topic, but as it is a direct continuation of the previous
example, this is probably a logical spot for it.

There’s an alternative method to manually saving the charts.x1s file from NASDAQ. One
such option is using the matplotlib.finance module. The two core functions that fetch the
data and parse it are fetch_historical yahoo() and parse_yahoo historical() (although you
could easily parse the data yourself). Another function of interest is the candlestick() func-
tion, which plots a candlestick graph of the stocks.

Listing 4-4 is a modification of the previous example to use the functions from the mat-
plotlib.finance module. Notice that there are some other minor changes to the code because
the data structure is a bit different from the NASDAQ charts.xl1s file. You can control the stock
you wish to view and the start and end dates by changing the values stock_name, t_start, and
t_end.

Listing 4-4. Fetching and Plotting Yahoo! Data

from pylab import *
from matplotlib.finance import *

stock name and period
stock_name "NDX'
t start datetime.datetime(2008, 1, 1)

113

114

CHAPTER 4 DATA ORGANIZATION

t_end datetime.datetime(2008, 1, 31)
year start = datetime.datetime(2008, 1, 1)

retrieve and parse stock data
data = fetch historical yahoo(stock name, t start, t end)
y array(parse_yahoo historical(data))

dates might not be trade days, so update values
to show actual dates retrieved

t start = num2date(y[o0, 0])

t end = num2date(y[-1, 0])

normalize the x-axis to show values from the start of year
yl:, 0] = y[:, 0]-date2num(year_ start)+1

plot a candlestick graph
figure()
candlestick(gca(), y)

annotate the graph with additional text
start str = "%d-%02d-%02d" % (t_start.year, t start.month, t start.day)
end str = "%d-%02d-%02d" % (t _end.year, t _end.month, t end.day)
title('Stock: %s, period %s to %s' % (stock name, start str, end str))
xlabel('Days from start of the year %d' % t start.year)
ylabel('%s Stock price [USD]' % stock name)
text(y[o, 0], y[0, 1], start str)
text(y[-1, 0], y[-1, 1], end str)
grid()
savefig('../images/%s candlestick yahoo-%s-%s.png' % \
(stock_name, start str, end str))

Some notes:

¢ The time base is normalized, that is, the dates are shown from the start of the year
2008 and not the epoch. This is implemented in line y[:,0] = y[:,0]-date2num(year_
start)+1.

¢ The actual dates requested might not be trade days. Therefore, the start and end
times are updated after the data is fetched and parsed. This is done in line t_start =
num2date(y[0, 0]) andt end = num2date(y[-1, O]).

Figure 4-2 shows the results of the example in Listing 4-4.

CHAPTER 4 DATA ORGANIZATION

Stock: NDX, period 2008-01-02 to 2008-01-31

2100 ——>558 6102 ! : ! !
a 1950F------—---—-|-%-g- i T,
2 ; ! 5
f_, 1900 oot 00 S ' _____________ O O i
a : ! :
= : ' :
8 1BEO oo e = S e e o S
n : :

5 R -
81800} |- ! oo6-01l51
1750 f oo) ’
1700 |- -eeemem e i

i i | i | |
16500 5 10 15 20 25 30 35

Days from start of the year 2008

Figure 4-2. Automatically generated candlestick graph

Example: Creating a CSV File

The following is an example of writing a list to a CSV file. I assign some arbitrary mixed data
(strings and numbers) to a list named data and write it to file. Try it yourself, and then open

the created file test.csv to view the file contents.

>>>
>>>
>>>

>>>
>>>

L = [['Time', 'Value', 'Notes'], [0, 20, 'Start point'],\
[0.1, 'Middle point'], [2]]

import csv

f = open('../data/test.csv', 'wb")

csv.writer(f).writerows(L)

f.close()

Here are the contents of the test file, test.csv:

Time,Value,Notes
0,20,Start point
0.1,Middle point
2

115

116

CHAPTER 4 DATA ORGANIZATION

Try changing the values of the list, such as adding a comma to one of the strings. Now,
open the file in a spreadsheet application: did the application manage to read the comma
properly? Open the file in a text editor and notice the string containing the comma is now
quoted. The csv module took care of adding quotes as required. More about the csv module
in Chapter 5.

USING THE CSV MODULE INSTEAD OF THE SPLIT() FUNCTION

So far we’ve used Python’s csv module liberally. You might be wondering why we’re not using the function
split(",") instead of the csv.reader object. The answer is that the csv module also addresses special
cases such as a string that includes a comma. Consider the following row:

"Surname, Name", 2008, 450

Module csv will handle this properly and return three elements. However, sp1it(", ") will return four
elements: the quoted string will be broken in two.

CSV Limitations

All’s not roses in the world of CSV. Here are some things to consider:

¢ Size: CSV files are typically not size efficient, compared with binary file formats.

e Performance: There’s also a performance hit with CSV files because they require pars-
ing. An application, be it a spreadsheet application or even our code in Python, calls a
function to translate the CSV file into values more easily used by the application. That
is, it parses fields and rows and translates from text to integer or floating point in the
case of number values. Running the parser to read the CSV file takes time, so reading a
large file will take considerable time. If performance is of importance and your applica-
tion reads very large files, consider using a binary file format instead.

