
1 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WhyMI so Sexy? WMI Attacks, Real-Time Defense, and
Advanced Forensic Analysis
Willi Ballenthin, Matt Graeber, Claudiu Teodorescu

DEF CON 23

2 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

This talk is dedicated to hunting down APT 29

3 Copyright © 2015, FireEye, Inc. All rights reserved.

So you’ve been owned with WMI…

� Attackers use WMI - reality
� Prevention, detection, remediation

guidance - lacking
� Forensic capability - non-existent
� Awareness of offensive capabilities –

lacking
� Awareness of defensive capabilities –

practically non-existent

4 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

Introduction
Willi, Matt, and Claudiu

5 Copyright © 2015, FireEye, Inc. All rights reserved.

About the Speakers

Willi Ballenthin - @williballenthin

� Reverse Engineer @ FireEye Labs Advanced Reverse Engineering (FLARE) Team

� Forensic Analyst

� Researcher

� Instructor

https://twitter.com/williballenthin
https://twitter.com/williballenthin

6 Copyright © 2015, FireEye, Inc. All rights reserved.

About the Speakers

Matt Graeber - @mattifestation

� Reverse Engineer @ FireEye Labs Advanced Reverse Engineering (FLARE) Team

� Speaker – Black Hat, MS Blue Hat, BSides LV and Augusta, DerbyCon

� Black Hat Trainer

� Microsoft MVP – PowerShell

� GitHub projects – PowerSploit, PowerShellArsenal, Position Independent Shellcode in C, etc.

� “Living off the Land” Proponent

� Perpetual n00b

https://twitter.com/mattifestation
https://twitter.com/mattifestation

7 Copyright © 2015, FireEye, Inc. All rights reserved.

About the Speakers

Claudiu “to the rescue” Teodorescu - @cteo13

� Reverse Engineer @ FireEye Labs Advanced Reverse Engineering (FLARE) Team

� Forensic researcher

� Crypto analyst

� GitHub projects – WMIParser

� Soccer player

https://twitter.com/cteo13

8 Copyright © 2015, FireEye, Inc. All rights reserved.

Outline – Session #1

Background, Motivations, Attack Examples

� Abridged History of WMI Malware

� WMI Architecture

� WMI Query Language (WQL)

� WMI Eventing

� Remote WMI

� WMI Attack Lifecycle

� Providers

9 Copyright © 2015, FireEye, Inc. All rights reserved.

Outline – Session #2

File Format, Investigations, Real-Time Defense, Mitigations

� WMI Forensics

� Managed Object Format (MOF)

� Representation of MOF Primitives

� Investigation Methodology - A Mock Investigation

� WMI Attack Detection

� WMI Attack Mitigations

10 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Malware History

11 Copyright © 2015, FireEye, Inc. All rights reserved.

~2010 - Stuxnet

� Exploited MS10-061 – Windows Printer Spooler

� Exploited an arbitrary file write vulnerability

� WMI provided a generic means of turning a file write to SYSTEM code execution!

� The attackers dropped a MOF file to gain SYSTEM-level execution.

http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html

http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html
http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html

12 Copyright © 2015, FireEye, Inc. All rights reserved.

2010 - Ghost

� Utilized permanent WMI event subscriptions to:
- Monitor changes to “Recent” folder

- Compressed and uploaded all new documents

- Activates an ActiveX control that uses IE as a C2 channel

http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-
paper-en.pdf

http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf
http://la.trendmicro.com/media/misc/understanding-wmi-malware-research-paper-en.pdf

13 Copyright © 2015, FireEye, Inc. All rights reserved.

2014 – WMI Shell (Andrei Dumitrescu)

� Uses WMI as a C2 channel
� WMI namespaces used to store data

http://2014.hackitoergosum.org/slides/day1_WMI_Shell_Andrei_Dumitrescu.pdf

http://2014.hackitoergosum.org/slides/day1_WMI_Shell_Andrei_Dumitrescu.pdf
http://2014.hackitoergosum.org/slides/day1_WMI_Shell_Andrei_Dumitrescu.pdf

14 Copyright © 2015, FireEye, Inc. All rights reserved.

2015 – APT 29

� Heavy reliance upon WMI and PowerShell
� Custom WMI class creation
� WMI repository used to store payloads of arbitrary size
� Results of commands added to WMI object properties

� Thanks to our awesome Mandiant investigators for seeking this out,

discovering it, and remediating!
- Nick Carr, Matt Dunwoody, DJ Palombo, and Alec Randazzo

� Thanks to APT 29 for allowing us to further our investigative techniques!

15 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Basics
Windows Management Instrumentation

16 Copyright © 2015, FireEye, Inc. All rights reserved.

What is WMI?

� Windows Management Instrumentation

� Powerful local & remote system management infrastructure

� Present since Win98 and NT4

� Can be used to:

- Obtain system information

• Registry

• File system

• Etc.

