
MSRPC Fuzzing with SPIKE 2006

Dave Aitel

www.immunityinc.com



Agenda
• Fuzzing overview
• A quick overview of MSRPC and 

related protocols
• A history of MSRPC fuzzing and 

drawbacks to these techniques
• Immunity's focus on MSRPC fuzzing
• Future of MSRPC (and hence, of 

MSRPC fuzzing)



What is Fuzzing?
• We all make our money by taking small 

strings and making them big strings
• Fuzzing is doing that in a particular way to 

the inputs of an application
– Major benefits: No false positives. All 

bugs you find by fuzzing are reachable 
(although not necessarily exploitable)

– Major detriment: problem is intractably 
slow



Why fuzz?
• Often it's easier to find a bug from 

fuzzing than reverse engineering, 
even given an advisory or binary diff

• Fuzzing can find bugs that are difficult 
to see in the binary or the source 
code

• A generalized fuzzer for a bug will tell 
you if a patch is good enough to cover 
edge cases or if it has an edge case 
that is still vulnerable



What is the best way to fuzz? 
• Non-fault-injection approach

– We don't inject data directly to the 
program's API because this would lead to 
false positives
•Bypasses authentication, input 

validation, etc
• Focus fuzzing on finding exploitable 

vulnerabilities
– This is not about QA – we tune to the 

things we're interested in, namely, 
integer overflows and buffer overflow



What applications are suitable for 
fuzzing

• Network exposed applications
– All of DCE-RPC!

• Closed source applications
• Obscure applications that are unlikely to 

have been reviewed
• Applications that are difficult to obtain
• Applications that are extremely complex

– Auditing complex applications costs a 
lot of money!



Fuzzing Mindset
• There's a certain magic to a good 

fuzzer since there is no guarantee it 
will find anything

• Fuzzers can take a very long time
–Weeks, months, etc

• You have to take a leap of faith when 
you start developing a fuzzer that 
you're not just wasting your time

• People look down on fuzzers



Problems with fuzzers
• Tokenization is rarely perfect
• Proprietary extensions are easy to 

miss
• Problem itself is exponential
• Generally only attractive for a 

blackhat mindset since only finds a 
subset of potential bugs

• But does give you a good initial 
indication of the “stance” of the 
application



How to build a fuzzer
• Tokenization
• Generation of normal traffic
• Generation of abnormalities
• Detection and analysis of problems
• Analysis of quality of fuzzer



Tokenization
• Process of splitting network protocol into 

invarients (not fuzzed) and variables (fuzzed)
• Types

– String, Integer, Sizes, Binary blob
• Typical invarients are header strings, protocol 

constants, calculated responses from network 
handshakes, etc

• Over-tokenization will make your fuzzer slow
• Under-tokenization will make your fuzzer not find 

anything



Generation of normal traffic
• Read and parse RFC's or other human-readable 

protocol descriptions
– Generally will waste time by fuzzing non-

implemented parts of the protocol
– Will miss proprietary extensions

• Reverse engineering of protocol
– Can be done semi-automatically
– If tool is flexible enough, human input can be 

invaluable
• Sniffing and statistical analysis

– Even very dumb replay-and-bit-flipping can find 
many bugs

• If done poorly, target applications will ignore most of 
your traffic



Abnormality generation
• Transforming normal traffic into malformed 

traffic, but in a way that is likely to cause 
exploitable problems

• Bit-flipping is most simplistic
– For each bit we send, iterate over 

sending the opposite
• Changing one part of our traffic may 

require complementary changes to other 
parts
– For example, a content-length check



Fuzzing is not Fault Injection
• In fuzzing you go through ALL the layers, 

starting with the network layer
• In fault injection, you inject incorrect data 

directly to an API
• There are many layers you don't know 

about
• Fuzzing never generates a false positive 
• Fault injection drawbacks

– requires a debugger, which may 
change program operations

– Generates false positives



Brief introduction to SPIKE
• First deployed in 2000, one of the first 

generalized network protocol fuzzers
– Greg's Hailstorm is the other one (note: 

very different from current Hailstorm –
previously was a commercial fuzzer for 
arbitrary protocols)

