
Table of Contents Page
Preface 1
Installing Zend Core for Oracle 1
Installing Zend Framework 1

Prerequisites 1
Download and unpack 1
Configure PHP and web server 2

Building a Zend Framework application skeleton 2
Bootstrap file 2
Directory structure 2
Default Action Controller 2
Mapping URL’s to controllers and Action Methods 3
More Action Controllers 3
Creating a Model 3
Connecting the DB 3
Using an external configuration file 4
Separating layout from application logic using View 5

The HR Application (example) 6
Listing all Employees 7
Editing an Employee 7

Epilogue 10

Preface
Zend Core for Oracle is a Zend certified and supported version of
the open source PHP. It uniquely delivers a seamless out-of-the-
box experience by bundling all the necessary drivers and third
party libraries to work with the database of your choice. It can
be downloaded at: http://www.zend.com/downloads

Zend Framework1 is an open source framework for PHP. It helps
to structure PHP based web applications in a good way and comes
with a variety of libraries and tools that increase developer
efficiency. The most important development guidelines of Zend
Framework were two principles:

1. extreme simplicity
2. use-at-will architecture

In addition to a MVC implementation and lots of libraries, Zend
Framework defines common coding standards2 including naming
conventions and a package-like directory structure.

Zend Framework is open source and licensed under the new BSD
license. Therefore it can be integrated even in commercial
applications without the constraints imposed by other licenses
such as the GPL. Specifically, your project is not forced to adopt
an open source license.

Installing Zend Core for Oracle
Please refer to the “PHPfest Tutorial: Oracle Database 10g Express
Edition and Zend Core for Oracle” for installation instructions. On
Windows, just start the setup.exe after downloading, answer some
questions right and lean back. Zend Core for Oracle will install on
existing Apache and IIS web servers. It also brings its own Apache
for a complete new installation if needed.

Installing Zend Framework
Prerequisites
- Apache with mod_rewrite required or IIS with ISAPIRewrite

Software3

- PHP 5.1.4 or later
- activated OCI8-Extension

(PHP with OCI8 Extension comes with the Zend Core for Oracle)

Download and unpack
To install Zend Framework, just download the newest zip package
from http://framework.zend.com and extract it to a directory
that is readable by the web server process, so PHP applications
can include the classes in their include_path. A good choice for
the location of the framework could be:

/opt/ZendFramework/
... on linux systems (according to FHS)4

/Library/Zend Framework
... on Mac OS X

C:\Program Files\Zend Technologies\Zend Framework\
... on Windows

(Currently install packages for different operating system types
are under development, but they are not available yet)

PHP and Oracle
How to develop a application in PHP using Zend Framework, Oracle Database and Core for Oracle

Author: Gaylord Aulke, Zend Technologies GmbH

Zend Whitepaper PHP and Oracle

Zend Background Paper

1 Zend Framework: http://framework.zend.com
2 Coding Standards: http://framework.zend.com/wiki/display/ZFDEV/PHP+Coding+Standard+(draft)
3 IIS ISAPI Rewrite Engine: http://www.isapirewrite.com/
4 File System Hierarchy Standard (FHS): http://www.pathname.com/fhs/pub/fhs-2.3.html

Zend Technologies
Library

1

Zend Framework overall Structure

Configure PHP and web server
After unpacking, point the PHP include_path (directive set in
php.ini) to the lib directory of the Zend Framework installation
directory.
Example (excerpt from php.ini):

;;;;;;;;;;;;;;;;;;;;;;;;;
; Paths and Directories ;
;;;;;;;;;;;;;;;;;;;;;;;;;

; UNIX: "/path1:/path2"
include_path = ".:/opt/ZendFramework/library"
;

; Windows: "\path1;\path2"
;include_path = ".;c:\php\includes"

There are some other ways of setting the include path for PHP.
For more information refer to
http://de.php.net/manual/en/configuration.changes.php

In a MVC Application, all requests are routed to one single entry
point. For Zend Framework this is a PHP script. Typically, this
so called Controller Script would be the only PHP file inside your
web server's document root. The framework files and your
application code should be stored outside the document root of
the web server. They are all loaded via include directives from
the one Controller Script that is called for every request.
Typical Zend Framework URLs look like this:
http://myserver.com/
http://myserver.com/start
http://myserver.com/profile/login
To direct all these requests to the Controller Script, URL rewriting
needs to be enabled on the web server. This can be done in the
httpd.conf inside a Vhost directive or in a .htaccess file in a local
directory. For IIS please refer to http://www.isapirewrite.com.
Assume your controller script is in the document root of your
web server and it is called index.php. Then, the rewrite rule (for
apache mod_rewrite) looks like this:

 RewriteEngine On
 RewriteRule !\.(html|php|js|ico|txt|gif|jpg|png|css|rss|zip|tar\.gz|wsdl)$

