Algorithmique & programmation

Chapitre 2 : Vecteurs

Vecteur trié

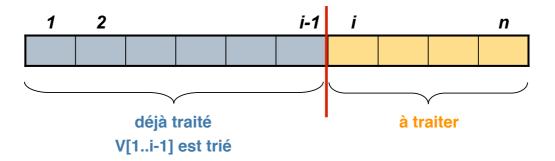
Recherche séquentielle triée

Vecteur trié (ordonné)

- Définition
 - un vecteur vide (n=0) est trié
 - un vecteur à un seul élément (n=1) est trié
 - un vecteur V[1..n], n>1, est ordonné si
 - $\square \forall i \in [2..n], V[i-1] \leq V[i]$
- □ Définition récursive
 - un vecteur vide (n=0) est trié
 - un vecteur à un seul élément (n=1) est trié
 - **si** (V[1..i-1] trié et V[i-1]≤V[i])
 - □ alors V[1..i] trié pour $i \in [2..n]$

Vérifier qu'un vecteur est trié

- ☐ Recherche de l'hypothèse
 - Si on est encore en train d'essayer de savoir si un vecteur est trié, c'est que la partie du vecteur que l'on a examinée est triée
 - En schématisant :



Chapitre 2.2.3

Vérifier qu'un vecteur est trié

□ Raisonnement par récurrence

➤➤ V[i-1] > V[i] ⇒ V n'est pas trié

Trouver l'itération ?

Chemin depuis le retour à l'hypothèse vers les conditions

Trouver l'itération

- i ≤ n ⇒

 V[i-1] > V[i] ⇒ V n'est pas trié

 ⇒ résultat = faux *

 V[i-1] ≤ V[i] ⇒ i := i + 1; \blacktriangleright H
 - □ Il faut que les deux conditions soient vérifiées
 - i ≤ n et V[i-1] ≤ V[i]

Attention !!!!!

- La première fois que i ≤ n devient faux i = n + 1
- Peut-on consulter V[n + 1] ?
 - □ NON !!!!!!!

Chapitre 2.2.3 5

Trouver l'itération

- ☐ Il faut que les deux conditions soient vérifiées
 - i ≤ n et (V[i-1] ≤ V[i])
- On doit éviter
 - d'évaluer (V[i-1] ≤ V[i]) lorsque i ≤ n est faux
- □ Solution?
 - Remplacer le et par un et alors
 - Pour obtenir

 $i \le n$ et alors $(V[i-1] \le V[i])$

- Commentaire
 - Ce n'est pas de l'optimisation, c'est obligatoire !!!

Vérifier qu'un vecteur est trié

□ Raisonnement par récurrence

Hypothèse

V[1..i-1] est trié

- i = n+1 ⇒ V[1..n] est trié
 ⇒ résultat = vrai **
- > i ≤ n \Rightarrow
 - ➤ V[i-1] > V[i] ⇒ V n'est pas trié

 ⇒ résultat = faux **
 - $\blacktriangleright \blacktriangleright V[i-1] \le V[i] \Rightarrow i := i+1; \implies H$

Itération tantque $(i \le n)$ et alors $(V[i-1] \le V[i])$ faire ...

Trouver l'initialisation?

Connaît-on un vecteur pour lequel on sait qu'il est trié?

Chapitre 2.2.3

Trouver l'initialisation

Connaît-on un	vecteur	pour	lequel	on s	sait	sans
calcul qu'il est	trié?					

Oui!!

- ☐ Le vecteur à un élément (pourquoi pas le vecteur vide ?)
 - V[1..1]
- Rappel

Hypothèse

V[1..i-1] est trié

- □ Quelle valeur de i pour avoir **V[1..1]**?
 - Réponse : i doit valoir 2

Initialisation

i := 2; $\rightarrow H$

Vérifier qu'un vecteur est trié

☐ Raisonnement par récurrence

Chapitre 2.2.3

fonction trié

```
fonction trié (d V[1..n] : vecteur) : booléen ;
spécification { } → {résultat = V est trié}
    i : entier ;
debfonc
    i := 2 ;
    {V[1..i-1] trié}
    tantque (i ≤ n) et alors (V[i-1] ≤ V[i]) faire
        i := i +1 ;
    finfaire ;
    {(i > n)) ou sinon (V[i-1] > V[i])}
    il faut rendre vrai ou faux
finfonc ;
```

fonction trié (calcul du résultat)

