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This talk is dedicated to hunting down APT 29 
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So you’ve been owned with WMI… 

� Attackers use WMI - reality 
� Prevention, detection, remediation 

guidance - lacking 
� Forensic capability - non-existent 
� Awareness of offensive capabilities – 

lacking 
� Awareness of defensive capabilities – 

practically non-existent 
 



4 Copyright ©  2015, FireEye, Inc.  All rights reserved. Copyright ©  2015, FireEye, Inc.  All rights reserved. 

Introduction 
Willi, Matt, and Claudiu 
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About the Speakers 

Willi Ballenthin - @williballenthin 

� Reverse Engineer @ FireEye Labs Advanced Reverse Engineering (FLARE) Team 

� Forensic Analyst 

� Researcher 

� Instructor 

 

https://twitter.com/williballenthin
https://twitter.com/williballenthin
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About the Speakers 

Matt Graeber - @mattifestation 

� Reverse Engineer @ FireEye Labs Advanced Reverse Engineering (FLARE) Team 

� Speaker – Black Hat, MS Blue Hat, BSides LV and Augusta, DerbyCon 

� Black Hat Trainer 

� Microsoft MVP – PowerShell 

� GitHub projects – PowerSploit, PowerShellArsenal, Position Independent Shellcode in C, etc. 

� “Living off the Land” Proponent 

� Perpetual n00b 

https://twitter.com/mattifestation
https://twitter.com/mattifestation
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About the Speakers 

Claudiu “to the rescue” Teodorescu - @cteo13 

� Reverse Engineer @ FireEye Labs Advanced Reverse Engineering (FLARE) Team 

� Forensic researcher 

� Crypto analyst 

� GitHub projects – WMIParser 

� Soccer player 

https://twitter.com/cteo13
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Outline – Session #1 

Background, Motivations, Attack Examples 

� Abridged History of WMI Malware 

� WMI Architecture 

� WMI Query Language (WQL) 

� WMI Eventing 

� Remote WMI 

� WMI Attack Lifecycle 

� Providers 
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Outline – Session #2 

File Format, Investigations, Real-Time Defense, Mitigations 

� WMI Forensics 

� Managed Object Format (MOF) 

� Representation of MOF Primitives 

� Investigation Methodology - A Mock Investigation 

� WMI Attack Detection 

� WMI Attack Mitigations 
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WMI Malware History 
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~2010 - Stuxnet 

� Exploited MS10-061 – Windows Printer Spooler 

� Exploited an arbitrary file write vulnerability 

� WMI provided a generic means of turning a file write to SYSTEM code execution! 

� The attackers dropped a MOF file to gain SYSTEM-level execution. 

 

 

 

http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html 
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2010 - Ghost 

� Utilized permanent WMI event subscriptions to: 
- Monitor changes to “Recent” folder 

- Compressed and uploaded all new documents 

- Activates an ActiveX control that uses IE as a C2 channel 

 

 

 

http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-
paper-en.pdf 
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2014 – WMI Shell (Andrei Dumitrescu) 

� Uses WMI as a C2 channel 
� WMI namespaces used to store data 

 
 
 
 
 
 
http://2014.hackitoergosum.org/slides/day1_WMI_Shell_Andrei_Dumitrescu.pdf 

http://2014.hackitoergosum.org/slides/day1_WMI_Shell_Andrei_Dumitrescu.pdf
http://2014.hackitoergosum.org/slides/day1_WMI_Shell_Andrei_Dumitrescu.pdf
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2015 – APT 29 

� Heavy reliance upon WMI and PowerShell 
� Custom WMI class creation 
� WMI repository used to store payloads of arbitrary size 
� Results of commands added to WMI object properties 

 
� Thanks to our awesome Mandiant investigators for seeking this out, 

discovering it, and remediating! 
- Nick Carr, Matt Dunwoody, DJ Palombo, and Alec Randazzo 

� Thanks to APT 29 for allowing us to further our investigative techniques! 
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WMI Basics 
Windows Management Instrumentation 



16 Copyright ©  2015, FireEye, Inc.  All rights reserved. 

What is WMI? 

� Windows Management Instrumentation 

� Powerful local & remote system management infrastructure 

� Present since Win98 and NT4 

� Can be used to: 

- Obtain system information 

• Registry 

• File system 

• Etc. 