What to Store

As a general rule, store as much information as possible. Unfortunately, sometimes that’s sim-
ply not possible. Consider the data rate of an uncompressed HDTV video signal at 1280X720
pixels, 30 frames per second, true colors (24 bits). That’s 1280X720X30X3 bytes per second,

or roughly 83 megabytes per second and on the order scale of today’s hardware limitations.
Which means you’ll have to discard some of the information or compress it, or get better
hardware.

Deciding what to store and what not to store will be very much system dependent. Some
opt for decimating the data, which has its implications. Others decide on discarding a param-
eter they deem less important. Barring file size limitations, consider the following guidelines in
deciding what to store:

CHAPTER 4 DATA ORGANIZATION 117

e Write header file information in the beginning of the file, describing the system and the
data, including units of measurement. You can use free-form text for this. Some even
go a further step by adding a special character (e.g., #) at the beginning of every line,
ensuring the reader understands those are remarks and not part of the data.

¢ Include a header for each column, explaining what each column means. It’s very useful
for both viewing the files using a spreadsheet and for automated scripts to visualize the
data.

* Always try to store the time and date. Store the date and time values in the first column.
You can follow the ISO 8601 specifications, or you might opt to use a different notation.
An alternative valuable notation to ISO 8601 format is to store the number of seconds
that have elapsed since the epoch: 1 January 1970 on most Linux machines. That way
you have a number that is very easy to manipulate, as opposed to a date and time that
requires parsing. There’s also a side benefit and that is if you have several files, you can
use the same time base for all of them. The seconds-since-the-epoch notation is very
useful in binary formats.

Here’s an example of the contents of a file that follows the preceding guidelines:

#Units,Celsius

#Sensor,Al

#System serial number,401

Date and Time,Temperature,Pressure
2005-09-15T01:07:08, 42.0,53.1
2005-09-15T01:07:14, 42.0,53.2
2005-09-15T01:07:19, 39.0,51.8

When to Use CSV

Use CSV whenever possible, with the following exceptions:

¢ Performance is an issue.
o File size is an issue.

¢ Data is already in a different format.

Binary Files
Binary files are an efficient method of storing data. The term “binary files” means files that
are not represented as ASCII text; that is, if you open these files in a text editor, the data will
appear to be gibberish. In reality there’s no difference between binary files and text files, other
than what the data in the files represent. From the computer’s perspective, they're both just
files. So in essence, if the file is not a text file, it’s a binary file, but that’s a loose definition.

As discussed previously, there are merits to using binary file formats, and those are typi-
cally size and performance. There’s also another reason, and that’s the nature of the data. A
digital picture is not easily represented as a text file (it can be though—for example, every pixel

118

CHAPTER 4 DATA ORGANIZATION

value is an integer in a CSV file). The same applies to compressed files. Regardless of the rea-
son, it’s almost impossible to avoid using binary files.

In this book, when I refer to binary files, I typically mean one of the following file formats:
an array of values, an array of structs, or other commonly used binary file formats.

An Array of Values

The most simple binary file format we’ll be using is an array of values, that is, a repeating
single data type. The file could be holding 16-bit signed values or unsigned bytes. The array-of-
values file format lends itself nicely to storing simple binary data.

Example: Reading and Writing an Array of Binary Values

The Python array data type is an ideal candidate for this sort of binary file handling. The array
data type is part of the array module, so to use it, issue the following command:

>>> from array import *

To create an array, call the array() function with the data type and optional initialization
parameters, as follows:

>>> a = array('h') # array of signed shorts, of zero size

>>> a

array('h")

>>> b = array('L', [1000, 2000, 3000]) # array of three unsigned longs
>>> b

array('L', [1000L, 2000L, 3000L])

>>> ¢ = array('d', range(10)) # array of doubles, from 0 to 9 including
>> ¢

array('d', [o0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])

The data types listed in Table 4-4 can be used in initializing array objects.

Table 4-4. Array Data Types

Data Type Data Meaning and Size

'c' Character, 1 byte.

‘u' Unicode character, 2 bytes.

‘b’ Signed character, 1 byte.

'B' Unsigned character, 1 byte.

'h' Signed short, 2 bytes.

"H' Unsigned short, 2 bytes.

i Unsigned int, size is CPU dependent.
T Unsigned int, size is CPU dependent.
1 Signed long, 4 bytes.

"L Unsigned long, 4 bytes.

CHAPTER 4 DATA ORGANIZATION

DataType Data Meaning and Size

! Floating-point value, 4 bytes.

d' Floating-point value, 8 bytes.

Of these data types, as a guideline, try not to use the 'i' and 'I' data types, since they're
system dependent and might prove problematic when you transfer your code to another sys-
tem (unless of course that functionality is exactly what you require).

Writing array values to file is done using the tofile() member function of the array data

type:

>>> f = open('b.u32", 'wb")
>>> b.tofile(f)
>>> f.close()

Reading is performed using the fromfile() member function of the array data type. The
function fromfile() also requires the number of values to read. If you supply a number greater
than the number of elements in the file, an exception is raised; however, values will still be
retrieved.