/index.php

Building a Zend Framework Application Skeleton
Bootstrap File
After the rewrite rule is in place, the next thing needed will be
a Controller Script (also referred to as the “bootstrap file”) in
the document root of your web server:

<?php
set_include_path('.:/pathToApp/app:/pathToApp/lib');
require_once 'Zend/Controller/Front.php';
Zend_Controller_Front::run('/pathToApp/app/controllers');
?>

If not possible in the php.ini file or .htaccess files, the include
path can be set using the set_include_path command in this file.
The run method of the Controller requires the file system path
to your action controllers as a string argument. The Action
Controllers are your custom codes for doing whatever your
application is supposed to do. All the application logic will be
implemented in such Action Controller Classes.

Directory Structure
It is recommended that websites built with the Zend Framework
share a common directory structure. Conforming to this structure
makes your code more easily understandable by someone familiar
with the conventions of the Zend Framework.
The suggested directory structure consists of both library directories
(from Zend and elsewhere) and application directories.

 /app
 /models
 /views
 /controllers - where your action controllers go
 /htdocs - document root of the web server
 /images
 /styles
 .htaccess - may contain rewrite rule and include_path (apache module)
 index.php
 /lib - symbolic link to /opt/ZendFramwork/library

/Zend
/PEAR

 ...etc

Default Action Controller
Zend Framework maps all requests to dynamic resources on the
web server via the bootstrap file to so called Action Controllers.
These are PHP Classes that have one Method per different request
they can service. The first action controller that needs to be
present in every application is the default controller. It is called
whenever the framework did not read a specific controller name
from the URL. For example it is used when the homepage of the
application is called, i.e. only the domain name is given. The
user requests: http://www.myserver.com
In this case, Zend Framework starts the Default Controller which
is called IndexController and calls the indexAction in this controller.
An IndexController can be coded like this:

.../app/controllers/IndexController.php:

 <?php
 require_once 'Zend/Controller/Action.php';
 class IndexController extends Zend_Controller_Action
 {

public function indexAction()
 {

echo 'Hello from IndexController';
 }
 }
 ?>

In Order to be found by the FrontController called in the bootstrap
file, the source code file must be stored in the specified controller
directory (.../app/controllers in this case). The file must be
named IndexController.php and it must contain a class declaration
for the class IndexController. This class must extend the Framework
Class Zend_Controller_Action (which is first included with the
require_once directive) to connect with the FrontController. The
Method indexAction() of this class will now be called without
parameters whenever the homepage of the server is requested.

Zend Whitepaper PHP and Oracle
Zend Background Paper

2

Mapping URLs to Controllers and Action Methods
Zend Framework generally maps the first given directory name
to an Action Controller Name and the second directory name to
a Method inside this controller. When only one identifier is given
in the URL, it is used as the controller name an the method is
set to 'index'. If no information is given in the URL, the index
Method from the IndexController is used:

http://framework.zend.com/roadmap/future/
Controller: RoadmapController
Action : futureAction

http://framework.zend.com/roadmap/
Controller: RoadmapController
Action : indexAction

http://framework.zend.com/
Controller: IndexController
Action : indexAction

More Action Controllers
Now other Action Controllers can be written and placed in the
controller directory. They are all built in the same way as the
IndexController described above. For more information on making
the assignment from URLs to controllers more flexible see the
documentation at http://framework.zend.com

Creating a Model
In MVC, all the actual work the application is supposed to do is
implemented in a special class called 'Model' (the 'M' in MVC).
This includes all database operations. The Action Controller
instantiates a Model and then calls functions on it. To visualize
this, let us first start with creating an empty Model class:

.../models/HRModel.php:

 <?php
 class HRModel {
 function helloWorld() {
 return 'Hello World';
 }
 }
 ?>

Now we have a (very simple) Model with a function that returns
something that can be output to the browser. So let us use it in
the Controller. Since we will probably have many methods in our
controller that are all very likely to call methods on our Model,
we instantiate the Model right at the beginning of the lifetime
of our controller and store it for later use in an instance variable
for the action controller object:

.../app/controllers/IndexController.php:

 <?php
 require_once('Zend/Controller/Action.php');
 require_once('models/HRModel.php');

 class IndexController extends Zend_Controller_Action
 {

/**
* @var HRModel
*/
protected $hrModel;

public function init() {
$this->hrModel = new HRModel();

