Hanging on a ROPe

Pablo Sole
Immunity

09/20/10 IMMUNITY ...

From a crash to a working exploit

« What do we used to do after EIP was controlled?
* Why do we need ROP?

« ROP 101 (or the infinite wheel of pain...)

* Problems of the manual approach

 An automatic answer

* Gadgets as SMT formulas

e ROP from mini-ASM

* Summary

e Conclusions

09/20/10 IMMUNITY 8 g 2

What do we used to do after EIP
was controlled?

Stack Memory Stack Memory
Buffer Buffer
Saved Frame Garbage
Return Address JMP ESP
Func Args SHELLCODE

09/20/10 IMMUNITY ...

09/20/10

Why do we need ROP?
Data Execution Prevention

Stack Memory

Buffer

Garbage

JMP ESP
N\,

‘%ELLCOD

stack and heap
are not executable
anymore!

IMMUNITY 8

ROP 101
or the infinite wheel of pain...
Stack Swapping

MOV ECX,DWORD PTR [EAX] XCHG EAX, ESP
LEA EDX,DWORD PTR [EBP+8] RETN

PUSH EDX T{:>>
PUSH DWORD PTR [EBP+ﬁg

PUSH DWORD PTR [EBP+(C]
PUSH EAX
CALL DWORD PTR [ECX+C]

09/20/10 IMMUNITY ...

ROP 101
or the infinite wheel of pain...

Stack Memory
Addr-POP EAX POP EAX
VALUE for EAX » RETN

Addr-POP ECX

POP ECX
VALUE for ECX » RETN
SUB EAX,ECX
Addr-SUB r1,r2 =
o W 2

09/20/10 IMMUNITY ...

Problems of the manual approach

e Finc

hard.

e Find

hard.

ing the correct stack swap sequence can be

ing the correct gadgets that we need can be

* Bypassing badchars while you try to find your
gadgets is difficult.

* Even for simple examples can be a very time
consuming task.

09/20/10

IMMUNITY 8@ 7

Previous Automatic Approaches

* Scanning for very simple/known sequences
- mov edx, [ecx]; ret;

e Expression trees/matching
- WOOT '10, Dullien, Kornau, Weinmann

09/20/10 IMMUNITY ...

Problems with Previous Automatic
Approaches

e Simple scanning

- Imprecise

— False positives and false negatives
* Expression trees

— Possibly it might miss some semantically equal
gadgets

09/20/10 IMMUNITY ... 9

An automatic answer

* Provided I know where my controlled buffer is
in memory, what if I could find a stack-swap
gadget automatically?

 What if I could create a ROP chain from some
easy programming language?

Both problems can be solved using the same tool.

09/20/10 IMMUNITY 8 g 10

ROP via SMT Formula Solving

09/20/10 IMMUNITY ...

11

SAT & SMT

* Boolean satisfiability problem
-(x7y) " Nz " y)
— Is there a variable assignment that makes the
formula TRUE
— Solving this automatically

e SMT solvers

— Allow higher order logics to be handled e.g.
linear arithmetic, equality logic and so on

- x+y=8"y=2"7x<4)
— Many libraries and tools freely available to
handle this e.g. CVC3

09/20/10 IMMUNITY 8 g 12

Our Solution

» Convert instruction sequences to SMT formulae

— Gives a precise representation of instruction
semantics

* For each ROP-shellcode instruction build
another formula that gives our requirements

e.g. 'EAX = [ECX] and EDX is not modified'

* To find a gadget we append our requirements
and check for satisfiability/validity using a
solver

09/20/10 IMMUNITY 8 g 13

x86 Instructions as SMT Formulae

* For each instruction in a gadget we need to
convert it to an SMT formula

e add eax, ebx ->

- regs['eax'] = solver.addExpr(regs['EAX'],
regs['EBX'])
- flags[' CF'] = ...

09/20/10 IMMUNITY ... 14

Gadgets as SMT Formulae

e At analysis time we iterate over the instructions
and build the conjunction of each sub-formula

add eax, ebx

sub eax, [ecx]

|, solver.subExpr(

» solver.addExpr(regs['EAX'], regs['EBX']),
mem|[regs['ECX'])

(Accounting for flags as well)

09/20/10 IMMUNITY 8 g 15

Finding Gadgets Using a Solver

 What defines a useful gadget?