- Execute commands 

- Subscribe to events 

 

 

Useful infrastructure for admins 

∴ 
Useful infrastructure for attackers 
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WMI Architecture 

� WMI implements the CIM and WBEM standards to do the following: 
- Provide an object schema to describe “managed components” 
- Provide a means to populate objects – i.e. WMI providers 
- Store persistent objects – WMI/CIM repository 
- Query objects – WQL 
- Transmit object data – DCOM and WinRM 
- Perform actions on objects – class methods, events, etc. 
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WMI Architecture 
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Interacting with WMI 
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Utilities - PowerShell 

“Blue is the New Black” - @obscuresec 

� PowerShell is 
awesome 

� Need I say more? 
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Utilities – wmic.exe 

� Pentesters and 
attackers know about 
this 

� Installed everywhere 

� Gets most tasks done 

� Has some limitations 
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Utilities – Microsoft CIM Studio 

� Free 

� Very dated but still works 

� Good for WMI discovery/research 
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Utilities – Sapien WMI Explorer 

� Commercial utility 

� Great for WMI discovery/research 

� Many additional features 

� Huge improvement over CIM Studio 
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Utilities – wbemtest.exe 

� The WMI utility you never heard of 

� GUI 

� Very powerful 

� Rarely a blacklisted application 
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Utilities – winrm.exe 

� Not a well known utility 

� Can interface with WMI over WinRM 

� Useful if PowerShell is not available 

winrm invoke Create wmicimv2/Win32_Process @{CommandLine="notepad.exe";CurrentDirectory="C:\"} 
winrm enumerate http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process 
winrm get http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_OperatingSystem 
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Utilities 

� Linux - wmic, wmis, wmis-pth (@passingthehash) 
- http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html 

� Windows Script Host Languages 
- VBScript 

- JScript 

� IWbem* COM API 

� .NET System.Management classes 

http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
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WMI Query Language (WQL) 
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WMI Query Language (WQL) 

� SQL-like query language used to 
- Filter WMI object instances 

- Register event trigger 

� Three query classes: 
1. Instance Queries 

2. Event Queries 

3. Meta Queries 
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WMI Query Language (WQL) – Instance Queries 

Format: 

� SELECT [Class property name|*] FROM [CLASS NAME] <WHERE [CONSTRAINT]> 

Example: 

� SELECT * FROM Win32_Process WHERE Name LIKE "%chrome%" 
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WMI Query Language (WQL) – Event Queries 

Format: 

� SELECT [Class property name|*] FROM [INTRINSIC CLASS NAME] WITHIN 
[POLLING INTERVAL] <WHERE [CONSTRAINT]> 

� SELECT [Class property name|*] FROM [EXTRINSIC CLASS NAME] <WHERE 
[CONSTRAINT]> 

Examples: 

� SELECT * FROM __InstanceCreationEvent WITHIN 15 WHERE TargetInstance 
ISA 'Win32_LogonSession' AND TargetInstance.LogonType = 2 

� SELECT * FROM Win32_VolumeChangeEvent WHERE EventType = 2 

� SELECT * FROM RegistryKeyChangeEvent WHERE Hive='HKEY_LOCAL_MACHINE' 
AND KeyPath='SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run'  
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WMI Query Language (WQL) – Meta Queries 

Format: 

� SELECT [Class property name|*] FROM [Meta_Class|SYSTEM CLASS NAME] 
<WHERE [CONSTRAINT]> 

Example: 

� SELECT * FROM Meta_Class WHERE __Class LIKE "Win32%“ 

� SELECT Name FROM __NAMESPACE 
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WMI Eventing 
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WMI Events 

� WMI has the ability to trigger off nearly any conceivable event. 
- Great for attackers and defenders 

� Three requirements 
1. Filter – An action to trigger off of 

2. Consumer – An action to take upon triggering the filter 

3. Binding – Registers a FilterÅÆConsumer 

� Local events run for the lifetime of the host process. 

� Permanent WMI events are persistent and run as SYSTEM. 
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WMI Event Types - Intrinsic 

� Intrinsic events are system classes included in every namespace 

� Attacker/defender can make a creative use of these 

� Must be captured at a polling interval 

� Possible to miss event firings 

 � __ClassCreationEvent 

� __InstanceOperationEvent 

� __InstanceCreationEvent 

� __MethodInvocationEvent 

� __InstanceModificationEvent 

� __InstanceDeletionEvent 

� __TimerEvent 

� __NamespaceOperationEvent 

� __NamespaceModificationEvent 

� __NamespaceDeletionEvent 

� __NamespaceCreationEvent 

� __ClassOperationEvent 

� __ClassDeletionEvent 

� __ClassModificationEvent 
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WMI Event Types - Extrinsic 