- ☐ Condition de sortie du tantque
 - (i > n) ou sinon (V[i-1] > V[i])
- ☐ La fonction doit rendre vrai ou faux (raisonnement)
 - Soit on a l'intuition du calcul
 - Solt on fait un tableau de sortie

i>n/	V[i-1] > V[i]	résultat		
vrai	non examiné	vrai		
faux (i≤n)	vrai	faux		
faux (i≤n)	faux	impossible (tantque)		

Chapitre 2.2.3

fonction trié (calcul du résultat)

☐ Lecture du tableau de sortie

i > n	V[i-1] > V[i]	résultat
vrai	non examiné	vrai
faux (i≤n)	vrai	faux
faux (i≤n)	faux	impossible (tantque)

☐ Le résultat est vrai lorsque i > n, faux sinon

retour i > n;

fonction trié générique

```
fonction trié (d V[1..n] : vecteur) : booléen ;
spécification { } → {résultat = V est trié}
    i : entier ;

debfonc
    i := 2 ;
    {V[1..i-1] trié}
    tantque (i ≤ n) et alors (V[i-1] ≤ V[i]) faire
        i := i +1 ;
    finfaire ;
    {(i > n)) ou sinon (V[i-1] > V[i])}
    retour i > n ;

finfonc ;
```

Chapitre 2.2.3

fonction trié (vecteur d'entiers)

□ soit V un vecteur d'entier de type vectInt

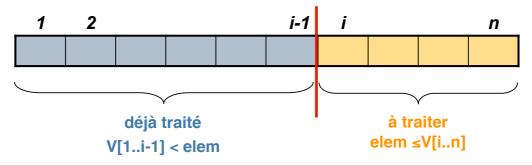
```
function triéInt (V : in vectInt) retrun boolean is
--{ } → {résultat = V est trié}
i : integer ;
begin
i := V'First + 1 ;
--{V(1..i-1) trié}
while (i ≤ V'Last) and then (V(i-1) ≤ V(i)) loop
i := i +1 ;
end loop ;
--{(i > V'Last)) ou sinon (V(i-1) > V[i])}
return i > n ;
end triéInt ;
```

Accès à un élément (vecteur trié)

 On veut savoir si l'élément elem est présent dans le vecteur V

fonction accètrié1 (d V[1..n] : vecteur ; d elem : t) : booléen ; **spécification** $\{n \ge 0, V[1..n]trié\}$ $\rightarrow \{résultat = elem \in V[1..n]\}$

☐ Si on cherche encore, c'est que tous les éléments que l'on a examinés sont < elem



Chapitre 2.2.3

Accès à un élément (vecteur trié)

☐ Raisonnement par récurrence

$$Hypoth\`ese$$
 $V[1..i-1] < elem$

➤> V[i] ≥ elem ⇒ elem ∈ V[1..n] ssi V[i] = elem

Itération tantque (i \leq n) **et alors** (V[i] < elem) faire ...

Initialisation $i := 1 : \Rightarrow H$

fonction accèstrié1

```
fonction accètrié1 (d V[1..n] : vecteur ; d elem : t) : booléen ;
spécification {n ≥ 0, V[1..n]trié} → {résultat = elem ∈ V[1..n] }
    i : entier ;

debfonc
    i := 1 ;
    {V[1..i-1] < elem}
    tantque (i ≤ n) et alors (V[i] < elem) faire
        {V[1..i] < elem}
        i := i + 1 ;
        {V[1..i-1] < elem}
        finfaire ;
        {(i > n) ou sinon (V[i] ≥ elem)} {en particulier i = n + 1}
        il faut rendre vrai ou faux
```

Chapitre 2.2.3 17

fonction accèstrié1 (calcul du résultat)

- ☐ Condition de sortie du tantque
- ☐ La fonction doit rendre vrai ou faux (raisonnement)
 - Soit on a l'intuition du calcul
 - Soit on fait un tableau de sortie

i>n	V[i] ≥ elem	résultat
vrai	non examiné	faux
faux (i≤n)	vrai	vrai ssi V[i] = elem
faux (i≤n)	faux	impossible (tantque)

fonction accèstrié1 (calcul du résultat)