>>> d = array('L")

>>> f = open('b.u32', 'rb")
>>> d.fromfile(f, 3)

>>> f.close()

>>>d ==b

True

An Array of Structs

A more complex binary data structure we’ll be dealing with is an array of structs. The word
“struct” is taken from the C programming language and describes a structure combined of
several data types.

Suppose data is stored as follows: long, float, float, long, float, float, and so forth. This
series can be viewed as an array of structures, with the structure being { long, float, float }.
In this sense, an array of values, discussed previously, is also an array of structs with the struct
being a single data type, for example, { char }.Ifyou're familiar with C, the preceding struc-
ture might be described as in Listing 4-5.

Listing 4-5. A Struct in C

struct some binary file format
{

long epoch;

float fTemperature;

float fPressure;

};

119

120

CHAPTER 4 DATA ORGANIZATION

Note that unlike our previous binary file formats, this one doesn’t lend itself to a nice
extension naming convention such as .u16 or .32, so we simply choose the extension .bin,
noting that it’s a binary file.

Example: Reading and Writing an Array of Structs

In this example, we’ll create a structure containing two data types (long and float), write it
to file, and then read it using two different methods: a structure at a time and the entire file at
once. You can follow along by entering the commands interactively at the Python shell.

First, we have to import the struct module:

>>> import struct

To illustrate the concept of an array of structs, we’ll create a list of rows. Each row is a list
of three values: a long and two floats, which represent a structure. We’ll generate a relatively
short list, only two rows long:

>>> L = [[10L, 1.0, 2.0], [20L, 0.125, 0.25]]

Next, we define two variables, filename and format, so we don’t have to enter them every
time:

>>> filename = '../data/structs.bin’
>>> format = 'Lff'

I'm assuming there’s a directory named . ./data; if one does not exist, either create it or
change the value of the variable filename accordingly. The format 'Lff' means a long, fol-
lowed by a float and a float per Table 4-4. Next, we write the list to file:

>>> fout = open(filename, 'wb")

>>> for row in L:
data = struct.pack(format, row[0], row[1], row[2])
fout.write(data)

>>> fout.close()

The first call to open() opens a file in binary mode. We then use a for loop and iterate
over the rows in the list L. Every row is packed using the function struct.pack(). The function
struct.pack() accepts a format and then the values to pack. The return value is a string that
can be written to file. We then write the string to file. Finally, the last line closes the file.

So now we should have a file named . ./data/structs.bin. This file contains the list of
values from the list L. Let’s read it a struct at a time:

First, we’ll start by defining a variable equivalent to the size of the struct format:

>>> struct size = struct.calcsize(format)

The function struct.calcsize() calculates the size in bytes of the format. Armed with the
struct size, we start reading the data, a struct at a time:

>>> fin = open(filename, 'rb")

>>> data = fin.read(struct_size)

>>> data
"\n\x00\x00\x00\x00\x00\x80?\Xx00\Xx00\x00@"

CHAPTER 4 DATA ORGANIZATION

The first line opens the file for reading in binary mode. We then use the function
read(n) to read n bytes and store them in the variable data. So now the variable data holds
the first structure from the binary file, but it isn’t legible yet. We’ll need to unpack it, using
struct.unpack(), thatis, convert it from a string to a tuple of values using the format speci-
fier 'Lff'. But since we’ll be reading and unpacking several values, it stands to reason to use
awhileloop as follows:

>>> while data:
values = struct.unpack(format, data)
print values
data = fin.read(struct size)

(10, 1.0, 2.0)
(20, 0.125, 0.25)
>>> fin.close()

The while condition evaluates to True as long as variable data is nonempty, hence data
will be processed until the end of the file. Each struct read is unpacked to a tuple of values
using the struct.unpack() function. Once a struct is unpacked, we read the next structure.
This continues until all the structs are read from the input file. Lastly, we close the file.

The second method we’ll examine here is reading the entire file at once. To do so, we first
read the entire file to memory, using the read() function:

>>> data = open(filename, 'rb').read()
>>> len(data)
24

If no parameters are provided for read(), the entire file is read into memory until an end
of file (EOF) is reached. This might not be a problem with small files, but with larger files be
wary; your computer might not be able to handle all the data at once, so you will need to read
the files in chunks per the previous method. Note that I've chosen not to assign a file handle
for the data file and let Python handle the closing of the file for me.

The function struct.unpack() accepts format as a parameter and unpacks the data to a
tuple. However, we need to unpack the entire array, not just the first structure. We can take
the obvious route of using a for loop to unpack the binary data a piece at a time. An alterna-
tive approach is to change the format value to unpack() from a single 'Lff' to a repetitive
'LffLffLff...". This allows unpacking of the entire binary data in one call to struct.unpack().
Luckily, Python provides us with a very useful tool for multiplying strings, the multiplication
operator:

>>> "Lff'*5
'LFfLFfLFFLFFLFE'

We can calculate the size of the array we want to unpack by dividing the length of the data
by the size of one struct. In our case, that’s len(data)/struct _size. So to generate a format to
unpack by, we multiply the format by that value, which folds neatly into the following:

>>> print struct.unpack(format*(len(data)/struct size), data)
(10, 1.0, 2.0, 20, 0.125, 0.25)

121

122

CHAPTER 4 DATA ORGANIZATION

Note (Advanced readers) This implementation assumes the file is in accordance with the native operat-
ing system’s byte order. If you try to unpack data in this manner with any of the struct’s byte order, size, and
alignment format characters, such as @, =, <, >, and !, the function will fail.

