
Dojo Developer Guide
Dojo Developer Guide place holder page

Part 1: "Introduction"
Dojo provides a lot of power and attempts to make it digestable in layers. For server-side developers,
there's "widgets without coding", for HTML+CSS devs Dojo provides wonderful facilities for
quickly building template-driven widgets, and for serious JavaScript and DHTML hackers Dojo is
the standard library you will wish JavaScript always had.

This book serves as a guide to these layers, introducing concepts as you need them and working
downward from high-level usage to getting your hands dirty in building your own widgets, custom
namespaces, and unit tests.

In the Introduction, you'll get an overview of how Dojo can help you, what problems it solves, and
where in the book you might be able to best find the information you're looking for. Also, remember
that because this book is maintained by the community and is online, you can search it (and the rest
of the Dojo site) at any time.

Lastly, thanks for checking out Dojo and the Dojo Book. It's your applications that have inspired us
to build Dojo and the stories of how people are improving experiences with the toolkit that keep us
going.

Dojo Architecture
Dojo is a set of layered libraries. The bottom most layer is the packaging system that enables you to
customize the distribution of Dojo for your application. On top of Dojo's package system reside
language libraries such as the Dojo event system and the language utilities that greatly improve and
simplify the lives of JavaScript developers. Environment-specific libraries are provided in some
cases, but in most uses, you'll only need to know that all of Dojo works without incident across every
major browser.

The bulk of the Dojo code lives in the application support libraries, which are too numerous to
display completely in the diagram. dojo.gfx provides native vector graphics support across the
major browser implementations of SVG and VML. dojo.lfx is a lightweight effects library, while
dojo.io is "where the ajax lives."

Most of the "action" in Dojo is in the widget toolkit, that contains a template-driven system for
constructing widgets, a declarative parser for putting widgets in pages without writing JavaScript,
and a set of base components that implement common-case solutions to web interaction problems
that HTML+CSS alone cannot solve.

Dojo: What Is It?
Dojo is an Open Source DHTML toolkit written in JavaScript. It builds on several contributed code
bases (nWidgets, f(m) and Burstlib), which is why we refer to it sometimes as a "unified" toolkit.
Dojo aims to solve some long-standing historical problems with DHTML which prevented mass
adoption of dynamic web application development.

Dojo allows you to easily build dynamic capabilities into web pages and any other environment that
supports JavaScript sanely. You can use the components that Dojo provides to make your web sites

Pagina 1 di 114Dojo Developer Guide

more useable, responsive, and functional. With Dojo you can build degradeable user interfaces more
easily, prototype interactive widgets quickly, and animate transitions. You can use the lower-level
APIs and compatibility layers from Dojo to write portable JavaScript and simplify complex scripts.
Dojo's event system, I/O APIs, and generic language enhancement form the basis of a powerful
programming environment. You can use the Dojo build tools to write command-line unit-tests for
your JavaScript code. The Dojo build process helps you optimize your JavaScript for deployment by
grouping sets of files together and reuse those groups through "profiles."

Dojo does all of these things by layering capabilities onto a very small core that provides the
package system and little else. When you write scripts with Dojo, you can include as little or as
much of the available APIs as you need to suit your needs. Dojo provides:

� Multiple Points of Entry - You can start using Dojo at the level you are most comfortable
with. For example, expert JavaScript programmers can use the foundation capabilities to be
more productive quickly, while Web designers and developers can use the set of easy to use,
modify, and extend components that make their applications more responsive without
requiring them to learn a large JavaScript API. This fundamental design decision drives the
layered implementation of most of the major capabilities of Dojo.

� Interpreter Independence - Dojo is squarely a JavaScript toolkit but, within the realm of
JavaScript interpreters and environments, not everything was created equally. Dojo supports at
least the very core of the system on as many JavaScript enabled platforms as possible. This
allows Dojo to serve as a "standard library" for JavaScript programmers as they move between
client-side, server-side, and desktop programming environments.

� Forward Looking APIs - No one has a crystal ball when it comes to what technologies will
be broadly available or used in 5 years, but Dojo attempts to provide APIs that are generic
enough to be (directly) useful with todays capabilities while still building in room for future
improvement. The dojo.io.bind() interface is a great example of this principle: when first
written it wrapped only a single Transport class, but now provides a normalized interface to
many ways of receiving and sending data from JavaScript enabled environments.

� ReducingBarriersToAdoption - This core philosophy behind Dojo's design acknowledges the
fact that tools which are hard to use just won't get used, no matter how good they are. Dojo
should be built in every way (licensing to deployment) to not give users any reason to not trust
or use Dojo for the tasks it's good at. Many of the project's overall decisions get made on the
basis of this principle.

Dojo is being built around a single markup language that provides application authors a (more)
simple way of declaring and using responsive DHTML interface components. Renderings can be
made available in several rendering contexts (such as SVG, or perhaps even the desktop or Flash),
but the markup language (DojoML) and scripting language (JavaScript) will not change. Better yet,
the DojoML parser accepts extended HTML and SVG as valid input, and can be used to easily create
Degradeable Responsive Applications.

Dojo's homepage is: http://dojotoolkit.org.

How this Book is Written
Imagine for a second that you've just come from looking through the API of Dojo. You've
memorized every function, every parameter, every example. All of the API has been studied and
digested, but you're still not sure how to proceed. You know that there are many ways to do event
handling, but you don't know the difference between them and you certainly don't know which one is
best suited for your application.

I've made this assumption in writing the book; it allows me to focus on what's important about the
book, and separate it from the API. With understanding Dojo, the why of Dojo, you're now free to
learn the how by looking at the API. Or, if you already know the API, you're free to learn why it

Pagina 2 di 114Dojo Developer Guide

exists in the first place.

Voice
Me

Though this book is a result of many people's work, I(we)'ll be speaking in the first person
throughout this book. It not only allows a more personal interaction between the reader and the
author, but quite often, describing an author's action is confusing when expressed in the plural form.
"We're now opening our text editor" is an awkward sentence at best.

You

Saying "the reader" every sentence is dumb, and since you already know that you're the one reading
it, I'll just refer to you as "you".

We

Decisions on the coding of Dojo aren't made by a single person. Almost every significant change to
Dojo is done after discussion of how it is engineered. Because of this, I'll run into situations where I
want to discuss how something was decided on. In this case, I'll be using the word "we". As in, "we
decided that we wanted Dojo to be awesome."

The Tree Structure
On the way to a final topic, you'll be going through some higher-level topics. In order to understand
the lower-level topics, and where they fit in to Dojo, you need to have some explanation of how you
got way down there. To do this, each of the points along the tree, all the way down to the edge of the
branch will have a few paragraphs of explanation. These are overviews for all topics contained
underneath. It's worthwhile, if you have a specific topic that you want to read about, to go down the
tree, reading each of the brief descriptions, before you read the article itself.

Articles
Readability

I want this to be more a book than a user manual. Therefore, I've tried to use fun analogies and brief
stories. Many topics of this book are very difficult to process, and using existing knowledge to bring
you up to speed is a great way to make these easy to digest. As a general guideline, I'll try to start an
article with a paragraph, followed by a brief analogy or story, flowing into content. Because I don't
want you to feel overwhelmed by code, examples will not be back to back. I think that if I have
multiple examples, it's important to explain why I provided each one and the differences between
them.

Length

I think that the moral of the story of Goldilocks and the Three Bears is that things should neither be
lacking, nor in excess, they should be "just right". That said, there's nothing worse than sitting down
to get your learn on and be constantly switching from one topic to another, from one page to another,
when you want to stay focused on what originally brought you to the article to begin with. Likewise,
you don't want to get halfway through an article and realize that you missed both lunch and dinner.
To prevent this, as a general guideline, each article in this book should take you about twenty

Pagina 3 di 114Dojo Developer Guide

minutes to read. That sounds just right to me.

Sections
I discuss in the book how Dojo is a toolkit, a framework, and everything in between. It's
overwhelming just to learn what Dojo can do for you, much less learn what you can do to Dojo.
Because of this, the book is split into three different parts.

Part 1 is all about using Dojo, the toolkit. That is, looking at a set of functions and objects that are
available to you "out of the box" that don't require any tinkering. Ideally, you should be able to call a
function, or initialize and object, without providing any custom logic to it.

Part 2 is meant to focus on more than just using things. We want you to know how to build your
own widgets, packages, extend CSS and HTML and get into the nitty gritty of things, such as
replacing the data provider for a widget.

Part 3 is a "look into the engine" explaining not only how thing work but why the Dojo developers
designed them that way. Much of Dojo's code seems to work based on voodoo. For the advanced
programmer, knowing this voodoo will allow you to write tighter, better code.

How to Create Pages

On any page where the dojo.book sidebar appears (including this page) click "create new page". The
new page will have the currently viewed page selected as its parent by default

What Dojo gives you
Because Dojo is a toolkit, it's potential uses are unlimited. The only real restrictions are that you're
using it in an envornment that uses JavaScript. Though many of you will be reading this in the
context of a browser, it's important to remember that JavaScript isn't limited to just that specific use.

Code Simplification

With "Ajax" becoming such a popular buzzword, many are looking for an end-all solution to its
complexities that not only work well in existing environments, but will allow much more
complicated interaction in the future, allowing for very complicated transfer of data between client
and server. With the aformentioned widget functionality, and an easy way to implement your own
widgets, Dojo works very well alongside HTML.

Dojo also abstracts many of the differences between browsers that have pained developers for years.
Things such as differing event objects and HTTP transport systems are a worry that will be
forgotten.

Reusable Code

Dojo provides a launching point for developing code. This means that you can quickly throw a
project together for a client or boss without having to reinvent the wheel. We've built Dojo to be
highly reusable, so code you have created for one project can be quickly moved to another without
any refactoring.

Portable Tools

Pagina 4 di 114Dojo Developer Guide

Responsive applications make many calls to the back-end of web applications which have different
call and response characteristics. Standardizing on a portable set of tools for this is beneficial to
understanding and predicting overall system behavior.

Because Dojo's widget system sits on top of standard HTML, designers will be able to dive right in
with a very shallow learning curve. Dojo allows for designers to add degradable functionality to their
(already existing) page without having to implement any logic or strange programming language.

Additional Resources

This book describes what Dojo provides and how to use the toolkit. You will find detailed
information about the Dojo APIs in the API Reference Doc.

What is a Toolkit?
Many people see the words framework, library, and toolkit as synonymous. This is true in the sense
that they are all descendants of the same parent. Understanding the difference allows you to go
beyond that widely scoped overview.

Three words are used to describe a stereotypical developer: geek, nerd, and dork. Many people
assume that these words all mean the same thing when, in fact, they each have very specific
meanings. Once you learn the meanings of each of these words, you'll quickly be able to run down
the list of all of your friends listening to techno in dimly lit rooms and sort them into each category.
Even better, you now have the power of more accurately describing a person.

Geeks, Nerds, and Dorks: A geek has a very focused knowledge of a subject (that guy
that memorized the language of myst), a nerd is a master at many subjects (that girl you
go to when you need homework help), and a dork is just plain socially inept (Napoleon
Dynamite).

Framework

In software development, a framework is a defined support structure in which other project can be
organized and developed. A framework typically consists of several smaller components; support
programs, libraries, and a scripting language. There may also be other software involved to aid in
development and meshing of the different components of a project. As you can see, dojo could be
part of a framework, but it isn't a framework in itself.

Library

A library is defined as a collection of related functions and subroutines used to develop software.
They are distinguished from executables in that they are not independant programs; rather, they are
"helper" code that provide access to common functions in one easy to manage location. After reading
this you are probably saying, "Hey! dojo is a collection of libraries!", and you would be correct;
however, dojo is much more than just a collection of libraries.

Toolkit

Now on to toolkits. A toolkit is generally used in reference to graphical user interface (GUI) toolkits.
Basically, a library that is mainly focused on creating a GUI. Yes, dojo could also fall under this
category, in fact our name implies it. Why do we call dojo a toolkit? Certainly not because it focuses

Pagina 5 di 114Dojo Developer Guide

mainly on GUI development, right? Well quite simply, because dojo is so much more than just a
collection of libraries.

None of the Above?

The previous paragraphs have probably left you still wondering what exactly we consider dojo.
Obviously it is not a framework, but is it a toolkit or a library? Let's solve this once and for all.
Typically, a library is a predetermined file that you include into your application, and that is how you
gain access to those functions. However, with dojo, we have wrapped a package system around our
libraries. This brings a slight twist to the idea of a library.

With this system we have broken each library up into several pieces. You have the core functions,
and then several sub libraries where related, but less often used, functions are stored. This helps keep
dojo's footprint based entirely on your needs as a developer. More about that will be covered later in
the book but, for now, know that because of this flexibility, dojo is more than just a library, which
falls into the realm of a toolkit with a few added functionalities. So as the name implies, dojo is a
toolkit... and yet is more.

Part 2: "Out of the Box" Dojo
Want to know what Dojo is and how it can help you with your javascript development? In this
section we will walk through the process of putting Dojo to use with its collection of pre-packaged
"Out of the Box" widgets that can get you using Dojo right away. We will focus on developing
programs using existing dojo components. This section will not get into any advance features, as
they are included in future chapters. If you are new to Dojo or even new to JavaScript, then this
chapter is for you. If, however, you are a seasoned programmer, you can still find reading this
section purposeful as it will provide a helpful overview to the Dojo toolkit.

The sample application is the familiar Hello World app however, it does introduce the main features
of Dojo and will build the foundation for developing much more sophisticated web applications.

Thanks to Lance Duivenbode and Seth Fair for help in writing this chapter.

Development and Debugging Tips
This section talks about some of the tools available to help develop JavaScript programs. With the
increasing popularity ofJavaScript there surely will be alot of changes in this space in a relatively
short time. In this section you will find helpful tools that may or may not be part of Dojo.

Also remember to check the Dojo FAQs especially the Common Pitfalls section.

Debugging JavaScript
There are excellent tools to help write and debug Javascript - it isn't all about liberally using alert()
any more!

IDEs

IDEs are available which support a wide range of web development activity, including editing
Javascript and HTML files, deploying code to servers, and integration with existing features like
source control. In addition, some include runtime tools and browser integration to assist in
debugging (for example, myeclipse and ATF)

Pagina 6 di 114Dojo Developer Guide

If you use one of the JavaScriptEditors that checks your syntax as you enter your code, you can be
warned immediately of simple errors and save yourself a lot of time. Some Eclipse plugins even
specifically support Dojo idioms by giving you tooltips for common Dojo functions and doing more
complex analysis for errors (not just normal syntax checking).

Browser specific tools

Mozilla/Firefox

� The Web Developer Toolbar is brilliant.
� The Firebug extension is a must for debugging and inspecting html pages - dojo.debug can

also be configured to output directly to Firebug's console. It contains a simple Javascript
debugger too. just use dojo.require("dojo.debug.Firebug") in your pages.

� Venkman is the mozilla javascript debugger - ugly and cantankerous, but it can be useful if
you need to debug in FF. Note that in general the IE debugger is much better. Use the
venkman port for FF1.5.

� Live HTTP Headers is a good extension for debugging HTTP traffic (You may prefer to use
the equivalent functionality that exists in the in Firebug extension).

� JavaScript Shell - While it's not a debugger, I've found the JavaScript Shell to be a really great
tool for analyzing problems, and even just exploring JavaScript libraries like dojo. Works best
as a firefox bookmarklet, in which case you can open it in the context of any given page and
invoke javascript functions yourself, evaluate expressions, redefine functions, etc.

Debugging on Firefox may need you to use the djConfig flag debugAtAllCosts (see further below
for information). The debugAtAllCosts flag is sometimes necessary to locate exceptions or syntax
errors. Even without the debugger, Mozilla and Firefox are unable to locate a line of code loaded by
dojo.require() due to a flaw in the way eval() debugging hooks are implemented in Spidermonkey.
Currently, the Javascript console will report all source references as the location of the eval() call
itself (in the bootstrap code), but with an additional line offset equal to the offset in the
corresponding *.js file.

Firefox Safe Mode

If you are having wierd problems with Firefox, it is often worthwhile running Firefox in safe mode.

This is because installed extensions can interfere with the DOM tree, CSS, or even with javascript.
In Windows there is a shortcut to start Firefox in safe mode from within the Mozilla Firefox folder,
from the Start button.

Internet Explorer

� Microsoft Script Editor Ã¢â‚¬â€œ very stable, part of MS Office web scripting add ons.
� Visual Web Developer Express is free.
� Visual Studio .NET has a built in Javascript debugger if you have Visual Studio.
� Microsoft Script Debugger a piece of crap compared with MSE.
� IE DOM Inspector is awesome (commercial product with 15 day free trial)
� IE Developer Toolbar is super useful (free from Microsoft)
� DOMSpy is ok
� IE DocMon is pretty good

If you are using a debugger with IE, go to Tools | Options | Advanced and make sure that Disable
Script Debugging is not ticked. Using debugAtAllCosts can also help significantly - read about it
below.

Safari

Pagina 7 di 114Dojo Developer Guide

The debugger is Drosera.

The Safari Developer FAQ has some general information about developing with Safari, as well as
instructions on how to turn on a debug menu that allows showing a Javascript console.

There is a "dom inspector" type tool, but it requires using a nightly build of Safari.

debugAtAllCosts

debugAtAllCosts may have unobvious side-effects - you should only use it if you are actually
debugging. If you hit problems with files not loading or __package__.js then check that you are
using writeIncludes() correctly, and try removing this flag to ensure that the flag is not the issue.

You generally should not use a packaged build if you want to debug, because in a packaged build the
majority of code will end up in your dojo.js file (and usually be obfuscated due to compression).

The easiest way to understand how it helps with debugging is to see it's effect within a debugger. For
example within Visual Web Developer Express the image on the left is when using debugAtAllCosts
and the RHS image is without debugAtAllCosts being used:

To use it needs one more line in your page. Here's how you might use it:

<script>
 djConfig = {
 isDebug: true,
 debugAtAllCosts: true
 };
</script>

<script src="/path/to/dojo/dojo.js" />
<script>
 // dojo includes here
 dojo.require("dojo.myModule");
 dojo.hostenv.writeIncludes(); // this is a new lin e
</script>

You cannot do this for files that are packaged into your dojo.js (Of course, using packaged files makes debugging hard in other ways too!).

Profiling

Javascript is slow and you want to speed it up?

Use a ProfilingJavascript tool to help you find the functions where all the time is spent, and
optimise those routines.

Traffic analysis

A great many problems can be resolved by watching the traffic between the browser and the
server. If you are having any problems with Ajax calls such as bind() or with js/html/css/jpg files
not loading as you would expect, this is often the best way to diagnose them quickly. Also if you
are having problems with required files not loading then this is a good starting point to find out
why.

Pagina 8 di 114Dojo Developer Guide

� Fiddler is a fantastic HTTP header and content inspector for Windows. It understands HTTP
and presents the information very clearly (once you get used to its slightly quirky interface).
Well integrated with IE, but work s with any browser. With FF a useful extension to help
use Fiddler is the Switch Proxy extension (scroll down that page to find it).

� Ethereal is great for sniffing all kinds of network traffic.

How do I debug syntax errors? aka How can I find this
syntax error in bootstrap?

Sometimes Dojo's error messages about syntax errors are really cryptic due to how dojo loads files
via dojo.require(), however you can get a better message by simply directly including the js file
with the [script] tag.

The debugAtAllCosts flag can also be used.

There's also a lint program that Brian has recommended.

You can also find the debug error message in the dojo source code and remove the corresponding
try/catch statement so that when the error occurs you get a debugger breakpoint instead of a dojo
debug message.

Javascript debugger statement

Javascript has a debugger keyword that forces a breakpoint to occur. Just insert debugger; and if
you have a debugger for your browser, then it will stop at the debugger keyword.

This is especially useful when using Venkman, because otherwise it can be difficult to get
Venkman into debugging mode (e.g. you try to click on a line of source and it puts in a [F] future
breakpoint).

It also works with the Firebug extension for Firefox.

Debug Messages

You can debug the old fashioned way (print statements in the code). There are three functions for
this:

� dojo.debug - prints a message
� dojo.debugShallow - prints all the members in an object
� dojo.debugDeep - opens new window w/tree showing structure of an object

Debugging output:

� FireBug object - this will print debugging output to the Firebug console
� DebugConsole - will capture all your debug messages in a floating pane.

Alternately, in djConfig, you can specify which element they are appended to by

providing an id of that element: i.e.:

var djConfig = {

isDebug: true,

Pagina 9 di 114Dojo Developer Guide

debugContainerId : "dojoDebug"

};

and have a div

<div id="dojoDebug"></div>

JavaScript Editors

Editors/IDEs

ATF (Eclipse)

Ajax Toolkit Framework is an incubator project within the Eclipse Web Tools Project. It is also a
pluggable framework for other AJAX tools. It provides Javascript syntax checking, server
deployment, Mozilla embedding, runtime tools such as XHR Monitor, and a debugger based on
Mozilla Spidermonkey, JSD, and the Eclipse debug UI. Eclipse integration provides access to
existing plugins like ant, subclipse for SVN, server development tools, etc. AJAX "Personalities"
provide the potential for tighter integration with Dojo and other toolkits, although so far very little
has been done in this area.

There's visual Javascript validation built into ATF. It includes both basic syntax validation and
optionally Jslint validation for less obvious potential syntax problems. It works just like MS Word
as-you-type spellchecking and Eclipse as-you-type Java validation - as you type if you make a
syntax error (or just do something somewhat sloppy) you'll get a red or yellow squiggly under the
warning/error and an explanation in the margin. A background task will run validation against all
files and place markers in the code such that you can see errors across a project.

You can download and use ATF and its prerequisite Eclipse components (Eclipse SDK, WTP,
EMF, GEF, JEM, xulrunner) and choose to use all of ATF or just install the "javascript" feature
which implements this validation.

Note - you have to fetch and manually install jslint.js, Dojo and xulrunner due to Eclipse policies -
make sure to read the ATF readme to get the full functionality of ATF.

JSEclipse

JSEclipse is a commercial Eclipse plugin which provides a rich Javascript editor with support for
syntax validation, code completion and Dojo idioms.

MyEclipseIDE

To be written...

JS-Sourceror (Eclipse)

JS-Sourceror performs syntax checking and variable type and flow analysis on JavaScript files.

JavaScript plugin for jEdit

Pagina 10 di 114Dojo Developer Guide

See http://skrul.com/blog/projects/javascript

It also does syntax checking, as well as scope checking and structure browsing.

Profiling JavaScript
Profiling is the term for looking at where time is spent by any Javascript code. If you have a
problem with code taking too long, then it helps to use a profiling tool to diagnose exactly where
all the time is being used.

When using some profiling tools you may need to use debugAtAllCosts and not a packaged
version of Dojo (see DebuggingJavascript). Using debugAtAllCosts will enable the profiling tool
to allocate time spent per function to the correct source file -- otherwise you will end up with the
elapsed times being allocated to anonymous functions which will make it difficult for you to
understand!

Profiling Tools

dojo.profile

dojo.profile is a package that implements timing primitives for recording how much time is spent
in particular functions. To learn how to use it, the best resource is to search the tests directory and
look at how it is used by various tests.

FireBug 1.0

Displays the time it took to load each file.

Venkman (for Firefox)

Free but a bit buggy to use. I have found it easiest to get into debugging mode with Venkman by
using a debugger keyword in your sourcecode. Run the Venkman debugger, then run your code
and it will stop at the breakpoint.

Venkman contains a profiling tool, although the reports are a bit difficult to use. It does work.

Tito web studio

It seems it does not work with Dojo. It modifies JavaScript, and obviously in some manner
incompatible with Dojo.

Manually do it yourself

Get the time at the start and end of a routine, and calculate the difference. Not a great technique,
because you have to make educated guesses as to where the inefficient areas are, and it may take
quite a lot of work to home in on the problem area.