• Introduced unique “block-based” fuzzing
• Included modules for doing HTTP, FTP, and 

other protocols
• Written in low-level C (for speed)
• Released under GNU Public License



Block-based fuzzing
• Protocols are mostly composed of the same 

primitives
• Invarients, blocks, and varients

– <invarient><size><varient><size><var
ient 2>

• For each varient replace it with a fuzz 
string and then update any sizes needed

• For each varient also prepend and append 
fuzz strings



Advantages of block-based fuzzing

• Linear way to generate abnormalities
• Gut-feel: Finds “interesting” bugs
• Fuzz-streams are reproducible
• Stays close to original valid stream
• Can easily fuzz protocols tunneled 

inside other protocols



Other Block-Based fuzzers
• Peach (Python-based fuzzer)

–Free

• Gleg.net ProtoVer (also Python-
based)
–Commercial



Immunity and MSRPC
• 2000 – SPIKE, dcedump, ifids
• 2002 – CANVAS msrpc.py (with auth, local-

pipe, and SMB/DCE Fragmentation support)
• 2003 – MSRPC Auditing class
• 2004 – MOSDEF incorporates lexx.py and 

yacc.py
• 2005 – unmidl.py, DCEMarshall in CANVAS
• 2006 – SPIKE 2006



SPIKE 2006
• Rewritten in Python as part of CANVAS attack 

framework
– Takes advantage of pure-python network 

protocol libraries including DCE-RPC marshaller!
– Much easier to extend and use

• Added base-string/integer concept
– A few selected fuzz-variables are used for 

EVERY variable in protocol while fuzzing
– Finds somewhat more hidden bugs
– Is slower (but computers are faster! :>)



SPIKE's Choice of Fuzz Strings
• We use B's instead of A's because of 

Window's memory flags – B tends to 
crash right away if we find a heap 
overflow

• We prepend each long string with \\
and \\\\ and http://

• We use all strings from length 0 to 
2200 to catch off by ones

• We also use a set of special strings 
known to cause problems in the past



Why fuzz MSRPC Applications?
• Thousands of MSRPC interfaces 

available on default Microsoft 
applications
–Writing Microsoft Windows exploits 

isn't going out of style any time soon
• Also used by many other vendors who 

build on MSRPC platform
–These vendors need to test their own 

interfaces quickly and easily!
• Samba needs regression testing



Overview of MSRPC 
• Originally known as DCE-RPC, a 

competitor to OncRPC and Corba
–And shares their security issues

• Used mostly on Microsoft Windows as 
part of DCOM
–And hence, quite extensively used

• Also available on commercial Unixes
–Original SPIKE found bugs in AIX's

implementation
• Implemented as part of Samba



Components of MSRPC
• Protocol independent

– UDP/TCP/HTTP/NETBIOS/SMB/etc
• Data-type independent

– Marshalling and demarshalling allows 
for encoding of complex data types 
(with pointers) as network streams

• Encryption and authentication
– NTLM, security callbacks, etc

• Endpoint mapper



MSRPC Primitives
• Interface

–UUID

• Interface Version
–Major and Minor (such as “1.0”)

• Function number
–0 to 100 or so



Free (as in speech) MSRPC tools
• Dcedump (port 135)

–Get list of available endpoints and 
interfaces

• Ifids
–Get list of interfaces on a particular 

endpoint

• Unmidl.py
–Generates IDL file from executable 

or DLL



What is an IDL?
• “Interface description language”

– Explains what the data types are used, 
which functions are available, and what 
arguments those functions take

• Generally IDL files are kept proprietary by 
vendors
– This makes generating valid traffic 

difficult 
• Compiled by “Microsoft IDL” tool (midl) 