}

public function indexAction()
{

echo $this->hrModel->helloWorld();
}

 }
 ?>

The first thing we added is the require_once in line 3. This in-
cludes the source file in which the Model is defined. Then, in the
init() function which is called when the controller object is
created, an instance of the HRModel is made and stored in the
instance variable hrModel that was previously declared. The
PHPDoc comment before the variable declaration gives the Zend
Studio IDE the information needed to provide code completion
for the instance variable hrModel. After this, an hrModel object
is present in the IndexController and can be used by any
ActionMethod by referencing $this->hrModel. We try this in the
indexAction: We call the helloWorld Method we have implemented
in our hrModel and output the returned value to the browser
using the echo command of php (later we will render all output
via so called views to separate logic from layout but for now this
should do).
If we now call the home page of our web application, the output
will be as follows:
Browser:
http://www.myserver.com/
Result:
Hello World

Connecting the DB
Since our application will display database content, we will need
a database connection to get to the required information. As an
example we use the predefined HR schema that comes with
Oracle XE and the normal Oracle installation as an example
schema. (Please make sure to unlock the Oracle user called HR
first and assign it the password hr.)
To connect to a DB from Zend Framework, we use a class called
DB Adapter. It can be found in the Package Zend_Db in the
Framework distribution. We will also need some credentials to
connect to the database. We assume that we use the DB on the
local host and login with username and password 'hr'. So where
do we put the connection code? Since the Model will use the DB
connection in most of its methods, it makes sense to open a
connection whenever the Model is instantiated. Therefore we
put the connection code into the constructor of the Model and
store the connection in an instance Variable of our Model. To
check if the connection was successful, we implement a new
Method in our Model that fetches the Sysdate from the oracle
instance and replace our nice but useless helloWorld function
with it:

Zend Whitepaper PHP and Oracle
Zend Background Paper

3

.../models/HRModel.php:

 <?php
 require_once('Zend/Db.php');

 class HRModel {
/**
* @var Zend_Db $db
*/
protected $db = null;

function __construct() {
$params = array (

 'username' => 'hr',
'password' => 'hr',
'dbname' => '//localhost/XE'

);

$this->db = Zend_Db::factory('oracle', $params);
$this->db->query("alter session set
NLS_NUMERIC_CHARACTERS = ',.'");
$this->db->query("alter session set
NLS_DATE_FORMAT = 'dd.mm.yyyy'");

}

/**
* return the current sysdate of the oracle server
*
* @return string
*/
function getSysDate() {

$res = $this->db->fetchRow("SELECT sysdate FROM dual");
return $res['SYSDATE'];

}
 }
 ?>

Note that we needed to include the Zend DB Adapter prior to
using it with a require_once statement in line 2. The Model now
creates a connection to the Oracle DB in the Constructor of the
Model and stores it in the instance variable $this->db for later
use. At the same time, some session variables are set for the
oracle connection to control number and date formatting. This
can be left out if you set the according values generally for the
oracle instance. Our new function getSysDate() then uses the
Oracle connection that was built in the constructor to select the
current system date from the oracle database using the fetchRow()
method of the DB object in $this->db. This method sends a query
to the database and returns the first row of the result in form
of an associative PHP array. We then return the column 'SYSDATE'
from this array to the caller of the method. Of course, there are
simpler methods in PHP to determine and format the current
date. This is only to show that we can make the DB do things for
us. Now we need to modify the IndexController to output the
result of our brand new database interaction:

.../app/controllers/IndexController.php:

 <?php
 require_once('Zend/Controller/Action.php');
 require_once('models/HRModel.php');

 class IndexController extends Zend_Controller_Action

 {
/**
* @var HRModel
*/
protected $hrModel;

public function init() {
$this->hrModel = new HRModel();

}

public function indexAction()
{

echo $this->hrModel->getSysDate();
}

 }
 ?>

This little change now results in displaying the current date (in
German format) instead of the simple Hello world message. The
output looks like this:
Browser:
http://www.myserver.com/
Result:
01.02.2007

Using an external configuration file
With our example model, we could successfully connect to the
database. In order to make the example easy to understand, we
“hardcoded” the database credentials into the model's source
code. In real world applications we do not want to do this since
we might have different environments where the code should
work without changes afterwards. Therefore we separate this
kind of environment information in configuration files. Zend
Framework supports different methods of storing such information.
In this example we use the ini-file method that parses windows
like ini-files with sections and parameters. This is how we integrate
the Zend_Config_Ini Component with our existing HRModel:

.../models/HRModel.php:

 <?php
 require_once('Zend/Db.php');
 require_once('Zend/Config/Ini.php');

 class HRModel {
/**

 * @var Zend_Db $db
*/
protected $db = null;

function __construct() {
$config = new Zend_Config_Ini('hr.ini', 'staging');

$params = array (
'username' => $config->database->user,
'password' => $config->database->passwd,
'dbname' => $config->database->dbname
);

$this->db = Zend_Db::factory('oracle', $params);
$this->db->query("alter session set
NLS_NUMERIC_CHARACTERS = ',.'");
$this->db->query("alter session set
NLS_DATE_FORMAT = 'dd.mm.yyyy'");