Other Binary File Formats

Binary files can be more complex and can follow a different scheme from the repeating fixed-
size structure. Some employ compression, which typically involves a non-fixed-size structure.
Others might store data sequentially, that is, using the data of the preceding example, you
could write all the long values, followed by the float values. In that case, a different method to
read the file should be employed, but it’s quite straightforward if you know the file format. In
this book I'll touch lightly on this topic, specifically about known file types such as pictures
and compressed files. Since the number of file formats is virtually unlimited, the topic is too
vast for one book to cover.

Header Files

Unlike CSV files, with binary files you can’t really tell whether the information is in integer
representation, floating point, or an altogether different scheme. This means that you, the
programmer, need to know in advance what file format you're dealing with. At first that might
not seem such a complex task, but in reality, it’s not trivial. Even with the same notation as
explained previously in this chapter, say, .u16, you still don’t know what the values represent:
are they sampled voltage values? Is there a timestamp? And you might have several binary file
formats you're dealing with.

To resolve this, we use a header file to describe each file type, or directory, in case all the
files conform to the same format. A header file is a text file that describes the format of the
binary file. But if we’re using a text file, we might as well use CSV!

It’s a good idea to have the same base file name for the header file as the binary file
(excluding extension). I typically add an .hdr.csv extension for my header files; for example,
for file Lava2001-03-21T08-22-23.32 I name the header file Lava2001-03-21T708-22-23.f32.
hdr.csv.

Here’s an example of header file contents for an array-of-structs file format:

"Name", "Number of bytes", "Format", "Units"

"Time Elapsed since epoch", 4, "integer", "seconds"
"Temperature", 4, "float", "Degrees Celsius"
"Pressure", 4, "float", "Psi"

The nice thing about this structure is that it’s quite self-explanatory. It lends itself easily to
automation and scripting.

I've also added a column titled Units. This column is obvious; however, you will find later
that it’s quite useful. Say you know the temperature is an integer, but what exactly does it rep-
resent? Degrees? And if so, are those in Kelvin, Fahrenheit, or Celsius?

CHAPTER 4 DATA ORGANIZATION

If the file format is different and does not follow the repeating fixed-size structure format,
you can come up with a header that best describes that file format. In the case of sequential
data, the header file might look like this:

"Name", "Number of bytes", "Format", "Units", "#Values"
"Time Elapsed since epoch", 4, "integer", "seconds", 100
"Temperature", 4, "float", "Degrees Celsius", 100
"Filtered values", 4, "float", "Degrees Celsius", 100

This format implies that the data is sequential, having 100 values for each parameter. This
is a more complex file format and not at all popular due to the complexity associated with
implementing a format that behaves like this; you’d have to remember all the information and
then store it to file instead of gathering values and storing them one at a time. Again, at times,
you're given data files to work with and can’t control the file format.

Readme Files

Readme files are documentation files placed in a directory describing the contents of the

files in that directory. There’s no clear definition of the contents of Readme files, only that

the information should be in clear text so as to be viewed by any text editor. Some Readme
files have directions on what should be run and how to use the software. Others add author
information and credentials. Using Readme files is an excellent way to document what you've
done without the overhead of writing a user’s manual. Here are occasions where I found using
Readme files of value:

¢ They are helpful for describing the contents of data in directories: file formats, origin of
data, date and time, person in charge, and so forth. See Chapter 1 for an example of a
Readme file describing data.

¢ When directories contain both data and scripts to analyze them, there’s bound to be a
multitude of scripts. Describing the entry point, or what the user should run first, is a
time saver—especially if a process is required before running the scripts, for example,
uncompressing the data. Describe that in your Readme file.

Readme files can be as detailed or as cryptic as you’d like. Just remember that they're
there to help; include detail in them according to the level of the user or developer so they
understand what’s going on.

The common full file name for Readme files is Readme. txt.

INI Files

As you add content and capabilities to your scripts, you'll find that you need to control the
scripts’ behavior using options, such as running the script but only generating a text out-
put, without graphs or running the scripts on a different set of data points. As the number of
options increase, you'll need methods for controlling the options. There are several ways to
implement options. Following are the common ones:

e Interactive input from the user, for example, “Generate graphs (y/n)?”

¢ Command-line parameters such as the -1 in the command 1s -1.

123

124

CHAPTER 4 DATA ORGANIZATION

¢ An external configuration file holding the choices and parameters. To change the
behavior of the script, the user changes the values in the configuration file. The script
reads the configuration file and acts accordingly.

The latter option, a configuration file, is also referred to as an INI file. The reason is that
back in the days before the registry was introduced in Windows, applications used to store
parameters in files having the application name and ending with an . INI extension. In Linux
this is commonly referred to as a configuration files; configuration files typically reside in
the directory /etc and have a . conf extension. Python supports INI files natively with the
ConfigParser module.

Much like Readme files describing the data, INI files describe the parameters, options,
and choices used to run a script. They provide a clean way of explaining what the options
mean. The general markup of an INI file (config file) is a section, denoted by brackets, fol-
lowed by a list of parameters and their assigned values and optional remarks, as outlined in
Table 4-5.