- Execute commands

- Subscribe to events

Useful infrastructure for admins

∴
Useful infrastructure for attackers

17 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Architecture

� WMI implements the CIM and WBEM standards to do the following:
- Provide an object schema to describe “managed components”
- Provide a means to populate objects – i.e. WMI providers
- Store persistent objects – WMI/CIM repository
- Query objects – WQL
- Transmit object data – DCOM and WinRM
- Perform actions on objects – class methods, events, etc.

18 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Architecture

19 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

Interacting with WMI

20 Copyright © 2015, FireEye, Inc. All rights reserved.

Utilities - PowerShell

“Blue is the New Black” - @obscuresec

� PowerShell is
awesome

� Need I say more?

21 Copyright © 2015, FireEye, Inc. All rights reserved.

Utilities – wmic.exe

� Pentesters and
attackers know about
this

� Installed everywhere

� Gets most tasks done

� Has some limitations

22 Copyright © 2015, FireEye, Inc. All rights reserved.

Utilities – Microsoft CIM Studio

� Free

� Very dated but still works

� Good for WMI discovery/research

23 Copyright © 2015, FireEye, Inc. All rights reserved.

Utilities – Sapien WMI Explorer

� Commercial utility

� Great for WMI discovery/research

� Many additional features

� Huge improvement over CIM Studio

24 Copyright © 2015, FireEye, Inc. All rights reserved.

Utilities – wbemtest.exe

� The WMI utility you never heard of

� GUI

� Very powerful

� Rarely a blacklisted application

25 Copyright © 2015, FireEye, Inc. All rights reserved.

Utilities – winrm.exe

� Not a well known utility

� Can interface with WMI over WinRM

� Useful if PowerShell is not available

winrm invoke Create wmicimv2/Win32_Process @{CommandLine="notepad.exe";CurrentDirectory="C:\"}
winrm enumerate http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process
winrm get http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_OperatingSystem

26 Copyright © 2015, FireEye, Inc. All rights reserved.

Utilities

� Linux - wmic, wmis, wmis-pth (@passingthehash)
- http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html

� Windows Script Host Languages
- VBScript

- JScript

� IWbem* COM API

� .NET System.Management classes

http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html
http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html

27 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Query Language (WQL)

28 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Query Language (WQL)

� SQL-like query language used to
- Filter WMI object instances

- Register event trigger

� Three query classes:
1. Instance Queries

2. Event Queries

3. Meta Queries

29 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Query Language (WQL) – Instance Queries

Format:

� SELECT [Class property name|*] FROM [CLASS NAME] <WHERE [CONSTRAINT]>

Example:

� SELECT * FROM Win32_Process WHERE Name LIKE "%chrome%"

30 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Query Language (WQL) – Event Queries

Format:

� SELECT [Class property name|*] FROM [INTRINSIC CLASS NAME] WITHIN
[POLLING INTERVAL] <WHERE [CONSTRAINT]>

� SELECT [Class property name|*] FROM [EXTRINSIC CLASS NAME] <WHERE
[CONSTRAINT]>

Examples:

� SELECT * FROM __InstanceCreationEvent WITHIN 15 WHERE TargetInstance
ISA 'Win32_LogonSession' AND TargetInstance.LogonType = 2

� SELECT * FROM Win32_VolumeChangeEvent WHERE EventType = 2

� SELECT * FROM RegistryKeyChangeEvent WHERE Hive='HKEY_LOCAL_MACHINE'
AND KeyPath='SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run'

31 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Query Language (WQL) – Meta Queries

Format:

� SELECT [Class property name|*] FROM [Meta_Class|SYSTEM CLASS NAME]
<WHERE [CONSTRAINT]>

Example:

� SELECT * FROM Meta_Class WHERE __Class LIKE "Win32%“

� SELECT Name FROM __NAMESPACE

32 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Eventing

33 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Events

� WMI has the ability to trigger off nearly any conceivable event.
- Great for attackers and defenders

� Three requirements
1. Filter – An action to trigger off of

2. Consumer – An action to take upon triggering the filter

3. Binding – Registers a FilterÅÆConsumer

� Local events run for the lifetime of the host process.

� Permanent WMI events are persistent and run as SYSTEM.