}

Zend Whitepaper PHP and Oracle
Zend Background Paper

4

 /**
 * return the current sysdate of the oracle server
 *
 * @return string
 */
 function getSysDate() {
 $res = $this->db->fetchRow("SELECT sysdate FROM dual");
 return $res['SYSDATE'];
 }

 }
 ?>

The differences to the previous version of our Model start with
the “require_once” statement that includes the declaration of
Zend_Config_Ini. Then, before we make the DB connection in
the constructor of our Model, we create a Zend_Config_Ini Object
from the ini-file hr.ini that we will store in the include directory
of our app. The Zend_Config_Ini Object will filter this ini file for
the label 'staging' and extract all parameters that match this
filter. For detailed information on the format of the ini file and
other information about Zend_Config see:
http://framework.zend.com/wiki/display/ZFDOCDEV/4.+Zend
_Config
The parameters array for creating the Oracle DB adapter is now
no longer assembled from static text but the individual settings
are taken from according parameters from the Zend_Config. The
config file looks like this:

.../app/include/hr.ini:

 [staging]
 database.user=hr
 database.passwd=hr
 database.dbname=//localhost/XE

Separating Layout from application logic using Views
The last element of MVC that we did not introduce yet is the
View. This Component renders the data we got from the model
into HTML. In an MVC application, the Model gathers data and
triggers transactions, the Controller controls user interaction and
page flow and the View is responsible for the output of data in
a nice and shiny format. The Zend_View is a class with lots of
helpers for the output of plain HTML and Forms. The Controller
Methods can create such a view, populate it with dynamic data
they want to display on the page and then hand this over to a
template like view script. We illustrate this mechanism using the
IndexAction in our IndexController:
.../app/controllers/IndexController.php:

 <?php
 require_once('Zend/Controller/Action.php');
 require_once('models/HRModel.php');
 require_once('Zend/View.php');

 class IndexController extends Zend_Controller_Action
 {

/**
* @var HRModel
*/
protected $hrModel;

public function init() {
$this->hrModel = new HRModel();

}

public function indexAction()
{

$view = new Zend_View(array('scriptPath' =>
'<pathToMyApp>/app/views'));
$view->sysdate = $this->hrModel->getSysDate();

 echo $view->render('index.phtml');
}

 }
 ?>

At first we fetch the Zend_View definition by including the
according source file with require_once in line 4. Then in the
indexAction, we first instantiate a View Object giving it the path
where to find the view scripts (please enter the base path of
your application instead of <pathToMyApp> there). In the next
line we assign the sysdate we got from the Model to this view
object and then we use the view script 'index.phtml' to render
an output string from the data we have put into the view before.
Note that render() does not output anything but returns a string.
This can then be output to the browser using the echo command.
To make this example complete, we need our new view script
index,phtml. It must be stored in the subdirectory 'views' of our
application:

 .../app/views/index.phtml:
 <html>
 <body>
 Sysdate: <?= $this->sysdate ?>
 </body>
 </html>

Of course this is not a very pretty example of a HTML output
page. But it shows the concept: The view script is basically a php
script that is executed inside a method of the Zend_View object.
Therefore it can access all resources of Zend_View referencing
$this->. An example is the sysdate that was put into the view
object by the controller before the view script was executed
during the call to $view->render(). Sysdate is an instance variable
of the view object and thus can be referenced using $this-
>sysdate. Since the php interpreter is in HTML mode when the
view script is executed, it treats all content of the view script
as HTML until it finds an opening PHP tag (<?). Generally it is
possible to embed any PHP code in a view script but it is
recommended to use as little php as possible there. To output
variables from the viw, the short print notation of php can be
used (as in the example). The format of this notation is:
<?= <expression> ?>
... while expression can be any valid php expression including
calls to php internal functions etc. In this case we just output
the contents of the instance variable sysdate. When we now call
our home page again, we still get:
Browser:
http://www.myserver.com/
Result:
Sysdate: 01.02.2007
In contrast to the output we have seen before, result page is
now well formatted HTML with start and end tags for HTML and
BODY.

Zend Whitepaper PHP and Oracle
Zend Background Paper

5

The HR Application
We now want to write a small Application that lists the employee
records from the HR database that comes with the default
installation of Oracle 10g or Oracle XE.

Listing all Employees
First we need a Controller Action that fetches the list from the
db and outputs the result to the browser. To make things as
simple as possible, we use the indexAction from the IndexController
for this. The user will therefore be prompted with the employee
list when he starts the application by calling the homepage.
The SQL query to fetch all employees and format them nicely is
given as follows:
SQL:

SELECT employee_id, substr(first_name,1,1) || '. '|| last_name as
employee_name,

hire_date, to_char(salary, '9999G999D99') as salary,
nvl(commission_pct,0)*100 as commission_pct,
d.department_name, j.job_title
FROM employees e, departments d, jobs j
WHERE e.department_id =d.department_id and e.job_id = j.job_id
ORDER BY employee_id asc

As a first step, we integrate this query in our HR Model and return
the resulting rows in form of an array of result rows. Each of
these rows is an associative array itself.