But it is easy to do if you are measuring a single function:

function() {

var startTime = new Date();

Pagina 11 di 114Dojo Developer Guide

// do something here

dojo.debug("Total time: " + (new Date() - startTime));

}

Or another example of code to do this is on this page near the top under the heading "Measure
your changes".

Getting Started
If you are new to Dojo or want a quick overview of the toolkit then take a look at the HelloWorld
Tutorial. This tutorial describes step by step how to build a simple Dojo application. You will
learn some basic concepts about widgets, events and how to connect to the server code. Each step
builds on the previous until you have a working application. It takes about an hour to go through
the tutorial.

Adding Dojo to Your Pages
Dojo offers many editions of its code base. At first, it might seem daunting to try to figure out
exactly which one you need. To quickly dispel any worries, let me assure you that every single
edition of dojo provides a fully functioning system. Whether you download one of our editions, or
the full, uncompressed source code, you'll be able to perform any of the examples discussed in this
book.

TODO: fold in information from the README

In order to use dojo in your HTML pages, you need three sections of code, in this order:

1. Flags

<script type="text/javascript">
 djConfig = { isDebug: false };
</script>

The flags control various options of dojo; often developers will set isDebug to true in order to get
debugging output on their page. (There are also some other flags related to debugging; see the
Debugging section of the code for details.)

2. Include the dojo bootstrap

<script type="text/javascript" src="/path/to/dojo/d ojo.js"></script>

This includes the bootstrap section of dojo, and if you are using a release build, then dojo.js will
also include code for some of the dojo modules.

3. Define what resources you are using

Pagina 12 di 114Dojo Developer Guide

<script type="text/javascript">
 dojo.require("dojo.event.*");
 dojo.require("dojo.io.*");
 dojo.require("dojo.widget.*");
</script>

This section is much like java's "import" statement. You specify every resources that you are using
in your code. However, note that widgets are a special case and don't need to be declared
explicitly, assuming that (as is the case with the built-in dojo widgets), a manifest file defines
which widget is in which resource file.

Pre-Packaged Builds
Even though Dojo is made up of many different packages, it's frequently used in very specific
ways. Because of this, we've created special editions of Dojo aimed toward these users. A visit to
dojo's download page will show you which editions are currently available, such as the Ajax and
Widget edition.

An edition is very simple, really. The important file is dojo.js, which is created by merging the
most frequently used packages and compressing the resulting code. This means that when you
have a script tag that calls dojo.js, you're getting not just the basic Dojo codebase, but the
additional functionality that is most pertinent to your specific use.

You might wonder why so much additional code comes in each edition. This is the full code base,
and allows you to use functionality that is outside of your specific build. It means that even if you
have a very specifically tailored edition of Dojo, you aren't limited to only using that featureset. If
your site uses the event and I/O systems heavily, but one of your pages uses a widget, then you
don't have to worry that your widget will break. This also means that any of the examples in this
book will work no matter what edition you've downloaded.

Introducing Dojo Events
Events in JavaScript or Dojo based applications are essential to making applications work.
Connecting an event handler (function) to an element or an object is one of the most common
things you will do when developing applications using Dojo. Dojo provides a simple API for
connecting events via the dojo.event.connect() function. One important thing to note here is that
events can be mapped to any property or object or element. Using this API you can wire your user
interfaces together or allow for your objects to communicate. The dojo.event.connnect() API does
not require that the objects be Dojo based. In other words, you can use this API with your existing
interfaces.

Below is the code in the tutorial handling events. Here we connected the event handler,
helloPressed, to the onClick property of the hello button element. When the button is clicked the
funtion helloPressed will be called.

 function helloPressed()
 {
 alert('You pressed the button');
 }
 function init()
 {
 var helloButton = dojo.widget.byId('helloBu tton');
 dojo.event.connect(helloButton, 'onClick', 'helloPressed')
 }

Pagina 13 di 114Dojo Developer Guide

It is also possible to use the Dojo event model to connect simple objects. To demonstrate, lets
define a simple object with a couple of methods:

var exampleObj = {
 counter: 0,
 foo: function(){
 alert("foo");
 this.counter++;
 },
 bar: function(){
 alert("bar");
 this.counter++;
 }
};

So lets say that I want exampleObj.bar() to get called whenever exampleObj.foo() is called. We
can set this up the same way that we do with DOM events:

dojo.event.connect(exampleObj, "foo", exampleObj, " bar");

Now calling foo() will also call bar(), thereby incrementing the counter twice and alerting "foo"
and then "bar". Any caller that was counting on getting the return value from foo() won't be
disappointed. The source method should behave just as it always has. On the other hand, since
there's no explicit caller for bar(), it's return value will be lost since there's no obvious place to put
it.

In either case, each time dojo.event.connect is called with the same arguments it will result in
multiple connections. Later we will discuss strategies on how to guard against this.

Notice that dojo.event.connect takes a different number of arguments in the examples above.
dojo.event.connect determines the types of positional arguments based on usage.Ã‚Â

The Dojo event system allows you to connect to DOM elements or nodes or plain JavaScript
objects. The API is sophisticated enough that it allows you to connect multiple listeners to a single
object so you can have multiple actions as a result of a single event such as a mouse click. Of
course there is an API to disconnect the listeners too.Ã‚Â The Connecting the Pieces chapter
describes the Dojo Event system in more detail.

Introduction to dojo.io.bind
At Dojo, we're committed to making DHTML applications usable, both for authors and for users,
and with a lot of help from our friends, particularly Aaron Boodman and Mark Anderson, we have
come up with solutions to the usability problems outlined above. We're providing it in a single,
easy to use API and a package that requires only two files to function. The dojo.io package
provides portable code for XMLHTTP and other, more complicated, transport mechanisms.
Additionally, the "transports" that plug into it each provide their own logic to make each of them
easier to use.

Most of the magic of the dojo.io package is exposed through the bind() method. dojo.io.bind

() is a generic asynchronous request API that wraps multiple transport layers (queues of iframes,
XMLHTTP, mod_pubsub, LivePage, etc.). Dojo attempts to pick the best available transport for

Pagina 14 di 114Dojo Developer Guide

the request at hand, and in the provided package file, only XMLHTTP will ever be chosen since
no other transports are rolled in. The API accepts a single anonymous object with known attributes
of that object acting as function arguments. To make a request that returns raw text from a URL,
you would call bind() like this:

dojo.io.bind({
 url: "http://foo.bar.com/sampleData.txt",
 load: function(type, data, evt){ /*do something w/ the data */ },
 mimetype: "text/plain"
});

That's all there is to it. You provide the location of the data you want to get and a callback function
that you'd like to have called when you actually DO get the data. But what about if something goes
wrong with the request? Just register an error handler too:

dojo.io.bind({
 url: "http://foo.bar.com/sampleData.txt",
 load: function(type, data, evt){ /*do something w/ the data */ },
 error: function(type, error){ /*do something w/ the error*/ },
 mimetype: "text/plain"
});

Errors and Timeouts
Regular web requests and Ajax requests with dojo.io.bind are much alike. Both use URL's and
both use the HTTP protocol. But with browser requests, it is always clear to user when something
goes wrong. You may get a 404 - Page Not ound, or a Server Unavailable, or at least something
that says "Error". Ajax requests happen in the background, so when they error out the user won't
know. Even worse, if the response never comes the browser may appear to lock up.

That's why it's extremely important to provide an error handler and a timeout handler with
dojo.io.bind. You should consider these as critical as URL or the load function

At the very least, you should alert the user that something went wrong. Here's an example:

var kw = {
 url: "/cgi-bin/timeout.cgi",
 load: function(type, data, evt){
 document.myForm.myBox.value = data;
 dojo.byId("boxLoadTime").innerHTML = new Date();
 },
 error: function(type, data, evt){
 alert("Holy Bomb Box, Batman! An error occurred: " + data);
 },
 timeoutSeconds: 2,
 timeout: function(type, data, evt){
 alert("I am tired of waiting.");
 }
};

The error() function takes the same arguments that load() does. But unlike load(), the only useful
parameter is data, which contains the error message.

The timeoutSeconds and timeout parameters should be used together. timeoutSeconds defaults to
0, which means "wait forever". (In other Ajax libraries, this is called a synchronous request). 0 is
not desirable. Even if you expect the request will take a long time, you should set a high value here

Pagina 15 di 114Dojo Developer Guide

(e.g. 3600 = 1 hour), not 0. The timeout function takes the same arguments as error() and load(),
but they are rarely consulted.

Hello Ajax World
So let's apply this to a trivial example. Suppose you have a text file on the web server with url
my_message.txt.

Hello Ajax World!

You would like to load the file contents in an INPUT box without refreshing the page. Here's how:

<html>
<head>
<title>Insert title here</title>
<script type="text/javascript" src="/js/dojo/dojo.j s"></script>
<script type="text/javascript">
 function loadRemotely(e) {
 var kw = {
 url: "my_message.txt",
 load: function(type, data, evt) {
 document.myForm.myBox.value = data;
 dojo.byId("boxLoadTime").in nerHTML = new Date();
 },
 method: "GET"
 };
 dojo.io.bind(kw);
 }

 function initAjax() {
 dojo.event.connect(dojo.byId("loadIt"), "on click", "loadRemotely");
 }
 dojo.addOnLoad(initAjax);
</script>
</head>
<body>
 Form loaded at:
 <script type="text/javascript">document.write(n ew Date());</script>

 <form name="myForm">
 <input type="button" id="loadIt" value="Click h ere to load value.">

 <input type="text" name="myBox" size="50" />
 Text loaded at: N/A</spa n>
 </form>
</body>
</html>

Click the button and the value in my_message.txt automatically loads into the box. The date and
time stamps on the page prove it does not reload when the user clicks the button.

This demonstrates the bare minimum you need for dojo.io to connect with Ajax. At the very least,
you need an object of type dojo.io.Request. In our examples, this is the "kw" variable.
dojo.io.Request needs the following:

� url is the URL containing content - usually generated on the server, and often using a

Pagina 16 di 114Dojo Developer Guide

database
� load(type, data, evt) is the function called after the URL has been retrieved. This is an

example of a callback function. It must have both parameters defined, although you don't
need to read both of them. data is the most important, and contains the entire content
retrieved from the URL. type is always "load". evt captures data about the load event.

� method is either "GET" or "POST". GET is common - we'll see an example of submitting a
formful of data later on. That will require a POST.

There are many more optional parameters, and we'll see these in later examples.

Then just call dojo.io.bind with the dojo.io.Request variable. Here, bind means "connect this page
with that URL and let things happen."

Why do all that for some static text? The answer is ... you won't. The URL is going to be a server-
side program which returns content - mostly XML (the "X" in AJAX), but it could be text, HTML,
or even binary data.

Sending Form Data
The Url of dojo.io.Request may contain parameters, like so:

url: 'myprogram.php?firstname=Chicken&lastname=Lit tle&key=111111'

There are two problems: (1) it's difficult to URL encode everything, (2) it doesn't allow for
dynamic parameters. The above works fine for everyone named Chicken Little, but ...

It's easier and more flexible to send an entire form of data. And you can do that with the formNode
parameter of dojo.io.Request.

<script>
var kw = {
 url: "myprogram.php",
 load: function(type, data, evt){
 document.myForm.myBox.value = data;
 },
 error: function(type, data, evt){
 alert("Holy Bomb Box, Batman! An error occurred: " + data);
 },
 timeoutSeconds: 2,
 timeout: function(type, data, evt){
 alert("I am tired of waiting.");
 }
 formNode: dojo.byId("myForm");
};
dojo.io.bind(kw);
</script>

<form id="myForm">
 <input type="hidden" name="key" value="111111" />
 <input type="text" name="firstname" length="50" / >
 <input type="text" name="lastname" length="50" />

 <input type="text" name="myBox" length="50" />
</form>

Pagina 17 di 114Dojo Developer Guide

Modules, Resources, and Widget Namespaces

Modules

Dojo's code is split into logical units called modules. These are much like packages in Java, except
that in Dojo a module can contain both constructors (like classes in Java) and simple functions.

For example, the "dojo.html" module contains a number of functions, such as
dojo.html.getContentBox(). The "dojo.dnd" module contains a number of constructors for things
like HtmlDragObject etc.

Note the naming convention - functions start with a lowercase letter, and constructors (which are
technically functions but act more like classes) start with a capital letter.

Modules could be called "namespaces", except for the fact that "namespaces" has a different (but
related) meaning w.r.t. widgets.

Resources

In the simple case, a Dojo module is defined in a single JavaScript file. But sometimes, a single
module is split into multiple files.

For example, the dojo.html module, although originally defined in a single file, was getting too
big, so we split into multiple files. This is for performance reasons, so that the browser only
downloads the code it needs.

Unfortunately this implementation detail is not transparent to the Dojo user. You have to know
which file contains the functions you need, and then include that file explicitly.

Each of these files is called a resource.

The line:

dojo.require("dojo.html.extras")

will include the file src/html/extras.js, which in turn defines some of the functions (but not all the
functions) in the dojo.html module.

A single JavaScript file never defines multiple modules, although often a single file will define
multiple constructors. In Java this would be equivalent to defining two classes in the same file.

All of this complication is for performance reasons, trying to balance

� not downloading more stuff than you need
� not downloading too many tiny files

Setting up Require Statments

How do you know what resources to dojo.require()?

Pagina 18 di 114Dojo Developer Guide

1. modules

First, find out what modules you are using. In this example we'll assume you are using
dojo.lfx.html.

2. resources

By reviewin the API doc you can see that dojo.lfx.html is defined in two files:

� src/lfx/html.js
� src/lfx/extras.js

Depending on what functions you are using, you will either do

dojo.require("dojo.lfx.html");

or

dojo.require("dojo.lfx.html");
dojo.require("dojo.lfx.extras");

Wildcards

There is a wild card include, such as dojo.lfx.* . New users might be surprised to learn that this
may not necessarily include everything under lfx. Rather, there is an __package__.js file that
defines what is included with the wild card, and this may also depend on the environment in which
Dojo is loaded. For example, a browser will likely load different modules than Dojo would when
loaded with Rhino on the command line.

dojo.provide()

Each file defining a resource should have (exactly) one line at the top defining the name of the
resource.

Example:

 dojo.provide("dojo.html.extras")

For historical reasons, the dojo.provide() call serves two functions:

1. define the name of the resource (and register that the resource is loaded)
2. make sure that the resource's module exists (ex: make sure that dojo.html exists), so that

statements like "dojo.html.foo = ..." don't fail with an error about dojo.html not existing.

Widget Namespaces

Widgets are combined into groups called namespaces. All the widgets built into Dojo are in the
"dojo" namespace, but someone else could write their own widgets and put them in a different

Pagina 19 di 114Dojo Developer Guide

namespace. For example, you could write your own button and checkbox widgets, and put them
into an "acme" namespace. Then "acme:Button" would be your button, and would be unrelated to
the button object built into dojo, called "dojo:Button".

Information on writing your own widgets occurs later in this book.

Widgets
When browsing through web sites and online applications, there are hundreds of widgets that
come across your screen. Each button in your web browser is a widget. Each text entry box is a
widget. We all know what a limited set of widgets that standard HTML provides: an input box, a
button, a hyperlink.

Dojo widgets take an item like a text input box and adds functionality of a more user friendly
object, like a graphical calendar to choose a date from. And it does this without breaking the
original item on which the new functionality is built on.

The Widget Object
The first thing that you'll notice about widgets is that the are somewhat similar to a macro
expansion, such as C's #define. Your source HTML is a simple

<button dojoType="Button" id="foo"> Click me </butt on>

and yet a pretty blue button shows up, and when you look at the generated DOM, it's a
complicated tree of DOM nodes with a lot of absolute positioning and background images.

But, that's not all there is. For each widget, besides the visible manifestation, there's also a pure
javascript object that manages that generated DOM tree.

In the above case, the generated javascript object is called, unsuprisingly, "foo". You can get it by
doing:

var myButton = dojo.widget.byId("foo");

Turning Plain HTML Into Widgets
A Dojo widget wraps around your HTML. It looks at how the HTML is organized, what type of
tags have been specified, what attributes they have, which tags are children of what other tags. All
of these different variables allow a versatility in how skeletons are laid out, in what tags they use,
in how the widget chooses to interpret them.

More Than One Way to...

You can think of a widget as the final form that covers a skeleton. The top widget layer reflects the

Pagina 20 di 114Dojo Developer Guide

structure and functionality of the skeleton it sits on rather than covering it up.The simplest
example of a skeleton is a single tag. A form input box, for example, is designed to simply accept
a value.

<inputvalue="default">

But what happens when we want to help the user choose from an existing list of items? Enter the
ComboBox widget.

<input dojoType="ComboBox" value="default">

As you can see, this is a functional skeleton. Not only is there an input box if the user does not
have JavaScript enabled, but we can use the widget as part of a normal form. After all, we've only
added on to it, we haven't changed the original purpose of the input element.

But this widget provides no data for the combo box to use.

<input dojoType="ComboBox" value="default" dataUrl= "comboBoxData.js">

If you want to produce valid W3C HTML, you will have to use an alternative method to building
your skeletons.Ã‚Â The dojoType attribute is not recognized by W3C and its validation tool will
complain about it being their.Ã‚Â Below are two examples that do not use invalid attributes to
build on your skeletons.

<input class="dojo- ComboBox" value="default" dataUrl="comboBoxData.js">

<dojo: ComboBox value="default" dataUrl="comboBoxData.js">

When there are certain attributes (dataUrl in this example), this widget will use that information to
process the information to be contained in the combo box.

Sometimes you'll have skeletons defined in code and not even know it. In fact, many of the
widgets provided by dojo assume that the underlying HTML is the same that would be
encountered in every day life. Making this select element into a widget is as simple as adding the
dojoType attribute.

<select dojoType="combobox">
 <option value="foo">foooption>
 <option value="bar">baroption>
 <option value="baz">bazoption>
 <option value="thud">thudoption>
select>

As you can see, you've just gained a whole lot of something for nothing. And, the data that will be
used in the combo box is provided in a way that any web designer would understand.

TODO: this section needs to differentiate between ComboBox and Select.

Pagina 21 di 114Dojo Developer Guide

Why Use Widgets?
You may ask yourself, "Why would I use wigets?" I honestly couldn't have answered this a few
months ago, before finding Dojo anyway. The answer is really quite simple once you see how
widgets improve the functionality and appearance of your web applications, without taking a long
time to implement.

Enhanced User Experience

Widgets "enhance the user experience".Ã‚Â In layman's terms, that means that you can design
web pages that are easier for people use, more quickly understandable, less error-prone, and
flashier than web pages in plain html.

Easier to use - the Select widget for example, will narrow down the list of available choices based
on keystrokes the user enters. That makes it faster to use than a normal HTML select box.

More quickly understandable - a web page with tabs will let the user easily navigate between
different sections, and helps to make clear all the different sections of code that are on one page.

Less error prone - validation widgets will immediately notify users when they have entered an
incorrect value, and/or automatically correct the value.

Flashier - dojo's menu code will fade in / out menus, or use some other effect, rather than a plain
appear/disappear that you get with pure CSS menus

Faster Development

Widgets make it easy for web developers to add enhanced functionality. Here's why:

No Javascript Required

Web designers are generally very good with HTML. The really good ones are usually so involved
in design that they don't even bother with learning the extra stuff that comes along with its
dynamic aspect.

For these kinds of users, specifying widgets via HTML is a great solution. Not only is markup
useful for being able to design with a placeholder element laying in wait, but many of the widgets
actually analyze what they've laid out and use them as if properties were passed to the JavaScript
object.

A great example of this is the tree widget. All that the designer has to do is lay out an HTML list,
assign some attributes and they can have things going without having to touch a bit of code.

No worrying required

Widgets solve a bunch of issues (like cross-browser support) behind the scenes, so you don't have
to worry it. See the next section for more detail about that.

Part 3: "The Dojo Programming Model"
Using Dojo to add dynamic capbilities to your web applications can be a little daunting at first.

Pagina 22 di 114Dojo Developer Guide

Let's look at the programming model in more detail to better understand how to use Dojo to build
some really cool apps. The programming model is object-oriented inspired and includes "classes"
with methods and multi-level inheritance coupled with aspect-oriented event model famous in
JavaScript. You will find the API doc quite useful to determine the methods and properties that are
inherited from the parent "classes".

Thanks to Eugene Lazutkin and Bill Keese for help on this chapter.

Declarative vs Programmatic model
Dojo supports two programming models, declarative and programmatic. Which one you use
depends on what you are doing. In most cases, the declarative model may be easier to use as it is
markup but there are times when you will use the programmatic model. You can, of course,
intermix the models on the same page as needed.

The best way to show the models is through the use of widgets which can be used either
declaratively or programmatically. Although both models are available we will mainly use the
declarative model through out this book when both are an option.

The tutorial used the declarative model to create a button on the page using the code below.

<BUTTON widgetId="helloButton" dojoType="Button">He llo World!</BUTTON>

The following declarative formats are equivalent.

 <?xml:namespace prefix = dojo /><dojo:widget></doj o:widget>

 <DIV dojoType="widget">

 <DIV class=dojo-widget></DIV></DIV>

We will discuss the declarative model in more detail shortly.

You can also declare widgets programmatically using the dojo.widget.create API as follows.
When declaring widgets programmatically, the API returns the widget id which you use to call the
appropriate methods.

var myTabPane= dojo.widget.createWidget("TabPane", {id: "myTabPane"}, srcDiv);

Which approach to use is discussed later in the book but for now we want to introduce the idea
that you have different options.

Infrastructure

Before we get into the declarative model let's look at the widget infrastructure to better understand
what methods are available when using widgets in your pages.

� Lifecycle methods are called by the infrastructure when a widget is created. They are not
meant to be called by the user.

� Internal methods are called by the widget class code for supporting functionality and are

Pagina 23 di 114Dojo Developer Guide

"private" and not meant to be called by the application developer. Unfortunately there is no
easy way to identify the lifecycle or internal methods. We are working on conventions that
will help identify these methods in future releases.

� "on" methods begin with the string "on" and are available to application developers. These
are called by the widget infrastructure based on an action or event. Application developers
can provide application specific code for these methods and those that application specific
code will be called automatically when the related event or action is triggered.

� Developer methods are the rest of the methods in the widget. They are provided for use in
the programmatic model.

In addtion to methods, each class has parameters that are useful. There are two types of parameters
listed here.

� init parms are set at initialization time and then are readonly
� rest of the list should be in the API doc

Declarative model

dojoType instructs Dojo how to process the element when the page is loading. Keep in mind that
Dojo manipulates the DOM as it renders the page so you must use the Dojo APIs to access the
widget ids. Dojo keeps a reference of all widgets it has created that can be accessed with the
dojo.widget.byId function - providing you specify either the widgetId or id attribute in your
markup. Also you can use dojoAttachEvent using this method.

Namespace Details
In order to make namespaces practical and easy to use, Dojo has a concept of modules and
resources. This concept was introduced in Part 2 Modules, Resources and Widget Namespaces
when we first saw the HelloWorld tutorial. Resources are used to define a namespace and can be
dynamically loaded on demand.

In order to load a resource you should request it using dojo.require(). It takes a string of text,
which denotes a downloadable component. The content of this string is interpreted and a subject of
Dojo conventions. First, it is traced to a single JavaScript file on disk (on web server). There are
ways to affect this interpretation but out of the box it has a very sane behavior:

dojo.xxx => dojo/src/xxx.js

dojo.xxx.yyy => dojo/src/xxx/yyy.js

dojo.xxx.yyy.zzz => dojo/src/xxx/yyy/zzz.js

and so on. For example if you see a statement like that:

dojo.require("dojo.json");

Pagina 24 di 114Dojo Developer Guide

It will load a file named dojo/src/json.js. If you don't know what it contains, you can go and look it
up. To sum it up: a namespace hierarchy essentially reflects a file system hierarchy. By
convention, if you see somebody using dojo.foo.bar.baz(), you can find it's definition in
dojo/src/foo/bar.js, or, if it is not there, in one of files of dojo/src/foo/ (more on that case later), or
in dojo/src/foo.js.