34 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Event Types - Intrinsic

� Intrinsic events are system classes included in every namespace

� Attacker/defender can make a creative use of these

� Must be captured at a polling interval

� Possible to miss event firings

 � __ClassCreationEvent

� __InstanceOperationEvent

� __InstanceCreationEvent

� __MethodInvocationEvent

� __InstanceModificationEvent

� __InstanceDeletionEvent

� __TimerEvent

� __NamespaceOperationEvent

� __NamespaceModificationEvent

� __NamespaceDeletionEvent

� __NamespaceCreationEvent

� __ClassOperationEvent

� __ClassDeletionEvent

� __ClassModificationEvent

35 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Event Types - Extrinsic

� Extrinsic events are non-system classes
that fire immediately

� No chance of missing these

� Generally don’t include as much
information

� Notable extrinsic events:

� Consider the implications…

� ROOT\CIMV2:Win32_ComputerShutdownEvent

� ROOT\CIMV2:Win32_IP4RouteTableEvent

� ROOT\CIMV2:Win32_ProcessStartTrace

� ROOT\CIMV2:Win32_ModuleLoadTrace

� ROOT\CIMV2:Win32_ThreadStartTrace

� ROOT\CIMV2:Win32_VolumeChangeEvent

� ROOT\CIMV2:Msft_WmiProvider*

� ROOT\DEFAULT:RegistryKeyChangeEvent

� ROOT\DEFAULT:RegistryValueChangeEvent

36 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Events - Consumers

� The action taken upon firing an event

� These are the standard event consumers:
- LogFileEventConsumer

- ActiveScriptEventConsumer

- NTEventLogEventConsumer

- SMTPEventConsumer

- CommandLineEventConsumer

� Present in the following namespaces:
- ROOT\CIMV2

- ROOT\DEFAULT

37 Copyright © 2015, FireEye, Inc. All rights reserved.

Permanent WMI Events

� Event subscriptions persistent across reboots

� Requirements:
1. Filter – An action to trigger off of

• Creation of an __EventFilter instance

2. Consumer – An action to take upon triggering the filter

• Creation of a derived __EventConsumer instance

3. Binding – Registers a FilterÅÆConsumer

• Creation of a __FilterToConsumerBinding instance

38 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Events - Overview

39 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

Remote WMI

40 Copyright © 2015, FireEye, Inc. All rights reserved.

Remote WMI Protocols - DCOM

� DCOM connections established on port 135

� Subsequent data exchanged on port dictated by
- HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\Internet – Ports (REG_MULTI_SZ)

- configurable via DCOMCNFG.exe

� Not firewall friendly

� By default, the WMI service – Winmgmt is running and listening on port 135

MSDN: Setting Up a Fixed Port for WMI

MSDN: Connecting Through Windows Firewall

https://msdn.microsoft.com/en-us/library/bb219447(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb219447(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa389286(v=vs.85).aspx

41 Copyright © 2015, FireEye, Inc. All rights reserved.

Remote WMI Protocols - DCOM

42 Copyright © 2015, FireEye, Inc. All rights reserved.

Remote WMI Protocols - WinRM/PowerShell Remoting
� SOAP protocol based on the WSMan specification

� Encrypted by default

� Single management port – 5985 (HTTP) or 5986 (HTTPS)

� The official remote management protocol in Windows 2012 R2+

� SSH on steroids – Supports WMI and code execution, object serialization

� Scriptable configuration via WSMan “drive” in PowerShell

43 Copyright © 2015, FireEye, Inc. All rights reserved.

Remote WMI Protocols – WinRM/PowerShell Remoting

44 Copyright © 2015, FireEye, Inc. All rights reserved.

Remote WMI Protocols – WinRM/PowerShell Remoting

45 Copyright © 2015, FireEye, Inc. All rights reserved.

Remote WMI Protocols – WinRM/PowerShell Remoting

46 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attack Lifecycle

47 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attacks

� From an attackers perspective, WMI can be used but is not limited to
the following:
- Reconnaissance
- VM/Sandbox Detection
- Code execution and lateral movement
- Persistence
- Data storage
- C2 communication

48 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attacks – Reconnaissance

� Host/OS information: ROOT\CIMV2:Win32_OperatingSystem, Win32_ComputerSystem

� File/directory listing: ROOT\CIMV2:CIM_DataFile

� Disk volume listing: ROOT\CIMV2:Win32_Volume

� Registry operations: ROOT\DEFAULT:StdRegProv

� Running processes: ROOT\CIMV2:Win32_Process

� Service listing: ROOT\CIMV2:Win32_Service

� Event log: ROOT\CIMV2:Win32_NtLogEvent

� Logged on accounts: ROOT\CIMV2:Win32_LoggedOnUser

� Mounted shares: ROOT\CIMV2:Win32_Share

� Installed patches: ROOT\CIMV2:Win32_QuickFixEngineering

� Installed AV: ROOT\SecurityCenter[2]:AntiVirusProduct

49 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attacks – VM/Sandbox Detection

� Sample WQL Queries

SELECT * FROM Win32_ComputerSystem WHERE TotalPhysicalMemory < 2147483648
SELECT * FROM Win32_ComputerSystem WHERE NumberOfLogicalProcessors < 2

� Example

 $VMDetected = $False

$Arguments = @{

 Class = 'Win32_ComputerSystem'