� Extrinsic events are non-system classes 
that fire immediately 

� No chance of missing these 

� Generally don’t include as much 
information 

� Notable extrinsic events: 

� Consider the implications… 

� ROOT\CIMV2:Win32_ComputerShutdownEvent 

� ROOT\CIMV2:Win32_IP4RouteTableEvent 

� ROOT\CIMV2:Win32_ProcessStartTrace 

� ROOT\CIMV2:Win32_ModuleLoadTrace 

� ROOT\CIMV2:Win32_ThreadStartTrace 

� ROOT\CIMV2:Win32_VolumeChangeEvent 

� ROOT\CIMV2:Msft_WmiProvider* 

� ROOT\DEFAULT:RegistryKeyChangeEvent 

� ROOT\DEFAULT:RegistryValueChangeEvent 
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WMI Events - Consumers 

� The action taken upon firing an event 

� These are the standard event consumers: 
- LogFileEventConsumer 

- ActiveScriptEventConsumer 

- NTEventLogEventConsumer 

- SMTPEventConsumer 

- CommandLineEventConsumer 

� Present in the following namespaces: 
- ROOT\CIMV2 

- ROOT\DEFAULT 
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Permanent WMI Events 

� Event subscriptions persistent across reboots 

� Requirements: 
1. Filter – An action to trigger off of 

• Creation of an __EventFilter instance 

2. Consumer – An action to take upon triggering the filter 

• Creation of a derived __EventConsumer instance 

3. Binding – Registers a FilterÅÆConsumer 

• Creation of a __FilterToConsumerBinding instance 
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WMI Events - Overview 
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Remote WMI 
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Remote WMI Protocols - DCOM 

� DCOM connections established on port 135 

� Subsequent data exchanged on port dictated by 
- HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\Internet – Ports (REG_MULTI_SZ) 

- configurable via DCOMCNFG.exe 

� Not firewall friendly 

� By default, the WMI service – Winmgmt is running and listening on port 135 

 

MSDN: Setting Up a Fixed Port for WMI 

MSDN: Connecting Through Windows Firewall 

 

https://msdn.microsoft.com/en-us/library/bb219447(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb219447(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa389286(v=vs.85).aspx
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Remote WMI Protocols - DCOM 
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Remote WMI Protocols - WinRM/PowerShell Remoting 
� SOAP protocol based on the WSMan specification 

� Encrypted by default 

� Single management port – 5985 (HTTP) or 5986 (HTTPS) 

� The official remote management protocol in Windows 2012 R2+ 

� SSH on steroids – Supports WMI and code execution, object serialization 

� Scriptable configuration via WSMan “drive” in PowerShell 
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Remote WMI Protocols – WinRM/PowerShell Remoting 
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Remote WMI Protocols – WinRM/PowerShell Remoting 
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Remote WMI Protocols – WinRM/PowerShell Remoting 
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WMI Attack Lifecycle 
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WMI Attacks 

� From an attackers perspective, WMI can be used but is not limited to 
the following: 
- Reconnaissance 
- VM/Sandbox Detection 
- Code execution and lateral movement 
- Persistence 
- Data storage 
- C2 communication 
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WMI Attacks – Reconnaissance 

� Host/OS information:  ROOT\CIMV2:Win32_OperatingSystem, Win32_ComputerSystem 

� File/directory listing:   ROOT\CIMV2:CIM_DataFile 

� Disk volume listing:   ROOT\CIMV2:Win32_Volume 

� Registry operations:  ROOT\DEFAULT:StdRegProv 

� Running processes:   ROOT\CIMV2:Win32_Process 

� Service listing:   ROOT\CIMV2:Win32_Service 

� Event log:    ROOT\CIMV2:Win32_NtLogEvent 

� Logged on accounts:  ROOT\CIMV2:Win32_LoggedOnUser 

� Mounted shares:   ROOT\CIMV2:Win32_Share 

� Installed patches:   ROOT\CIMV2:Win32_QuickFixEngineering 

� Installed AV:   ROOT\SecurityCenter[2]:AntiVirusProduct 
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WMI Attacks – VM/Sandbox Detection 

� Sample WQL Queries 

SELECT * FROM Win32_ComputerSystem WHERE TotalPhysicalMemory < 2147483648 
SELECT * FROM Win32_ComputerSystem WHERE NumberOfLogicalProcessors < 2 
  