Unmidl tools
• Original was GPLed “muddle” by 

XXXXX
• Python-based GPLed unmidl.py

fixed issues with complex 
structures, pointers, etc

• Followed by <3com product>
• Followed by <free product>



Example IDL (umpnp)

long  Function_36( [in]  [string] wchar_t *  
element_288,

[in]  long  element_289,
[size_is(element_291)] [in]  char  

element_290,
[in]  long  element_291,
[size_is(element_293)] [out]  char  

element_292,
[in]  long  element_293,
[in]  long  element_294
);



Example 2
long  Function_09( [in]  [string] wchar_t *  element_825,
[in] [unique]  [string] wchar_t * element_826,
[in]  [string] wchar_t *  element_827,
[in]  [string] wchar_t *  element_828,
[in]  [string] wchar_t *  element_829,
[in] [unique]  [string] wchar_t * element_830,
[in] [unique]  [string] wchar_t * element_831,
[in] [unique]  [string] wchar_t * element_832,
[in] [unique]  TYPE_6 ** element_833,
[in] [unique]  TYPE_6 ** element_834,
[in]  long  element_835,
[out] [context_handle]  void * element_836
);

typedef   struct {
[size_is(524)] char *element_774;
} TYPE_6;



A Brief History of MSRPC Fuzzers

• SPIKE
• Samba SMBTorture
• Others?

–LSD-PL MSRPC fuzzer + unmidl tool 
lead to MS03-026?

• SPIKE 2006!



Interlude: VERDE
• Found by early version of SPIKE
• Arbitrary free vulnerability in XXXX 

service
• Reliably exploited by Nicolas 

Waisman of Immunity
• Fixed in Windows 2000 SP4
• (brief demo)



Difficulties in MSRPC fuzzing
• Creating valid protocol stream very difficult

– Windows 2000 and above check for 
rigorous protocol compliance – IDL file 
must be correct!

– IDL files are not a one-to-one match 
with demarshalling

• Must include authentication
• Context handles
• Interface may only be reachable locally

– CANVAS has local named pipe support



Difference in SPIKE 2006 and previous 
attempts 

• unmidl.py improvements
• Working dcemarshaller

–Complex pointer structures and 
types can be fuzzed!

• SPIKE offers solution for size_of() 
arguments

• SPIKE 2006 can fuzz endpoints of 
almost any type (incl. HTTP, local, etc)

• Response_trigger looks for information 
leaks, abnormal responses



Fuzzing process
Create IDL

using 
unmidl.py

Convert each
function to
marshaller

(automate this!)

Examine need 
for context_handles

or auth

Create get_context_handle()

Use dcedump/ifids
to find endpoint

(TCP/named pipes
done automatically)

Create response_trigger()

dcefuzz!



Fuzzing Metrics
• Measuring fuzzers in “number of tests” is like 

measuring computers in kilograms
• Code coverage is not program state coverage

– If function_a only crashes when run after 
function_b, then you can cover both functions 
and still not reach the crash 
• This is more common than you'd suspect

– Have to cover code with the right input to find 
bugs

• Concurrency bugs are hard to “measure”
• Every fuzzer finds different bugs



Fuzzing Metrics (cont)
• Best we can do right now:

–Does a new fuzzer find all previously 
known bugs (automatically) and 
some interesting new bugs?

– Is it faster and easier to fuzz a 
protocol than reverse engineer it?

–Does the fuzzer complete in a 
reasonable time for the results found?



SPIKE 2006 Results
• Takes (average) under an hour to 

completely fuzz a given function
• Finds previously known 

vulnerabilities 
• Demos

–umpnp
–Exchange DoS
– ...



Future of SPIKE 2006 and MSRPC 
Fuzzing

• Automatic fuzzer creation from unmidl and unmidl
improvements

• VisualFuzz – Apply SPIKE 2006 techniques via a 
visual language (like Immunity VisualSploit)

• Use Immunity Debugger 
– To analyze coverage of MSRPC functions

• Not entire-DLL coverage, but coverage of 
potential code under the MSRPC Function 
entry point

– To create even more correct IDL files



Conclusion
• Fuzzing MSRPC presents 

interesting problems, which are 
mostly solved by SPIKE data-
structure in a useful way

• Block-based fuzzing scales up to 
complex protocols

• Questions?