 Filter = 'NumberOfLogicalProcessors < 2 AND TotalPhysicalMemory < 2147483648'

}

if (Get-WmiObject @Arguments) { $VMDetected = $True }

50 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attacks – VM/Sandbox Detection

� Sample WQL Queries

SELECT * FROM Win32_NetworkAdapter WHERE Manufacturer LIKE "%VMware%"
SELECT * FROM Win32_BIOS WHERE SerialNumber LIKE "%VMware%"
SELECT * FROM Win32_Process WHERE Name="vmtoolsd.exe"
SELECT * FROM Win32_NetworkAdapter WHERE Name LIKE "%VMware%"

� Example

 $VMwareDetected = $False

$VMAdapter = Get-WmiObject Win32_NetworkAdapter -Filter 'Manufacturer LIKE

"%VMware%" OR Name LIKE "%VMware%"'

$VMBios = Get-WmiObject Win32_BIOS -Filter 'SerialNumber LIKE "%VMware%"'

$VMToolsRunning = Get-WmiObject Win32_Process -Filter 'Name="vmtoolsd.exe"'

if ($VMAdapter -or $VMBios -or $VMToolsRunning) { $VMwareDetected = $True }

51 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attacks – Code Execution and Lateral Movement

52 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attacks – Persistence
$filterName = 'BotFilter82'

$consumerName = 'BotConsumer23'

$exePath = 'C:\Windows\System32\evil.exe'

$Query = "SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE
TargetInstance ISA 'Win32_PerfFormattedData_PerfOS_System' AND
TargetInstance.SystemUpTime >= 200 AND TargetInstance.SystemUpTime < 320"

$WMIEventFilter = Set-WmiInstance -Class __EventFilter -NameSpace
"root\subscription" -Arguments
@{Name=$filterName;EventNameSpace="root\cimv2";QueryLanguage="WQL";Query=$Query}
-ErrorAction Stop

$WMIEventConsumer = Set-WmiInstance -Class CommandLineEventConsumer -Namespace
"root\subscription" -Arguments
@{Name=$consumerName;ExecutablePath=$exePath;CommandLineTemplate=$exePath}

Set-WmiInstance -Class __FilterToConsumerBinding -Namespace "root\subscription"
-Arguments @{Filter=$WMIEventFilter;Consumer=$WMIEventConsumer}

53 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attacks – Data Storage
$StaticClass = New-Object System.Management.ManagementClass('root\cimv2', $null, $null)

$StaticClass.Name = 'Win32_EvilClass'

$StaticClass.Put()

$StaticClass.Properties.Add('EvilProperty' , 'This is not the malware you're looking
for')

$StaticClass.Put()

54 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Providers

55 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Providers

� COM DLLs that form the backend of the WMI architecture

� Nearly all WMI objects and their method are backed by a provider

� Unique GUID associated with each provider

� GUIDs may be found in MOF files or queried programmatically

� GUID corresponds to location in registry
- HKEY_CLASSES_ROOT\CLSID\<GUID>\InprocServer32 – (default)

� Extend the functionality of WMI all while using its existing infrastructure

� New providers create new __Win32Provider : __Provider instances

� Unique per namespace

56 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Providers

� Get-WmiProvider.ps1
- https://gist.github.com/mattifestation/2727b6274e4024fd2481

https://gist.github.com/mattifestation/2727b6274e4024fd2481
https://gist.github.com/mattifestation/2727b6274e4024fd2481

57 Copyright © 2015, FireEye, Inc. All rights reserved.

Malicious WMI Providers
� This was merely a theoretical attack vector until recently…

� EvilWMIProvider by Casey Smith (@subTee)
- https://github.com/subTee/EvilWMIProvider

- PoC shellcode runner

- Invoke-WmiMethod -Class Win32_Evil -Name ExecShellcode -ArgumentList @(0x90,
0x90, 0x90), $null

� EvilNetConnectionWMIProvider by Jared Atkinson (@jaredcatkinson)
- https://github.com/jaredcatkinson/EvilNetConnectionWMIProvider

- PoC PowerShell runner and network connection lister

- Invoke-WmiMethod -Class Win32_NetworkConnection -Name RunPs -ArgumentList
'whoami', $null

- Get-WmiObject -Class Win32_NetworkConnection

https://github.com/subTee/EvilWMIProvider
https://github.com/subTee/EvilWMIProvider
https://github.com/jaredcatkinson/EvilNetConnectionWMIProvider
https://github.com/jaredcatkinson/EvilNetConnectionWMIProvider

58 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Forensics

59 Copyright © 2015, FireEye, Inc. All rights reserved.

� With online systems: use WMI to query itself
- Enumerate filter to consumer bindings