� Example 

 $VMDetected = $False 

  

$Arguments = @{ 

    Class = 'Win32_ComputerSystem' 

    Filter = 'NumberOfLogicalProcessors < 2 AND TotalPhysicalMemory < 2147483648' 

} 

  

if (Get-WmiObject @Arguments) { $VMDetected = $True }  
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WMI Attacks – VM/Sandbox Detection 

� Sample WQL Queries 

SELECT * FROM Win32_NetworkAdapter WHERE Manufacturer LIKE "%VMware%" 
SELECT * FROM Win32_BIOS WHERE SerialNumber LIKE "%VMware%" 
SELECT * FROM Win32_Process WHERE Name="vmtoolsd.exe" 
SELECT * FROM Win32_NetworkAdapter WHERE Name LIKE "%VMware%" 

� Example 

 $VMwareDetected = $False 

  

$VMAdapter = Get-WmiObject Win32_NetworkAdapter -Filter 'Manufacturer LIKE 

"%VMware%" OR Name LIKE "%VMware%"' 

$VMBios = Get-WmiObject Win32_BIOS -Filter 'SerialNumber LIKE "%VMware%"' 

$VMToolsRunning = Get-WmiObject Win32_Process -Filter 'Name="vmtoolsd.exe"' 

  

if ($VMAdapter -or $VMBios -or $VMToolsRunning) { $VMwareDetected = $True }  
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WMI Attacks – Code Execution and Lateral Movement  
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WMI Attacks – Persistence 
$filterName = 'BotFilter82' 

$consumerName = 'BotConsumer23' 

$exePath = 'C:\Windows\System32\evil.exe' 

$Query = "SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE 
TargetInstance ISA 'Win32_PerfFormattedData_PerfOS_System' AND 
TargetInstance.SystemUpTime >= 200 AND TargetInstance.SystemUpTime < 320" 

$WMIEventFilter = Set-WmiInstance -Class __EventFilter -NameSpace 
"root\subscription" -Arguments 
@{Name=$filterName;EventNameSpace="root\cimv2";QueryLanguage="WQL";Query=$Query} 
-ErrorAction Stop 

$WMIEventConsumer = Set-WmiInstance -Class CommandLineEventConsumer -Namespace 
"root\subscription" -Arguments 
@{Name=$consumerName;ExecutablePath=$exePath;CommandLineTemplate=$exePath} 

Set-WmiInstance -Class __FilterToConsumerBinding -Namespace "root\subscription" 
-Arguments @{Filter=$WMIEventFilter;Consumer=$WMIEventConsumer} 
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WMI Attacks – Data Storage 
$StaticClass = New-Object System.Management.ManagementClass('root\cimv2', $null, $null) 

$StaticClass.Name = 'Win32_EvilClass' 

$StaticClass.Put() 

$StaticClass.Properties.Add('EvilProperty' , 'This is not the malware you're looking 
for') 

$StaticClass.Put()  
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WMI Providers 
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WMI Providers 

� COM DLLs that form the backend of the WMI architecture 

� Nearly all WMI objects and their method are backed by a provider 

� Unique GUID associated with each provider 

� GUIDs may be found in MOF files or queried programmatically 

� GUID corresponds to location in registry 
- HKEY_CLASSES_ROOT\CLSID\<GUID>\InprocServer32 – (default) 

� Extend the functionality of WMI all while using its existing infrastructure 

� New providers create new __Win32Provider : __Provider instances 

� Unique per namespace 
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WMI Providers 

� Get-WmiProvider.ps1 
- https://gist.github.com/mattifestation/2727b6274e4024fd2481 

https://gist.github.com/mattifestation/2727b6274e4024fd2481
https://gist.github.com/mattifestation/2727b6274e4024fd2481
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Malicious WMI Providers 
� This was merely a theoretical attack vector until recently… 

� EvilWMIProvider by Casey Smith (@subTee) 
- https://github.com/subTee/EvilWMIProvider 

- PoC shellcode runner 

-  Invoke-WmiMethod -Class Win32_Evil -Name ExecShellcode -ArgumentList @(0x90, 
0x90, 0x90), $null 

� EvilNetConnectionWMIProvider by Jared Atkinson (@jaredcatkinson) 
- https://github.com/jaredcatkinson/EvilNetConnectionWMIProvider 

- PoC PowerShell runner and network connection lister 

- Invoke-WmiMethod -Class Win32_NetworkConnection -Name RunPs -ArgumentList 
'whoami', $null 