Table 4-5. INI File Format

INI/Config Line Format Notes

Section [section] Used to group parameters logically
Parameter paraml=valuel or paraml:valuel Used to set a parameter to a value

Remark ; remark or# remark Used to document sections and parameters

Example: Reading and Writing INI Files

Listing 4-6 shows an implementation of writing an INI file using the ConfigParser module.

Listing 4-6. Creating an INI (Config) File

creating an INI (config) file

import ConfigParser

options = ConfigParser.ConfigParser()
options.add_section('User Options')
options.set('User Options', 'all data', True)
options.set('User Options', 'graph', 1)
options.add section('Plot")
options.set('Plot', 'grid', True)

f = open('../data/options.ini', 'w")
options.write(f)

f.close()

First we import the ConfigParser module. We then set sections with the add_section()
method and parameters and values with the set() method. Lastly, we create a file and output
the ConfigParser object to file, generating an INI file. The following are the results from run-
ning the script in Listing 4-6:

CHAPTER 4 DATA ORGANIZATION

[Plot]
grid = True

[User Options]
graph = 1
all data = True

Reading an INI file is even easier. Assuming you have run the previous script, you should
now have an INI file named . ./data/options.ini. The script in Listing 4-7 will read that file
and parse its contents.

Listing 4-7. Reading an INI (Config) File

read an INI (config) file

import ConfigParser

read opts = ConfigParser.ConfigParser()
read opts.read('../data/options.ini")

print parameters and values
for section in read opts.sections():
print "[%s]" % section
for param in read opts.items(section):
print param

The function ConfigParser.read() accepts a file name (use readfp() if you want to use a
file object) and parses the INI file with the ConfigParser object. The code following the read()
function call prints the sections, options, and values. Here are the results from running the
script in Listing 4-7:

[Plot]
('grid', 'True')
[User Options]
('all data', 'True')
(‘graph’, '1")

XML

XML, or Extensible Markup Language, has been growing in popularity as a data file format.
XML is more descriptive than CSV and definitely more descriptive than binary, hence its
popularity. XML is a very good format for data files, but it has its overhead. Mainly it requires a
complex parser to read the data and check data validity. While that’s true for CSV as well, CSV
is much less complex.

XML, however, is left out of scope for this book, mainly because CSV provides us with the
functionality we require, but also because the topic is too large to be addressed properly in this
book. If you do require XML processing, rest assured that Python has extensive XML support.
There’s also a large selection of books available on XML, and I suggest you consult with them
or the Internet should you require XML support.

125

126

CHAPTER 4 DATA ORGANIZATION

Other File Formats

There are a large number of other file formats you're likely to encounter. These include image
formats such as PNG, JPEG, bitmaps and GIF, or compressed file formats such as ZIP or GZ,
and yes, XML too.

It is far beyond the scope of this book to detail and discuss all these file formats. One of
the benefits of using Python is its popularity and an active developer base with an extensive
number of freely available packages contributed by the Python community. There’s a good
chance there’s already a module out there that’s suitable for reading different file formats and
converting them to programmer-friendly values. For example, a module we’ll be exploring in
Chapter 9, the Python Imaging Library (PIL), supports most popular image formats.

Locating Data Files

As described in the introduction to this chapter, as you gather data, you're bound to end up
with files of various types: raw data files, clean data files, processed data files, files of older file
formats, and the list goes on and on. The question is, how do you organize all this data, and
furthermore, how do you later locate it for analysis?

This section suggests several approaches to organizing files and what’s more important,
maintaining well-organized data. One approach is storing files in directories and subdirecto-
ries, and we’ll discuss methods to locate the files using that approach; another is to use catalog
files and annotate them.

Organization into Directories

The most popular method of organizing files is in directories. If you go with this approach, try
to have all your subdirectories containing data files in a parent directory named data or simi-
lar. If you intend to preprocess the data, split the directory into “raw” and “clean” data. The
reason you want to do this is that you may find out later that the preprocessing algorithm has a
bug or that a different method should be employed to preprocess the data. Or if you manually
preprocessed the data (that is, cleaned up the data files, removed wrong files, edited others,
etc.), you may later realize you accidentally erased the wrong data file or that you made some
other mistake.

From here on, there are several options, for example, putting all the data files in one
directory or creating subdirectories and organizing files there. Personally, I like to split the
directories further for several reasons. One is that it gives me greater control over documenta-
tion: it’s possible to generate Readme files for every directory. The other is that it allows greater
control over what files to process, for example, I could process all files from directory systemA.
Lastly, it helps provide a more aesthetic view, and that’s an important part of any engineering
work.

The actual breakdown into subdirectories is very problem specific. It could be based on
dates, type of files, contents, and pretty much anything else you would like. However, do try to
group the directories in one root directory, as it will be a lot easier to iterate through the data.

data
Taw
systemA

CHAPTER 4 DATA ORGANIZATION

systemB
systemC
clean
systemA
systemB
systemC

Searching for Files

One of the obvious methods for searching for a file is by recursively going through all the sub-
directories and looking for files that match a given pattern.

