
An Insider’s Options

Michael Rich
mike@tofet.net

� The Challenge
� The Tools Available
� Phase 0 – Set up
� Phase 1 – Hex Attack
� Phase 2 – Attack of the Big Barcode
� Bringing it all Together
� Future/Branch Research Paths
� Conclusion

� There I was, hacking the collaboration portal..

� How could I intercept the POST call to modify
the inputs?
� Tamper Data, Burp Suite, etc..

� How could I forge the POST call?
� Curl, wget, etc..

� Eventually: “How could I load one of these
tools on to my closed, secure network without
getting caught?”

� Closed, secured network (sort of)
� USB ports secured & monitored
� CD use secured & monitored
� Host-based security system
� Data transfer entry points do exist (DOTS)

� Not in control of attacker
� Unknown scanning rules
� Leaves logs

� Windows / MS-Office environment

� MS Office = Visual Basic for Applications
� Professional level printers & scanners
� Adobe Acrobat OCR

� Put Excel into attack mode

� Consolas Font – Down to 8 pt font

� Use Phase 0 methods to make Excel a binary
file hex encoder/decoder

� Why hex?
� Printable text
� Tests showed excellent OCR results

Hex Encoding Base64 Encoding
Encoding Consolas, 8 pt font Consolas, 12 pt font

Word Length Errors
(80 char words)

0 in 73 words 9 in 73 words

Transcription Errors 0 in 5840 symbols 216 in 5840 symbols

Error Types 1 to 1 Many to Many

� Hex Encoding is good, but probably not perfect
� Need compact error detection
� 2-byte XOR checksum

� Assumptions, assumptions, assumptions
� 1551 errors in 135,420 symbols (1.1 % error)

� B to 8: 261; 1 to l: 359; 5 to S: 864
� D to 0, O: 57; 6 to G,q,b: 3

� Alternative characters:
� # for B
� ? for D

� Auto-replace other major errors
� “l”, “S”, “.”, “ “

� Add strong visual indicators
� 1 manual correction in 1210 lines of text

Demo Time!

� Pros:
� Extremely reliable
� Can be entered by hand if no scanner

� Cons:
� Low data density: ~3.6K per page best case
� Common Tools:

à PowerSploit: 835 kB = 232 pages
à Mimikatz: 538 kB = 150 pages

� No exfiltration “compression” advantage

� ~ 25K data per page
� 60% error correction
� Good features

� Timing lines
� Reed-Solomon FEC

� Different design
problem

� I can make it better!

� Data grid where each pixel represents one bit
state (white = 1, black = 0)

� Printed at 72 dpi, get about 88 bytes across
� ~ 85 kB data per page

� Finding the timing marks
� Start with raster scan across the image

� Finding centers of timing marks
� “Wiggle Fit” from “root” pixel

� Best mask fit

� Timing mark location is very successful:
� Once all timing marks found, simply compute

a grid of intersections to locate data:

� Results:
� 20K of binary data: 189 bytes missed (0.953% error)
� 65K of binary data: 491 bytes missed (0.76% error)
� 72K of ASCII data: 972 bytes missed (1.35% error)

� Forward ERASURE Correction

� Forward ERROR Correction

P1 Block 1

P2 Block 2

P3 Block 3

P4 Block 4

Block 1

Block 2

Block 3

Block 4

C1 P1 Block 1

C2 P2 Block 2

C3 P3 Block 3

C4 P4 Block 4

B1 B2 B3 B4 B5 B6 B7 P1 P2 P3 P4

� Reed Solomon encoding

� Codewords can be 2s symbols long, each symbol s-bits wide
� S = 8, codeword is 255 symbols; each symbol 8 bits wide
� S = 16, codeword is 65535 symbols; each symbol 16 bits wide
� Codewords can be less than n symbols long

� Can correct up to “t” symbol errors (2 parity symbols
required for find and correct each error)

From http://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html

� Few open-source error correction libraries
� Those that do are 28 only

https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders

https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders

� With s=8, k=140 to work reliably
� ~47 kB per page of data (~38 kB of parity)

� PowerSpoit: 18 pages (vs. 232 pages in hex)
� Mimikatz: 12 pages (vs. 150 pages in hex)

Demo Time!

� Goal: Using techniques described here, install
PowerSploit on a machine

Step Result
Interpret a page-sized bar code
Reed-Solomon Encoder/Decoder
Build Sideload Library
Encode, Print, Scan, Decode payload with
library
Print, Scan, and load hex encoder/decoder
into Excel
Emplace library using hex OCR method

Encode/decode using DLL called from
Excel

� Big Bar Code
� Reduce size of BBC DLL
� Improve error rates
� Get 2^16 Reed Solomon FEC working
� Add color to BBC

� Excel-a-sploit
� Hex Editor
� Steganographic encoder/decoder
� Restore command prompt
� Direct DLL injection?

� Big Bar Code POC was a success
� Standard office tools provide a lot of power
� If a user can code, a system is not secure
� Innocuous input/output systems can be used

for creative purposes