- Get-WmiObject -Class Win32_NetworkConnection 

 

 

https://github.com/subTee/EvilWMIProvider
https://github.com/subTee/EvilWMIProvider
https://github.com/jaredcatkinson/EvilNetConnectionWMIProvider
https://github.com/jaredcatkinson/EvilNetConnectionWMIProvider
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WMI Forensics 
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� With online systems: use WMI to query itself 
- Enumerate filter to consumer bindings 

- Query WMI object definitions for suspicious events 

� CIM repository is totally undocumented 
- objects.data, index.btr, mapping#.map 

� Today, forensic analysis is mostly hypothesize and guess: 
- Copy CIM repository to a running system, or 

- strings.exe on objects.data 

WMI Forensics - Motivation 
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� WMI “providers” register themselves to expose query-able data 

- Object-oriented type hierarchy: Namespaces, Classes, Properties, Methods, Instances, 
References 

- CIM (Common Information Model) repository : %SystemRoot%\WBEM\Repository 

• Objects.data 

• Mapping1.map, Mapping2.map, Mapping3.map 

• index.btr 

• mapping.ver – Only in XP, specifies the index of the current mapping file 

- HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM 

 
 

 

WMI Implementation on Disk 
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WMI Repository 
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WMI Repository – Artifact Recovery Methodology 
� Construct the search string, taking into consideration the artifact’s namespace, class, name 

- Stay tuned 

� Perform a search in the index.btr  

- Logical Page # 

- Artifact’s Record Identifier 

- Artifact’s Record Size 

� Based on the Logical Page #, determine the Physical Page # from the objects.data Mapping in 
Mapping#.map 

� Find the Record Header based on the Artifact’s Record Identifier in the page discovered at 
previous step in objects.data 

� Validate the size in the Record Header matches Artifact’s Record Size in index.btr found string 

� Record Offset in the Record Header represents the offset in the current page of the Artifact  
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� Paged  

� Page Size = 0x2000 

� Physical Offset = PageNumber x PageSize 

� Most of the pages contain records 

- Record Headers 

• Size = 0x10 

• Last Record Header contains only 0s 

- Records  

� A record with size greater than the Page Size always starts in an empty page 

- Use the Mapping file to find the rest of the record’s chunks  

Objects.data – Structure 
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� Record Header : RecID, RecOffset, RecSize, Crc32 (16 bytes) 

� First Record starts immediately after last Record Header 

� CRC32 is only stored in the Record Header in Repos under XP 

Objects.data – Page Structure 

Offset  RecID     RecOffset  RecSize    CRC32 

Last Record Header 

First Record 

First Record Header 
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� Up to 3 mapping files 

� In XP Mapping.ver specifies the index of the most current Mapping file 

� Consists of: 
- Objects.data Mapping data 

- Index.btr Mapping data 

� Logical Page# = Index in Map 

Mapping#.map 
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� Start Signature: 0xABCD 

� Header: 
- Revision 

- PhysicalPagesCount 

- MappingEntriesCount  

� Mapping Data 

� FreePages Mapping Size 

� FreePages Mapping Data 

� End Signature : 0xDCBA 

 

Mapping#.map - Mapping data 
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Mapping#.map – Header and Mapping Data 

Start Signature 

Logical-Page 0 => Physical-Page 0xC11 Logical-Page 6 => Physical-Page 0xABB 

Revision 

PhysicalPagesCount 

MappingEntriesCount 

Mapping Data 
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Mapping#.map – Free Pages Mapping Data 

Free Pages Map Size 

End Signature Free Pages  

Mapping Data 
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� B-Tree on disk 

� Paged 

� PageSize = 0x2000 

� Physical Offset = PageNumber x PageSize 

� Root of the Tree 

- In XP => Logical Page Number  = the DWORD at offset 12 in Logical Page 0 

- In Vista and Up => Logical Page Number = Logical Page 0 

- Use the Index.btr Mapping Data in Mapping#.map to find out the Physical Page 

Index.btr 
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� A page consists of: 
- Header 

- List of logical page numbers => Pointers to next level nodes 

- List of Offset Pointers to Search String Records 

- Search String Records 

- List of Offset Pointers to Strings 

- Strings 

 

Index.btr - Page 
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Index.btr – Root Page Details 

Header:   Signature        LogicalPage      Zero          RootLogPage  EntriesCount 