Dojo allows you to define your own resources and modules. For your custom resource you define
your own top-level object. I will use "example" in my examples. If the Dojo loader sees that the
first component is not "dojo", it applies following rule:

example.xxx => dojo/../example/xxx.js

example.xxx.yyy => dojo/../example/xxx/yyy.js

example.xxx.yyy.zzz => dojo/../example/xxx/yyy/zzz.js

Essentially it means that on your web server next to the "dojo" folder there is an "example" folder,
which files are interpreted in the same way.

There is more information about the namespace and how it is used in the Widgets chapter.

Object Oriented concepts and inheritance
JavaScript is at its heart an object oriented language, but it is a prototype based object oriented
language which does not have the same structure as class based languages like Java.This concept
can be hard for new programmers who are not familiar with its construct. Dojo brings the object
orientedness into a more familiar domain by modeling concepts that can be followed from Java
and letting the toolkit handle the prototyping, inheritance and odd procedures JavaScript requires
to make it work. Because of this, it not only allows people to get programming in object oriented
JavaScript quicker, but it makes it faster to program because you can let the toolkit handle all of
the odd procedures JavaScript requires to make it work. It all begins with a simple dojo.declare()
function.

Simple declaration

Classes in Dojo are declared with a declare statement and assigning it a Class Name.Within the
body can be variables, methods and constructors (know in Dojo as an initializer).

dojo.declare("ClassName",null, {

//class body

});

(Note: ClassName is the basic name, but to avoid naming conflicts, use package names like
my.class.ClassName. For simplicity sake, we will start out with using just the simple name.)

Pagina 25 di 114Dojo Developer Guide

Let's add some more content to our class by giving it a name and showing what the initilizer can
do.Following is a persons class with an initializer and a moveToNewCity() function:

dojo.declare("Person", null, {
 //acts like a java constructor
 initializer: function(name, age, currentResidence){
 this.name=name;
 this.age=age;
 this.currentResidence=currentResidence;
 },
 moveToNewCity: function(newState)
 {
 this.currentResidence=newState;
 }

});

To create an object of this class you use the new keyword:

//create an instance of a new person

var matt= new Person('Matt', 25, 'New Mexico');

The initializer function is called once the object is created and the arguments are passed to it
initializing the object.Our Matt object who is 25 currently lives in New Mexico, but let's say he
moves a little further west to California.We can set his new currentResidence with the Person class
method moveToNewCity(): matt.moveToNewCity('California');

Now the current value of matt.currentResidence shows that he now lives in California.

Inheritance

A person can only do so much, so let's create an Employee class that extends the Person class.The
second argument in the dojo.declare() function is for extending subclasses.

dojo.declare("Employee", Person, {
 //acts like a constructor
 initializer:function(name, age, currentResidence, position)
 {
 Employee.superclass.initializer(name, age, curren tResidence);
 this.password="";
 this.position=position;
 },

 login: function()
 {
 if(this.password!="" && this.password!=null){
 alert('you have successfully loged in with the pass word '+this.password);
 }
 else
 {
 alert('please ask the administrator for your pass word');
 }
}});

The first line in the initializer calls Employee.superclass.initializer, the Person class constructor.
Dojo handles all of the requirements for setting up the inheritance chain.Methods or variables can
be overridden by setting the name to the same as it is in the parent class. The Employee class can

Pagina 26 di 114Dojo Developer Guide

override the Person class moveToNewCity(), perhaps by letting the company pay for moving
expenses.

You initialize the sub class the same as the Person class with the new keyword.

var kathryn=new Employee(' Kathryn ', 26, 'Minnesot a', 'Designer');

The Employee class passes the first three arguments down to the Person class, and sets the
position.Kathryn has access to the login() function found in the Employee class, and also the
moveToNewCity() function by calling kathryn.moveToNewCity(Ã¢â‚¬ËœTexasÃ¢â‚¬â„¢); Matt
on the other hand, does not have access to the Employee login() function.

matt.login() // ERROR canÃ¢â‚¬â„¢t log in because h e is not an Employee

Array/Object Declarations

If your class contains arrays or other complex objects, they should be declared in the initializer,
due to some subtleties of object inheritance in javascript. Note that simple types (strings, numbers)
are fine to declare in the class directly.

dojo.declare("my.classes.bar", my.classes.foo, {
 // coupledObjects: [1, 2, 3, 4] - doesn't do what I want;
 // ends up be ing like a static!!
 numItem : 5, // one per bar
 strItem : "string", // one per bar

 initializer: function() {
 this.coupledObjects = []; // each bar should hav e it's own array
 this.expensiveResource = new expensiveResource(); // one per bar
 }
});

Statics

On the other hand, if you want an object or array to be static (shared between all instances of
my.classes.bar), then you should do something like this:

dojo.declare("my.classes.bar", my.classes.foo, {
 initializer: function() {
 dojo.debug("this is bar object # " + this.statics .counter++);
 },

 statics: { counter: 0, somethingElse: "hello" }
});

Mixins

The example below inherits from my.classes.foo and then mixes in "my.mixin". This is similar to
multiple inheritance but there are some subtle differences, namely that this.inherited can only
reference my.classes.foo, not my.mixin.

dojo.declare("my.classes.bar", [my.classes.foo, my.mixin], {
 initializer: function() {
 my.mixin.call(this /*, args*/); // invoke some mi xin constructor
 // (note: my.mixin.prototype is ignored)

Pagina 27 di 114Dojo Developer Guide

 },

 valueForPrototype: 3,

 methodForPrototype: function() {
 }

});

Design Notes

Constructor vs Initializer

In non-trivial cases, constructor definitions contain code. The constructor code performs
initialization tasks and defines instance-only properties (properties whose values belong to a
particular object, as opposed to prototype-properties which are shared by all objects using the
prototype).

However, there is an issue with respect to constructor code in any simple JavaScript inheritence
system. The constructor function of an object must be executed to create a prototype object for an
inheritor. Therefore the constructor function must serve as both prototype-initializer and instance-
initializer. The double duty of inherited constructors can be non-obvious and lead to subtle bugs.

Given the constructor above, when a bar object is created to use as a prototype, the mixin
properties and properties created in the constructor become members of the inherited object's
prototype. Almost always these properties are not intended to be part of a prototype.

As a practical matter, the extra prototypical properties are usually ignored as matching instance
properties are created at object-instantiation time. However, for example, having an extra
expensiveResource can be costly. And errors can result if the environment is not ready to create an
expensiveResource at inherits-time. Errors caused by these conditions can be hard to track down,
especially if the developer is not aware of how constructors are used when inheriting prototypes.

Separating instance-initializer tasks from prototype-initializer tasks eliminates these concerns.
Therefore dojo.declare creates a standard, controlled constructor and separates instance-
initialization tasks into a separate, optional initializer method.

Note: dojo.declare cannot inherit from an object that has a non-trivial constructor because
dojo.declare does not allow constructors to also perform instance initialization.However, you can
inherit from a dojo.declare created constructor without restriction

Calling Inherited (Ancestor) Methods

Sometimes one wants to invoke a method on an object from an ancestor prototype. JavaScript
allows any function to call any other function in any context via the call and apply built-ins. So
there are techniques like:

my.classes.bar.prototype.someMethod == function() {
 // invoke any function in our context
 anyFunction.call(this);
 // invoke inherited version of this method in our context
 my.classes.foo.someMethod.apply(this, arguments);
}

(Note: in these examples, the == indicates an assertion that the named property is equivalent to the
function shown. Actual assignment is done via dojo.lang.extend or dojo.declare.)

Pagina 28 di 114Dojo Developer Guide

As a convenience, dojo.inherits puts a reference to the ancestor prototype into the descendent
constructor, and a reference to the descendent constructor into the descendent prototype. These
extra references allow a great deal of extra flexibility in general, and also allow calling ancestor
methods without explicitly naming the ancestor:

// invoke inherited version of this method in our c ontext
 this.constructor.superclass.someMethod.apply(this, arguments);

However, the above technique will cause an infinte loop if someMethod is once removed. E.g., if
we have foo -> bar -> zot, you can run into an issue like this:

 my.classes.foo.prototype.identify == function() {
 return "I'm a foo";
}
my.classes.bar.prototype.identify == function() {
 return "I'm a bar and " +
 this.constructor.superclass.identify.apply(this, a rguments);
}
my.classes.zot.prototype.identify == function() {
 return "I'm a zot and " +
 this.constructor.superclass.identify.apply(this, a rguments);
}
bar = new my.classes.bar();
alert(bar.identify()); // "I'm a bar and I'm a foo"
zot = new my.classes.zot();
alert(zot.identify()); // stack overflow

The error results because this.constructor.superclass referenced in bar's identify function refers to
zot's superclass (causing bar.identify to call itself).

To resolve these issues, objects created from dojo.declare constructors include a function called
inherited that safely invokes an ancestor method.

inherited: function(methodName /*string*/, argument s /* arrayLike */)

inherited correctly handles the problem scenario above:

my.classes.foo.prototype.identify == function() {
 return "I'm a foo";
}

my.classes.bar.prototype.identify == function() {
 return "I'm a bar and " + this.inherited('identify ', arguments);
}

my.classes.zot.prototype.identify == function() {
 return "I'm a zot and " + this.inherited('identify ', arguments);
}

bar = new my.classes.bar();
alert(bar.identify()); // "I'm a bar and I'm a foo"
zot = new my.classes.zot();
alert(zot.identify()); // "I'm a zot and I'm a bar and I'm a foo"

Syntax

Pagina 29 di 114Dojo Developer Guide

The syntax is:

dojo.declare(className /*string */, superClass /*function*/
 [, initializer /* function*/]);

or

dojo.declare(className /*string */, [superClass /*function*/, m ixin /* function */, ...]
 [, initializer /* function*/]);

Including the target className in the argument list allows the object path to be created
automatically (i.e. intermediate namespaces are created as needed). Also, dojo.declare stores
className in an eponymous property in the created object's prototype (e.g.
my.classes.foo.prototype.className == "my.classes.foo").

Naming

Technically speaking, JavaScript does not have classes: object construction is based on prototypes.
For this reason reference to the term class has been (mostly) avoided above.

It seems that the difference is not of great practical importance. It's true that constructor functions
in JavaScript are actual objects, but they operate like classes in the sense that they generally have
no other purpose than as a mold for object instantiation. It is noted that classes are typically
compile-time (or at least meta-) constructs and JavaScript constructors exist as Objects at runtime
and contain actual data.

The name dojo.declare was chosen after much debate. The name is vague but easy to remember,
read, and type. The method name inherited is lifted (at least) from ObjectPascal.Ã‚Â

Order matters
In general, a script should do the following in the ... section:

1. (Optional) set the djConfig options
2. Load the Dojo script
3. Call dojo.require(...) for all libraries used in the page
4. (Optional) define initialization functions and call addOnLoad

As in this example:

<!-- Step 1 (Optional) Set djConfig -->
<SCRIPT type=text/javascript>
 djConfig = {
 debug: true
 };
</SCRIPT>

<!-- Step 2: Load dojo -->

<SCRIPT src="js/dojo/dojo.js" type=text/javascript> </SCRIPT>
<!-- Step 3: call dojo.require -->
<SCRIPT>
 dojo.require("dojo.book.myWidget.*");
 <!-- Step 4 (Optional): define initialization fu nctions -->
 function initMyStuff() {

Pagina 30 di 114Dojo Developer Guide

 ...
 }
 dojo.addOnLoad("initMyStuff");
</SCRIPT>

The order is important! If you do the steps out of order, dojo may not initialize properly, and
your page will be a mess.

This script element is responsible for loading the base Dojo script that provides access to all the
other Dojo functionality. Following this we add the requires statements which pulls in functionality
needed by the application.

Use the dojo.addOnLoad to call functions which use the widget ids because Dojo must completely
load the page and finish parsing the HTML before a reference can be made to the id. So, for
example, the following will not work:

<BUTTON widgetId="helloButton" dojoType="Button">He llo World!</BUTTON>
<SCRIPT>
// ILLEGAL!! helloButton does not exist yet
dojo.byId("helloButton").width2height = 0.5;
</SCRIPT>

Instead, place the script in an initialization function:

 <SCRIPT src="js/dojo/dojo.js" type=text/javascr ipt></SCRIPT>
 <SCRIPT>
 function initMyStuff() {
 dojo.byId("helloButton").width2height = 0 .5;
 }
 dojo.addOnLoad("initMyStuff");
 </SCRIPT>
<BUTTON widgetId="helloButton" dojoType="Button">He llo World!</BUTTON>

The global Dojo Objects
Dojo defines a global object called "dojo" which serves as an umbrella for everything Dojo-related.
It simulates a namespace and was created to prevent clashes in the global JavaScript? namespace
between the code in Dojo and other toolkits or user supplied code. Unfortunately it cannot be used
during a bootstrap process, so special global variables should be used. All of them are prefixed
with "dj".

You will need to use exactly two top-level Dojo-defined objects: "dojo", which serves as a
namespace, and "djConfig", which is used to supply initialization parameters to Dojo, and should
be created before Dojo's bootstrap.

For example, to turn off global widget searching, add these lines just *before* you include dojo.js:

<script type="text/javascript">
 djConfig = {
 parseWidgets: false
 };
</script>

Pagina 31 di 114Dojo Developer Guide

Part 4: "More on Widgets"
P

Advanced ContentPane Usage

Introduction

A common use case for DHTML/ajax is to fetch a fragment of html using XHR or some other
way, and change the innerHTML of a div with that content. Problem with this is that it doesn't
instanciate widgets and doesn't fire scripts. ContentPane was created to make widgets and scripts
work and reduce the potential for memory leaks. ContentPane is a base widget for many (Html)
widgets, it handles remote loading as well as local setting of content and instanciating widgets in
that content. Think of it as islands in your page that can easily switch content using setContent() or
setUrl().

Many other widgets inherits ContentPane, like Tooltip, Dialog, FloatingPane etc. That means that
all the methods and properties of ContentPane also applies to them.

ContentPane is often used as children of Layout widgets like LayoutContainer, TabContainer,
AccordionContainer

Dont misstake it for a Iframe though, It should not be used on very large html fragments.

Usage

Simple usage ... <div id="cpane" dojoType="contentPane" href="initialContent.html"><div> Goto nextPage ...

Basic options

� loadingMessage Default: "Loading..." Set a custom loading message, see onDownloadStart
to avoid showing this message completely

� adjustPaths Default: true When content is setUrl'ed from a different folder paths to images,
links etc. is adjusted so the point to the correct dir

� href Default: "" Use this to grab initial content when contentpane is created.
� extractContent Default: true Only insert the html that is inside Script and style tags are not

affected by this setting
� parseContent Default: true Create widgets inside content
� cacheContent Default: true Use dojo.io.bind javascript cache and, if it exists, browsers

cache
� preload Default: false Lazyload switch, if true it will download content even if domNode is

hidden Note: To make use of the default lazyload setting you need to hide your domNode
Like this: <div dojoType="Dialog" style="display:none;"></div>

� bindArgs Default: {} Send in a custom setting to the dojo.io.bind call, like:
mypane.bindArgs = {sync: true, preventCache: false}; mypane.seetUrl
('nextHtmlFragment.html');

� refreshOnShow Default: false Re-download content each time ContentPane is shown again
� executeScripts Default: false Fire scripts in content Note: see scriptSeparation
� scriptSeparation Default: true Run scripts in a separete scope for ContentPane Note: set to

false if you want similar behaviour as a normal pageload
� handler Default: "" Java function name, generate pane content
� isLoaded Default: false Tells wheather we are loaded or not, see also: onLoad() and

Pagina 32 di 114Dojo Developer Guide

addOnLoad()

Methods apart form those provided by ContentPane's superclass HtmlWidget

� setContent(String or DomNode) Use this instead of innerHTML
� setUrl(String or dojo.uri.Uri) Use this to set a new href and download and diplay that href
� refresh() Re-download and display href
� loadContents() Like refresh but only when isLoaded is false
� setHandler(Function) Set a function callback for javacontent generation
� abort() Abort a async download
� addOnLoad(Object, "functionname" or Function) Push a callback that will be run when

content the next onLoad occurs. It's a fire and forget stack, if you want a callback each
onLoad, see onLoad() Works for setContent as well

� addOnUnload(Object, "functionname" or Function) Same as addOnLoad but for
onUnLoad event

Methods (Intended as event hooks using dojo.event.connect)

� onLoad() Called when everything rendered initialized and ready
� onUnload() Called before content is cleared
� onDownloadStart(e) preventDefault'able Called before a download occurs To prevent

showing the loading message, do like this:
� onDownloadEnd(url, string) Called when download is completed, before it is

setContent'ed
� onDownloadError(e) preventDefault'able Called when a load error occures, before The

load error message is displayed. Prevent it the same way as onDownloadEnd Tip: During
debug, you can display debug info like responseHeaders, responseText etc.

� onContentError(e) preventDefault'able Called when content insertion generates a error,
before error mesage is displayed, like DOM faults, dojo.require() *syntax* faults etc.

� onExecError(e) Called when there is errors evaling script, doing java setContent and
download errors of external scripts

In order to prevent the default messages you can do something like this:

<script>
 var myLoadMessage = {
 show: function(event){
 event.preventDefault();
 ... custom code here
 },
 hide: function(){...}
 }

 dojo.addOnLoad(function(){
 var pane = dojo.widget.byId('myPaneId');
 dojo.event.connect(pane, "onDownloadStart", myLoadm essage, "show");
 });
</script>
<div dojoType="ContentPane" id="myPaneId">...startc ontent...</div>

or

<div dojoType="ContentPane"
 onDownloadStart="myLoadMessage.show(arguments[0]);" >...startcontent...</div>

When used as a child to TabContainer, AccordionContainer or PageContainer TabContainer,
AccordionContainer or PageContainer extends Widgets with these extra options

Pagina 33 di 114Dojo Developer Guide

� label Tab text
� selected Preselect this tab after creation
� closable Display close buttonNote:
� Height and width settings is done on the Container, not the ContentPane.
� In order for lazyload to work you have to hide your domNode initialy

When used as a child of LayoutContainer LayoutContainer package extends Widgets with this
option

� layoutAlign "left", "right", "bottom", "top", or "client" see layout section of the book for
more info

FAQ

� Why doesn't my widgets show up? Most likely you have used
mypane.domNode.innerHTML = htmlstr; Use setContent instead: mypane.setContent
(htmlstr);

� Why doesn't lazy load work? You have to hide your domNode, style="display:none;",
initialy while creating ContentPane

� ContentPane displays strange looking characters when loaded remotly in some
browsers, why? Like all server communication your browser need to know what charset
your html is encoded with. Make sure your server is sending the correct Content-type
header. example in php: header("Content-type: text/html; charset=utf-8"); Make sure you
type utf-8 and not utf8, else IE will generate a warning and bail out.

� Why is ContentPane so slow? You probaly send it a big chunk of html with deeply nested
tags.

� Send it a html fragment, not a complete page with doctype and everything
� Try to make the HTML simpler and use css for styling
� Turn off the options you dont need: adjustPaths, extractContent, executeScripts,

parseContent
� Consider redesigning your page with serveral ContentPanes which grabs a smaller

portion of your html that way you dont have to scan, render and create as many
DomNodes/Widgets on each update.

� Perhaps dojo.io.updateNode("nodeId", "myUrl") is all you need, and ContentPane is
to heavy for your needs

� dojo.addOnLoad() is called to early, before my Content is loaded See onLoad event and
addOnLoad for ContentPane, it is usualy easier to do this using
<script>_container_.addOnLoad(..)</script> in your downloaded page, just be sure to set
executeScripts=true

� My inline scripts doesnt work when loaded in ContentPane, I have turned
executeScripts to true? Short answer: set scriptSeparation=false Long answer:
ContentPane separates scope of scripts between different ContentPane's see: scriptScope
page in dojo book

� When I press submit in my form inside a ContentPane, the whole page unloads, why?
ContentPane doesn't have a form handling feature, look at dojo.widget.Form or see sample
use case below

ContentPane examples

scriptScope

Executing scripts in ContentPane in dojo-0.3.1

Pagina 34 di 114Dojo Developer Guide

This is a explanation about scripthandling in a ContentPane in other words when you set
executeScripts to true, it is false by default.

ContentPane has some convenience functions related to scripts that makes life easier:

� .addOnLoad()
� .addOnUnLoad()
� And the replacement for scriptScope to dojo.widget.byId('thisWidgetId').scriptScope in html

content attributes.

All scripts within content is evaled in the ContentPane property scriptScope, this means that you
can have 2 or more content panes in the same page with the same name without risk of collision.
This implementation does have its pros and cons. but correctly handled they will be useful. Also
the scripts evals before widgets is parsed and after html is inserted.

So the content scripts is evaled inside a freestanding scope that inherits window. Take this function
declaration.

<script>
 var i = 0;
 function addToI(j){
 i = i + j;
 return i;
 }
</script>

becomes (from window scope):

(function(){
 var i = 0;
 function addtoI(j){
 i = i + j;
 return i;
 }
})

Due to the way javascript works addToI will be private and you cant reach it. Read Douglas
Crockford excellent description of this. http://javascript.crockford.com/private.html

You can fix this in a couple of ways, one is to append it to global

Pagina 35 di 114Dojo Developer Guide

<script>
 i = 0; // note lack of var
 addToI = function(j){ // we could also do win dow.addToI = function(j){ ...
 i = i + j;
 return i;
 }
</script>

becomes (from window scope)

i = 0;
function addtoI(j){
 i = i + j;
 return i;
}

This is'nt recommended, if you want global scripts It is better to include them in the main page the
old fashion way.

A better way would be to use Privileged functions:

<script>
 this.i = 0;
 this.addToI = function(j){
 this.i = this.i + j;
 return this.i;
 }
</script>

becomes (from window scope)

(function(){
 this.i = 0; // now it is a property of this fu nction and can be reached from the outside.
 this.addToI = function(j){
 this.i = this.i + j;
 return this.i;
 }
})

As you might have guessed by now the (function(){...}) is the function scope that is reference held
by ContentPane.scriptScope.

So to call the addToI function from the outside we can do:

var added = dojo.widget.byId('myPaneId').scriptScop e.addToI(10);
dojo.debug(added) // prints 10

added = dojo.widget.byId('myPaneId').scriptScope.ad dToI(10);
dojo.debug(added); // prints 20

and so on...

Pagina 36 di 114Dojo Developer Guide

Now lets say we have html that would like to alert the value of i (this.i) in plain html that would
be:

<button onclick="alert(i);">Tell me i !</button>
// As explained above this wont work in ContentPane (unless you set it to global by omitting var).

Now if we now the ID of the contentPane that pulls in this content we could do:

<button onclick="alert(dojo.widget.byId('myPaneId') .scriptScope.i);">Tell me i !</button>
// this will work in ContentPane

That is'nt very useful as we don't always know the ID of the contentPane that pulls in the html
when we write the content.

ContentPane has a convenience replacer function the scans the html and replaces all occurrences
of the keyword scriptScope in html attributes. So to achieve the above:

<button onclick=" scriptScope.i">Tell me i !</butto n>
// this will work in ContentPane
// NOTE: Due to a bug in ContentPane 0.3.1 you need to add a extra space before the keyword
// Thank you Sasha Firsov for finding that!

The parent scope of scriptScope is window, the reason for that is to avoid messing with widget
internals. Just imagine the disaster a redefinition of setUrl function would cause otherwise.