.../models/HRModel.php:

 <?php
 require_once('Zend/Db.php');
 require_once('Zend/Config/Ini.php');

 class HRModel {
 /**
 * @var Zend_Db $db
 */
 protected $db = null;

 function __construct() {
...

 }
 ...

 /**
 * returns a list of all employees in an assoc. array
 *
 * @return array
 */
 public function queryAllEmployees() {
 return $this->db->fetchAssoc(

"SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date, to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0)*100 as commission_pct,
 d.department_name, j.job_title
 FROM employees e, departments d, jobs j
 WHERE e.department_id =d.department_id AND e.job_id

= j.job_id
 ORDER BY employee_id asc");
}

 }
 ?>

We just wrapped the complete Query in a Method declaration
and a call to $this->db->fetchAssoc(). The result of fetchAssoc
is the desired list in form of a list of associative arrays (one for
each row).
Now we call this new method from our indexAction and store the
resulting array in the View Object:

.../app/controllers/IndexController.php:

 <?php
 require_once('Zend/Controller/Action.php');
 require_once('models/HRModel.php');
 require_once('Zend/View.php');

 class IndexController extends Zend_Controller_Action
 {
 /**
 * @var HRModel
 */
 protected $hrModel;

 public function init() {
$this->hrModel = new HRModel();

 }

 public function indexAction()
 {
 $view = new Zend_View(array('scriptPath' =>

<pathToMyApp>/app/views'));
 $view->employeeList = $this->hrModel->queryAllEmployees();
 $view->sysdate = $this->hrModel->getSysDate();
 echo $view->render('index.phtml');
 }
 }
 ?>

Now we have the result in our View Object. The next step would
be to display the result in the View Script index.phtml:

.../app/views/index.phtml:

 <html>
 <head>
 <link rel="stylesheet" type="text/css" href="/style.css" />
 </head>
 <body>
 Sysdate: <?= $this->sysdate ?>
 <table>
 <tr>
 <th>Employee
ID</th>
 <th>Employee
Name</th>
 <th>Job
Title</th>
 <th>Hiredate</th>
 <th>Salar[y</th>
 <th>Commission
(%)</th>
 <th>Department</th>
 </tr>
 <?php
 // Write one row per employee
 foreach ($this->employeeList as $emp):
 extract($emp);
 echo <<<END

Zend Whitepaper PHP and Oracle
Zend Background Paper

6

statement. The bracket notation could also be used here but the
alternative notation seems better inside templates.
The foreach block is executed once per row in the employeeList
variable, meaning once per result row. Inside the block, the
current row can be referenced via the variable $emp. The
individual columns of the result row could now be referenced by
using their names as an index to the array $emp. For example
$emp['EMPLOYEE_NAME'] would reference the name column from
the current row.
To make references to the fields of the result row simpler, we
use the extract() command of php on $emp. This command creates
one local variable for every key in the given array and copies the
associated value in this new variable. Instead of using
$emp['EMPLOYEE_NAME'] it is then possible to reference the name
by simply using $EMPLOYEE_NAME.
After the extract command we use the HEREDOC syntax of PHP
to echo one table row to the browser. This notation allows multi
line strings in which variables are automatically replaced by their
values. Also, quotation marks and other special characters can
be used without the need to escape them inside a string. The
string to echo ends with and END marker at the beginning of a
new line. Calling our home page now results in a employee list:
Browser:
http://www.myserver.com/
Result:

Editing an Employee
Now that we have a list, we might want to display a record in
detail and edit its contents. For example we could want to add
a commission or to change department, job title or telephone
number. To do so, we first need a link to a new action called
editForm in the List. When the user clicks on the id of an employee,
he gets to a form with the details of the according user. So first
we add the new link. This can be done in the View Script:

Zend Whitepaper PHP and Oracle
Zend Background Paper

7

<tr>
<td align="right">$EMPLOYEE_ID</td>

 <td>$EMPLOYEE_NAME</td>
 <td>$JOB_TITLE</td>
 <td>$HIRE_DATE</td>
 <td align="right">$SALARY</td>
 <td align="right">$COMMISSION_PCT</td>
 <td align="right">$DEPARTMENT_NAME</td>

</tr>
 END;

endforeach;
 ?>
 </table>
 </body>
 </html>

In addition to the basic view script that only displays the sysdate,
some changes were introduced here. At first, we added a link to
a style sheet named style.css that improves the layout a little:

.../htdocs/styles.css:

 body {
 background: #CCCCFF;
 color: #000000;
 font-family: Arial, sans-serif;
 }
 h1 {
 border-bottom: solid #334B66 4px;
 font-size: 160%;
 }
 table {
 width: 100%;
 font: Icon;
 border: 1px Solid ThreeDShadow;
 background: Window;
 color: WindowText;
 }
 td {
 padding: 2px 5px;
 vertical-align: top;
 text-align: left;
 }
 th {
 border: 1px solid;
 border-color: ButtonHighlight ButtonShadow

ButtonShadow ButtonHighlight;
 cursor: default;
 padding: 3px 4px 1px 6px;
 background: ButtonFace;
 }

Further, we integrated a HTML table that will show the result
list. This table has a first row with column titles in plain HTML.
Then for the output of the actual row content, we switch to PHP
mode in the view script (<?php). Using the foreach control structure
of PHP, we iterate over the employeeList array which had been
stored in the view object by the Controller Action before.
To make the loop more visible inside the HTML fragments in this
file, we do not use the normal bracket notation to denote the
foreach-block but we use an alternative format. This format
starts the block with a colon and ends it with the endforeach

Zend Whitepaper PHP and Oracle
Zend Background Paper

8

 .../app/views/index.phtml:
 <html>
 ...
 <?php

// Write one row per employee
 foreach ($this->employeeList as $emp):
 extract($emp);
 echo <<<END
 <tr>
 <td align="right"><a href="/index/edit/id/

$EMPLOYEE_ID">$EMPLOYEE_ID</td>
 <td>$EMPLOYEE_NAME</td>
 <td>$JOB_TITLE</td>
 <td>$HIRE_DATE</td>
 <td align="right">$SALARY</td>
 <td align="right">$COMMISSION_PCT</td>
 <td align="right">$DEPARTMENT_NAME</td>
 </tr>
 END;
 endforeach;
 ?>
 </table>
 </body>
 </html>

The new link calls the method editAction() in our IndexController.
But what does the rest of the URL mean? To edit an employee
we need to select which record to edit. We do that by transferring
the EMPLOYEE_ID along in the URL. Usually this is done with GET
parameters in the style
'http://www.myserver.com/index.php?id=xyz'. To make the URLs
prettier, Zend Framework offers another option to pass values
to the action controllers: If controller name and action name are
both given, all path elements suceeding the action name are
handled as key/value pairs for parameter passing. Therfore the
URL in our new link is interpreted in the following way:
example URL: “/index/edit/id/100”
Controller: IndexController
Action: editAction
Parameter1: id=100

What we need next is a new action method in the indexController.
It looks like this:
.../app/controllers/IndexController.php

 <?
 require_once ...
 class IndexController extends Zend_Controller_Action
 {
 ...
 public function editAction() {
 $id = (int)$this->_getParam('id');
 die('edit called for id:'.$id);
 }
 }
 ?>

By calling the method $this->_getParam($name) of the Action
Controller, our new method obtains the value of the id passed
in the URL as mentioned above. For security reasons, we cast
the returned value to an integer. This eliminates all characters
that are not digits and therefore makes attacks such as Cross Site
Scripting and SQL injection impossible. Note that all data that

is coming from outside the application should go through “white
list” input filters. That means, only values that are definitely
legal values for the according variable should be accepted.
Everything else must be filtered out or trigger an error. The die()
command tells php to stop the execution of the program at once
after displaying the contents of the first argument of the die()
function. In our case, it is only a debug output to show that the
method was called and the value of the id field was transferred
correctly.
Now we have created a new action that can be called by clicking
on the Employee-ID in the employee list. Clicking on the id of
the first user in the list generates the following output:
edit called for id:100
Now we want to replace the die() call with something useful:
The form to edit the profile of an employee. To do this, we need
to accomplish a number of tasks:

1. fetch the record of the employee from the database
2. fetch the option lists for departments and job names from

related tables to display them as choices in dropdown lists
3. display a form with different input fields with the data in

them pre filled

We start with a function to fetch data from the database. This
function is implemented in the HRModel:

.../app/HRModel.php:

 <?php
 require_once ...
 class HRModel {
 ...