- Query WMI object definitions for suspicious events

� CIM repository is totally undocumented
- objects.data, index.btr, mapping#.map

� Today, forensic analysis is mostly hypothesize and guess:
- Copy CIM repository to a running system, or

- strings.exe on objects.data

WMI Forensics - Motivation

60 Copyright © 2015, FireEye, Inc. All rights reserved.

� WMI “providers” register themselves to expose query-able data

- Object-oriented type hierarchy: Namespaces, Classes, Properties, Methods, Instances,
References

- CIM (Common Information Model) repository : %SystemRoot%\WBEM\Repository

• Objects.data

• Mapping1.map, Mapping2.map, Mapping3.map

• index.btr

• mapping.ver – Only in XP, specifies the index of the current mapping file

- HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM

WMI Implementation on Disk

61 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Repository

62 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Repository – Artifact Recovery Methodology
� Construct the search string, taking into consideration the artifact’s namespace, class, name

- Stay tuned

� Perform a search in the index.btr

- Logical Page #

- Artifact’s Record Identifier

- Artifact’s Record Size

� Based on the Logical Page #, determine the Physical Page # from the objects.data Mapping in
Mapping#.map

� Find the Record Header based on the Artifact’s Record Identifier in the page discovered at
previous step in objects.data

� Validate the size in the Record Header matches Artifact’s Record Size in index.btr found string

� Record Offset in the Record Header represents the offset in the current page of the Artifact

63 Copyright © 2015, FireEye, Inc. All rights reserved.

� Paged

� Page Size = 0x2000

� Physical Offset = PageNumber x PageSize

� Most of the pages contain records

- Record Headers

• Size = 0x10

• Last Record Header contains only 0s

- Records

� A record with size greater than the Page Size always starts in an empty page

- Use the Mapping file to find the rest of the record’s chunks

Objects.data – Structure

64 Copyright © 2015, FireEye, Inc. All rights reserved.

� Record Header : RecID, RecOffset, RecSize, Crc32 (16 bytes)

� First Record starts immediately after last Record Header

� CRC32 is only stored in the Record Header in Repos under XP

Objects.data – Page Structure

Offset RecID RecOffset RecSize CRC32

Last Record Header

First Record

First Record Header

65 Copyright © 2015, FireEye, Inc. All rights reserved.

� Up to 3 mapping files

� In XP Mapping.ver specifies the index of the most current Mapping file

� Consists of:
- Objects.data Mapping data

- Index.btr Mapping data

� Logical Page# = Index in Map

Mapping#.map

66 Copyright © 2015, FireEye, Inc. All rights reserved.

� Start Signature: 0xABCD

� Header:
- Revision

- PhysicalPagesCount

- MappingEntriesCount

� Mapping Data

� FreePages Mapping Size

� FreePages Mapping Data

� End Signature : 0xDCBA

Mapping#.map - Mapping data

67 Copyright © 2015, FireEye, Inc. All rights reserved.

Mapping#.map – Header and Mapping Data

Start Signature

Logical-Page 0 => Physical-Page 0xC11 Logical-Page 6 => Physical-Page 0xABB

Revision

PhysicalPagesCount

MappingEntriesCount

Mapping Data

68 Copyright © 2015, FireEye, Inc. All rights reserved.

Mapping#.map – Free Pages Mapping Data

Free Pages Map Size

End Signature Free Pages

Mapping Data

69 Copyright © 2015, FireEye, Inc. All rights reserved.

� B-Tree on disk

� Paged

� PageSize = 0x2000

� Physical Offset = PageNumber x PageSize

� Root of the Tree

- In XP => Logical Page Number = the DWORD at offset 12 in Logical Page 0

- In Vista and Up => Logical Page Number = Logical Page 0

- Use the Index.btr Mapping Data in Mapping#.map to find out the Physical Page

Index.btr

70 Copyright © 2015, FireEye, Inc. All rights reserved.

� A page consists of:
- Header

- List of logical page numbers => Pointers to next level nodes

- List of Offset Pointers to Search String Records

- Search String Records

- List of Offset Pointers to Strings

- Strings

Index.btr - Page

71 Copyright © 2015, FireEye, Inc. All rights reserved.

Index.btr – Root Page Details

Header: Signature LogicalPage Zero RootLogPage EntriesCount

Strings

Next Level Logical Pages

Search String Records Search String Offsets in uint16s String Offsets

Strings
Count

After
Strings
Offset

Records Size in uint16s

72 Copyright © 2015, FireEye, Inc. All rights reserved.

Index.btr – Root Page Search Strings

73 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

MOF
Managed Object Format

74 Copyright © 2015, FireEye, Inc. All rights reserved.

MOF – Primitives

� Object Oriented Hierarchy consisting of:
- Namespaces

- Classes

- Instances

- References

- Properties

- Qualifiers

75 Copyright © 2015, FireEye, Inc. All rights reserved.

MOF – Namespaces

� Namespace Definition – a way to create new namespaces
- __namespace – class representing a namespace