To enable the content scripts to talk to the containing ContentPane there is set a private variable on
scriptScope construction.

That is the _container_ variable. Lets say we have a widget in our content that we would like to
connect a event callback on:

... some content
<div dojoType="DatePicker" id="myPicker"></div>
... rest of content

A content script could look like:

<script>
 var o = {
 storeDate: function(){
 var datePick = dojo.widget.byId('myPick er');
 var date = datePick.storedDate;
 // save date somewhere
 }
 };
 container.addOnLoad(function(){
 var picker = dojo.widget.byId('myPicker');
 dojo.event.connect(picker, "onSetDate", o, "storeDate");
 });

 // remember to disconnect onUnLoad, very import ant!!
 container.addOnUnLoad(function(){

Pagina 37 di 114Dojo Developer Guide

 var picker = dojo.widget.byId('myPicker');
 dojo.event.disconnect(picker, "onSetDate", o, "storeDate");
 });
</script>

When the content is cleared in ContentPane the scriptScope is unreferenced, this means that if
there are no other variables that holds reference to any of the scriptScope objects (like event
connects, varible connection etc), the script will be garbage collected by the javascript engine
(memory freed).

Different browsers are more or less conservative about GC (garbage collect), IE and Mozilla
beeing the more relaxed browsers, khtml and Presto (Opera) engines are more conservative.

Some usecase samples

Lets say you have page that you need to run in as both stand alone and within a ContentPane.

Then you can do something similar to this.

Courtesy of Sasha Firsov for a pointer to this example!

<html>
<head>
<script>
 var djConfig = {isDebug: true};
</script>
<script src="dojo/dojo.js"></script>
<script>
 var scriptScope = this;
 if(typeof _container_ == 'undefined'){
 var _container_ = dojo;
 }

 container.addOnLoad(function(){
 dojo.debug("Successfully loaded!");
 });

 this.doWhenClicked = function(txt){
 dojo.debug(txt);
 }
</script>
<body>
 Click here!;
</body>
</html>

Perhaps you want to prevent all <a href='...' link clicks with a ContentPane from clearing your
page, and use the href to set your client ContentPane.

Pagina 38 di 114Dojo Developer Guide

*********Your mainpage***********
<html>
<head>
<script src="dojo/dojo.js"></script>
<script>
 dojo.require("dojo.widget.ContentPane");
 dojo.require("dojo.widget.LayoutContainer");

 function changeUrlInClient(url){
 var client = dojo.widget.byId("client");
 client.setUrl(url);
 }
</script>
</head>
<body>
 <div dojoType="LayoutContainer" layoutChildPrio rity='none' style="border: 1px solid blue; width: 8 00px; height: 300px;">
 <div dojoType="ContentPane" layoutAlign="le ft" style="width: 200px;" executeScripts="true" hre f="linkpage.html"></div>
 <div widgetId="client" dojoType="ContentPan e" layoutAlign="client" style="border:1px solid red ;"></div>
 </div>
</body>
</html>

*******linkpage.html************
<html>
<head>
<script>
 var o = {
 listen: function(evt){
 // if the onclick came from a
</head>
<body>
 content1

 content2

 content3

 content4
</body>
</html>

A simple example of using a form in ContentPane. NOTE! dont use this login example in real
world applications, password is sent in cleartext

**********mainpage************
<html>
<head>
<script src="dojo/dojo.js"></script>
<script>
 dojo.require("dojo.widget.FloatingPane");
 dojo.require("dojo.widget.Button");
</script>
</head>
<body>
 <div dojoType="FloatingPane"
 title="Login example"
 style="width: 300px; height: 300px;"
 executeScripts="true"
 cacheContent="false"
 href="login.php">

Pagina 39 di 114Dojo Developer Guide

 </div>
</body>
</html>

*********login.php**********
<?php
 session_start();

 // are we trying to login?
 if(isset($_GET["login"])){
 // this could of be a database instead
 $users = array(
 "JohnDoe"=>
 array("pass"=>"foo", "id"=>1),
 "JaneDoe"=>
 array("pass"=>"bar", "id"=>2),
 "JuniorDoe"=>
 array("pass"=>"baz", "id"=>3)
);

 if(isset($_POST["user"]) && isset($_POST["p ass"])){
 $pass = $_POST["pass"];
 $user = $_POST["user"];
 if(isset($users[$user]) && ($users[$use r]["pass"] == $pass)){
 $_SESSION["id"] = $users[$user]["id "];
 exit("(true);");
 }
 }

 //if we get here we have failed to login
 exit("(false);");
 }

 // logout?
 if(isset($_GET["logout"])){
 unset($_SESSION["id"]);
 }

 if(isset($_SESSION["id"])){
 // it is safe to show secret content
?>

 <script type="text/javascript">
 this.logout = function(){
 container.setUrl("login.php?logout=tr ue");
 }
 </script>
 <h3>You have successfully logged in!</h3>
 showing secret content here

 log out

<?php
 }else{
 //no it wasnt safe, show our login script
?>
 <script type="text/javascript">
 this.ok = function(){
 container.domNode.style.cursor = "wai t";
 dojo.io.bind({
 formNode: dojo.byId("login"),
 mimetype: "text/javascript",
 handler: function(type, data){dojo. debug(data);
 container.domNode.style.curso r = "";
 if(type=="load"){
 if(data){
 container.setUrl("log in.php");

Pagina 40 di 114Dojo Developer Guide

 }else{
 dojo.byId("message").in nerHTML = "Wrong username or password";
 }
 }else{
 dojo.byId("message").innerH TML = "An error occured while login, please try aga in.";
 }
 }
 });
 }

 this.quit = function(){
 container.hide();
 }
 </script>
 <form name="login" id="login" method="post" act ion="login.php?login=true">
 <div id="message" style="text- align:center; color: red;">You need to login</div>
 <label for="user">Username:
 <input type="text" name="user"/>

 <label for="pass">Password:</label>
 <input type="password" name="pass"/>

 <button dojoType="Button" onClick="scriptSc ope.ok();"/>login</button>
 <button dojoType="Button" onClick="scriptSc ope.quit();">quit</button>
 </form>

<?php
 }
?>

In the follwing scenario you wont need executeScripts.

In fact it wont affect the script at all, the script will run just as any other regular script in ordinary
page

<html>
<head>
 <script src="dojo/dojo.js"></script>
 <script>
 dojo.require("dojo.widget.ContentPane");
 </script>
</head>
<body>
 <div dojoType="ContentPane" >
 <script>
 // this script will fire before dojo ma kes our parent a ContentPane widget, so it wont be
 // affected by executeScripts at all.
 // i wont have a _container_ variable a nd scriptScope wont hide any variables
 // it will work just as a inlne javascr ipt block always has

 alert("This alert will fire event if yo u have executeScripts=false");
 </script>
 </div>
</body>
</html>

Pagina 41 di 114Dojo Developer Guide

It should be fairly easy to pull in some small customized scripts that is tweaked to the content, like
a form validation script or a button callback.

The executeScripts and scriptScope has the potential to be very usefull, I cant think of all the
possible implementations but probably you can.

Catches:

� If you event.connect to _container_ be sure to disconnect onUnLoad, else you get all sorts of
strange errors

� Be sure to unref. all references into and out of scriptScope before setting new content, else
there will be a memleak

� <div dojoType="dijit.form.Button"> <img src="images/flatScreen.gif" width="32"
height="32"> big </div>

Like HTML buttons, the dojo button sizes to fit its content. Usually, you will provide an
onclick="..." attribute to specify what happens when the button is pressed.

This needs to be rewritten for 0.9

Using Your Own Backgrounds

By default, dojo uses a blue gradient background. But you can provide your own. You will
need to create three .gif images: one for the left, one for the right, and one for the center. The
filenames must end with l, r, or c, respectively. You can specify image sets for four different
conditions:

� activeImg - the mouse pointer is over the button
� inactiveImg - the mouse pointer is not over the button
� pressedImg - the button is being pressed
� disabledImg - the button cannot be pressed

For example, you can use these files:

� /images/buttons/disabled-l.gif
� /images/buttons/disabled-r.gif
� /images/buttons/disabled-c.gif

as the disabled image of your button like this:

<button dojoType="Button" disabledImg="/images/butt ons/disabled" >
 Quit
</button>

Pagina 42 di 114Dojo Developer Guide

API Reference: dojo.widget.Button

See Also: DropDownButton, comboButton

comboButton
Used in HTML Element:button

A combination Button and DropDownButton. Use this for a button that has a common action (e.g.
"Make Regular Dinner") and less common related actions (e.g. "Make Romantic Dinner" and
"Make TV Dinner")

Example

<button dojoType="comboButton" menuId='saveMenu'>

 Save
</button>

<div dojoType="PopupMenu2" id="editMenu" toggle="wi pe">
 <div dojoType="MenuItem2" iconSrc="images/save.gif" caption="Save" accelKey="Ctrl+S" onclick="mySave() ;" />
 <div dojoType="MenuItem2" iconSrc="images/saveAs.gi f" caption="Save As...." accelKey="Ctrl+A" onclick= "mySaveAs();" />
</div>

You can also specify your own background images, as in Button.

API Reference: dojo.widget.ComboButton

See Also: Button, DropDownButton, PopupMenu2, MenuItem2

Editor2 (RichText) Widget

Introduction

Editor2 Widget in dojo provides a WYSIWYG editor for HTML content. The core is compact and
lightweight, while a plugin framework ensures that any functionality can be achieved by plugins.

Basic html editing capacity is implemented in the core, which is the RichText widget. Currently
keyboard shortcuts are also hardcoded in this widget (TODO: generalize this, or use KeyRouter
instead?).

Editor2 is a subclass of RichText Widget which adds a toolbar (Editor2Toolbar Widget) to the top
of the editing area.

Basic Principles of Editor2

In order to have an extensible structure, the new Editor2 introduced several new concepts.

Command (dojo.widget.Editor2Command)

The first and most fundamental one is call Command, which executes a specific function on the

Pagina 43 di 114Dojo Developer Guide

editing area. It also provides the API to retrieve the current state of the command. The base class
for Command is dojo.widget.Editor2Command (defined in Editor2.js).

Each command should have a unique name and each command is a singleton object per page: no
matter how many Editor2 instances there are in one page, they share the same command objects.

Toolbar Item (dojo.widget.Editor2ToolbarButton)

The toolbar (defined in Editor2Toolbar.js) for the editor2 contains serveral toolbar items. The
basic class for toolbar item is dojo.widget.Editor2ToolbarButton (defined in Editor2Toolbar.js),
which essentially is a simplified version of dojo widget.

Toolbar item can be of any type, besides buttons, you can have more complex items, such as a
dojo combobox like item with a dropdown (see dojo.widget.Editor2ToolbarFormatBlockSelect in
Editor2Toolbar.js).

Available Plugins

All the builtin plugins are located under src/widget/Editor2Plugin directory. Those files ending
with Dialog are the actual popups. The table below lists all the other plugins:

Misc

SetupCopyPasteForFirefox - Copy, Cut and Paste are disabled by default in Mozilla/Firefox, this
tip is how to enable it for your trusted websites.

Name Description Features
ContextMenu Command ToolbarItem

ContextMenu

Context Menu
Core, with menu
items for builtin
commands

Cut/Copy/Paste,
Link/Unlink,
Image properties

- -

FindReplace
Implement find
and replace
functionalities

- Find/Replace Find/Replace

TableOperation Support for table
related operation

Insert/Delete
Table

Insert/Delete
Table

Insert Table

AlwaysShowToolbar
Ensure the toolbar
is visible when
scrolling the page

- - -

ToolbarDndSupport
Toolbar Set/Item
drag and drop
support

- - -

SimpleSignalCommands

Add simple
signals to Editor2,
such as save() and
createLink()

- - -

Pagina 44 di 114Dojo Developer Guide

Form Widgets
There are many widgets used for forms:

� Button - just like HTML's button, except with a few advanced features
� Checkbox - like HTML's checkbox but in soria (blue) theme
� ComboBox - like a text input field, but w/suggested values
� DropDownDatePicker - for specifying a date by selecting a cell of a calendar
� DropDownTimePicker - for specifying a time (scheduled for 0.4 release)
� Editor2 (RichText) - like HTML's textarea, but allows editing of rich text

� HslColorPicker - pick a color
� Select - just like HTML [select] element, except w/autocompletion, and loading of possible

values from a remote data source
� Slider - graphical slider control used to specify a number within a range
� Spinner - numeric input field that can be adjusted up/down by pressing arrow keys
� dojo.widget.*Validate - a bunch of widgets that check the user's input and correct it or print

an error message if it doesn't conform to a certain format

The main principle of these widgets is that:

� each widget corresponds to a native HTML element.
� each widget (w/the exception of Button) represents a single input value
� each widget has a (possibly hidden) element, to which it serializes

its input value, so that form submission (either normal submission or via FormBind) works
as expected

All these widgets should have these attributes just like native HTML input elements.Ã‚Â You can
set them during widget construction, but after that they are read only:

� disabled
� tabIndex
� name
� value

And they also share some common methods:

� disable()/enable()
� onValueChanged() - called with the new value of the widget whenever it's changed
� setValue()Ã‚Â (note: you can get the value by accessing accessing value; exception: Editor)

(note: some widgets don't conform but we plan to convert them soon)

ComboBox Widget
The ComboBox widget is a text input box that supplies a list of possible preexisting values for the
user to choose from. It can query the server for an updated list of values as the user types, allowing
it to offer a large list of values without requiring the entire list to be downloaded to the browser.

To demonstrate the power of this widget, let's dive right in and make an autocompleting combo
box that queries the server for the list of matches for what the user has typed so far. We'll declare
the widget using HTML:

Pagina 45 di 114Dojo Developer Guide

<select dojoType="ComboBox"
 autoComplete="true"
 dataUrl="/suggest.php?match=%{searchString}"
 maxListLength="15"
 mode="remote"
 name="myComboBox">

There are a few attributes of note here.

� autoComplete should be set to "true" if you want the widget to fill in the rest of the input
box with the contents of the first item in the suggestion list. For example, if the user has
entered "Ala" and the first suggestion on the list is "Alabama", the widget will put "bama"
after the letters the user has typed (selected, so the user can simply continue typing to
replace them with something else.)

� dataUrl is the location of a URL which will be queried each time the user types something
into the box. It will be discussed in more detail below.

� maxListLength is the number of suggestions that will be visible to the user at one time. If
the server supplies more suggestions than this, the user will have to scroll the list of
suggestions to see them.

� mode is one of "local" (the default; the dataUrl is fetched once at load time), "remote" (the
dataUrl is fetched on each keypress, and is expected to return a JSON object; see below) or
"html" (the dataUrl is fetched on each keypress, and is expected to return HTML.)

When the page containing that widget is loaded, it gets rendered as a text entry box with a little
dropdown list button on the right side, not as a normal HTML <select>.

When you enter text into the box, Dojo tries to find matches for the text you've just entered. For
example, suppose you type "a". Because the widget's mode is set to "remote", it will fetch the
dataUrl and substitute your input for the magic %{searchString} token. (That token is only valid
when mode is set to "remote" or "html".) In this case, it will fetch /suggest.php?match=a from
the server. You don't have to use PHP on the server side, of course; it's simply used as an example
here. The point is that the widget will replace the magic token in dataUrl with the user's input and
fetch the resulting URL from the server.

What should the server return? In the "remote" mode, the widget expects a JSON array of entries,
each entry of which contains a displayable option name and a value. For example, the server might
return something like

[
 ["Alabama", "AL"],
 ["Alaska", "AK"],
 ["Arkansas", "AR"]
]

Many server-side programming languages have existing libraries to output native objects in JSON
form. In this case, for simplicity's sake, we'll do it by hand. Here's what an extremely simple,
inefficient suggest.php might look like.

<?php
$states = array("Alabama" => "AL",
 "Alaska" => "AK",
 ...
);
$userInput = $_GET['match'];
$result = "[";
foreach ($states as $state => $abbreviation) {

Pagina 46 di 114Dojo Developer Guide

 if (strpos($state, $userInput) === 0) {
 $result = $result . '["' . $state . '", "' .
 $abbreviation . '"],';
 }
}
$result = $result . ']';
print $result;
?>

FormBind
FormBind allows you to quickly setup your Ã¢â‚¬Å“Web 1.0Ã¢â‚¬Â³ form for asynchronous
submission. Basically it sets things up so that whenever the user hits the submit button, rather than
submitting the form in the usual way, and refreshing the entire page, the contents are sent over
xmlhttp (or any transport), and then the results are passed to the given callback.

How do you do it? Easy:

function magicForm() {
 var x = new dojo.io.FormBind({
 // reference your form
 formNode: document.forms[1],

 load: function(load, data, e) {
 // what to do when the form finishes
 // for example, populate a DIV:
 dojo.byId('myDiv').innerHTML = data;
 }
 });
}

dojo.addOnLoad(magicForm);

Note the unfortunate naming between dojo.io.bind() and dojo.io.FormBind.

dojo.io.bind() is a function that immediately sends the given info to the specified URL. (It would
probably better be called something like dojo.io.send() but it isn't.)

dojo.io.FormBind(), on the other hand, doesn't send anything to the server. It just hooks up events
so that when the user presses the submit button then the data is sent via dojo.io.bind(). Also note
that you call "new" to make it work.

Note also that although dojo.io.bind() also takes a formNode argument, it's tricky to use and you
are better off using FormBind. That's because for forms containing the Editor/Editor2 widgets,
they need to serialize their data back to the [textarea] before the form is submitted, and that only
happens when the form's onSumbit handler is called. Just calling dojo.io.bind() and specifying a
formNode won't do that. However, with FormBind (and with an actual [input type="submit] button
in in the form), everything works perfectly.

You can play with the demo to see it in action.

Validation

Pagina 47 di 114Dojo Developer Guide

There are three methods which you can use to validate your form data on the client side before it is
sent to the server - with each having their own benefits and drawbacks. Often, the most effective
validation is performed using a combination of these methods.

It is important to understand that whilst client side validation is effective, it should not be
considered a replacement of server side validation techniques. In order to provide an enjoyable
and secure user experience it is essential that a combination of both methods is used.

Manual processing of input fields

The dojo.validate.* module provides a number of functions for validating user input. Currently,
these functions are broken into the following groups:

� common
� datetime
� de
� jp
� us
� web

Common dojo.validate functions

dojo.validate.isText

This function takes two arguments - a value, and an optional flags object. Depending on the
properties of the flags object (length, minlength, or maxlength), the value can be tested for exact
length, a minimum length, or a maximum length.

dojo.validate.isInteger

This function takes two arguments - a value, and an optional flags object. Depending on the
properties of the flags object (signed or separator), the value can be tested for the presence of a
sign (+ or -) character at it's beginning, or whether it has separators. Whilst there is no default
separator, single characters (such as ',') or arrays listing multiple separators can be specified.

dojo.validate.isRealNumber

dojo.validate.isCurrency

dojo.validate.isInRange

Pagina 48 di 114Dojo Developer Guide

dojo.validate.isNumberFormat

TODO: summary of each function group and functions within each group

Using dojo.validate.check on a form

The second method of validation is known as dojo.validate.check. This function let's you setup a
table of rules for checking a form's input elements.

TODO: more info on this

Validation widgets

There are several widgets in the dojo.widget.validate module that will either correct user input
(converting lowercase to uppercase, etc.), or print errors when the input doesn't match a certain
pattern. A few of the widgets are:

� dojo.widget.validate.IntegerTextbox - allow only integer input
� dojo.widget.validate.UsZipTextbox - entering a US zip code
� dojo.widget.validate.UsPhoneNumberTextbox - entering a US phone number

Unfortunately currently the validation widgets, although they do display an error message
alongside illegal values, do not actually prevent the form from submitting. This needs to be
addressed at some point. You need to do some javascript coding yourself to make this happen.

Graphical widgets

The alternative to validating user input is to provide such an interface that the user can't enter a
bogus value to begin with. For example, the DatePicker widget won't let the user input an invalid
date.

Interacting With Widgets

Calling Methods

Previously I talked about the widget object, that you can get access to like this:

var myButton = dojo.widget.byId("foo");

If you create a widget programatically you automatically get a pointer to the widget object:

Pagina 49 di 114Dojo Developer Guide

var myButton = dojo.widget. CreateWidget ("Button", {caption: "click me"});

What is myButton useful for? Calling methods on the button. For example:

myButton.setCaption("Don't press me!!");

Note that doing the following won't work, because the myButton object doesn't know that the
caption variable has been changed:

myButton.caption="this won't do anything";

Also note that to disable/enable a widget, call disable()/enable(), rather than setting the disabled
attribute directly. People often make that mistake.

Read only Variables

There are some read-only variables, however, that are useful to access. Two of the most important
ones are:

� domNode - points to the node that replaced your original markup (the [button] tag in the
example above)

� containerNode - points to the node that contains the contents of the original markup ("Click
me" in the example above)

That reminds me. In the above example of programmatic creation, you also need a line like this:

form1.appendChild(myButton.domNode);

Events

Consider the markup below:

<button dojoType="Button" onClick="alert('hello wor ld')">

It looks familiar, but it's actually quite different than the normal onclick handler on the dom node.

onClick() is a method in the Button widget object. It's got a similar name to DOM node's onclick
(but not identical; there's a capitalization difference). However, it's not the same. As another
example, consider

<input type="Slider"

 onValueChanged="alert('new value is ' + arguments[0]);">...

In this case, we are using a function of the widget called onValueChanged(newValue), that has no
direct equivalent in the dom world.

Attaching vs. Overriding

in the case above, the specified code will be run in addition to the widget's original

Pagina 50 di 114Dojo Developer Guide

onValueChanged() method. It works the same way as dojo.event.connect(). On the other hand, if
you just specify a function name like this:

<input type="Slider"

 onValueChanged="doit">...

Then you are overriding the widget's onValueChanged() funtion w/your own.

Usually, the widget will provide an empty function stub, so it won't matter if you connect to it or
override it.

Using dojo.event.connect directly

You can also do something like this, although it seems more difficult than the method above:

dojo.event.connect(myButton, onValueChanged, functi on(x){

 alert("new val is " + x);

});

Show and Hide

Widgets all can be hidden (made invisible) and shown:

� myButton.show() - display
� myButton.hide() - make invisible
� myButton.toggleShowing() - switches between show() and hide()
� isShowing() - is widget currently displayed?

For show and hide, there are 4 transitions available, that you set at widget creation time:

� plain
� fade
� wipe
� explode

They are set like this:

<div dojoType="FloatingPane" toggle="fade" toggleDu ration="250">

The explosion effect (often used for tooltips) also requires a point/square from which the element
explodes out of, or implodes back into. This is set automatically when using the Toggler or
TaskBar widgets.

Layout

Introduction

There are two philosophies to laying out the screen. One way, the "web-way", says that everything
should flow naturally from HTML, meaning basically that a bunch of stuff is in the document and

Pagina 51 di 114Dojo Developer Guide

if your window isn't big enough, then you use the browser's scrollbar. This is the way traditional
web pages work, and is the best choice for many applications.

There other philosophy is to take the available size of the viewport (basically, the browser
window), and then to partition it into smaller and smaller pieces. If you think about a mail
application that splits the screen into top/left/right sections, then you are thinking about this kind
of design.

The Layout Widgets

Dojo provides a number of widgets for implementing the second design listed above. They fall
into two basic categories.

Widgets that split the screen space between a set of widgets

� LayoutContainer- lets you position the children into top/left/bottom/right positions, with the
specified center piece taking all the remaining space

� SplitContainer- shows children either horizontally or vertically aligned, and you can adjust
the relative size of each child by moving the divider bars between the widgets

Widgets that hold mulitple children but only display one at a time:

� TabContainer - names of children are printed as tab labels
� AccordionContainer - stacks children vertically, and you can show one at a time
� WizardContainer - go through the children in an ordered fashion like a wizard

In addition, there's one widget that isn't a layout widget per se, but it is often used with the layout
widgets:

� ContentPane - like a div, but it's a widget, and it can load its contents from a specified href.