Strings 

Next Level Logical Pages 

Search String Records Search String Offsets in uint16s String Offsets 

Strings 
Count 

After 
Strings 
Offset 

Records Size in uint16s 
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Index.btr – Root Page Search Strings 
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MOF  
Managed Object Format 
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MOF – Primitives 

� Object Oriented Hierarchy consisting of: 
- Namespaces 

- Classes 

- Instances 

- References 

- Properties 

- Qualifiers 
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MOF – Namespaces 

� Namespace Definition – a way to create new namespaces 
- __namespace – class representing a namespace 

 

� Namespace Declaration - #pragma namepace (\\<computername>\<path>) 
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MOF – Classes/Properties/References 
� Class definition: 

- A list of qualifiers 

• abstract, dynamic, provider  

- Class name 

- A list of properties 

- A list of references to instances 

 

 

� Property definition: 
- A list of qualifiers 

• type, primary key, locale 

- Property name 
 

� Reference definition: 
- Class referenced 

- Reference name 
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MOF – Example 
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MOF – Instances 

� Instance declarations: 
- Property name = Property value 

- Reference name = Class instance referenced 
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MOF – Full Example 
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Representation of MOF Primitives 
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Representation of MOF Primitives - Algorithm 

� Transform the input string to UPPER CASE 

� In Windows XP 
- Compute MD5 hash 

� In Windows Vista and up 
- Compute SHA256 hash 

� Convert the hash to string 
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Representation of MOF Primitives – Namespaces 

� Compute hash for the namespace name, i.e. “ROOT\DEFAULT” and prepend “NS_” 
- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0 

� Compute hash for the __namespace, i.e. “__NAMESPACE” and prepend “CI_” 
- CI_E5844D1645B0B6E6F2AF610EB14BFC34 

� Compute hash for the instance name, i.e “NEWNS” and prepend “IL_” 
- IL_14E9C7A5B6D57E033A5C9BE1307127DC 

� Concatenated resulting string using “\” as separator 
- NS_<parent_namespace_hash>\CI_<__namespace_hash>\IL_<instance_name_hash> 
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Representation of MOF Primitives – Namespaces 
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Representation of MOF Primitives – Class Definitions 
� Compute hash of the namespace name, i.e. “ROOT\DEFAULT” and prepend “NS_” 

- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0 

� Compute hash of the class name, i.e. “EXISTINGCLASS” and prepend “CD_” 
- CD_D39A5F4E2DE512EE18D8433701250312 

� Compute hash of the parent class name, i.e “” (empty string) and prepend “CR_” 
- CR_D41D8CD98F00B204E9800998ECF8427E 

� Compute hash of the class name, i.e. “EXISTINGCLASS” and prepend “C_” 
- C_D39A5F4E2DE512EE18D8433701250312 

� Concatenated resulting string using “\” as separator 
- NS_<namespace_hash>\CD_<class_name_hash> 

- NS_<namespace_hash>\CR_<base_class_name_hash>\C_<class_name_hash> 
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Representation of MOF Primitives – Class Definitions 
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Representation of MOF Primitives – Class with Refs Definitions 

� Construct additional string path describing the reference member  
� Compute hash of the referenced class namespace, i.e. “ROOT\DEFAULT” and 

prepend “NS_” 
- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0 

� Compute hash of the referenced class name, i.e. “EXISTINGCLASS” and prepend 
“CR_” 

- CR_D39A5F4E2DE512EE18D8433701250312 

� Compute hash of the class name, i.e “NEWCLASS” and prepend “R_” 
- R_D41D8CD98F00B204E9800998ECF8427E 

� Concatenated resulting strings using “\” as separator 
- NS_<namespace_hash>\CR_<reference_class_name_hash>\R_<class_name_hash> 
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Representation of MOF Primitives – Class with Refs Definitions 
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Representation of MOF Primitives – Instances 

� Compute hash of the namespace name, i.e. “ROOT\DEFAULT” and prepend “NS_” 
- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0 

� Compute hash of the class name, i.e. “EXISTINGCLASS” and prepend “CI_” 
- CI_D39A5F4E2DE512EE18D8433701250312 

� Compute hash of the instance primary key(s) name, i.e “EXISITINGCLASSNAME” 
and prepend “IL_” 

- IL_ AF59EEC6AE0FAC04E5E5014F90A91C7F 

� Concatenated resulting string using “\” as separator 
- NS_<namespace_hash>\CI_<class_name_hash>\IL_<instance_name_hash> 
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Representation of MOF Primitives – Instances 
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Representation of MOF Primitives – Instances with Refs 