Example: Storing Directory Contents in an Array

When you first look for a file, you don’t always find it on your first search, maybe because
you chose the wrong file name pattern or because of a simple typo. There’s a good chance
you'll require additional searches. Now if you have a significant number of data files, it can be
tedious to rewalk the entire directory again. Every search is laborious, and time spent finding
files will increase dramatically. Instead, it’s possible to store the intermediate result in a data
structure.

Try this yourself. Define the function get _all files(), as shown in Listing 4-8, and call it
interactively in Python by issuing allfiles = get all files(some_path). Observe the results
by issuing print allfiles at the Python shell.

Listing 4-8. A Function to Retrieve All Files in a Directory and Store It in an Array

import os

def get all files(srchpath):

"""Get the names, paths and sizes of all the files in a directory.
allfiles = []

for root, dirs, files in os.walk(srchpath):
for file in files:
pathname = os.path.join(root, file)
filesize = os.path.getsize(pathname)
allfiles.append([file, pathname, filesize])
return allfiles

The function stores an entry to each file in a list (al1files). Each entry in the list holds
the file name, path name, and file size. A path name is the full path plus a name of a file (e.g.,
/home/shai/file.txt); a file name is the name of the file excluding the path (e.g., file.txt),
and file size is given in bytes. The function os.walk() was described in Chapter 1 and should
not require additional clarifications. I've made use of the function os.path.getsize() to
retrieve the size of a file.

127

128

CHAPTER 4 DATA ORGANIZATION

Note In cases where file names contain non-English characters, I've seen the function getsize() raise
an exception because it was unable to read the file. If you're dealing with such files, either rename them or
add a try/except clause to catch the exception.

Indexing

The act of going through directories and recording file information in an organized manner is
called indexing. Done properly, indexing can allow fast searches.

Example: Searching for Duplicate Files

Continuing our previous example, now that we have an array containing all the files in a direc-
tory, we can perform fast searches on the array. We can sort the array based on file size and
find the ten largest files; or we can look for files matching a given pattern. In this example we’ll
explore a more complex search, one that checks for duplicate files. This is a true need, one that
arises especially when dealing with a large number of files.

Assuming you have followed the unique file name convention suggested earlier, there
shouldn’t be any duplicate file names. However, that’s not always the case. Consider the fol-
lowing: data is generated by copying pictures from a digital camera. Many digital cameras
follow a simple running index scheme (see the section “Other Schemes” earlier in this chapter)
whereby file names follow the pattern Header0001. jpg, Header0002. jpg, and so on, with each
camera having its own Header string. After you copy the files to your computer, you delete the
old files in the camera, clearing space for new pictures. New pictures taken by the camera will
in turn start from index 1 and eventually, as they’re copied to your computer, will have non-
unique file names. To ensure files are not accidentally overwritten, you copy over each batch
of pictures to a directory of its own, each directory named uniquely based on date and time.

So you end up with several directories, but their contents could contain nonunique file names.
Maybe some are the same. Can we clear some up?

Another scenario is that of backups, or that of using several storage locations, say, your
laptop and your home PC. You may have copies of data lying around in several spots, and the
question again is whether you have multiple copies of the same data. Of course, if you follow
a central server approach and that server is backed up on a regular basis, you'll find that these
occasions are rare. Still, it’s nice to be able to identify duplicate files, and that’s the motivation
behind this example.

In the example we’ll confine ourselves to the following: we assume files to be identical if
they have the same file name and file size. While this isn’t necessarily true, the example can be
easily modified to compare contents as well.

We’ll show three different implementations and discuss the best solution of the three. In
all three methods we’ll use a dictionary object.

Note To be able to follow along, ensure you've defined the function get all files() from the previous
example. Run it in interactive Python and store the results in an array as follows: allfiles = get all
files(pathname).

CHAPTER 4 DATA ORGANIZATION

Method 1: We use the file name as the unique key in our dictionary, mydict1. The value
isalist of [filepath, filesize]. At first, mydict1 is empty. For every entry, we ask whether
the file name is a key to the dictionary. If it wasn’t encountered, we add the list [filepath,
filesize] as a value to the key, file name. If the key is in the dictionary, it means that this file
name has been encountered in the past. We then retrieve the file size and compare it with the
current entry file size. Listing 4-9 shows the implementation.

Listing 4-9. Looking for Duplicate Files, Method 1

def find dupes 1(thefiles):
"""Searches for file duplicates, method 1."""
resultl = []
mydictl = dict()

for filename, pathname, filesize in thefiles:
if filename in mydicti:
[dup_file, dup size] = mydicti[filename]
if dup _size == filesize:
resultl.append(pathname)
else:
mydicti[filename] = [pathname, filesize]
return resultl

One of the obvious shortcomings of this method is that there might be several files with
the same file name but different sizes; the algorithm might not catch some of them. For exam-
ple, if the first file is of size A, and several other files have the same file name but are of size B,
the algorithm will not identify files of size B as duplicates.

Method 2: This method uses the path name as the unique key in the dictionary mydict2
and the list [filename, filesize] as the value. Since we’re using the path name as the key,
it’s guaranteed to be unique; there are no two files with the same file name and path name. To
check whether a file name already exists in the dictionary, we iterate through all the elements
in the dictionary using the iteritems() method. If the file name and the file size are identical,
we announce them to be a duplicate. If not, we add the associated path name as key and the
[filename, filesize] asa new value to the dictionary (see Listing 4-10).