These widgets can be nested to arbitrary levels, so that you could have a LayoutContainer with a
top/bottom/client section, where the client section is a SplitContainer, and that SplitContainer
could contain a TabContainer, which would itself contain a LayoutContainer, and so on.

The leaf nodes of this hierarchy could be any non-layout node, but often are ContentPane nodes.

Example

Example (currently not displaying correctly. wiki needs upgrade?!):

<DIV> <DIV>hello world </DIV> <DIV> <DIV>left side of split </DIV> <DIV> <DIV>second
tab </DIV> <DIV>i'm on the bottom </DIV> </DIV>

<DIV dojoType="LayoutContainer" >
 <DIV dojoType="ContentPane"> hello world </DIV>
 <DIV dojoType="SplitContainer">
 <DIV dojoType="ContentPane"> left side of split < /DIV>
 <DIV dojoType="TabContainer">
 <div dojoType="LayoutContainer">
 ..
 </DIV>
 <DIV dojoType="ContentPane"> second tab </DIV>
 </DIV>
 </DIV>
 <DIV dojoType="ContentPane"> i'm on the bottom </ DIV>

Pagina 52 di 114Dojo Developer Guide

</div>

Note that all these objects are called containers because they just contain a set of other objects;
they don't contain mixed content (text and nodes) like a normal <DIV>.

Also note that there is no "LayoutContainerChild" or "SplitPaneContainerChild" like node. That's
to reduce the amount of markup and code required to setup a deep hierarchy of layout widgets.

Parameters

Note that the example above is missing some important parameters. For one thing, it doesn't
specify whether the SplitContainer arranges its children vertically or horizontally. For that we
need:

 <DIV dojoType="SplitContainer" orientation="hor izontal">

We are also missing the labels for each of the tabs in the TabContainer, which we can add like this:
 <DIV dojoType="TabContainer">
 <DIV dojoType="LayoutContainer" label="Tab 1" >
 ..
 </DIV>
 <DIV dojoType="ContentPane" label="Tab 2"> se cond tab </DIV>
 </DIV></DIV>

Note that the labels are specified as parameters to the ContentPane and LayoutContainer, the
children of the TabContainer, rather than as arguments to the TabContainer itself. "label" is not
technically a property on those two objects, but you can still specify it,and the TabContainer will
pick it up.

Similarly, for a LayoutContainer, you need to say where each child should be located:

 <DIV dojoType="LayoutContainer">
 <DIV dojoType="ContentPane" layoutAlign="top"> hel lo world </DIV>
 <DIV dojoType="SplitContainer" layoutAlign="client ">...</DIV>
 <DIV dojoType="ContentPane" layoutAlign="bottom"> i 'm on the bottom </DIV>
 </DIV>

You may freely mix sides (top, bottom, left, right) in a layout container. Sides are used from the
outside in. The special side name "client" will fill in any part of the container that is not otherwise
occupied. Very often you will use fixed-size side panes and a client pane that grows and shrinks as
the user resizes the window, for example:

<DIV style="OVERFLOW: hidden; WIDTH: 100%; HEIGHT: 100%" dojoType="LayoutContainer">

 <DIV dojoType="ContentPane" layoutAlign="top" hei ght="2em">

 Page header goes here; it stretches across the whole width of the window.

 </DIV>

 <DIV dojoType="ContentPane" layoutAlign="bottom" height="1em">

 And a footer here, also stretching across the w hole width.

 </DIV>

 <DIV style="WIDTH: 120px" dojoType="ContentPane" layoutAlign="left">

Pagina 53 di 114Dojo Developer Guide

 Some left-side navigation HTML, bounded by the header and footer

 since they were already added to the layout.

 </DIV>

 <DIV style="WIDTH: 60px" dojoType="ContentPane" l ayoutAlign="right">

 Some right-side navigation HTML

 </DIV>

 <DIV dojoType="ContentPane" layoutAlign="client">

 Main page body here, bounded by all the fixed-s ize elements above.

 </DIV>

</DIV>

Sizing

For the top level layout container in a hierarchy, you need to specify a size. If you don't, the
contents of the container may be displayed oddly or not at all.

<DIV style="WIDTH: 500px; HEIGHT: 500px" dojoType=" LayoutContainer"></DIV>

Many web applications will want to fill the whole screen with their top level layout container.
Think of a case like a mail application. For any size browser window, you want the top part to have
some menu choices, and then have the bottom part be split between a tree on the left and message
list/message on the right.

In this case, you need CSS like this:

html, body, #mainWindow {

 width: 100%;

 height: 100%;

 overflow: hidden;

}

And then inside your tag you will have something like:

<DIV id=mainWindow dojoType="LayoutContainer"></DIV >

Programmatic creation

Creating a hierarchy of layout widgets programatically works the same way as normal programatic
creation, except that sizing info needs to be specified in a special way.

// make a dummy div just to specify size

Pagina 54 di 114Dojo Developer Guide

var div = document.createElement("div");
with(div.style){ height="500px"; width="500px"; }

// create the layout container
var lc = dojo.widget.createWidget("LayoutContainer" , null, div);

// add some children for top, bottom, and center. Top and Bottom
// children also need to have a size specified, and possibly a scrollbar
var topDiv = document.createElement("div");
with(topDiv.style){ height="30px"; overflow="auto"; }
lc.addChild(dojo.widget.createWidget("ContentPane" , { href: "foo/bar.html", layoutAlign: "top" }, top Div));
var bottomDiv = document.createElement("div");
with(bottomDiv.style){ height="30px"; overflow="aut o"; }
lc.addChild(dojo.widget.createWidget("ContentPane" , { href: "foo/bar.html", layoutAlign: "bottom" }, bottomDiv));

One other thing to note in this example is that each ContentPane has two parameters. The href
parameter applies to the ContentPane itself, but the layoutAlign parameter is really something that
the LayoutContainer processes.

Doing your own positioning

You also have the option to lay stuff out on the screen like LayoutContainer does, but without
using LayoutContainer. There's a function called dojo.html.layout() that will position a bunch of
elements just like LayoutContainer does. (Actually LayoutContainer calls this function.)

Multiple Renderers
Different browsers have different capabilities when it comes to displaying (rendering) your widget.
Dojo provides mechanisms that automatically detect which of these capabilities the browser offers
and extends your widget using the most powerful rendering system the widget has code for.

We'll discuss how these mechanisms work, when you should use them, and how to extend widgets
to support multiple renderers.

Defining And Extending Widgets with
Multiple Renderers
The section discusses how to code a widget that supports multiple renderers, and how to extend
such a widget.

How to support multiple renderers

// renderer-agnostic portion
dojo.declare("my.widget.Foo"
{
 initializer: function() {
 // do initialization tasks, make instance prope rties
 },
 foo: 5,
 doit: function() { ... },
 ...
}
);
// render-specific portion
dojo.widget.defineWidget("my.widget.html.Foo", [do jo.widget.HtmlWidget, my.widget.Foo], {

Pagina 55 di 114Dojo Developer Guide

 initializer: function() {
 // do initialization tasks, make instance prop erties
 },
 ...prototypical properties (in object notation).. .
 }
);
dojo.widget.defineWidget("my.widget.svg.Foo", [doj o.widget.SvgWidget, my.widget.Foo], {
 initializer: function() {
 // do initialization tasks, make instance prop erties
 },
 ...prototypical properties (in object notation)...
 }
);

Subclassing from multiple renderers

// renderer-agnostic portion
// add features to my.widget.Foo, but don't explici tly extend or inherit
// my.widget.Foo properties will come in as part of my.widget.[html|svg].Foo
 // do initialization tasks, make instance propert ies
dojo.declare("my.widget.FooPlus", my.widget.Foo, { ... });
dojo.widget.defineWidget("my.widget.html.FooPlus", [my.widget.html.Foo, my.widget.FooPlus], {
 initializer: function() {
 // do initialization tasks, make instance prop erties
 },
 ...prototypical properties (in object notation)...
 }
);
dojo.widget.defineWidget("my.widget.svg.FooPlus", [my.widget.svg.Foo, my.widget.FooPlus], {
 initializer: function() {
 // do initialization tasks, make instance prop erties
 },
 ...prototypical properties (in object notation)...
 }
);

Understanding The Widget Hierarchy
Before you can write your own widget, you should understand how dojo's widgets are
organized, both in terms of where files are and how the class hierarchy works.

Renderer Base Classes

The first thing to notice is the following renderer base classes.

Widget
 |-- DomWidget
 |-- HtmlWidget
 |-- SvgWidget

Each widget implementation will extend either HtmlWidget?, SvgWidget?, or VmlWidget?,
according to what browser it supports.

Class Hierarchy

For widgets w/only a single implementation (usually "html"), the class hierarchy is pretty
simple. For example, there is a dojo.widget.html.Button that extends HtmlWidget.

Pagina 56 di 114Dojo Developer Guide

However, widgets w/multiple implementations are more complicated, because there's a base
class that defines common functionality and the parameter list for the widget. This effectively
leads to multiple-inheritance, since the widget implementation to pull in stuff from both from the
renderer base class and the widget base class. For example, dojo.widget.svg.Chart needs to
effectively inherit from both SvgWidget and from dojo.widget.Chart.

Technically, multiple implementations are defined using mixins, which are similar (but subtly
different) than multiple-inheritance. In the above case, dojo.widget.svg.Chart extends
HtmlWidget but mixes in dojo.widget.Chart base class.

Directory Structure

For widgets w/a single implementation, like Button:

� src/widget/Button.js - defines dojo.widget.html.Button

For widgets w/multiple implementations, like Chart (in the future):

� src/widget/Chart.js - defines dojo.widget.Chart base class
� src/widget/svg/Chart.js - dojo.widget.svg.Chart, svg implementation
� src/widget/vml/Chart.js - dojo.widget.vml.Chart, vml implementation

Understanding Widget Renderers

Implementations

Widgets can have (but are not required to have) multiple implementations, as follows:

� svg - will run on any svg enabled browser (FF, later safari, soon other browsers)
� vml - will run on IE
� html - can run on any browser

Note that the so-called "html" version of the widget might actually run special code for IE, FF,
etc., either through calls to utility functions (such as the graphics library) that branch based on
browser version, or "if/else" statements, or whatever.

Which widget gets run?

The HTML file just specifies the widget name, without specifying the implementation. For
example,

Dojo will pick which version of the widget to run based on the user's browser and what versions
of the widget are available. For example, on IE, it will run dojo.widget.vml.Foo if it exists, and
otherwise run dojo.widget.html.Foo.

Modules for Implementations

Pagina 57 di 114Dojo Developer Guide

There are three separate modules, corresponding to the implementations above:

� dojo.widget.svg
� dojo.widget.vml
� dojo.widget.html

Examples:

1. The Button widget only has a single "html" implementation. It's defined in
dojo.widget.html.Button

2. In the future, the Chart widget will have both "svg" and "vml" implementations, defined in
dojo.widget.svg.Chart and dojo.widget.vml.Chart. (The widget doesn't instantiate at all on
browsers that don't match either svg or vml)

Why Decouple Code?
Having an object without any code to display it can be a strange idea for many people. "After
all," they say, "I'll only be using my widget in an HTML environment." Such a kneejerk reaction
is understandable, as many people view the decoupling of code as an effort not worth the time.

What you end up with is a method that does some logic, does some rendering, does some more
logic, in a fairly long loop. Splitting these processes up is merely saying, "Let's get all of our
business logic out of the way, and then we can draw the results." Even if you won't be splitting
your widget into multiple files, as we'll be discussing shortly, this should still be done. The next
time something isn't displaying correctly, you won't have to wade through business logic to find
the problem. The next time business logic isn't working correctly, you won't have to search
through display-specific code. And the most important part, you won't worry about modifying
business logic or display-specific code breaking the other piece.

What you should end up with is a plain old JavaScript object that doesn't know about how it will
be drawn, and doesn't care. It's the guts of your widget, and can be run in the console, in an SVG
environment, in a standard HTML environment, or anywhere that Dojo currently supports or
will support in the future.

When a widget is loaded, it has a lifecycle that runs calls several methods. These methods are
pretty clearly separated into business logic and display-specific methods. For example,
mixInProperties is business logic and setWidth is display-specific. There is no need for these
methods to even interact with each other, and splitting these between multiple files make it
easier to locate one from the other.

You should also end up with most reusable code. Instead of loading external data in the same
method as display-specific code, you can move it to your main widget object and call it from the
display-specific code. Then, when another method needs to use the same information, it's ready
for you to use.

Navigation
Need help updating this page. Describe the navigation widgets in Dojo including attributes that
are common to all these widgets.

Pagina 58 di 114Dojo Developer Guide

Menu2

PopupMenu

ProgressBar

ToolBar

Tree2

FishEye

Tree widget

Introduction

This documentation refers to 3rd major version of the tree widget, sometimes refered to as
TreeV3.

Many mentioned classes (e.g TreeLoadingController) have V3 on the end, but that suffix is
sometimes omitted, because it will be removed in dojo 0.5.

If there exist 2 same classes, but one with V3 at the end - it's the one you need.

Examples are given in tests (dojo/tests/widget/treeV3), so you might want to check them first
and copy-paste exactly the things you need.

Please browse the Book,

then ask questions in dojo-interest list

If you feel the question private

or want to contribute

IRC: Freenode, #dojo by nick [algo]

ICQ: 820317

"Ilia Kantor" ilia @ dojotoolkit.org

Extensions

Extensions are also called plugins, they can be hooked onto widgets in various combinations and
provide wanted options.

Currently there is a couple of extensions

Pagina 59 di 114Dojo Developer Guide

TreeDisableWrapExtension

Tree extension, disables wrapping for tree nodes. Also it fixes IE bug when an 'unwrappable'
node (e.g single word) will move to next line if no space left.

TreeDocIconExtension

Tree extension, places icon to the left of a node, depening on nodeType property

TreeEmphaseOnSelect

Selector extension, highlights currently selected nodes

TreeDeselectOnDblselect

Selector extension, deselects a selected node when it is clicked. Usually, one should ctrl-click, or
click another node.

TreeLinkExtension

Tree extension, turns labels into links, merges object property into tag

Faq

How to make tree unselectable?

To make tree (or its elements) unselectable use dojo.html.disableSelection in nodeCreate and
treeCreate hooks. Apply disableSelection to every node you want to make unselectable.

How to bind an object to tree node?

There is an "objectId" property and "object" property ready to be filled in from markup or
program-way.

How to walk all node descendants ?

You may use dojo.lang.forEach(nodeOrTree.getDescendants(),function(elem) { ... }) to process
all descendants, it will walk children property recursively.

The safer way would be to call TreeCommon.prototype.processDescendants(nodeOrTree, filter,
func), it will process all children with func, but will not descend into nodes if filter(node) returns
false. E.g see collapseAll controller method uses it to collapse all widgets, but skip non-folders
and data objects.

How to evade a situation where all nodes are (re)moved and
tree is empty without a way to add new child (no nodes) ?

Make a single root node with actionsDisabled="DETACH;MOVE". User will be unable to
remove it, so interface will stay sane.

Pagina 60 di 114Dojo Developer Guide

Also, you may want to set actionsDisabled="ADDCHILD" to tree itself, so now children can be
added besides the root.

How to create a custom tree node ?

First, of course, you may explicitly use createSimple for your widget and declare your
widgetType in markup.

But sometimes, tree has to create a node from data object or just from "nothing", e.g in case of
createAndEdit.

Then it checks for widgetName property of data object (can be namespaced), and if no
widgetName, then tree.defaultChildWidget property should contain node class, e.g
mycustom.tree.Node.

Usually, when you override a node, all you need is to adjust defaultChildWidget,

because widgetName uses generic create and hence works slower right now.

How to make pages open when a user clicks on node?

There are 2 ways. The first one is to attach TreeSelector and hook on "select" event. So when a
user clicks, event handler will change url to node.object.href. Of course, you should fill hrefs.

A probably more convinient path would be to employ TreeLinkExtension, which will turn your
labelNodes into real links, and apply attrbutes from node object to them.

I open very large tree. But navigation away to another page
from the tree takes time. What's up?

Dojo performs actions not only when a node is created, but also cleanup when a node is
destroyed. Lazy features allow node creation be distributed in time, but when you navigate away
from a large tree, large cleanup causes visible delay. I don't know a way to evade that.

How to add icons to nodes ?

TreeDocIconExtension handles that. You should declare nodeType for your nodes, so they'll get
nodeIcon[Your type] CSS class. Default type is Document for leaves and Folder for folders.

There is also setNodeTypeClass method to update node CSS when its nodeType changes e.g
programmatically.

Pagina 61 di 114Dojo Developer Guide

Introduction

Introduction

This documentation refers to 3rd major version of the tree widget, sometimes refered to as
TreeV3.

Many mentioned classes (e.g TreeLoadingController) have V3 on the end, but that suffix is
sometimes omitted, because it will be removed in dojo 0.5.

If there exist 2 same classes, but one with V3 at the end - it's the one you need.

Examples are given in tests (dojo/tests/widget/treeV3), so you might want to check them first
and copy-paste exactly the things you need.

Please browse the Book,

then ask questions in dojo-interest list

If you feel the question private

IRC: Freenode, #dojo by nick [algo]

ICQ: 820317

"Ilia Kantor" ilia @ dojotoolkit.org

Features

Features

Flexible styling

� All design in CSS through classes and class combinations
� Different trees be styled with different CSS class families
� Multiline and rich content support

Full set of node operations

� expand/collapse
� create with JS or markup
� destroy/move/clone
� addChild/detach/(de)folderize
� inline editing
� multiple selection and drag'n'drop
� keyboard controls

Performance

Pagina 62 di 114Dojo Developer Guide

� batch operations
� special features
� profiled and optimized

Dynamic node loading & RPC features

� rich API

� callbacks & errbacks
� suited to be in-sync with data
� locking

Event system

� publish

� hook on any tree change

Customization

� change everything through inheritance, events and css
� out-of-the box extensions
� coded with it in mind

Tests and demos

Tree overall structure
Note: most classes here omitt 'V3' suffix

Model + View

The tree itself is a TreeV3 class instance. Hierarchy is maintained in a standard widgety way:
through children[] array. Children are usually TreeNodeV3 instances, but you could use your
own(overriding?) implementation of course.

TreeV3 instance also represents an 'invisible root' node, so it shares common methods with
TreeNodeV3. These methods reside in TreeWithNode mixin.

Model contains data and manipulation methods like "addChild", "detach" .. etc.Ã‚Â It also
publishes events when modified.

DOM-structure and view is also merged into model.

Various functionality can be hooked on model's events: controller, menu, drag'n'drop etc.

Pagina 63 di 114Dojo Developer Guide

Model events should help you to integrate tree with application on data-level, so you hook on
actual data changes, not the cause (program call, user click etc).

Controller

Main controllers are TreeBasicController -> TreeLoadingController -> TreeRpcController

Basically, they are responsible for operating on model and performing most logic, besides
model's action.Ã‚Â It also makes checks / remote calls.

Usually, one should work with controller only and let it process model.

TreeLoadingController and TreeRpcController are known to perform remote calls to server.
They use dojo.Deferred and dojo.DeferredList for thatÃ‚Â purpose.

Most customizations are also about controller.

And, by the way, model has no idea about its controller... It throws events and delivers API to
call, that's all.

Extensions

The stuff is loosely coupled, so a bunch of extensions can be hooked on events too

What's new in TreeV3

New HTML/CSS structure

Nested divs

Previous tree used a list of divs, each of them was indented with grid and spacers to right level.
The new tree uses natural nested divs structure (children' divs inside parent's div). Grid is
contigous and structure is displayed correctly for any node/font size

All design in CSS through classes and class combinations

All image and size information was removed from JS code. There is a bunch of classes applied
to nodes, that may denote node folder state, node type, show if there are children, etc. CSS

Pagina 64 di 114Dojo Developer Guide

moves this logical classes into style

Different trees be styled with different CSS class families

Want to put 2 differently styled trees on a page? Give them different classPrefix.

Multiline content support

Rich content support was incomplete, because list-of-divs model could not handle arbitrary-
sized nodes. Now you may have
,

and any other width/height

modifiers.

Event system modified

nodeDOMCreated event was removed. That's because listeners are bound to tree and may want
to modify the new node, but that's only possible when the node is being bound to the tree, not
when it was created and hanging around. afterTreeChange was introduced to help listeners to
(un)bind nodes the right moment.

All events were renamed to better reflect the moment of their publishing.

afterExpand, afterCollapse events now fire when the animation (e.g fading in or out) finishes,
not when the actual expand/collapse is called.

Lazy widget creation

Before TreeV3, all nodes must be widgets. A node is added - hence graphical widget is created.
For performance reasons that behavior was altered. Now when you add a node, you may actually
add a "data object", containing node data, e.g {title:"new node"}. You may want to add a large
nested branch of such data objects, like {title:"new", children:[...data objects..]}.

Data objects will become real members of children array (you may recursively search them,
modify etc), but graphical widgets will be created only when visitor expands them.

The compatibility drawback of such behavior is that old code may erroneously call widget
methods on data objects while recursively traversing a tree, e.g with Widget#getDescendants.
You should change such code to use TreeCommon#processDescendants, or handle data objects
in special way.

There are no special mechanisms to add laziliy instantiated "data objects". You may manipulate
them simply modifying children array, but no events are thrown until a real widget appears on
the scene. In most cases that is fine, but you are free to "disable" lazy widget creation - do not
modify children directly and enable tree.eagerWidgetInstantiation

Tree extensions

� Many features were moved from core into extensions
� Added TreeDocIconExtension instead of builtin childIcon support
� Selector now only throws events, not doing anything with nodes
� Out-of-the box extensions introduced to be examples and handle well-known

Pagina 65 di 114Dojo Developer Guide

requirements

Implicit helpers removed

The Tree is actually a pack of loosely coupled components, connected through events. To keep
things simple and also for compatibility reasons, such components(controller,selector...) were
created implicitly, if not declared. But actually this proved to be a source of questions and
misunderstandings. So now nothing is created implicitly, read how-to and declare things.

RPC has both sync/async modes

Old callbacks code was removed in favor to dojo.Deferred. Now all operations may be async
and run your callbacks at the end.

Drag'n'drop changes

Multiple selection and multiple drag'n'drop (incomplete)

Sounds simple enough.. Select multiple nodes with ctrl and get them with
selector.selectedNodes. instead of removed selectorNode call.

Currently, multiple drag'n'drop does not work with multiple selection because of dojo bugs.
Hopefully will be fixed.

Drop of any source, not just tree node

If treeNode property is empty, tree will create a new node from the data returned by
source.getTreeNode, then source.onDrop will be called to remove old node.

Inline node editing

It became possible to edit nodes inline, using TreeEditor. Base variant uses RichText widget,
you can make another wrapper though. Remote calls can be made on save only, or on
start/cancel too e.g for locking purposes.

Node creation
There are few code paths that lead to same purpose: to create a tree node. They differ in
effeciency and use patterns

Markup creation

You specity a tree and its nodes in HTML, relying upon dojo to parse it and turn into widgets.
That is a slowest way, but nice for small trees or if only tree top is specified and the rest is
created later.

dojo widget parser walks DOM and creates a special structure. The next pass creates widgets
from the structure.

Widget#create

Pagina 66 di 114Dojo Developer Guide

The generic widget creation routine. It basically runs the operations in order:

� Mix in widget properties from parameters/markup
� Register widget in widget.Manager
� Call buildRendering to make fill template and create domNode
� Call initialize
� Call postInitialize. registers widget as a child of its parent and after it creates all

subwidgetsCall postCreate

Note that initialize is called in pre-order: parent is initialized before children, postInitialize is
called in post-order: a child is postCreated before its parent.