� Namespace Declaration - #pragma namepace (\\<computername>\<path>)

76 Copyright © 2015, FireEye, Inc. All rights reserved.

MOF – Classes/Properties/References
� Class definition:

- A list of qualifiers

• abstract, dynamic, provider

- Class name

- A list of properties

- A list of references to instances

� Property definition:
- A list of qualifiers

• type, primary key, locale

- Property name

� Reference definition:
- Class referenced

- Reference name

77 Copyright © 2015, FireEye, Inc. All rights reserved.

MOF – Example

78 Copyright © 2015, FireEye, Inc. All rights reserved.

MOF – Instances

� Instance declarations:
- Property name = Property value

- Reference name = Class instance referenced

79 Copyright © 2015, FireEye, Inc. All rights reserved.

MOF – Full Example

80 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives

81 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives - Algorithm

� Transform the input string to UPPER CASE

� In Windows XP
- Compute MD5 hash

� In Windows Vista and up
- Compute SHA256 hash

� Convert the hash to string

82 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Namespaces

� Compute hash for the namespace name, i.e. “ROOT\DEFAULT” and prepend “NS_”
- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0

� Compute hash for the __namespace, i.e. “__NAMESPACE” and prepend “CI_”
- CI_E5844D1645B0B6E6F2AF610EB14BFC34

� Compute hash for the instance name, i.e “NEWNS” and prepend “IL_”
- IL_14E9C7A5B6D57E033A5C9BE1307127DC

� Concatenated resulting string using “\” as separator
- NS_<parent_namespace_hash>\CI_<__namespace_hash>\IL_<instance_name_hash>

83 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Namespaces

84 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Class Definitions
� Compute hash of the namespace name, i.e. “ROOT\DEFAULT” and prepend “NS_”

- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0

� Compute hash of the class name, i.e. “EXISTINGCLASS” and prepend “CD_”
- CD_D39A5F4E2DE512EE18D8433701250312

� Compute hash of the parent class name, i.e “” (empty string) and prepend “CR_”
- CR_D41D8CD98F00B204E9800998ECF8427E

� Compute hash of the class name, i.e. “EXISTINGCLASS” and prepend “C_”
- C_D39A5F4E2DE512EE18D8433701250312

� Concatenated resulting string using “\” as separator
- NS_<namespace_hash>\CD_<class_name_hash>

- NS_<namespace_hash>\CR_<base_class_name_hash>\C_<class_name_hash>

85 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Class Definitions

86 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Class with Refs Definitions

� Construct additional string path describing the reference member
� Compute hash of the referenced class namespace, i.e. “ROOT\DEFAULT” and

prepend “NS_”
- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0

� Compute hash of the referenced class name, i.e. “EXISTINGCLASS” and prepend
“CR_”

- CR_D39A5F4E2DE512EE18D8433701250312

� Compute hash of the class name, i.e “NEWCLASS” and prepend “R_”
- R_D41D8CD98F00B204E9800998ECF8427E

� Concatenated resulting strings using “\” as separator
- NS_<namespace_hash>\CR_<reference_class_name_hash>\R_<class_name_hash>

87 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Class with Refs Definitions

88 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Instances

� Compute hash of the namespace name, i.e. “ROOT\DEFAULT” and prepend “NS_”
- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0

� Compute hash of the class name, i.e. “EXISTINGCLASS” and prepend “CI_”
- CI_D39A5F4E2DE512EE18D8433701250312

� Compute hash of the instance primary key(s) name, i.e “EXISITINGCLASSNAME”
and prepend “IL_”

- IL_ AF59EEC6AE0FAC04E5E5014F90A91C7F

� Concatenated resulting string using “\” as separator
- NS_<namespace_hash>\CI_<class_name_hash>\IL_<instance_name_hash>

89 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Instances

90 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Instances with Refs

� Construct additional string path describing the instance reference value
� Compute hash of the referenced class namespace, i.e. “ROOT\DEFAULT” and

prepend “NS_”
- NS_2F830D7E9DBEAE88EED79A5D5FBD63C0

� Compute hash of the referenced class name, i.e. “EXISTINGCLASS” and prepend
“KI_”

- KI_D39A5F4E2DE512EE18D8433701250312

� Compute hash of the referenced instance primary key name, i.e
“EXISITINGCLASSNAME” and prepend “IR_”

- IR_ AF59EEC6AE0FAC04E5E5014F90A91C7F

� Concatenated resulting string using “\” as separator
- NS_<namespace_hash>\KI_<referenced_class_name_hash>\IR_<referenced_instance_name_hash>\
 R_<reference_id>