 /**
 * find a specific employee by his employee_id and return
 * the data in an assoc. array.
 *
 * @param int $eid
 * @return array
 */
 function findRecord($eid) {
 $myvars['EMPID'] = $eid;

 $res = $this->db->fetchAssoc("SELECT employee_id, first_name,
last_name,

 email, hire_date, salary, (nvl(commission_pct,0)*100) as
commission_pct,

 department_id, job_id
 FROM employees
 WHERE employee_id = :empid", $myvars);

return $res[$eid];
 }
 }
 ?>

It should be easy to replace the die() in the controller by a call
to this function and a var_dump() of the returned array. This
way the function can be tested before we continue. This is skipped
here.
The next we need to do is to store the information obtained from
the Model in the view object and write a view script to render
a form for us that has these values as default values in the form
elements. So at first we modify our action method:

Zend Whitepaper PHP and Oracle
Zend Background Paper

9

.../app/controllers/IndexController.php:

 <?
 require_once ...
 class IndexController extends Zend_Controller_Action
 {
 ...
 public function editAction() {
 $id = (int)$this->_getParam('id');
 $view = new Zend_View(array('scriptPath' =>
 <pathToMyApp>/app/views'));
 $view->employeeDetail = $this->hrModel->findRecord($id);
 echo $view->render('edit.phtml');
 }
 }
 ?>

The action method now stores the result of the findRecord call
in the view object and then uses the view script called 'edit.phtml'
to render the form. Now we code edit.phtml:

.../app/views/edit.phtml:

 <?php
 extract($this->employeeDetail);
 ?>
 <HTML>
 <head>
 <link rel="stylesheet" type="text/css" href="/style.css" />
 </head>
 <body>
 <form method="post" action="/index/save">
 <?= $this->formHidden('EMPLOYEE_ID',$EMPLOYEE_ID) ?>
 <table>
 <tr>
 <td>First Name</td>
 <td><?= $this->formText('FIRST_NAME',$FIRST_NAME) ?></td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><?= $this->formText('LAST_NAME',$LAST_NAME) ?></td>
 </tr>
 <tr>
 <td>E-Mail</td>
 <td><?= $this->formText('EMAIL',$EMAIL) ?></td>
 </tr>
 <tr>
 <td>Hiredate</td>
 <td><?= $this->formText('HIRE_DATE',$HIRE_DATE) ?></td>
 </tr>
 <tr>
 <td>Salary</td>
 <td><?= $this->formText('SALARY', $SALARY) ?></td>
 </tr>
 <tr>
 <td>Commission (%)</td>
 <td><?= $this->formText('COMMISSION_

PCT',$COMMISSION_PCT) ?></td>
 </tr>

</table>
 <input type="submit" value="Save" name="save">
 <input type="submit" value="Cancel" name="cancel">

</form>
 </body>
 </HTML>

At first, we switch to PHP mode in this view script to extract the
associative array from $this->employeeDetail into the local scope.
This way, all the different fields of the currently edited record
are accessible via variables with the name of the according DB
field (as seen already in the employeeList). The we start with
linking our style sheet again and opening a normal HTML form.
The form action will be index/save, a new action that we must
integrate in our IndexController. The rest of the page is all like
a normal HTML form with the exception that all the input fields
are generated dynamically via so called View Helpers. These
helpers are a library of methods that the Zend_View provides for
rendering certain HTML tags. In this example we use $this-
>formHidden() to generate a hidden field and $this->formText()
to generate normal text input fields. The first parameter to these
Helpers is always the name of the input field and the second
parameter is the current value. Information about other field
types can be obtained from the Zend Framework Website.
Now we code the saveAction to store the changed values in the
database. This is done again in the IndexController. In order to
do this we must first add an update function to the hrModel. This
will take an EMPLOYEE_ID and an associative array of fieldnames
and values and generate an update query.

.../app/models/HRModel.php

 <?php
 require_once...
 class HRModel {#
 ...
 /**
 * update all fields that are present in the assoc array
 * $row for the employee given in $eid
 *
 * @param int $eid
 * @param array $row
 * @return int Number of affected rows
 */
 public function update($eid, $row) {
 $where = $this->db->quoteInto('EMPLOYEE_ID = ?', $eid);
 return $this->db->update('employees', $row, $where);
 }
 }
 ?>

To accomplish this task, we use the update function of the
Zend_DB Adapter. It requires a table name, an associative array
of key/value pairs for the updated values and a where clause to
determine which records to update. The where clause must first
be generated by inserting the given employee-id into a query
fragment with placeholders. The where clause is generated this
way to enable the DB Adapter to quote the value of $eid correctly
for the given database. This prevents SQL injection attacks in the
where clause. The other values are quoted in the update method
of the DB adapter.
After we have added the needed functionality to the Model, we
can now extend our IndexController to fetch the data from the
HTML form, store it in the array that the update function needs
and call the update function in the Model:

.../app/controllers/IndexController.php

 <?
 require_once ...
 class IndexController extends Zend_Controller_Action
 {
 ...
 function saveAction() {
 // read input variables (should be checked in real application)
 $row = array();
 $row['FIRST_NAME'] = $_POST['FIRST_NAME'];
 $row['LAST_NAME'] = $_POST['LAST_NAME'];
 $row['EMAIL'] = $_POST['EMAIL'];
 $row['HIRE_DATE'] = $_POST['HIRE_DATE'];
 $row['SALARY'] = $_POST['SALARY'];
 $row['COMMISSION_PCT'] =

number_format($_POST['COMMISSION_PCT']/100,2,',','.');
 $this->hrModel->update($_POST['EMPLOYEE_ID'],$row);
 $this->indexAction();
 }}
 ?>