Manual creation

If you create nodes with javascript, then you run create calls manyally. So parents are naturally
created (and postCreated) before children.

There seem to be no good way to distinguish betwen markup creation and manual creation.
From the one hand its seems good, because allows reuse of generic creation code. From the
other hand code paths going through this code are subtly different.

The reliable thing is that initialize will process widget after its domNode is built, BUT it should
not assume anything about children.

afterChangeTree event is fired on initialization also. If you want to know anything about
children and do something at this point - check addChild, but not node creation.

Input parameters

children array may be

� empty
� contain widgets, e.g if created from markup, or someone created them before parent and

pushed in
� contain data objects, that will be turned into widgets when parent expands.
� isFolder comes into play only when there are no children. It allows creation of empty

folders, with UNCHECKED state that can be filled later.

Performance
Tree was coded with performance in mind. Although, JavaScript itself is a slow language.
Flexible model requires some code that slows it down. It's not DOM manipulations, but actually
javascript that I couldn't make lighter. Being a part of dojo/widget structure implies some
overhead, but also power.

Almost all operations require small constant time when single node is involved. Depending on
your application you may notice slowdown when (most common) creating lots of nodes or
performing other batch operations.

Creation from markup or with standard create/addChild routines is 2-3 times slower, because
these routines are generic.

Comparison

Pagina 67 di 114Dojo Developer Guide

Fast node creation with dojo tree is 2-3 times slower than xtree 1.7, another tree widget, not so
featured, but nicely optimized for performance.

Important

The results described here refer to operations without any lazy features involved. Most of time
you will use lazy creation or lazy loading, or both, and operate with thousands of "virtual" nodes
with ease.

Performance Tricks
When talking about performance, one should understand, that there are single-node operations
that operate on single node... These ones are fast. The examples are: create a node, delete a node,
move a node along the tree.

... And there are batch operations that touch a lot of nodes. The examples are: initial tree
creation, moving a node from one tree to another which has different listeners, etc.

That performance issues become noticeable at 100-300 tree nodes depending on your trees. All
algorithms are linear in worst case, but JS is slow language, DOM is also not that fast.

There is a number of features one could use to get a speedup.

Lazy loading

A node can be created with isFolder=true flag, but without children. Any node has a state,
initially UNCHECKED for empty folder, and used by TreeLoadingController.

When a user presses expand, tree controller (supporting lazy loading) will send a request to
server asking for nodes, and parse the answer creating children.

The benefit is obvious: you don't have to load/process whole tree at once. You can only load a
single node and user will load the rest clicking "expand"

Lazy creation

Node/tree keeps array of its children in children property. Lazy creation is somewhat a half-way
approach to lazy loading. It allows you to put data objects into this array and tree will create
widgets of them later, when they are expanded.

For instance, one can call node.children = [{title:'node1'},{title:'node2'}]. The objects will be
set, but no widgets are created. You can also set children to nested array: node.children =
[{title:'node1', children:[{title:'node2'}] }].

You can create tree on server, JSON-serialize it and put to HTML, that is gzip-compressed.
Compression will be 6 times or more, so it is not that space hungry.

The benefit comes from postponing almost all real job: widget creation and attaching it to tree
will happen in expansion-time.

Comparison between lazy creation and lazy loading

� You need web-service for lazy loading, not for lazy creation

Pagina 68 di 114Dojo Developer Guide

� No network waits for lazy creation
� Lazy creation gives you the tree right here. You can search data objects and modify them

without spending time and memory on graphical widgets

Sometimes, lazy creation and loading may work together nicely, providing seamless increase in
speed and decrease in memory footprint. For instance, server may pass a whole tree branch in
JSON to lazy loading controller. Top nodes will be created right along, because user needs them,
but the rest of the branch will be postponed relying on lazy creation feature.

There are operations, like "expandAll" where such lazy tricks don't help, because all graphical
widgets must be processed. That is why widget creation process is well-optimized itself.
createSimple is a hacky program-only way to create TreeNodes fast. setChildren is a method to
assign (and create if needed) all children at once. It helps to evade some extra work happening
when children are added one by one.

IE image-reloading fixup (!!!)

IE has a well-known bug. If an image was loaded dynamically - with a new Image(), or img.src=
assignment, or even as a background of a new node, it will not be cached. So every time when
you create a node, all needed icons get loaded from server (or requested at least). A possible
solution is to put a special div into HTML (adjust src to your path):

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Ã‚Â Ã‚Â

Server communication

To talk with server, one should use TreeLoadingControllerV3 or TreeRpcControllerV3. They
inherit from TreeBasicControllerV3 and override its methods to deliver remote calls possibility.

TreeLoadingControllerV3 contains main methods for server calls, and allows dynamic node
loading. TreeRpcControllerV3 adds server calls to tree manupulations like
"createChild/move/edit...".

Pagina 69 di 114Dojo Developer Guide

Url settings

All requests go through dojo.io.bind, usually via XMLHttpRequest transport.

� RpcUrl

contains basic Url for all requests, e.g "http://site.com/remoteTreeService.do". You can have
query string in it also.

� RpcActionParam

every call adds special action parameter to query string to distinguish between call types.
Actions are move, createChild..

For children loading, the action is getChildren.

An example url for such action would be "http://site.com/remoteTreeService.do?
action=getChildren".

Most actions imply additional data parameter with information about node/tree and other action
details server may want to know.

This way of composing an url is described in getRpcUrl, feel free to override if need.

Request format

data parameter is JSON-serialized. It usually sends some information about involved nodes and
position. If you want to extend it somehow,

1. override method of controller that corresponds your action, your changes will affect this
action only,

2. override getInfo method of node/tree to affect parameters globally
3. override getInfo method of controller if that's the right place =)

Response format

All data is JSON-serialized. There are libraries for JSON in most of programming languages.

Server response is evaluated as javascript. That means you can embed any javascript, that will
be evaluated on client-side. But it should return object. Use object error property to signalize
about server-side error.

Good answer:

Pagina 70 di 114Dojo Developer Guide

dojo.debug('I can also put javascript in server answer');

([{title:"test",isFolder:true,objectId:"myobj"},{title:"test2",children:[{title:"test2.1"}Ã‚Â]}])

Good answer:

({})

Good answer, will return dojo.RpcError

({error: "Permission denied"})

Bad answer format (string), will return dojo.FormatError

Exception: blabla at line 50

Transport error (e.g 404) will also return dojo.CommunicationError

If you don't know what to return, return ({}) . That means just "ok". Note outer brackets, they are
needed to make sure it evaluates to javascript Object.

Callbacks and Error handling

Any request may be performed in synchroneous and asynchronous manner.

Both of them return dojo.Deferred object, but for synchroneous call, it will be called until next
script line.

You can call deferred.addCallback / deferred.addErrback to add your actions.

An example of usage would be

var deferred = loadingController.expandAll(tree);

Pagina 71 di 114Dojo Developer Guide

// add action when operation finishes successfully

deferred.addCallback(function() { alert('expanded all nodes!'); });

// process error

deferred.addErrback(function(err) { dojo.debugShallow(err); });

More information about Deferred class and asynchronous programming can be found at
http://mochikit.com/doc/html/MochiKit/Async.html (dojo implementation is Mochikit port),Ã‚Â
http://twistedmatrix.com/projects/core/documentation/howto/async.html (python
implementation and a nice state-of-art intro).

Tree Events
There are many classes of events, published with dojo.event.publish mechanism. Every event
has a name and message object, containing more precise information about what happened. You
may use events to update your data while tree changes, and to perform additional processing of
involved objects.

There is a default naming scheme for an event class. E.g for a tree with widgetId='mytree', event
of class afterTreeCreate will be named "mytree/afterTreeCreate". You may provide other names
in eventNames property of the tree.

afterTreeCreate

Event occurs after tree creation is complete. There is an alternative to hook on this action by
putting your objects in "listeners" property of the tree. The difference is that listeners are
guaranteed to hook before nodes get added, and afterTreeCreate is published after Tree widget is
created.

source

references to tree

beforeTreeDestroy

Published right before actual Tree#destroy method is called. Useful for cleanups

Pagina 72 di 114Dojo Developer Guide

source

references to tree

beforeNodeDestroy

Right before TreeNode#destroy is called. Node is detached after this event fired.

source

references to node

afterChangeTree

This event is tightly created with node creation process. It is fired when

� a node is created

� no parent at this stage
� fires in initialize(), so children may be not added yet

� a node was moved to another tree widget

oldTree

references previous tree, null if node has been just created

newTree

new(current) tree

node

target node

afterSetFolder

Fires when a node obtains "folder" state. That may happen when a first child is added to a leaf,
or if a node was initially created with isFolder=true

source

references to node

afterUnsetFolder

Fires when a node obtains looses "folder" state. That may happen when a last child leaves the
node, and Tree.unsetFolderOnEmptyis set, or when unsetFolder is called explicitly.

source

references to node

Pagina 73 di 114Dojo Developer Guide

(before|after)Move(From|To)

These events share same arguments and fire when a node is moved. Move process is considered
something special. When you move a node, no detach/addChild events get thrown. That allows
to tell situations when a node leaves a tree for some time (detached then attached) from
situations when a node is simply moved to another location

oldParent

previous parent

oldTree

previous tree

oldIndex

previous index among siblings

newParent

new parent

newTree

new tree

newIndex

new index among siblings

child

target node

afterAddChild

Published when a node is attached to parent. This may occur at the end of creation process, or
when a node is lazily instantiated from data object.

Also it occurs when a detached node gets attached.

child

references to node

index

index among siblings

parent

current parent who adopted a child

Pagina 74 di 114Dojo Developer Guide

childWidgetCreated

flag is set if child was laziliy instantiated. That is: it resided as data object in children array, but
user expanded its parent, so node widget came to life.

afterDetach

Occurs when a node is detached. This may happen in the process of node destruction. Keep in
mind, that detaching a node sets its parent to null, but

tree remains same.

child

references to node

parent

references to old parent

index

references to index among children of old parent

after(Expand|Collapse)

Fire when a node is expanded/collapsed. Some togglers do nice animation hiding/showing node.
This event fires when animation finishes.

source

target node

afterSetTitle

When a node is edited, or explicit setTitle method is called, this event helps to inform interested
parts about changes.

source

target node

oldTitle

replaced node title

Tree HTML/CSS model
There are few major approaches to building dynamic trees.

1. list of idented divs

Pagina 75 di 114Dojo Developer Guide

Each tree node is a div with indentation. Indentation is e.g 20px * node depth, so everything
looks fine. Usually indentation is made of many quadrantic images, each of them represents
empty space or grid lines, which visibly link nodes together.nested divs.

Of course, 'div' can be changed to any tag, e.g 'li'.

2. nested divs

Divs are nested same way tree nodes are nested. Can use ul/li instead of divs, there's only
symantic difference, of course, if styles are same.

Each div can be idented relatively to its parent with padding/margin property, or with images.

If we use images here, then there will be lots of extra tags, so padding/margin seems better.

Dojo tree adapts the 2nd approach, of course, with padding/margin identation.

Let's consider a simple tree

* Node1

* Node 1.1

* Node 1.2

* Node 2

(Page is unfinished, and content will probably be merged into the Trees intro page -- CAR)

Trees
The trees we see in User Interfaces help sort out long, heirarchical lists. A file system is the
classic example, with Windows using it in Explorer and Macintoshes with Finder (is it still
called that???).

Nodes are the basis of a dojo tree. A node can include other nodes, and is then called a branch,
container or folder. A node containing no other nodes is a leaf. Dojo does not force you to
distinguish branches from leaves. It deduces the tree structure from your own code.

A dojo tree contains at least two dojo widgets:

Pagina 76 di 114Dojo Developer Guide

� A surrounding Tree widget
� Embedded TreeNode widgets

But there are many dojo widgets to help you sculpt, mold, and connect behavior to your tree.

1 Hello Tree World
Here's a simple example.

<div dojoType="Tree" >
 <div dojoType="TreeNode" title="Item 1">
 <div dojoType="TreeNode" title="Item 1.1" />
 <div dojoType="TreeNode" title="Item 1.2" >
 <div dojoType="TreeNode" title="Item 1.2.1" >
 <div dojoType="TreeNode" title="Item 1.2.1. 1" />
 </div>
 <div dojoType="TreeNode" title="Item 1.2.2" / >
 </div>
 <div dojoType="TreeNode" title="Item 1.3" />
 </div>
 <div dojoType="TreeNode" title="Item 2" />
</div>

Which produces the following lovely tree:

SCREENSHOT

You can do open a node and show its contents by clicking the + icon, or hide them with the -
icon, just like you're used to. Nice!

2 Connecting an Action to a Node
The problem is our tree does nothing but stand around looking beautiful. Nothing wrong with
that. Normally, though, you'd want some kind of action to occur when the node is clicked. To do
this, you can use the TreeSelector Widget.

TreeSelector is a widget without a UI. You use it as a placeholder for connecting the tree to
various Javascript actions. This makes it easy to construct many trees, and connect them to the
same actions.

<script>
 dojo.addOnLoad(function() {
 dojo.event.topic.subscribe("nodeSelected",
 function(message) { alert(message.node.title+" sel ected"); }
);
 });
</script>

<div dojoType="TreeSelector" widgetId="tSelector" e ventNames="select:nodeSelected" ></div>

<div dojoType="Tree" selector="tSelector" >
 <div dojoType="TreeNode" title="Item 1">
 <div dojoType="TreeNode" title="Item 1.1" ></di v>
 <div dojoType="TreeNode" title="Item 2">
</div>

Pagina 77 di 114Dojo Developer Guide

(Is there an easier way to do this??? -- CAR)

When you click on a node, an alert box will pop up with the name you selected.

3 Submitting a Selected Node
You can make the selection event arbitrarily complex. But many times, you just want to pass the
selected node along with a form. Simple!

<script>
dojo.addOnLoad(function() {
 dojo.event.topic.subscribe("nodeSelected",
 function(message) { document.menuForm.eatMe. value = message.node.title; }
);
});
</script>

What would you like to eat first?

<form name="myForm">
 <input type="hidden" name="eatMe" value="" />
 <div dojoType="TreeSelector" widgetId="tSelector" eventNames="select:nodeSelected" />

 <div dojoType="Tree" selector="tSelector" >
 <div dojoType="TreeNode" title="Dessert (Reco mmended)">
 <div dojoType="TreeNode" title="Ice Cream" value="ICE76645" />
 <div dojoType="TreeNode" title="Cake" value ="CAK85467" />
 </div>
 <div dojoType="TreeNode" title="Entree">
 <div dojoType="TreeNode" title="Meat Loaf" value="MTL18908" />
 </div>
 </div>
</form>

Clicking a node fills the value ICE76645, CAK85467, or MTL18908 into the hidden field
"eatMe".

In this example, a tree is a standin for a select/options tag. For long lists, a select/option list gets
too long to navigate. Humans like their information grouped and organized into smaller chunks.
But databases thrive on flat namespaces, like the UPC system or Social Security Numbers. Trees
give you the best of both worlds.

4 Gridlines
By default, tree nodes always have a gridline on their left. These gridlines helps the user quickly
see which nodes are siblings, and which node is the parent.

You can turn off gridlines at the root level and/or for the entire tree. By default, each 1st level
TreeNode connects to a "phantom" root node, as in:

SCREENSHOT

You can remove the phantom Root node so the first level nodes appear with no gridlines to their
left, as in:

<div dojoType="Tree" showRootGrid="false">

Pagina 78 di 114Dojo Developer Guide

Or you can turn all the gridlines off, as in:

<div dojoType="Tree" showGrid="false" showRootGrid= "false">

5 Pre-Expanding Content
Let's say you'd like to highlight a particular Tree node, for example a default value. You can do
this easily enough with tags around the node title:

<div dojoType="TreeNode"...>
 <div dojoType="TreeNode"...>
 <div dojoType="TreeNode" title="The most popular choice" />
 ...
 </div>
 <div dojoType="TreeNode"...>
 <div dojoType="TreeNode" title="Another Choice" />
 </div>
</div>

But if this TreeNode is 3 levels down, the user will have to expand both levels above it. A better
way is to pre-expand content levels. This requires the attribute "expandLevel", which means
"expand all nodes that are n levels below" If n is more than 1, all levels between 1 and n are
expanded, since seeing an expanded node requires seeing an expanded node above. For
example, if you added expandLevel="2" to the top TreeNode:

<div dojoType="TreeNode" expandLevel="2" ...>
 <div dojoType="TreeNode"...>
 ...

then both The Most Popular Choice and Another Choice will appear. But:

<div dojoType="TreeNode" expandLevel="1" ...>
 <div dojoType="TreeNode" expandLevel="1" ...>
 ...
 </div>
 <div dojoType="TreeNode"...>
</div>

will only expand Most Popular Choice.

Widget Namespaces
Overview

Widgets are combined into groups called namespaces. All the widgets built into Dojo are in the
"dojo" namespace, but someone else could write their own widgets and put them in a different
namespace. For example, you could write your own button and checkbox widgets, and put them
into an "acme" namespace. Then "acme:Button" would be your button, and would be unrelated
to the button object built into dojo, called "dojo:Button".

Usage

Defaults have been chosen to reduce boilerplate. A namespace maps to a top-level module by

Pagina 79 di 114Dojo Developer Guide

default. A top-level module path defaults to dojo/../, and widgets are expected to be in .widget.

Given

acme widgets are expected to be in acme folder next to dojo folder.

acme.widget module is expected to contain the Image widget.

/dojo
/acme/
/acme/widget/Image.js <- defines acme.widget.Image

Loading acme.widget.Image module is the only requirement for using acme:Image in this
configuration. You can load that module as part of a build, by calling dojo.require, or
automatically.

To use a folder location other than ../acme call dojo.registerModulePath.

To select a widget module other than acme.widget, call dojo.registerNamespace.

Automatic Loading

To allow automatic loading of widgets in a namespace, include a manifest file. For the example
above, the default resource for the manifest would be:

<root>/acme/manifest.js

To customize the folder location of module acme call dojo.registerModulePath.

For most users employing the auto-require system, the manifest file contains a call to
dojo.registerNamespaceResolver.

A namespace resolver tells Dojo what module to load for a named widget.

 dojo.provide("acme.manifest");
 dojo.require("dojo.string.extras");
 dojo.registerNamespaceResolver ("acme",
 function(name){
 return "acme.widget."+dojo.string.capitalize(name);
 }
);

Pagina 80 di 114Dojo Developer Guide

The input string name will always be lower-case. So this resolver triggers loading of module
acme.widget.Calendar for widget acme:calendar.

The load-time module is not necessarily the same as the widget class module. For example, the
acme.widget.Calendar class might be loaded via acme.widget.allWidgets.

The resolver tells dojo the module to require to load a widget.

To select a widget class module other than acme.widget, call dojo.registerNamespace.

API

dojo.registerModulePath(module, path): maps a module name to a path (formerly
setModulePrefix).

An unregistered module is given the default path of ../, relative to Dojo root. For example,
module acme is mapped to ../acme. If you want to use a different module name, use
registerModulePath.

dojo.registerNamespace(namespace, widget_module [, resolver]): maps a module name to a
namespace for widgets, and optionally maps widget names to modules for auto-loading.

An unregistered namespace is mapped to an eponymous module. For example, namespace acme
is mapped to module acme, and widgets are assumed to belong to acme.widget. If you want to
use a different widget module, useregisterNamespace.

dojo.registerNamespaceResolver(namespace, resolver): a resolver function maps widget names
to modules, so the widget manager can auto-load needed widget implementations.

The resolver provides information to allow Dojo to load widget modules on demand.When a
widget is created, a namespace resolver can tell Dojo what module to require to ensure that the
widget implementation code is loaded.

The input string in the name argument will always be lower-case.

Pagina 81 di 114Dojo Developer Guide

 dojo.registerNamespaceResolver (" acme",
 function(name){
 return "acme.widget."+dojo.string.capitalize(name);
 }
);

Examples

Let's say we have a Dojo install at root:

/dojo/dojo.js
/dojo/[whatever else is in the particular dojo inst all]

We want to create custom modules, and decide to put them in:

/acme

Note that the path to acme from dojo is:

../acme

For the widget examples, let's say we made some custom widgets, including one called
acme.widgets.Calendar, and put them in:

/acme/widgets/variousWidgets.js

Automatic Loading

Main document

<script src="/dojo/dojo.js"></script>
<script>
 dojo.require("dojo.widget.*");
</script>

Include a manifest file: /acme/manifest.js

dojo.provide("acme.manifest");
dojo.registerNamespaceResolver(function(name) {
 return "acme.widgets.variousWidgets";
});

To support markup like so:

The acme namespace triggers require of acme.mainfest. The resolver is used to
match calendar to a required module (i.e. acme.widgets.variousWidgets). Then
acme.widgets module is searched for calendar implementation matching the current
rendering environment.

Pagina 82 di 114Dojo Developer Guide

Explicit Loading

Main document

<script src="/dojo/dojo.js"></script>
<script>
 dojo.require("acme.widgets.variousWidgets");
</script>

Supports markup like so:

acme.widgets module is searched for calendar implementation matching the current
rendering environment.

Non-Widget Resources

Main document

<script src="/dojo/dojo.js"></script>
<script>
 dojo.require("acme.lib");
</script>

acme/lib.js file:

// ... additional code ...

Builds

With a build you can use any of these formats, but a manifest is not required.

Main document

<!-- dojo.js is a build -->
<script src="/dojo/dojo.js"></script>
<!-- dojo.require(s) can be here, although they are igno red -->

Supports markup like so:

<div dojoType="acme:calendar"></div>

Writing Your Own Widget
This section discusses the internals of widgets, and how to write your own.

Compound Widgets
TODO: moved this from "The Memo" page, where it definitely didn't belong, but it could use

Pagina 83 di 114Dojo Developer Guide

some expansion

This is a crucial next step for widget authors - creating widgets which themselves contain inner
widgets, resulting in what we could call 'compound widgets'.

The procedure is simple, just add to your widget .js file, within the widget atributes object, the
line:

 widgetsInTemplate:true,

then, your subwidgets will nest perfectly within the main outer widget. You should also be able
to nest to any arbitrary depth. Just remember though to abstain from setting the id or dojoId
attributes in your html, rather set dojoAttachPoint instead to insert into your main outer
widget a named attribute which references your subwidget. This way, you won't pollute the
global element namespace. Otherwise, you'll hit problems if creating multiple instances of your
compound widgets.

The Monolithic App Widget

One approach to dojo application design is to build the app as one huge compound uber-widget,
containing all the needed sub-widgets.

This approach will likely have a natural feel and appeal to those experienced in desktop GUI
programming.

If you want to go in this direction, then your app can get loaded in the client by a very minimal
HTML file which just pulls in a minimal stylesheet, includes dojo.js, dojo.require()s your main
app widget, then invokes that widget in a single
tag within your document . There are those of us who feel that the less javascript code you have
within html files, the better!

Custom Namespace
TODO:

Ã‚Â Ã‚Â Ã‚Â - this is old info?Ã‚Â current description is at
http://dojo.jot.com/WikiHome/Modules%20%26%20Namespaces

Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â - As indicated below, it is correct for the current stable version (0.3.1).
It will need to be updated for the next release.

If you're planning on creating your own widgets then it's probably a good idea to keep your own
code completely separate from the Dojo codebase. This will make life easier if/when you come
to install a new version of Dojo, and also prevent any name clashes with native Dojo widgets.

First of all, you'll want to create a directory structure outside the Dojo source directory where
your code will be stored. For example, let's call this new directory 'user', so that your directory
structure looks something like this:

Pagina 84 di 114Dojo Developer Guide

 /dojo

 /user

 index.html

Next you need to tell Dojo that this new namespace exists and where it lives. You can do this
with dojo.setModulePrefix(namespace, path), like this:

 dojo.setModulePrefix("user", "../user");

Note that the path (the second parameter) is relative to the root of the dojo source directory.