91 Copyright © 2015, FireEye, Inc. All rights reserved.

Representation of MOF Primitives – Instances with Refs

92 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

Forensic Investigation of WMI Attacks

93 Copyright © 2015, FireEye, Inc. All rights reserved.

� FLARE team reverse engineered the CIM repository file formats

� Two tools developed:
- cim-ui – GUI WMI Repo parser written in Python

- WMIParser – command line tool written in C++

• WmiParser.exe –p “%path_to_CIM_repo%” [–o “%path_to_log_file%”]

Next Generation Detection 1/2

94 Copyright © 2015, FireEye, Inc. All rights reserved.

� Collect entire CIM repo (directory %SystemRoot%\WBEM\Repository)

� Parse offline
- Inspect persistence objects

• __EvenFilter instances

• __FilterToConsumerBinding instances

• ActiveScriptEventConsumer, CommandLineEventConsumer instances

• CCM_RecentlyUsedApps instances

• Etc.

- Timeline new/modified class definition and instances

- Export suspicious class definitions

- Decode and analyze embedded scripts with full confidence

Next Generation Detection 2/2

95 Copyright © 2015, FireEye, Inc. All rights reserved.

CIM-UI 1/3

96 Copyright © 2015, FireEye, Inc. All rights reserved.

CIM-UI 2/3

97 Copyright © 2015, FireEye, Inc. All rights reserved.

CIM-UI 3/3

98 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

Python-CIM Demo

99 Copyright © 2015, FireEye, Inc. All rights reserved.

WMIParser 1/6

100 Copyright © 2015, FireEye, Inc. All rights reserved.

WMIParser 2/6

101 Copyright © 2015, FireEye, Inc. All rights reserved.

WMIParser 3/6

102 Copyright © 2015, FireEye, Inc. All rights reserved.

WMIParser 4/6

103 Copyright © 2015, FireEye, Inc. All rights reserved.

WMIParser 5/6

104 Copyright © 2015, FireEye, Inc. All rights reserved.

WMIParser 6/6

105 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMIparser.exe Demo

106 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attack Detection

107 Copyright © 2015, FireEye, Inc. All rights reserved.

Attacker Detection with WMI

� Persistence is still the most common WMI-based attack

� Use WMI to detect WMI persistence

 $Arguments = @{
 Credential = 'WIN-B85AAA7ST4U\Administrator'
 ComputerName = '192.168.72.135'
 Namespace = 'root\subscription'
}

Get-WmiObject -Class __FilterToConsumerBinding @Arguments
Get-WmiObject -Class __EventFilter @Arguments
Get-WmiObject -Class __EventConsumer @Arguments

108 Copyright © 2015, FireEye, Inc. All rights reserved.

� Sysinternals Autoruns

� Kansa
- https://github.com/davehull/Kansa/

- Dave Hull (@davehull), Jon Turner (@z4ns4tsu)

Existing Detection Utilities

https://github.com/davehull/Kansa/
https://github.com/davehull/Kansa/

109 Copyright © 2015, FireEye, Inc. All rights reserved.

Attacker Detection with WMI

Consider the following attacker actions and their effects:

� Attack: Persistence via permanent WMI event subscriptions

� Effect: Instances of __EventFilter, __EventConsumer, and __FilterToConsumerBinding
created

� Attack: Use of WMI as a C2 channel. E.g. via namespace creation

� Effect: Instances of __NamespaceCreationEvent created

� Attack: WMI used as a payload storage mechanism

� Effect: Instances of __ClassCreationEvent created

110 Copyright © 2015, FireEye, Inc. All rights reserved.

Attacker Detection with WMI

� Attack: Persistence via the Start Menu or registry

� Effect: Win32_StartupCommand instance created. Fires __InstanceCreationEvent

� Attack: Modification of additional known registry persistence locations

� Effect: RegistryKeyChangeEvent and/or RegistryValueChangeEvent fires

� Attack: Service creation

� Effect: Win32_Service instance created. Fires __InstanceCreationEvent

Are you starting to see a pattern?

111 Copyright © 2015, FireEye, Inc. All rights reserved.

Attacker Detection with WMI

WMI is the free, agent-less host IDS that you never knew existed!

112 Copyright © 2015, FireEye, Inc. All rights reserved.

Attacker Detection with WMI

Wouldn’t it be cool if WMI could be used to detect and/or remove ANY persistence item?

1. WMI persistence

2. Registry persistence

- Run, RunOnce, AppInit_DLLs, Security Packages, Notification Packages, etc.