- Its semantics meet some criteria e.g. 'l want the
value EAX+4 to be in ESP. Please don't mangle
EDX while you're at it'

— These requirements are easily expressed as SMT
formula

ESP after = EAX before+4 ™
EDX after = EDX before

— Using a solver we can then query the status of
GADGET FORMULA © REQUIREMENTS

09/20/10 IMMUNITY 8 g 16

Satisfiability & Validity

e A solver can tell us if a formula is satisfiable or
valid

 Satisfiability — There exists at least one variable
assignment that makes the formula TRUE

 Validity — There exists no variable assignment
that makes the formula false

09/20/10 IMMUNITY ... 17

Generic & Context Specific
Gadgets

* A formula that is valid implies that regardless of
memory/register context it meets our
requirements

— The gadget will always do what we want
* A formula that is satisfiable but not valid will

meet our requirements under certain conditions

— It will do what we want given certain
preconditions on registers and memory

09/20/10 IMMUNITY ... 18

Workflow

* Find candidate gadgets
* From each gadget build an SMT formula G
* For each ROP primitive build a SMT formula R

— More on this later (mini-asm)
* Foreveryrin R and g in G build (r © g) and
check for satisfiability or validity (depending on
your requirements)

09/20/10 IMMUNITY ... 19

09/20/10

Implementation

IMMUNITY 8

20

Find Gadget Candidates

* Search RETN opcodes (0xC2 or 0xC3) in the
entire DLL memory

* Disassemble backward until it finds an
unsupported/invalid opcode

e Generate all possible disassemblies (move a byte
and magic can occur)

 Finally, it returns lists of opcodes for each
RETN-ended sequence

09/20/10 IMMUNITY 8 g 21

Candidates Example

Binary Data

7C91990D

66 83 26 00 66 83 66
7C919915 02 00

04 00 5E 5D ., ff."]

Ff&. fff

7C91991D C2 04 00

A.

Possible Disassemblies

7C91991A 00O5E 5D
7C91991D C2 0400
7C919919 04 00
7C91991B 5E
7C91991C 5D
7C91991D C2 0400
7C91990E 668326 00
7C919912 668366 02 00
7C919917 04 00
7C91991B 5E
7C91991C 5D
7C91991D C2 0400

ADD BYTE PTR DS:[ESI+5D],BL
RETN 4

ADD AL,0
POP ESI
POP EBP
RETN 4

AND WORD PTR DS:[ESI],0
AND WORD PTR DS:[ESI+2],0
AND DWORD PTR DS:[ESI+4],0
POP ESI

POP EBP

RETN 4

09/20/10

IMMUNITY 8

22

Sequence Analyzer

 Emulate each instruction

* Generate a resulting CPU/Memory context

e Support interactions between CPU and Memory
* Use SMT Expressions for the emulation

» Support abstract memory addressing

- MOV EAX, DWORD PTR DS:[EDX]
(given we don't know the final value of EDX)

 It's easy to add new architectures (x64,arm,etc).

09/20/10 IMMUNITY 8 g 23

Sequence Analyzer

0100739D > 33C0 XOR EAX, EAX
0100739F 03C2 ADD EAX, EDX
010073A1 3BC2 CMP EAX, EDX
010073A3 74 05 JE SHORT 010073AA
010073A9 33C0 XOR EAX, EAX
010073AA 03C3 ADD EAX, EBX

EDI:
EAX:
EBP:
EDX:
EBX:
ESI:

Registers

BYPLUS(32, EBX, EDX)
EBP
EDX
EBX
ESI

:ECK
:BYPLUS(32, 8bind000N0NNAAARN0AAN00AAAANO0A10110, EIP)

Flags
BOOLEXTRACT(BVYXOR{{ " ((BVYPLUS(2, (EBX)I[1:01, (EDX)I[1:81))[1:11)),BVHOR({(BVI

- DF

BOOLEXTRACT(BYPLUS(32, EBX, ED¥),31)
(BYPLUS(32, 8bind0000NRRB000NNNNAARB0R0NANGARAR0RAT, (T (EDX))) = EBX)

- AF

(LET cvc_@ = (BYPLUS(32, EBX, EDX))[31:3118IN IF BYLT(8bin@B00OABOAB00OOAI
BYLT(BYPLUS(32, EBX, EDX),EDX)

09/20/10 IMMUNITY 8 2

Gadget Properties

* We calculate a set of properties like: what
registers were read, written or dereferenced.

» This properties are used as a first criteria for
gadget searching.

 The smarter we are discovering this properties,
the faster we're going to find a useful gadget.

09/20/10 IMMUNITY 8 g 25

Gadget Complexity Index

 How complex is this gadget?

— how many registers does it modify?

- how many memory operations does it have?
— how much has the stack pointer moved?

MOV EDI,EDI MOV EDI,EAX MOV EAX, [EBX] XOR EDI, [EBX+ECX*4]
RETN POP EAX POP ECX MOV [EDI], EAX
POP EBX RETN 0OC XOR EAX, EAX
RETN 4 POP ECX
RETN 30

COMPLEXITY

09/20/10

IMMUNITY 8

=

26

Use cases and more details...

09/20/10 IMMUNITY ...

27

Stack swapping

e What does that means?

1) ESP = Controlled Memory Address
2) EIP = Controlled Memory Content

1) 2)

XCHG EAX,ESP MOV EST,
MOV EAX, [EAX] CALL ESI
MOV [ESP], EAX
RETN

[EAX]

09/20/10 IMMUNITY ...