[Please note: the use of dojo.setModulePrefix() is deprecated (by Dojo version 0.5), and will
be replaced with dojo.registerModulePath(), which takes the same initial parameters.]

Now since Dojo will look for widgets in a subdirectory (under '/user') called 'widget', we need to
create that too:

 /dojo

 /user

 /widget

 index.html

Now you can create our own widgets in the user/widget directory and include them using
dojo.require() as usual:

Ã‚Â Ã‚Â Ã‚Â dojo.require("user.widget.MyWidget");

Unfortunately, in version 0.3.1 you can't use the namespace when calling your widget (this has been fixed in newer versions). So for now, just use the name of

Pagina 85 di 114Dojo Developer Guide

Ã‚Â Ã‚Â Ã‚Â

...or programatically...

Ã‚Â Ã‚Â Ã‚Â var new_widget = dojo.widget.createWid get

Ã‚Â Ã‚Â Ã‚Â (

Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â 'MyWidget',

Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â {

Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â some_propert y:'Some Value'

Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â }

Ã‚Â Ã‚Â Ã‚Â);

In future versions (and current nightly/SVN builds), you would prepend the name of the
widget with the namespace and a colon, for example:

TODO: correct, expand...

More on Templates
This chapter discusses how widget templates work.

The Template

If you remember, in a previous chapter we looked at the template for the floating pane:

Basically, the idea is the the source HTML is replaced by this template. But there's a lot more stuff happening.

Attaching DOM Nodes

Pagina 86 di 114Dojo Developer Guide

Inside of FloatingPane.js you will notice various variables that correspond to (point to)
dom nodes within the instantiated template. It's easier to explain by example.

Here are some lines from the template above (note the highlighted section):

Ã‚Â Ã‚Â Ã‚Â

Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â Ã‚Â

And here's the corresponding code from FloatingPane.js:

 titleBar: null,
 titleBarIcon: null,
 ...

Merely by having that code, the titleBar variable points to the dom node generated by the
template. So you can do something like:

 this.titleBar.style.color="red";

The Container Node

There's a special attach point called the "container node". Consider this source HTML:

 Hello world!

This is a floating pane that contains some content, including a widget. What happens to the content when the floating pane is instantiated? It goes into

dojoAttachPoint="containerNode"

class="dojoFloatingPaneClient">

In addition, since the floating pane contains contents, we have this line in
FloatingPane.js:

 isContainer: true,

Attaching Events

Another very useful feature is declarative event handling. Notice this line from the
template above:

 class="dojoFloatingPaneMaximizeIcon">

 press me

Pagina 87 di 114Dojo Developer Guide

Just by adding that line, whenever the maximize action div is clicked, the widget's
maximizeWindow() function will be called.

If you don't specify a function name, it defaults to the event name. For example,

due to the above highlighted code, whenever you mouse down, onMouseDown() is
called.

Variable Replacement

 ${this.caption}

When dojo creates the widget from the template, it substitutes the value of this.caption from the object into the template.

More on The Javascript Object
Now we'll see how you write the javascript portion of a widget.

Previously we looked at the CSS and the HTML used to define a widget. The third
and final component to widgets is a javascript class to handle widget rendering
details and events on the widget.

defineWidget

The first step to writing the javascript for a widget is to call defineWidget. Below
I'm defining a widget called my.widget.html.Foo that extends
dojo.widget.HtmlWidget,the base class for most widgets. (We'll talk about
different base classes and what "html" means in a later document.)

dojo.widget.defineWidget("my.widget.Foo", dojo.widg et.HtmlWidget, {
 function() {
 // do initialization tasks, make instance propert ies
 },
 {
 ...prototypical properties (in object notation)...
 }
);

Using dojo.widget.defineWidget, the tasks below are performed automatically:

� register widget package (tell dojo the namespace contains widgets)
� add the parse tree handler (identify a markup tag with the widget)
� set the widgetType
� invoke ancestor constructor
� inherit from ancestor prototype

Alternately, I might want to extend an existing widget. Here I'm making an
enhanced version of Foo called FooPlus:

dojo.widget.defineWidget("my.widget.FooPlus", my.wi dget.Foo, {

Pagina 88 di 114Dojo Developer Guide

 function() {
 // do initialization tasks, make instance propert ies
 },
 {
 ...prototypical properties (in object notation)...
 }
);

Parameters

OK, that's the skeleton for the widget, but what do we put inside? The first thing to
think about are the parameters that are used when you construct the widget. Every
widget can take parameters. For example:

Where are the parameters defined, and how do you set their types? Actually, they
are just properties in the javascript class. In this case:

 toggle: "", // string
 toggleDuration: 0, // integer
 onClick: function(){} // function

Javascript doesn't have types, so how do we specify the types of the parameters? By
specifying an example. In the above case, 0 means integer and "" means string.

Note: don't set them to null or it won't work!

Default values:

You can also specify default values in the javascript file. If the user doesn't specify
a value for a parameter the default is used. For example:

 toggle: "fade"

Important Properties To Set

Next, you need to set certain properties that define how the widget operates.

isContainer

True/False. Must be set to true if the widget has child HTML or child widgets

snarfChildDomOutput

True/False. Set this to true if you are making something like a container node,
where the input is just a list of widgets. It resolves issues where a child's generated
DOM tree cannot be put back into the same place the source dom tree was.
(Because [td] cannot be a child of [div], etc.)

templatePath

The path to the template HTML file, if one exists for the widget. This needs to be a

Pagina 89 di 114Dojo Developer Guide

dojo URI object, and is normally one of the two options shown below:

dojo.uri.dojoUri("src/widget/templates/HtmlFloating Pane.html"),
 or
dojo.uri.moduleUri("mywidgetset","widgets/html/MyWi dget.html"),

templateCssPath

The path to the template CSS file, if one exists for the widget. This needs to be a
dojo URI object, and is normally one of the two options shown below:

dojo.uri.dojoUri("src/widget/templates/HtmlFloating Pane.css"),
 or
dojo.uri.moduleUri("mywidgetset","widgets/css/MyWid get.css"),

templateString / templateCssString

If the CSS or HTML for a widget is very simple, you can specify it in the javascript
rather than using templatePath/templateCssPath to refer to other files. This is what
the dojo build process does automatically to embed templates/CSS in your widget
code when you specify the intern-strings option.

templateString: "
Simple Template
",
templateCssString: ".simple { color:blue; font-size :12pt; }",

Initialization Methods

Inside a widget file you will notice a number of functions for initialization. The
most important ones are described below in the order they are called during the
widget creation process.

postMIxInProperties()

this is called after the properties (see previous section) are initialized to the user
specified values, but before the HTML template is instantiated.

Typical actions to perform here are validating and adjusting parameters provided to
the widget.

fillInTemplate()

This is called after the template has been instantiated, so this.domNode points to
the generated DOM tree. However, the children DOM nodes (for containerNode)
and widgets haven't yet been copied over, and the widget's DOM node has not yet
been placed in the actual HTML document.

Typical actions to perform here include:

� Enabling or disabling parts of the widget
� Applying styles/classes/etc
� Creating widgets that attach to nodes in the template
� Setting initial state

Pagina 90 di 114Dojo Developer Guide

postCreate()

This is called after the children dom nodes and widgets have been instantiated.
However, for programatically created widgets, none of the children exist yet,
because they are added after createWidget() finishes, via the addChild() call.

Typical actions to perform here include:

� Connecting event handlers

� Manipulating parent or child nodes (with the above caveat)

Arrays, Objects, and Statics

Widget attributes that are Arrays or Objects need to be declared in the initializer()
function, rather than like other variables (numbers or strings), so that they are not
inadvertently shared between other instances of the same widget.

On the other hand - to make a static variable (i.e. a variable that is shared across all
instances of the widget), just take advantage of the above issue:

 // static1 and static2 are shared across every Foo widget
 statics: { static1: 0, static2: "" }

 this.statics.static1++; // increments the si ngle copy

Important Variables

this.domNode - points to root of generated tree

this.containerNode - place where child HTML was attached

this.children - array of child widgets

The Memo

Overview

This page serves as an introduction to the art and science of creating one's own
dojo widgets, and invoking them in html code just like mainstream Dojo widgets.

The following walk through will take you through all the steps needed to create a
simple widget, ie a widget that contains only dom elements, not any nested dojo
widgets.

Following this walk through are some instructions for creating compound widgets
(ie, widgets that include other dojo widgets).

Getting Started

Let's say that you want to make a memo widget. Just a yellow sticky note to remind

Pagina 91 di 114Dojo Developer Guide

yourself of your dentist appointment, or whatever. Something that you can put on
the screen and then erase later. Something so that a call like this:

<div dojoType="Memo" title="Reminder">
 Pick up milk on the way home
</div>

will produce something that looks like this:

The Template

The first step is to write HTML and CSS that prototypes how the widget will look.
You can do this in any editor of your choice. I made the prototype above using this
HTML:

<div class="memo">
 <div class="title">Reminder</div>
 <div class="close">X</div>
 <div class="contents">Pick up milk on the way hom e.</div>
</div>

And this CSS:

.memo {
 background: yellow;
 font-family: cursive;
 width: 10em;
}

.title {
 font-weight: bold;
 text-decoration: underline;
 float: left;
}

.close {
 float: right;
 background: black;
 color: yellow;
 font-size: x-small;
 cursor: pointer;
}

.contents {
 clear: both;
 font-style: italic;
}

Note how I put as much of the formatting code into the CSS. This isn't necessary,
but it does make it easier for other people to customize the widget, merely by
altering the CSS.

Pick up milk on the
way home.

Reminder X

Pagina 92 di 114Dojo Developer Guide

Turning it into a widget

To make this memo into a widget, you need to declare a javascript object that
connects with the HTML and CSS template above. So, put the HTML in a file
called Memo.html, the CSS in a file called Memo.css, and make the Memo.js file
below:

dojo.widget.defineWidget(
 // widget name and class
 "acme.Memo",

 // superclass
 dojo.widget.HtmlWidget,

 // properties and methods
 {
 templatePath: dojo.uri.dojoUri("src/widget/Memo.h tml"),
 templateCssPath: dojo.uri.dojoUri("src/widget/Mem o.css")
 }
);

Contents and Parameters

The obvious problem with this widget is that no matter what is inside the source
div, it always says "Pick up milk on the way home". What you need is for the
contents of the source div to be inserted into the generated output. This is what the
"containerNode" is for, and you use it like this...

First, in the template, get rid of the static content, and instead mark that the div
should hold the content from the source.

<div class="memo">
 <div class="title">Reminder</div>
 <div class="close">X</div>
 <div class="contents" dojoAttachPoint="containerN ode"></div>
</div>

Then, in the javascript object, denote that this widget is a container:

dojo.widget.defineWidget(
 // widget name and class
 "acme.Memo",

 // superclass
 dojo.widget.HtmlWidget,

 // properties and methods
 {
 isContainer: true,
 templatePath: dojo.uri.dojoUri("src/widget/Memo.h tml"),
 templateCssPath: dojo.uri.dojoUri("src/widget/Mem o.css")
 }
);

OK, what about the title? The title is specified as an attribute:

<div dojoType="Memo" title="Reminder">

Pagina 93 di 114Dojo Developer Guide

 Pick up milk on the way home
</div>

That means that it's a parameter to the widget. Parameters are specified as normal
widget properties. In this case, the widget properties would look like this:

 // properties and methods
 {

 // parameters
 title: "Note",

 // settings
 isContainer: true,
 templatePath: dojo.uri.dojoUri("src/widget/Memo.h tml"),
 templateCssPath: dojo.uri.dojoUri("src/widget/Mem o.css")
 }

This widget now has a "title" parameter, with a default value of "Note"

How do you stick this parameter's value into the widget? Luckily widget templates
have variable substitution, so no coding is necessary. Just modify the template to
use this parameter:

<div class="memo">
 <div class="title">${this.title}</div>
 <div class="close">X</div>
 <div class="contents" dojoAttachPoint="containerN ode"></div>
</div>

Events

OK, the content of the widget is showing up correctly, but how to you make
clicking the X cause the widget to disappear? It's pretty simple, and hardly requires
any javascript. The first step is to modify the template to handle click events on the
X:

<div class="memo">
 <div class="title">\${this.title}</div>
 <div class="close" dojoAttachEvent="onClick">X</d iv>
 <div class="contents" dojoAttachPoint="containerN ode"></div>
</div>

Then you simply add a method to the widget javascript object to handle the click:

 onClick: function(evt){
 this.destroy();
 }

That's it! Your first functioning widget!

Final code

Memo.html

Pagina 94 di 114Dojo Developer Guide

<div class="memo">
 <div class="title">\${this.title}</div>
 <div class="close" dojoAttachEvent="onClick">X</d iv>
 <div class="contents" dojoAttachPoint="containerN ode"></div>
</div>

Memo.css

.memo {
 background: yellow;
 font-family: cursive;
 width: 10em;
}

.title {
 font-weight: bold;
 text-decoration: underline;
 float: left;
}

.close {
 float: right;
 background: black;
 color: yellow;
 font-size: x-small;
 cursor: pointer;
}

.contents {
 clear: both;
 font-style: italic;
}

Memo.js

dojo.widget.defineWidget(
 // widget name and class
 "acme.Memo",

 // superclass
 dojo.widget.HtmlWidget,

 // properties and methods
 {
 // parameters
 title: "Note",

 // settings
 isContainer: true,
 templatePath: dojo.uri.dojoUri("src/widget/Memo.h tml"),
 templateCssPath: dojo.uri.dojoUri("src/widget/Mem o.css"),

 // callbacks
 onClick: function(evt){
 this.destroy();
 }
 }
);

Containers

Pagina 95 di 114Dojo Developer Guide

LinkPane

ContentPane

Part 5: "Connecting the pieces"

Event System
Unlike the DOM events that web programmers normally associate with the word
"event", Dojo takes a broad view of events. The tools in dojo.event.* allow
developers to treat any function call (DOM event or otherwise) as an event that can
be listened to. Using Dojo, code can register to "hear" about any action through a
uniform API.

Events are essential for Dojo based applications as they drive the user interface,
result in AJAX requests, and allow widgets to interact with each other. In a sense
events are the glue that ties an application together. Cross browser event handling
code can difficult to write from scratch as there are many ways in JavaScript of
handling events and each browser has its own quirks and issues.

Dojo abstracts the JavaScript event system in the dojo.event module and provides a
few options for handling events which include simple event handlers, event
listeners using before, after, and around advice, and topics. The Dojo event APIs
are not mutually exclusive; in many cases you will use a combination of the APIs
depending on your use cases.

In this chapter we'll show you:

� how to use these tools
� what makes them completely different from other JavaScript event systems

you may have used
� why you'll never start writing JavaScript without dojo.event.connect() again.

Before, After, and Around Advice
In addition to being able to call any function or method after any other function or
method call, connect() can be used to call listeners before the source function is
called. In Aspect Oriented Programming terminology, this is called "before advice"
while the previous examples have all be "after advice". The terminology is
confusing, but for a lack of anything less mind-bending or better accepted, we
adopt it for the advanced cases that connect() supports.

Here's how we'd ensure that "bar" gets alerted before "foo" when exampleObj.foo()
is called:

dojo.event.connect("before", exampleObj, "foo", exa mpleObj, "bar");

As you can see, we just perpended our previous call to connect() with the word
"before". In the other cases, the word "after" was the implied first argument, which
we could have added if we wanted, but typing more isn't something any of us want,
and most of the time "after" is what you want anyway.

Pagina 96 di 114Dojo Developer Guide

The same connection using kwConnect() looks like:

dojo.event.kwConnect({
 type: "before",
 srcObj: exampleObj,
 srcFunc: "foo",
 targetObj: exampleObj,
 targetFunc: "bar"
});

Before and after advice give us tools to handle a huge range of problems, but what
about when the listener and the source functions don't have the same call
signatures? Or what about when you want to change the behavior of a function
from someone else's code but don't want to change their code? If we take the view
that any function call in our environment is an event, then shouldn't we also have
an "event object" for each of them? When using dojo.event.connect(), this is
exactly what happens under the covers, and we can get access to it via "around
advice". Long story short, around advice allows you to wrap any function and
manipulate both it's inputs and outputs. This'll let us change both the calling
signatures of functions and change arguments for listeners (among other things).

Unlike the other advice types, around advice requires a little bit more cooperation
from the author of the around advice function, but since you'll probably only be
using it in situations where you know that you want to explicitly change a behavior,
this is isn't really a problem. This example take a function foo() which takes 2
arguments and provides a default value for the second argument if one isn't passed:

function foo(arg1, arg2){
 // ...
}
function aroundFoo(invocation){
 if(invocation.args.length < 2){
 // note that it's a real array, not a pseud o-arr
 invocation.args.push("default for arg2");
 }
 var result = invocation.proceed();
 // we could change the result here
 return result;
}
dojo.event.connect("around", "foo", "aroundFoo");

The aroundFoo() function must take only a single argument. This argument is the
method-invocation object. This object has some useful properties (like args) and
one method, proceed(). proceed() calls the wrapped function with the arguments
packed in the args array and returns the result. At this point, you can further
manipulate the result before returning it. If you don't return the result of proceed(),
it will appear to the caller as though the wrapped function didn't return a value. At
any point you could call another function to do things like log timing information.

Once this connection is made, every time foo() is called aroundFoo() will check it's
argument and insert a default value for arg2. Around advice is kind of like goto in
C and C++: if you don't know better you can make huge messes, but when you
really need it, you really need it.

Despite the power of around advice, it's not very often that globally changing a
function signature or return value is the best plan. More often, you'll just want to
smooth over the differences in calling signatures between two functions that are

Pagina 97 di 114Dojo Developer Guide

being connected. As you might have come to expect by now, Dojo provides a
solution for this type of impedance matching problem too.

The solution is before-around and after-around advice. These advice types apply a
supplied around advice function to the listener in a connection. They only apply the
around advice when the listener function is being called from the connected-to
source. Put another way, it's connection-specific argument and return value
manipulation.

To access before-around and after-around advice, just pass in another object/name
pair to a normal "before" or "after" connection, like this:

var obj1 = {
 twoArgFunc: function(arg1, arg2){
 // function expects two arguments
 }
};
var obj2 = {
 oneArgFunc: function(arg1){
 // this function expects a two-element arra y
 // as its only parameter
 }
};
// we'd probably connect the functions somewhere el se. Perhaps in a
// different file entirely.
function aroundFunc(invocation){
 var tmpArgs = [
 invocation.args[0],
 invocation.args[1]
];
 invocation.args = tmpArgs;
 return invocation.proceed();
}
// after-around advice
dojo.event.connect(obj1, "twoArgFunc",
 obj2, "oneArgFunc",
 "aroundFunc");

Each function now gets what it expects, and the code calling obj1.twoArgFunc()
never need be the wiser that any of this is happening.

Connecting Multiple Events
Multiple Listeners

Connect also transparently handles multiple listeners. They are called in the order
they are registered. This would kick off two separate actions from a single onclick
event:

var handlerNode = document.getElementById("handler");
dojo.event.connect(handlerNode, "onclick", object, "handler");
dojo.event.connect(handlerNode, "onclick", object, "handler2");

We didn't have to change the API we were using, rewire anything for multiple
events, etc. It all just works. Now every time you click the node, and object.handler
() gets called and then object.handler2() gets called.

Pagina 98 di 114Dojo Developer Guide

Finally, note that connect can take an array of objects as input:

dojo.event.connect(
 [Ã¢â‚¬?id1, Ã¢â‚¬Å“id2Ã¢â‚¬?, Ã¢â‚¬Å“id3Ã¢â‚¬?], Ã ¢â‚¬Å“ onclick
 listenerObj, Ã¢â‚¬Å“handleOnClickÃ¢â‚¬?);

Disconnection and Multi-Connection

Connecting is one thing, but what about when you want to stop listening?
dojo.event.disconnect() will stop the listening arrangement between functions, but
must be pass exactly the same arguments as were passed to connect in order to
ensure successful disconnection.

If there's anything that can trip up new users of dojo.event.connect(), it's
inadvertently connecting multiple times. Very often, a piece of code will get called
multiple times, and it will contain a dojo.event.connect() call. The developer is then
surprised when their listener function is called multiple times for every time the
source function fires. What to do?

Connecting Once And Using Keywords

One option is to move your connect() call to a location that will get invoked only
once, but sometimes that's just not feasible. An optional argument to connect()
ensures that the same arguments to connect passed multiple times will result in
only one connection between functions. Unfortunately, it's the 8th parameter. Ugh.
The last thing we want to do is remember 8 different parameters. The best answer
in this scenario is to use the keyword-argument version of connect, aptly named
kwConnect(). To use it, we have to give the parameters we've been using so far
names. Here's our object connection example using kwConnect() and the once

parameter:

dojo.event.kwConnect({
 srcObj: exampleObj,
 srcFunc: "foo",
 targetObj: exampleObj,
 targetFunc: "bar",
 once: true
});

As I'm sure you've already guessed, there's an analogous kwDisconnect method.
Just pass it what you pass kwConnect, naturally.

Event Object
Using dojo.event also masks browser differences by normalizing the event object
(for DOM node events) so you can use common event code in any browser.

Fixed event objects have these modifications:

Pagina 99 di 114Dojo Developer Guide

For key events, a set of event key code aliases are installed, so you can express
(e.keyCode == e.KEY_ESC) . Also, a reverse key code lookup is installed, so you
can express (e.revKeys[e.keyCode] == 'KEY_ESC') .

These properties are made available in all browsers:

� target
� currentTarget
� pageX/pageY - position of cursor relative to viewport
� layerX/layerY
� fromElement
� toElement
� charCode

The following methods are also made available:

� stopPropagation() - stops other event handlers (on parent domnodes) from
firing

� preventDefault() - stops things like following the href on a hyperlink.
� callListener() - ???

Additionally, event (W3) vs. window.event (IE) is taken care of: all connected
event handlers get passed a fixed event object (even in IE).

As an example, the code below will work in any browser:

dojo.event.connect(dojo.byId("foo"), "onmousemove") ,
 function(evt){
 alert("mouse at pos" + evt.pageX + "," + evt.page Y);
 });

Events And Widgets
A brief note about events and widgets.

dojo.event.connect() can be used with widgets just like any other objects. However,
there is a shortcut for defining "after" advice on a widget.

In the above example, the alert is called after the widget's own onClick() function
finishes executing.

On the other hand, in the case below:

The widget's onClick function is replaced by function foo.

 Click Me!

 Click Me!

Pagina 100 di 114Dojo Developer Guide

This is a somewhat confusing discrepancy (the latter behavior is more consistent
with widget parameter setting in general), but it's left in place for backwards
compatibility.

Page Load / Unload
Often you will want to schedule some code to run on page load. Traditionally, this
is done like

 window.onLoad = ...;

or perhaps

However, that won't work for Dojo, because Dojo needs to override window load
and unload. So, you should do this:

function init(){
 ...
}
dojo.addOnLoad(init);
function cleanup(){
 ...
}
dojo.addOnUnload(cleanup);

Just like the normal dojo.event.connect() call, addOnLoad() and addOnUnload()
can be called multiple times without overwriting the previous values, so you don't
have to worry about one piece of Javascript code affecting another.

The line dojo.addOnLoad(init); tells Dojo to call the init function when it has
finished loading correctly. This is very important! If the init function was called
before Dojo has finished parsing the HTML then widget objects would not have
been instantiated and so would not exist at that point in time - causing a nasty error.

Publish and Subscribe Events
Use publish and subscribe to communicate events anonymously between widgets
or any JavaScript functions of your choosing. You may also consider
customizing the widget to allow the topic name to be passed in as an
initialization parameter to make the widget more flexible.