□ Lecture du tableau de sortie

i > n	V[i] ≥ elem	résultat	
vrai	non examiné	faux	
faux (i≤n)	vrai	vrai ssi V[i] = elem	
faux (i≤n)	faux	impossible (tantque)	

- Le résultat est vrai lorsque i ≤ n et alorsV[i] = elem, faux sinon
 - retour $i \le n$ et alors V[i] = elem;

Chapitre 2.2.3 19

fonction accèstrié1

```
fonction accètrié1 (d V[1..n] : vecteur ; d elem : t) : booléen ;

spécification \{n \ge 0, V[1..n]trié\} → \{résultat = elem \in V[1..n]\}

i : entier ;

debfonc

i := 1 ;

\{V[1..i-1] < elem\}

tantque (i ≤ n) et alors (V[i] < elem) faire

\{V[1..i] < elem\}

i := i + 1 ;

\{V[1..i-1] < elem\}

finfaire ;

\{(i = n + 1) \ ou \ sinon \ (V[i] \ge elem)\}

retour (i ≤ n) et alors (V[i] = elem) ;

finfonc ;
```

fonction accèstrié1 (vecteur d'entiers)

```
--{V(1..i-1) < elem}

while (i ≤ V'Last) and then (V(i) < elem) loop

i := i + 1;

end loop;

--{(i = V'Last + 1) ou sinon (V(i) ≥ elem)}

return (i ≤ n) and then (V(i) = elem);

end accèstriélInt;
```

Chapitre 2.2.3 21

Accès à un élément (vecteur trié non vide)

☐ S'arrêter sur l'avant dernier élément pour éviter le **et alors**

```
fonction accètrié2 (d V[1..n] : vecteur ; d elem : t) : booléen ;
spécification {n > 0, V[1..n]trié} → {résultat = elem ∈ V[1..n] }
    i : entier ;
debfonc
    i := 1 ;
    tantque (i < n) et (V[i] < elem) faire
        i := i + 1 ;
    finfaire ;
    {(i = n) ou sinon (V[i] ≥ elem)}
    il faut rendre vrai ou faux
finfonc ;</pre>
```

fonction accèstrié2 (calcul du résultat)

□ Tableau de sortie

i = n	V[i] ≥ elem	résultat
vrai	vrai	vrai ssi V[i] = elem
vrai	faux	faux
faux (i <n)< td=""><td>vrai</td><td>vrai ssi V[i] = elem</td></n)<>	vrai	vrai ssi V[i] = elem
faux (i <n)< td=""><td>faux</td><td>impossible (tantque)</td></n)<>	faux	impossible (tantque)

- ☐ Le résultat est vrai lorsque V[i] = elem quelle que soit la valeur de i, faux sinon
 - \blacksquare retour V[i] = elem;

Chapitre 2.2.3 23

fonction accèstrié2

```
fonction accètrié2 (d V[1..n] : vecteur ; d elem : t) : booléen ;
spécification {n > 0, V[1..n]trié} → {résultat = elem ∈ V[1..n] }
    i : entier ;

debfonc
    i := 1 ;
    tantque (i < n) et (V[i] < elem) faire
        i := i + 1 ;
    finfaire ;
    {(i = n) ou sinon (V[i] ≥ elem)}
    retour V[i] = elem ;

finfonc ;</pre>
```

fonction accèstrié2 (vecteur d'entiers)

Chapitre 2.2.3 25

end accètrié2Int ;

Coût d'une recherche séquentielle

- □ Accès à un élément indicé (V[i]) très coûteux par rapport à un élément non indicé
- □ La comparaison entre deux éléments indicés nécessite deux accès (V[i] et V[j])
- ☐ Si le vecteur V[1..n] n'est **pas trié** il faut :
 - n comparaisons (accès) si elem ∉ V
 - n÷2 comparaisons en moyenne si elem ∈ V
- ☐ Si le vecteur V[1..n] est **trié** il faut
 - n÷2 comparaisons en moyenne si elem ∈ ou ∉ V