Listing 4-10. Looking for Duplicate Files, Method 2

def find dupes_2(thefiles):
"""Searches for file duplicates, method 2.
result2 = []
mydict2 = dict()

nwun

for filename, pathname, filesize in thefiles:
for k, v in mydict2.iteritems():
if v[0] == filename and v[1] == filesize:
result2.append(pathname)
else:
mydict2[pathname] = [filename, filesize]
return result2

129

130 CHAPTER 4 DATA ORGANIZATION

While this method does resolve the shortcoming of method 1 in that if there are sev-
eral files with the same file name, they will all be checked, the implementation is not a good
one. The major issue is that we use a dictionary object to store values and neglect to use the
inherent hashing mechanism properly: we iterate through all the items linearly. We probably
could’ve just as well used an array.

Method 3: This method uses the file name as the key in the dictionary object mydict3. The
difference from method 1 is that instead of a list holding [pathname, filesize], we now hold
an array of [pathname, filesize] lists for every key, much like in a real dictionary where one
entry (key) might have several definitions (values). The second change we introduce is that
we don’t ask whether the file name (key) is part of the current set of keys. Instead, we simply
access the dictionary object with the file name using the method get (). If there’s an entry,
we go through the array of [pathname, filesize] values and check for duplicate files. If one
matches, it’s a duplicate. If none matches, we append our new [pathname, filesize] to the
array of current values. In case there’s no entry for the file name, we add it as a new entry to
the dictionary object (see Listing 4-11).

Listing 4-11. Finding Duplicate Files, Method 3

def find dupes 3(thefiles):
"""Searches for file duplicates, method 3.
result3 = []
mydict3 = dict()

for filename, pathname, filesize in thefiles:
if mydict3.get(filename):
for [dup file, dup size] in mydict3[filename]:
if dup_size == filesize:
result3.append(pathname)
mydict3[filename].append([pathname, filesize])
else:
mydict3[filename] = [[pathname, filesize]]
return result3

Of the three methods, the third one is the best because it uses hashing properly.

To check performance for yourself, copy the function implementations per Listing 4-9,
4-10, and 4-11 to a text editor, save them under scriptname.py, and then issue
execfile('scriptname.py') in an interactive Python shell. Once that’s done, here’s a short
set of commands you can use to measure performance. Be sure to change the srchpath vari-
able to point to a directory containing a large number of files, with some duplicates.

>>> srchpath = 'c:/Python2s’

>>> allfiles = get all files(srchpath)

»>t =[]

>>> from time import clock as clk

>>> t.append(clk()); resi = find dupes 1(allfiles); t.append(clk())
>>> t.append(clk()); res2 = find dupes 2(allfiles); t.append(clk())
>>> t.append(clk()); res3 = find dupes 3(allfiles); t.append(clk())
>>> len(allfiles) # number of data files processed

8371

CHAPTER 4 DATA ORGANIZATION

>>> print "method 1: %5.5f; method 2: %5.5f; method 3: %5.5f" % \
... (t[1]-t[o], t[3]-t[2], t[5]-t[4])

method 1: 0.00761; method 2: 5.61522; method 3: 0.01945

>>> len(res1), len(res2), len(res3)

(41, 802, 802)

I've imported the method clock() and renamed it to c1k() (to save a few characters).
The function clock(), part of the time module, returns the system clock and is very useful
for comparing performance. Notice how I've entered three function calls in one line. This is
important: if you split those into three separate sentences, the time it actually took you to write
the command is also added to the time difference, offsetting results.

Note Because method 2 is quite inefficient, for a large number of files or a slow machine it might take
considerable time to compute. Although method 1 seems the fastest, in reality it's inaccurate and shouldn’t
be used.

In the preceding implementations, we do not check the contents of the files to ensure they
are indeed identical. It is quite possible to add that capability by modifying the functions and
comparing the contents of two files, filel and file2, as well:

>>> if open(file1, 'rb').read() == open(file2, 'rb').read():
print 'identical files'

This method reads the entire files to memory and compares them byte by byte. Note that
this is a not a good option if the files are large; reading chunks or using other mechanisms may
be better (see “Comparing Files” section in Chapter 10).

Catalogs

We've discussed splitting data files into directories and subdirectories and mentioned that it’s
a good habit to group files in that manner. While this is an excellent method of maintaining
what’s what, it’s limited to one division. That is, if you’'d like to split files into directories based
on several criteria, what do you do with a data file that fits several of those criteria? This is
where catalogs come in handy.

Catalogs are text files that hold data in columns: the first column contains the file names,
and subsequence columns contain subcategories (other criteria). Ideally you’d like to use
CSV because there’s a good chance you'll be editing the catalog file manually in a spreadsheet
application or automatically with Python; CSV fits that role perfectly.

Once you have a catalog file, it’s easy to select only files meeting a specific criterion and
run a script on those selected files.