The following example shows how two objects may use publish and subscribe to
communicate with each other.

var foo = new function() {
 this.init = function() {
 dojo.event.topic.subscribe("/mytopic", this , processMessages);
 }

 function processMessages(message) {

Pagina 101 di 114Dojo Developer Guide

 alert("Message: " + message.content);
 }
}

var bar = new function() {
 this.showMessage = function(message) {
 dojo.event.topic.publish("/mytopic", {conte nt: message});
 }
}

foo.init();
bar.showMessage("Hello Dojo Master");

In the exampe above the object foo registers with a topic called '/mytopic' when
the init function is called. Bar publishes a message to the topic '/mytopic' which
results in the function showMessages being called. You can create any number of
topics to publish and subscribe to.

Using publish and subscibe is very easy and it makes wiring things together easy.
Widget communication by default is within the same JavaScipt execution
context. Not all event handling need be exposed using publish and subscribe
however using these types of events allows your code to be flexible and permit
future integration with other widgets.

Topics
Dojo provides a means of anynonymous event communication which can be very
useful to connect together widgets in a page that may have no previous
knowledge of each other. This maybe done using publish/subscribe style events.
Publish subscribe style events require that the components that wish to
communicate information simply share the name of a topic or queue to which the
events are published/subscribed to. Objects may be passed as an argument of the
events which provides a powerful means of inter-object/widget communication.

The API for publishing to a topic is as follows:

dojo.event.topic.publish("/topicName", args);

That is pretty much it to publish an event. The arguments are passed as an object
literal and will be seen by all clients subscirbed to the corresponding topic
"/topicName".

The API for subscribing to a topic is as follows:

dojo.event.topic.subscribe("/scroller", targetObj, targetFunc);

A more detailed example follows:

var ac;
var is;
function init() {

Pagina 102 di 114Dojo Developer Guide

 ac = new AccordionMenu();
 ac.load();
 is = new ImageScroller();
 is.load();
}
function Scroller() {
 this.setProducts = function(pid) {
 // show the products for pid
 }
 this.handleEvent = function(args) {
 if (args.event == 'showProducts') {
 this.setProducts(args.value);
 }
 }

 this.load = function () {
 dojo.event.topic.subscribe("/scroller", thi s, handleEvent);
 }

function Accordion() {
 function expandRow(target) {
 ...
 var link = document.createElement("a");
 dojo.event.connect(link, "onclick", function (evt){
 this.target = target;
 dojo.event.topic.publish("/scroller", {e vent: "showProducts", value : target});
 });
 }
}

An "onclick" event on the element link will cause an event to be published to the
topic name "/scroller" which is shared by both the Accordion and Scroller
objects. In the case of this example the "handleEvent" function of the Scroller
object will be callsed with the object literal {event: "showProducts", value :
target}.

As can be seen topics can be very useful. When designing widgets or objects that
need to interact with widgets or objects consider using publish and subscribe
style events.

Working with Simple Events
Events in JavaScript or Dojo based applications are essential to making
applications work. Connecting an event handler (function) to an element or an
object is one of the most common things you will do when developing
applications using Dojo. Dojo provides a simple API for connecting events via
the dojo.event.connect() function. One important thing to note here is that events
can be mapped to any property or object or element. Using this API you can wire
your user interfaces together or allow for your objects to communicate. The
dojo.event.connnect() API does not require that the objects be Dojo based. In
other words, you can use this API with your existing interfaces.

DOM Events

dojo.event.connect has multiple function signatures, but one of the simplest is:

Pagina 103 di 114Dojo Developer Guide

dojo.event.connect(srcObj, "srcFunc", targetFunc);

The arguments are the source object, the source function (in quotes) and the
target function reference or anonymous function.

Here we have a DOM node called mylink, and whenever that DOM node is
clicked myHandler will be called:

var link = dojo.byId("mylink");
dojo.event.connect(link, "onclick", myHandler);

function myHandler(evt) {
 alert("dojo.connect handler");
}

Above the "onclick" property of link element is connnected to the function
myHandler.

But what if we don't want to set up a named function for the event handler? No
problem:

 var link = dojo.byId("mylink");
 // connect link element 'onclick' property to an anonymous function
 dojo.event.connect(link, "onclick", function(evt) {
 ...
 });

The example above shows how an anonymous function can be mapped to the
"onclick" property of a link element with an existing in-lined DOM 1 style
handler connected to using the "onclick" attribute of the element.

So far, though, we're not doing anything that can't be done by setting the onclick
property of the DOM Node. But what about attaching a method of an object to a
DOM Node's event handler? Normally, you'd have to do something like:

var handlerNode = document.getElementById("handler");
handlerNode.onclick = function(evt){
 object.handler(evt);
};

Dojo simplifies it to:

var handlerNode = document.getElementById("handler");
dojo.event.connect(handlerNode, "onclick", object, "handler");

This connect() call ensures that when handlerNode.onclick() is called,
object.handler() will be called with the same arguments. Language limitations of
JavaScript make it impossible to pass in the object and function name together,
however separating them into an object reference and function name isn't
difficult.

Other Events

Pagina 104 di 114Dojo Developer Guide

So we've seen that connect() can handle DOM events, but what about that more
expansive view of events that was mentioned earlier? To demonstrate, lets define
a simple object with a couple of methods:

var exampleObj = {
 counter: 0,
 foo: function(){
 alert("foo");
 this.counter++;
 },
 bar: function(){
 alert("bar");
 this.counter++;
 }
};

So lets say that I want exampleObj.bar() to get called whenever exampleObj.foo
() is called. We can set this up the same way that we do with DOM events:

dojo.event.connect(exampleObj, "foo", exampleObj, " bar");

Now calling foo() will also call bar(), thereby incrementing the counter twice and
alerting "foo" and then "bar". Any caller that was counting on getting the return
value from foo() won't be disappointed. The source method should behave just as
it always has. On the other hand, since there's no explicit caller for bar(), it's
return value will be lost since there's no obvious place to put it.

The Dojo event model

We've also inadvertently demonstrated that connect() takes variable forms of
arguments. So far, it's correctly handled:

� object, name, name
� object, name, function pointer
� object, name, object, name

This is par for the course when using connect(). Since it is used in so many
places, for so many things, and in so many ways, connect() does a lot of checking
and normalization of it's arguments. The connect method tries to disambiguate
the types of the positional parameters based on usage. Some common usages are:

� dojo.event.connect(scope1, "functionName1", "globalFunctionName2");
� dojo.event.connect("globalFunctionName1", scope2, "functionName2");
� dojo.event.connect(scope1, "functionName1", scope2, "functionName2");
� dojo.event.connect("after", scope1, "functionName1", scope2,

"functionName2");
� dojo.event.connect("before", scope1, "functionName1", scope2,

"functionName2");

The first paramether is adviceType ("after" and "before") and is optional. If it is
not supplied then it defaults to "before". In the above example, adviceType was
not provided and so the default, in this case "before" is used.

srcObj - the scope (scope1) in which to locate/execute the named srcFunc. This is
also optional and if it is not supplied then Dojo assumes the global object.

Pagina 105 di 114Dojo Developer Guide

srcFunc - the name of the function to connect to. In the above examples it is
"globalFunctionName2" or "functionName2". This is in conjunction with the
srcObj parameter. Dojo will look for a function, srcFunc, in srcObj.

adviceObj - scope (scope 2) in which to locate/execute the named adviceFunc.
Again this parameter is optional and if not supplied Dojo will assume the global
object.

adviceFunc - name of the function ("globalFunctionName1" or
"functionName1") being conected to srcObj.srcFunc

Delaying Execution

There's one more modifier up the sleeve of connect()/kwConnect(); delayed
calling. The delay property in kwConnect (the 9th positional parameter for
connect) is a delay in milliseconds for those platforms that support it (all
browsers do).

The last problem worth mentioning is circular connections. Circular connections
can occur when (perhaps even indirectly) a listener also calls the function it's
listening to. The good news is that in a JavaScript interpreter, this will pretty
quickly yield an exception of some sort. "Too much recursion" is a tip off that
you've hit this problem. Debugging circular connections can be opaque, but tools
like Venkman help.

I/O
The Dojo project is working to build a modern, capable, "webish", and easy to
use DHTML toolkit. Part of that effort includes smoothing out many of the sharp
edges of the DHTML programming and user experience. On the back of such
high-profile success stories such as Oddpost, Google Maps, and Google Suggest,
the XMLHTTP object has been getting a lot of attention of late. Sadly, in spite of
all the coverage, developers have been on their own when it comes down to
solving the usability problems that come along for the ride.

Cross Domain XMLHttpRequest
using an IFrame Proxy
Note: The code for this feature is available in Dojo 0.4 and later. IE 7 Support in
Dojo 0.4.1 and later.

Background

The browser security model does not allow using XMLHttpRequest (XHR) from
one web page domain to contact an URL on another domain. However, there are
cases when it would be nice to do cross domain XHR requests. There is a
proposal in the W3C's Web API group to address this need (see this Mozilla
tracking bug, and the bug comments for a link to the proposal).

As with most standards, it will take a while for this proper solution to saturate the
marketplace. In the meantime, to get something like cross domain XHR requests

Pagina 106 di 114Dojo Developer Guide

today, there are the following options:

� Set up a proxy server on the web page domain and have it forward the
requests to the real XHR endpoint (requires server infrastructure).

� Use Flash (user has to have Flash installed).
� Use script tags (can do cross domain requests but return type must be

JavaScript/JSON, and a callback mechanism needs to be established).

Another way to allow cross domain requests is to use the technique that is now
available via dojo.io.XhrIframeProxy: use iframes that communicate with each
other by changing URL fragment identifiers. This has the benefit of being just
plain HTML and JavaScript (no additional server infrastructure or Flash), and it
should be able to accommodate any asynchronous XHR request. It has been
tested and works in IE 6.0, Firefox 1.5, Safari 2.0.3, and Opera 9.

It also contains a security mechanism that API providers can use to restrict the
allowed cross-domain requests.

IFrames, Fragment Identifiers and XHR Proxying

Fragment Identifiers are the part of an URL that comes after the # sign:

http://www.a.com/path/to/file.html#fragmentIdentifier

A document in an IFrame can change the fragment identifier on its parent
document (the document containing the IFrame). Changing the fragment
identifier does not cause the page to reload. Similarly, the parent document can
change an IFrame's fragment identifier without causing page reloads. Since the
pages don't reload, state can be maintained inside the page.

To communicate between two cross domain documents :

� A document (the Client document) defines an IFrame that loads the other
document (the Server document).

� Define a protocol to pass information through fragment identifiers.
� Tell each document about the URL for the other document (so they can set

the fragment identifiers correctly -- the browser needs a complete URL
when setting a cross domain location).

� Use a JavaScript timer to check for changes in the fragment identifiers.

To send an XHR request to another domain:

� Define a JavaScript object that implements the XHR interface (a Facade).
� Use that object instead of an actual XHR object.
� For the Facade's send() method, serialize the request headers, method,

URL and data.
� The browser places a limit on the size of a document's URL, so the Client

document breaks this serialized data into a set of fragment identifiers that

Pagina 107 di 114Dojo Developer Guide

will fit under the URL limit.
� The Client document sends each fragment identifier to the Server

document. The Server document sends an acknowledgement back to the
Client, and the Client sends the next fragment identifier, until all are sent.

� The Server document assembles the fragment identifier parts into the
original serialized data, unpacks it into an object, then uses a real XHR
object (now on the Server's domain) to do the final API service call.

� The Server document then serializes the XHR response, and sends it back
to the Client using fragment identifier segments.

� The Client unpacks the serialized response, and sets the appropriate values
on the XHR Facade.

Trade-Offs

Pros

� 100% pure browser. No Flash or additional server infrastructure.
� It can be dropped in fairly transparently to code that is already using XHR.

Cons

� The technique uses IFrames and loads documents into the IFrames, so it
takes more browser memory than native XHR. It would be interesting to
compare the resource requirements with the amount needed to run Flash.

� More network traffic to download xip_client.html and xip_server.html (the
contents of the IFrames). However, you can configure your web server to
tell the browser to cache these files for a very long time.

� Timers are involved, with message serialization and deserialization.
� Setting all of those URLs in the IFrames causes MSIE to make lots of

those "clicking" sounds (the sound normally to indicate to the user they
clicked on a link).

Security Considerations

This approach does not allow cross domain access to any XHR-enabled API
service. For it to work, the API service must place the Server document (web
page) on its server. That web page is given the Client URL and the XHR request
in serialized form, so it can restrict who can contact the service and what types of
requests are allowed. Note that all request validation happens inside the Server
document's JavaScript.

You should not experiment with this technique unless you are very restrictive on
the clients and API URLs that are allowed. Placing the Server document on your
web server means opening up the allowed URLs to the world.

Dojo Implementation/Examples

As of 7/31/2006, the Dojo tree has support for XHR IFrame Proxying. The
relevant files are:

� src/io/XhrIframeProxy.js: the Dojo package, dojo.io.XhrIframeProxy, that
provides the XHR Facade and manages the use of xip_client.html.

� src/io/xip_client.html: the Client document. Used internally by
dojo.io.XhrIframeProxy.

Pagina 108 di 114Dojo Developer Guide

� src/io/xip_server.html: the Server document. Used by API service
providers to enable cross domain XHR requests.

� tests/io/iframeproxy: test files.

The test files are running here if you want to try it out (note that the API server
for these tests is not a powerful box, so it may seem slower than usual to get the
responses).

For web page developers

In addition to doing the normal things for dojo.io.bind(), do the following:

� dojo.require("dojo.io.XhrIframeProxy");
� Define an iframeProxyUrl parameter to dojo.io.bind(). This will be an

URL to the xip_server.html file on the API service server.
� Only asynchronous XHR requests are supported.

Example code snippet:

dojo.require("dojo.io.*");

dojo.require("dojo.io.XhrIframeProxy");

dojo.io.bind({

iframeProxyUrl: "http://some.domain.com/path/to/xip_server.html",

url: "http:/some.domain.com/path/to/api",

load: function(type, data, evt, kwArgs){

/* do stuff with the result here */

}

});

For API service providers

API service providers will not care about src/io/XhrIframeProxy.js or
xip_client.hml. They will be most interested in xip_server.html. For security
reasons, xip_server.html will not run "out of the box". The following function
needs to be defined:

function isAllowedRequest(request){

/* Decide if you want to allow the request. Return true or false */

}

Pagina 109 di 114Dojo Developer Guide

By default, it is expecting this to be declared in an isAllowed.js file in the same
directory as xip_server.html. See the comments in xip_server.html for more
information.

Reusable Parts for Non-Dojo Implementations

� src/io/XhrIframeProxy.js: Provides the XHR Facade and manages the use
of xip_client.html. It does not have all XHR methods defined, only the
ones needed by Dojo's usage of XHR. You can look at the package code to
see how it manages the Facade objects and the interaction with
xip_client.html.

� src/io/xip_client.html: Does not depend on any Dojo files, but it makes a
call to a Dojo function when it receives a response from the Server
document. Just replace the function call to your own function. Used
internally by XhrIframeProxy.js.

� src/io/xip_server.html: Does not depend on any Dojo files. Used for the
final XHR request to the API service.

Introduction to I/O bind
The dojo.io package provides portable code for XMLHTTP and other, more
complicated, transport mechanisms. Additionally, the "transports" that plug into
it each provide their own logic to make each of them easier to use. The rest of
this article will cover how the XMLHTTP transport from Dojo provides ways
around the book-marking and back button problems.

Most of the magic of the dojo.io package is exposed through the bind()
method. dojo.io.bind() is a generic asynchronous request API that wraps
multiple transport layers (queues of iframes, XMLHTTP, mod_pubsub,
LivePage, etc.). Dojo attempts to pick the best available transport for the request
at hand, and in the provided package file, only XMLHTTP will ever be chosen
since no other transports are rolled in. The API accepts a single anonymous
object with known attributes of that object acting as function arguments. To
make a request that returns raw text from a URL, you would call bind() like
this:

dojo.io.bind({
 url: "http://foo.bar.com/sampleData.txt",
 load: function(type, data, evt){ /*do something w/ the data */ },
 mimetype: "text/plain"
});

That's all there is to it. You provide the location of the data you want to get and a
callback function that you'd like to have called when you actually DO get the
data. But what about if something goes wrong with the request? Just register an
error handler too:

dojo.io.bind({
 url: "http://foo.bar.com/sampleData.txt",
 load: function(type, data, evt){ /*do something w/ the data */ },
 error: function(type, error){ /*do something w/ the error*/ },
 mimetype: "text/plain"
});

Pagina 110 di 114Dojo Developer Guide

It's possible to also register just a single handler that will figure out what kind of
event got passed and react accordingly instead of registering separate load and
error handlers:

dojo.io.bind({
 url: "http://foo.bar.com/sampleData.txt",
 handle: function(type, data, evt){
 if(type == "load"){
 // do something with the data object
 }else if(type == "error"){
 // here, "data" is our error object
 // respond to the error here
 }else{
 // other types of events might get pass ed, handle them here
 }
 },
 mimetype: "text/plain"
});

One common idiom for dynamic content loading is (for performance reasons) to
request a JavaScript literal string and then evaluate it. That's also baked into
bind , just provide a different expected response type with the mimetype
argument:

dojo.io.bind({
 url: "http://foo.bar.com/sampleData.js",
 load: function(type, evaldObj){ /* do something */ },
 mimetype: "text/javascript"
});

And if you want to be DARN SURE you're using the XMLHTTP transport, you
can specify that too:

dojo.io.bind({
 url: "http://foo.bar.com/sampleData.js",
 load: function(type, evaldObj){ /* do something */ },
 mimetype: "text/plain", // get plain text, don' t eval()
 transport: "XMLHTTPTransport"
});

Being a jack-of-all-trades, bind() also supports the submission of forms via a
request (with the single caveat that it won't do file upload over XMLHTTP):

dojo.io.bind({
 url: "http://foo.bar.com/processForm.cgi",
 load: function(type, evaldObj){ /* do something */ },
 formNode: document.getElementById("formToSubmit ")
});

Phew. Think that about covers the basics. Good thing you weren't planning on
implementing all that stuff yourself, right?

RPC
As you have seen, Dojo provides powerful, yet simple, ways of performing a
variety of I/O functions through the use of dojo.io.bind. However, during the

Pagina 111 di 114Dojo Developer Guide

development of a typical application, a developer will have many I/O calls to
make and will typically gravitate towards a common way of making those I/O
calls on both the server and the client. This will often include defining functions
that take some input and perform the appropriate request, as well as hooking that
request to a callback function to process the results. In effect, the developer is
required to implement a way of marshaling the request to the server in a way that
it expects and then to have the client receive the contents in a way it expects.
Dojo's RPC service aims to make this less error prone, easy to do, and require
less code.

Remote Procedure Calls (RPC), also know as Remote Method Invocations, are a
mainstay of the client/server development world. Essentially, RPC allows a
developer to invoke a method on a remote host. Dojo provides a basic RPC client
class that has been extended to provide access to JSON-RPC services and Yahoo
services. It was designed so that it is also fairly trivial to implement custom RPC
services.

Let's pretend that we have a little application that we want to make some server
calls with. For simplicity's sake, we'll say the methods we want the server to do
are add(x,y) and subtract(x,y). Without using anything special, like an RPC
client, we might do something like this:

add = function(x,y) {
 request = {x: x, y: y};
 dojo.io.bind({
 url: "add.php",
 load: onAddResults,
 mimetype: "text/plain",
 content: request
 });
}
subtract = function(x,y) {
 request = {x: x, y: y};

 dojo.io.bind({
 url: "subtract",
 load: onSubtractResults,
 mimetype: "text/plain"
 content: request
 });
}

As you can see, this isn't particularly difficult. However, this is quite the simple
application, despite our every attempt to make it complicated by having the
server add or subtract two numbers instead of performing these operations in the
client in the first place. What happens if our application is not so simple and has
30 different requests to make? I guess we would have to just write this same code
over and over for each different request; each time making a request object,
specifying URLs, potentially validating parameter types, and so on. This is
simply error prone and boring to write.

Dojo's RPC clients simplify this whole process by taking a simple definition of
the remote methods and application needs and generating client side functions to
call these methods. A developer need only write this definition, and initialize a
RPC client object and then all of these remote methods are available for the
developer to use as normal.

Pagina 112 di 114Dojo Developer Guide

The definition file, called a Simple Method Description (SMD) file, is a simple
JSON string that defines a URL that will process the RPC requests, any methods
available at that URL, and the parameters those methods take. The definition for
our example above might look like this:

{
 "serviceType": "JSON-RPC",
 "serviceURL": "rpcProcessor.php",
 "methods":[
 {
 "name": "add",
 "parameters":[
 {"name": "x"},
 {"name": "y"}
]
 },
 {
 "name": "subtract",
 "parameters":[
 {"name": "x"},
 {"name": "y"}
]
 }
]
}

Once the definition has been created, the code its pretty simple. The definition
can be supplied either as a URL to retrieve it, a JSON string,Ã‚Â or a JavaScript
object.

var myObject = new dojo.rpc. JsonService ("http://localhost/definition.smd");
var myObject = new dojo.rpc. JsonService ({smdStr: definitionJSON});
var myObject = new dojo.rpc. JsonService ({smdObj: definition});

Thats it! Now all thats left is to call the method.

myObject.add(3,5);

I'll bet you are saying to yourself, "Nice try, but I want to get the results of the
add method, not just call it." You are correct, but that is also simple to achieve.
Recall that we are making asynchronous calls to the server. While we could
make the request synchronous, it would likely provide for a bad user
experience because it would block the user interface during the call. Instead,
the return value of the myObject.add() call, is a deferred object. The deferred
object, something that might be familiar to users of Twisted Python or
MochiKit, allows a developer to attach one or more callbacks and errbacks to
the resultant data event. Our simple example can be expanded as such:

var myDeferred = myObject.add(3,5);
myDeferred.addCallback(myCallbackMethod);

or more succinctly:

var myDeferred = myObject.add(3,5).addCallback(myCa llbackMethod);

As you can see, we've added myCallbackMethod as a callback for the deferred
object returned from myObject.add(). In this case myCallbackMethod will be

Pagina 113 di 114Dojo Developer Guide

called with parameter with a value of 8. Likewise, an errback method can be
attached to the deferred object to process an errors returned from the server.
We can add as many callbacks and errbacks to our deferred object as we want
and they will be called in the order that they were connected to the deferred
object.

This discussion has revolved around using dojo.rpc.JsonService, which is
Dojo's JSON-RPC client. In addition to JsonService, Dojo offers an RPC client
for connecting to Yahoo services, dojo.rpc.YahooService. The syntax and call
structure is identical. While Dojo is currently limited to these two RPC clients,
the design of the dojo.rpc.RpcService base class, which is inherited by
dojo.rpc.JsonClient and dojo.rpc.YahooService allows a developer to easily
customize and extend dojo.rpc.RpcService, to create services that meets their
specific needs. These customizations will be discussed later in Part II when we
discuss how to get the most out of Dojo.

Transports
dojo.io.bind and related functions can communicate with the server using
various methods, called transports.Ã‚Â Each has certain limitations, so you
should pick the transport that works correctly for your situation.

The default transport is XMLHttp.

IFrame I/O
The IFrame I/O transport is useful because it can upload files to the server.Ã‚Â
Example usage:

The response type from the above URL can be text, html, or JS/JSON.

IframeIO responses need to be a little different from the ones that are sent
back from XMLHttpRequest responses. Because an iframe is used, the only
reliable, cross-browser way of knowing when the response is loaded is to
use an HTML document as the return type.

If the return type (specified by the mimetype) is text/plain, text/javascript or
text/json, then the server response should be an HTML page that has a

 element. The data
that you want

Pagina 114 di 114Dojo Developer Guide