� Construct additional string path describing the instance reference value 
� Compute hash of the referenced class namespace, i.e. “ROOT\DEFAULT” and 

prepend “NS_” 
- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0 

� Compute hash of the referenced class name, i.e. “EXISTINGCLASS” and prepend 
“KI_” 

- KI_D39A5F4E2DE512EE18D8433701250312 

� Compute hash of the referenced instance primary key name, i.e 
“EXISITINGCLASSNAME” and prepend “IR_” 

- IR_ AF59EEC6AE0FAC04E5E5014F90A91C7F 

� Concatenated resulting string using “\” as separator 
- NS_<namespace_hash>\KI_<referenced_class_name_hash>\IR_<referenced_instance_name_hash>\ 
     R_<reference_id> 
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Representation of MOF Primitives – Instances with Refs 
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Forensic Investigation of WMI Attacks 
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� FLARE team reverse engineered the CIM repository file formats 

�  Two tools developed: 
- cim-ui – GUI WMI Repo parser written in Python 

- WMIParser – command line tool written in C++ 

• WmiParser.exe –p “%path_to_CIM_repo%” [–o “%path_to_log_file%”] 

Next Generation Detection 1/2 
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� Collect entire CIM repo (directory %SystemRoot%\WBEM\Repository) 

�  Parse offline  
- Inspect persistence objects 

• __EvenFilter instances 

• __FilterToConsumerBinding instances 

• ActiveScriptEventConsumer, CommandLineEventConsumer instances 

• CCM_RecentlyUsedApps instances 

• Etc. 

- Timeline new/modified class definition and instances 

- Export suspicious class definitions 

- Decode and analyze embedded scripts with full confidence 

Next Generation Detection 2/2 
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CIM-UI 1/3 
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CIM-UI 2/3 
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CIM-UI 3/3 
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Python-CIM Demo 
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WMIParser 1/6 
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WMIParser 2/6 
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WMIParser 3/6 
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WMIParser 4/6 
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WMIParser 5/6 
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WMIParser 6/6 
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WMIparser.exe Demo 
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WMI Attack Detection 
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Attacker Detection with WMI 

� Persistence is still the most common WMI-based attack 

� Use WMI to detect WMI persistence 

 $Arguments = @{ 
    Credential = 'WIN-B85AAA7ST4U\Administrator' 
    ComputerName = '192.168.72.135' 
    Namespace = 'root\subscription' 
} 
 
Get-WmiObject -Class __FilterToConsumerBinding @Arguments 
Get-WmiObject -Class __EventFilter @Arguments 
Get-WmiObject -Class __EventConsumer @Arguments  
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� Sysinternals Autoruns 

 

 

 

 

 

 

 

 

� Kansa 
- https://github.com/davehull/Kansa/ 

- Dave Hull (@davehull), Jon Turner (@z4ns4tsu) 

Existing Detection Utilities 

https://github.com/davehull/Kansa/
https://github.com/davehull/Kansa/
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Attacker Detection with WMI 

Consider the following attacker actions and their effects: 

 

� Attack: Persistence via permanent WMI event subscriptions 

� Effect: Instances of __EventFilter, __EventConsumer, and __FilterToConsumerBinding 
created 

� Attack: Use of WMI as a C2 channel. E.g. via namespace creation 

� Effect: Instances of __NamespaceCreationEvent created 

� Attack: WMI used as a payload storage mechanism 

� Effect: Instances of __ClassCreationEvent created 
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Attacker Detection with WMI 

� Attack: Persistence via the Start Menu or registry 

� Effect:  Win32_StartupCommand instance created. Fires  __InstanceCreationEvent 

� Attack: Modification of additional known registry persistence locations 

� Effect:  RegistryKeyChangeEvent and/or  RegistryValueChangeEvent  fires 

� Attack: Service creation 

� Effect: Win32_Service instance created. Fires  __InstanceCreationEvent 

 

Are you starting to see a pattern? 
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Attacker Detection with WMI 

WMI is the free, agent-less host IDS that you never knew existed! 
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Attacker Detection with WMI 

Wouldn’t it be cool if WMI could be used to detect and/or remove ANY persistence item? 

1. WMI persistence 

2. Registry persistence 

- Run, RunOnce, AppInit_DLLs, Security Packages, Notification Packages, etc. 