Example: Creating a Clean Catalog File

The first step is to generate a basic catalog file, or a clean catalog file. This clean catalog file
is generated automatically, using Python. For every file encountered, the full path as well as

131

132

CHAPTER 4 DATA ORGANIZATION

the file size is retrieved. Listing 4-12 shows an example of creating a clean catalog of files with
extension .py.

Listing 4-12. Creating a Clean Catalog

import os, csv

rename the following to a directory of your choosing
srchpath = '../src’

the CSV header
catalog = [['Filename’, 'pathname', 'size']]

walk directory tree
for root, dirs, files in os.walk(srchpath):
for file in files:
process only .py files
if file.lower().endswith('py"):
pathname = os.path.join(root, file)
filesize = os.path.getsize(pathname)
catalog.append([file, pathname, filesize])

create the clean catalog

f = open('../data/clean catalog.csv', 'wb"')
csv.writer(f).writerows(catalog)

f.close()

To follow along, change the srchpath variable to point to a directory containing Python
files, such as the root Python directory (c:\Python25). I chose to list the contents of my . ./src
directory.

The script walks the search directory looking for Python files (files ending with the exten-
sion .py, case insensitive). For every file encountered, we retrieve the file size. We then store all
the information in a CSV file as shown in previous examples.

Filename,pathname,size

get all files.py,../src/get all files.py,385
read_ini.py,../src/read_ini.py,282
write_ini.py,../src/write_ini.py,330
cmp_fd.py,../src/cmp_fd.py,2285
unique.py,../src/unique.py,273
tips.py,../src/tips.py,151

create catalog.py,../src/create_catalog.py,595
stock charts.py,../src/stock charts.py,1290
yahoo_data.py,../src/yahoo_data.py,1218

read write structs.py,../src/read write structs.py,795
running_index.py,../src/running_index.py,613

CHAPTER 4 DATA ORGANIZATION

Next you take notes. For example, if a script is a draft, you mark it as such. So now you
have an additional column: “Draft?” The contents of the catalog file will look something like
this:

Filename,pathname,size,Draft?

get all files.py,../src/get all files.py,385,
read ini.py,../src/read ini.py,282,

write ini.py,../src/write_ini.py,330,
cmp_fd.py,../src/cmp_fd.py,2285,Yes
unique.py,../src/unique.py,273,
tips.py,../src/tips.py,151,Yes
create_catalog.py,../src/create_catalog.py,595,
stock charts.py,../src/stock charts.py,1290,
yahoo data.py,../src/yahoo_data.py,1218,

read write structs.py,../src/read write structs.py,795,
running index.py,../src/running_index.py,613,

For the purpose of this exercise, I chose to use . py files, but you could just as well use the
script on data files. In this manner, running a script on only clean data from the annotated
catalog is manageable and reproducible.

Note Maintaining catalog files is a delicate job. Ensure your catalog files are always under version
control, or better yet, a software configuration management system (for example, CVS, Subversion, or Mer-
curial—see Chapter 2). You will constantly need to re-create clean (unannotated) catalogs if data is added.
Consider investing time in maintaining your catalogs to keep them clean and up to date. If you find that the
number of columns in your catalog files has increased and is unmanageable, consider using a database
instead of a CSV file.

Files vs. a Database

There are a lot of pros for using databases over the management of files in directories. If your
data becomes too complex to manage, rethinking and redesigning your data infrastructure is
not a bad idea. That being said, I personally have found that databases do not add to my pro-
ductivity. In my mind, the reasons are as follows:

e The nature of the work: When you design a database, it's important to know a lot of
the information up front. A good database relies on a good database design. And good
database design relies on knowing the information and structure beforehand. The
work described here does not follow that path. As presented in the beginning of the
chapter, it’s an iterative process; you do not know all the information before you start.
And your application is mostly for your usage, not for end users (at least at first). It’s
not “production-level” code yet. When it does get to production level, that is, it’s an
application to be used by end users, rethinking the data organization is a good idea, at
which point you should consider using a database as well.

133

134

CHAPTER 4 DATA ORGANIZATION

e The nature of the data: The nature of the data described here is somewhat flat. There
are not a lot of connections and interconnections and hierarchy and logic. There’s
simply a lot of data. There’s a need to analyze it, fast. Some of the files are quite large,
and while it’s possible store large files in a database, it’s probably not the most effi-
cient way.

¢ Overhead: Databases introduce overhead. Some may argue that it’s not significant,
and they may be right. However, there’s another piece of code, a database engine, that
needs interfacing. Yes, Python provides good database support, but it’s not the same
as opening a file natively in your operating system. The overhead is in several layers:
backup is more complex, code writing requires additional libraries, designing data-
bases requires some experience (which you might not have), transferring the work to
another computer is not easy, and maintenance is also required.

Note It’s worth mentioning that the SQLite database module (sqlite), which is part of the Python Stan-
dard Library, has very little overhead and is an excellent package for working with databases should you
require one.

o Immediate interaction: Say you'd like to browse for data and view files. With a database
you’d have to write an application just to extract data, and then to view it. The interac-
tion is less immediate in my mind.

I know I'm not being fair in my analysis; I'm mostly showing the cons of databases. So to
offset that, I'll say that databases do have their role. If you feel that you’d like to store your data
in a database, you should at least know that Python provides a great number of tools for you to
choose from, so even then, Python is the