1 & 2)
XCHG EAX,ESP
RETN

28

Stack swapping

1) ESP = Controlled Memory Address
2) EIP = Controlled Memory Content

e On a SMT formula:
(EAX = address controlled mem)
— 1) eqExpr(ESB EAX+4)
- 2) eqExpr(EIER mem(EAX))
- 1 & 2) boolAndExpr(1, 2)

09/20/10 IMMUNITY ...

29

Stack swapping

. Immunity. Debugger, - DTPlugin.ocs - [Log data]

File Wiew Debug Plugins Immlib Options Window Help Jobs

OHEE WX I u LY+ 1emewhcPkbzr. s 2 I

Addr(MHessage
Registers

:BYPLUS(32, 8bin#A0NBAANAAANNAAANNAANANAAANAA1A0, EAX)
:EDT

:ESP

:EBP

:EDX

:EBX

EST

:ECX

: (VAL99BDE3BD @ YAL3IF7AESBY @ YALSSA7EII3 @ VALBSC231BB)

#BR : FALSE
HDE : FALSE
#BP : FALSE
HOF : FALSE
lfind_gadget -g QTPlugin.ocx_gadgets.pkl -d ESP -s EAX+4

1 generic gadget found

l.’Etﬂ!E = Immunity Debugoer - .. r find_gadget.py - T, r sequenceanalyzer.py. .. r‘ PyCammands

09/20/10 IMMUNITY 8

ROP from mini-ASM

* We need a kind of ROP “compiler”

* Some of its responsibilities:
— Alloc/Release registers

- Preserve stack memory from accidental
overwrites.

— Satisty gadget pre-conditions

— Find the best way of performing a mini-ASM
instruction.

- Bypass badchars

— Create the final ROP chain

09/20/10 IMMUNITY ...

31

ROP from mini-ASM

We can use many tricks to implement an instruction!

Lets say we want to MOV EAX, 0x1234

POP EAX POP EAX MOV EAX,1234
RETN RETN RETN
POP ECX
RETN EBX points to some place in our ROP chain
SUB EAX,ECX MOV EAX,[EBX]
RETN RETN

09/20/10 IMMUNITY 8 g 32

ROP from mini-ASM

* Lets say we have 4 tricks for storing a value in
register.

* In DEPLIB we associate handlers for each
instruction, where we implement these tricks.

* Also, each trick has a preference, so we use the
shorter cases first.

09/20/10 IMMUNITY 8 g 33

ROP from mini-ASM

 From a SMT formula perspective, we just
append all our gadget requirements and our
guard conditions (regs/mem/flags that must be
guarded)

* Ask the Solver if there's a gadget that satisfy our
query.

09/20/10 IMMUNITY ... 34

ROP from mini-ASM
A mini-ASM example:

va_addr=solveImport(“kernel32!VirtualAlloc”)
args=(0,0x1000,0x3000,0x40)

allocated bhuf=call(va _addr, args, callconv="stdcall”)
jmp _addr=VAR()

mov(jmp addr, allocated buf)

shellcode ptr=endofROP()
shell dword=VAR()
shell dword.bind(“mem”, shellcode ptr)

label (“decrypt_loop”)

xor(shell dword, Oxdeadbeef)
mov(allocated buf, shell dword)
add(allocated buf, 4)

add(shellcode ptr, 4)

ifne(shell dword, Oxcafecafe, “decrypt loop”)

jmp(jmp_addr)

09/20/10 IMMUNITY ...

35

Summary

 We emulate the x86 instruction set using a SMT
Solver (no FPU/SSE/etc.)

* Then we store a SMT representation of all
registers, flags and memory accesses.

» This means we capture the semantics of a
sequence of instructions.

 Qur solver of choice was CVC3 Solver.

09/20/10 IMMUNITY 8 g 36

Summary
This allows us to answer some non-obvious

questions. ex:

 Is there a gadget that sets
ESP=EAX+4 AND EIP=[EAX]?

STACK SWAPPING

09/20/10 IMMUNITY ...

37

Summary

 Is there a gadget that sets
EAX=value, without touching ESI,EDI?

RETURN ORIENTED PROGRAMMING

09/20/10 IMMUNITY ...

38

Summary

But also solve things like:

* Is there a value for EAX that takes a given
branch? (and what is that value):

IMUL EAX,ECX,4
SUB EAX, [EBP+10]
CMP EAX, 100

JL allowed

SYMBOLIC EXECUTION

09/20/10 IMMUNITY ...

39

Conclusions

 DEPLIB 2.0 is going to be part of the release of
Immunity Debugger 2.0 on December 2010.

* Lots of different tools can be made from the
work presented here.

 ROP-only shellcode on x86 is possible using
DEPLIB.

* Concepts of ROP can be extended to other code
reuse techniques:
— Chain gadgets using jumps
— Chain gadgets using calls

09/20/10 IMMUNITY ... 40

09/20/10

Thank you for your time

Contact me at:
pablo.sole@immunityinc.com

IMMUNITY 8@

41

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