3. Service creation

4. Scheduled job/task creation

5. Etc.

113 Copyright © 2015, FireEye, Inc. All rights reserved.

Benefits of a WMI solution

� Available remotely on all systems

� Service runs by default

� Unlikely to be detected/removed by attacker

� Persistent

� No executables or scripts on disk – i.e. no agent software installation

� Nearly everything on the operating system can trigger an event

Security vendors, this is where you start to pay attention…

114 Copyright © 2015, FireEye, Inc. All rights reserved.

Introducing WMI-HIDS

� A proof-of-concept, agent-less, host-based IDS

� Consists of just a PowerShell installer

� PowerShell is not required on the remote system

� Implemented with permanent WMI event subscriptions

115 Copyright © 2015, FireEye, Inc. All rights reserved.

Introducing WMI-HIDS - RTFM

New-AlertTrigger -EventConsumer <String> [-TriggerType <String>] [-TriggerName
<String>] [-PollingInterval <Int32>]

New-AlertTrigger -StartupCommand [-TriggerType <String>] [-TriggerName
<String>] [-PollingInterval <Int32>]

New-AlertTrigger -RegistryKey <String> [-TriggerName <String>] [-
PollingInterval <Int32>]

New-AlertAction -Trigger <Hashtable> -Uri <Uri> [-ActionName <String>]

New-AlertAction -Trigger <Hashtable> -EventLogEntry [-ActionName <String>]

Register-Alert [-Binding] <Hashtable> [[-ComputerName] <String[]>]

116 Copyright © 2015, FireEye, Inc. All rights reserved.

Introducing WMI-HIDS - Example

� New-AlertTrigger -EventConsumer ActiveScriptEventConsumer
-TriggerType Creation | New-AlertAction -Uri
'http://127.0.0.1' | Register-Alert -ComputerName
'VigilentHost1'

� New-AlertTrigger -RegistryKey
HKLM:\SYSTEM\CurrentControlSet\Control\Lsa | New-
AlertAction -EventLogEntry | Register-Alert -ComputerName
‘192.168.1.24'

� New-AlertTrigger -StartupCommand | New-AlertAction -Uri
'http://www.awesomeSIEM.com' | Register-Alert

117 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI-IDS Improvements

� Additional __EventFilter support:
- Win32_Service
- Win32_ScheduledJob
- __Provider
- __NamespaceCreationEvent
- __ClassCreationEvent
- Etc.

� Additional __EventConsumer support
- Make this an IPS too? Support removal of persistence items

� Make writing plugins more easy

Additional detection is left as an exercise to the reader and security vendor.

118 Copyright © 2015, FireEye, Inc. All rights reserved.

WMI-IDS Takeaway

� Be creative!

� There are thousands of WMI objects and events that may be of interest to
defenders
- Root\Cimv2:Win32_NtEventLog

- Root\Cimv2:Win32_ProcessStartTrace

- Root\Cimv2:CIM_DataFile

- Root\StandardCimv2:MSFT_Net* (Win8+)

- Root\WMI:BCD*

119 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

WMI Attack Mitigations

120 Copyright © 2015, FireEye, Inc. All rights reserved.

Detection/Mitigations

� Stop the WMI service - Winmgmt?

� Firewall rules

� Event logs
- Microsoft-Windows-WinRM/Operational

- Microsoft-Windows-WMI-Activity/Operational

- Microsoft-Windows-DistributedCOM

� Preventative permanent WMI event subscriptions

121 Copyright © 2015, FireEye, Inc. All rights reserved.

Mitigations – Namespace ACLs

122 Copyright © 2015, FireEye, Inc. All rights reserved.

Mitigations – Namespace ACLs

123 Copyright © 2015, FireEye, Inc. All rights reserved.

Thank you!

� For fantastic ideas
- Will Schroeder (@harmj0y) and Justin Warner (@sixdub) for their valuable input on useful __EventFilters

� For motivation
- Our esteemed colleague who claimed that the WMI/CIM repository had no structure

� For inspiration
- APT 29 for your continued WMI-based escapades and unique PowerShell coding style

124 Copyright © 2015, FireEye, Inc. All rights reserved.

� Understanding WMI Malware - Julius Dizon, Lennard Galang, and Marvin Cruz/Trend Micro
- http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-

malware.pdf

� There’s Something About WMI - Christopher Glyer, Devon Kerr
- https://dl.mandiant.com/EE/library/MIRcon2014/MIRcon_2014_IR_Track_There%27s_Something_About_WMI.pdf

References

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-malware.pdf

125 Copyright © 2015, FireEye, Inc. All rights reserved.

� Multiple binary CTFs – puzzles, malware, etc

� In 2014, the First FLARE On Challenge was a huge success
- Over 7,000 participants and 226 winners!

� Second Challenge is live and open
- FLARE-On.com

- Closes on 9/8

- Diverse puzzles: UPX, Android, Steg, .NET and more

� Those who complete the challenge get a prize and bragging rights!

126 Copyright © 2015, FireEye, Inc. All rights reserved. Copyright © 2015, FireEye, Inc. All rights reserved.

THANK YOU!
Questions?