Please note that this action contains no input filtering or validation.
In a real world application you would use the Zend_Validate and
Zend_Filter or other components to check all the data fields from
the $_POST array with a white list approach before using them
in the application to prevent hacking. And also you would want
to check if the values submitted by the user and re-display the
form with according error message if the user entered invalid
data or left required fields blank. This has been left out here to
keep the example simple. In the current preview release of Zend
Framework there is no standard form component in Zend
Framework yet that helps you with this part. Such a component
is under development and will be available in future versions of
Zend Framework. After copying all input values from the POST
request to the new associative array $row, the action method
passes this array along with the EMPLOYEE_ID to the update
Method of the hrModel. After a successful update the index action
is called which results in re-displaying the Employee-List.

Epliogue
We have seen in this session how to install Zend Framework and
how to build a simple web application with it based on the HR
schema that comes with every Oracle installation as an example
database schema. Our sample application lists all employees and
offers a way to edit and save employee records with a simple
form. This shows some of the basic functions and components of
Zend Framework. To turn this rough example into a usable
application, a number of additional things would be needed:

- First of all the save method needs to be extended to do input
validation on the submitted fields.

- Some fields from the database were left out in this example
application because they require some more coding. These
are the fields DEPARTMENT_ID and JOB_ID which should be
implemented as drop down boxes with all rows from the
according database tables as options.

- There is a trigger in the database that requires to update the
field HIRE_DATE to the current date whenever JOB_ID or
DEPARTMENT_ID are changed. This logic would also need to
be implemented.

- Apparently, a function to add new Employees would be needed
and a delete function would also make sense.

- The structure could be further optimized by extracting the
SCRIPT_PATH variables from the source code lines in which
view objects are instantiated. These path information as well
as the Controller Path in the index.php should be taken from
an ini file.

Although there is much room for improvement, this little example
shows how a structured PHP application can be built with the
help of Zend Framework. The standard application structure and
naming conventions help to build the application in the right
way. This gives other developers the chance to start quickly into
application development when they join the project later and
makes maintenance and extending the project much easier and
more efficient.

For further details about Zend Framework look at
http://framework.zend.com

Zend Whitepaper PHP and Oracle
Zend Background Paper

10

Zend Whitepaper PHP and Oracle
Zend Background Paper

w w w . z e n d . d e

Corporate Headquarters:

Zend Technologies, Inc.
19200 Stevens Creek Blvd.
Cupertino, CA 95014
Tel: 1-888-PHP-ZEND

1-888-747-9363
Fax: 1-408-253-8801

International:

Zend Technologies, Ltd.
12 Abba Hillel Street
Ramat Gan, Israel 52506
Tel: 972-3-753-9500
Fax: 972-3-613-9501

Central Europe:

Zend Technologies GmbH
Bayerstrasse 83
80335 Munich, Germany
Tel: +49-89-516199-0
Fax: +49-89-516199-20
E-Mail: info-germany@zend.com

About Zend Technologies
Zend Technologies Inc., the PHP Company, is the leading provider of products and services for developing, deploying and managing business-critical
PHP applications. PHP is used by more than twenty-two million Web sites and has quickly become the most popular language for building dynamic
web applications. www.zend.com

ZEND: The holistic approach to PHP
• Application management and availability with Zend PlatformTM

• Development of PHP applications with Zend StudioTM, the leading development environment for PHP
• Certified and officially supported PHP installations with Zend CoreTM

• Access to expertise of leading PHP experts with Zend Professional ServicesTM

• Improved PHP knowledge through Zend TrainingTM offers
• Protection of intellectual property and source code and administration of licensing models with Zend GuardTM

• The certified and manufacturer-supported collection of PHP components and PHP libraries – Zend FrameworkTM

• First class 24/7 support via the Zend NetworkTM

France :

Zend Technologies SARL
5, Rue de Rome, ZAC de Nanteuil
93110 Rosny sous Bois, France
Tel : +33 1 4855 0200
Fax : +33 1 4812 3132

UK:

Zend Technologies
50 Basing Hill
London NW11 8TH, United
Kingdom
Tel.: +44 20 8458 8550
Fax: +44 20 8458 8550

Italy:

Zend Technologies
Largo Richini 6
20122 Milano, Italy
Tel.: +39 02 5821 5832
Fax: +39 02 5821 5400

© 2007 Zend Corporation.
Zend and Zend Platform are registered
trademarks of Zend Technologies, Ltd.
All other trademarks are the property
of their respective owners.

0220-M-WP-0207-R1-EN