3. Service creation 

4. Scheduled job/task creation 

5. Etc. 
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Benefits of a WMI solution 

� Available remotely on all systems 

� Service runs by default 

� Unlikely to be detected/removed by attacker 

� Persistent 

� No executables or scripts on disk – i.e. no agent software installation 

� Nearly everything on the operating system can trigger an event 

 

Security vendors, this is where you start to pay attention… 
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Introducing WMI-HIDS 

� A proof-of-concept, agent-less, host-based IDS 

� Consists of just a PowerShell installer 

� PowerShell is not required on the remote system 

� Implemented with permanent WMI event subscriptions 
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Introducing WMI-HIDS - RTFM 

New-AlertTrigger -EventConsumer <String> [-TriggerType <String>] [-TriggerName 
<String>] [-PollingInterval <Int32>] 
 
New-AlertTrigger -StartupCommand [-TriggerType <String>] [-TriggerName 
<String>] [-PollingInterval <Int32>] 
 
New-AlertTrigger -RegistryKey <String> [-TriggerName <String>] [-
PollingInterval <Int32>]  
 
New-AlertAction -Trigger <Hashtable> -Uri <Uri> [-ActionName <String>]  
 
New-AlertAction -Trigger <Hashtable> -EventLogEntry [-ActionName <String>]  
 
Register-Alert [-Binding] <Hashtable> [[-ComputerName] <String[]>]  
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Introducing WMI-HIDS - Example 

�  New-AlertTrigger -EventConsumer ActiveScriptEventConsumer 
-TriggerType Creation | New-AlertAction -Uri 
'http://127.0.0.1' | Register-Alert -ComputerName 
'VigilentHost1' 

�  New-AlertTrigger -RegistryKey 
HKLM:\SYSTEM\CurrentControlSet\Control\Lsa | New-
AlertAction -EventLogEntry | Register-Alert -ComputerName 
‘192.168.1.24' 

�  New-AlertTrigger -StartupCommand | New-AlertAction -Uri 
'http://www.awesomeSIEM.com' | Register-Alert  
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WMI-IDS Improvements 

� Additional __EventFilter support: 
- Win32_Service 
- Win32_ScheduledJob 
- __Provider 
- __NamespaceCreationEvent 
- __ClassCreationEvent 
- Etc. 

� Additional __EventConsumer support 
- Make this an IPS too? Support removal of persistence items 

� Make writing plugins more easy 

 

Additional detection is left as an exercise to the reader and security vendor. 
 



118 Copyright ©  2015, FireEye, Inc.  All rights reserved. 

WMI-IDS Takeaway 

� Be creative! 

� There are thousands of WMI objects and events that may be of interest to 
defenders 
- Root\Cimv2:Win32_NtEventLog 

- Root\Cimv2:Win32_ProcessStartTrace 

- Root\Cimv2:CIM_DataFile 

- Root\StandardCimv2:MSFT_Net* (Win8+) 

- Root\WMI:BCD* 
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WMI Attack Mitigations 
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Detection/Mitigations 

� Stop the WMI service - Winmgmt? 

� Firewall rules 

� Event logs 
- Microsoft-Windows-WinRM/Operational  

- Microsoft-Windows-WMI-Activity/Operational  

- Microsoft-Windows-DistributedCOM  

� Preventative permanent WMI event subscriptions 
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Mitigations – Namespace ACLs 
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Mitigations – Namespace ACLs 
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Thank you! 

� For fantastic ideas 
- Will Schroeder (@harmj0y) and Justin Warner (@sixdub) for their valuable input on useful __EventFilters 

� For motivation 
- Our esteemed colleague who claimed that the WMI/CIM repository had no structure 

� For inspiration 
- APT 29 for your continued WMI-based escapades and unique PowerShell coding style 
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� Understanding WMI Malware - Julius Dizon, Lennard Galang, and Marvin Cruz/Trend Micro 
- http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-

malware.pdf 

 

� There’s Something About WMI - Christopher Glyer, Devon Kerr 
- https://dl.mandiant.com/EE/library/MIRcon2014/MIRcon_2014_IR_Track_There%27s_Something_About_WMI.pdf  
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� Multiple binary CTFs – puzzles, malware, etc 

� In 2014, the First FLARE On Challenge was a huge success 
- Over 7,000 participants and 226 winners! 

� Second Challenge is live and open 
- FLARE-On.com 

- Closes on 9/8  

- Diverse puzzles: UPX, Android, Steg, .NET and more 

� Those who complete the challenge get a prize and bragging rights! 
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THANK YOU!  
Questions? 


