

AU3045_half title page 10/14/05 2:31 PM Page 1

ENHANCING

COMPUTER

SECURITY WITH

SMART TECHNOLOGY

Auerbach sec 6 7/21/05 10:07 AM Page 1

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401
E-mail: orders@crcpress.com

Asset Protection and Security Management
Handbook
POA Publishing
ISBN: 0-8493-1603-0

Building a Global Information Assurance
Program
Raymond J. Curts and Douglas E. Campbell
ISBN: 0-8493-1368-6

Building an Information Security Awareness
Program
Mark B. Desman
ISBN: 0-8493-0116-5

Critical Incident Management
Alan B. Sterneckert
ISBN: 0-8493-0010-X

Cyber Crime Investigator's Field Guide,
Second Edition
Bruce Middleton
ISBN: 0-8493-2768-7

Cyber Forensics: A Field Manual for Collecting,
Examining, and Preserving Evidence of
Computer Crimes
Albert J. Marcella, Jr. and Robert S. Greenfield
ISBN: 0-8493-0955-7

The Ethical Hack: A Framework for Business
Value Penetration Testing
James S. Tiller
ISBN: 0-8493-1609-X

The Hacker's Handbook: The Strategy Behind
Breaking into and Defending Networks
Susan Young and Dave Aitel
ISBN: 0-8493-0888-7

Information Security Architecture:
An Integrated Approach to Security in the
Organization
Jan Killmeyer Tudor
ISBN: 0-8493-9988-2

Information Security Fundamentals
Thomas R. Peltier
ISBN: 0-8493-1957-9

Information Security Management Handbook,
5th Edition
Harold F. Tipton and Micki Krause
ISBN: 0-8493-1997-8

Information Security Policies, Procedures, and
Standards: Guidelines for Effective Information
Security Management
Thomas R. Peltier
ISBN: 0-8493-1137-3

Information Security Risk Analysis
Thomas R. Peltier
ISBN: 0-8493-0880-1

Information Technology Control and Audit,
Second Edition
Fredrick Gallegos, Daniel Manson,
Sandra Allen-Senft, and Carol Gonzales
ISBN: 0-8493-2032-1

Investigator's Guide to Steganography
Gregory Kipper
0-8493-2433-5

Managing a Network Vulnerability Assessment
Thomas Peltier, Justin Peltier, and John A. Blackley
ISBN: 0-8493-1270-1

Network Perimeter Security: Building Defense
In-Depth
Cliff Riggs
ISBN: 0-8493-1628-6

The Practical Guide to HIPAA Privacy and
Security Compliance
Kevin Beaver and Rebecca Herold
ISBN: 0-8493-1953-6

A Practical Guide to Security Engineering and
Information Assurance
Debra S. Herrmann
ISBN: 0-8493-1163-2

The Privacy Papers: Managing Technology,
Consumer, Employee and Legislative Actions
Rebecca Herold
ISBN: 0-8493-1248-5

Public Key Infrastructure: Building Trusted
Applications and Web Services
John R. Vacca
ISBN: 0-8493-0822-4

Securing and Controlling Cisco Routers
Peter T. Davis
ISBN: 0-8493-1290-6

Strategic Information Security
John Wylder
ISBN: 0-8493-2041-0

Surviving Security: How to Integrate People,
Process, and Technology, Second Edition
Amanda Andress
ISBN: 0-8493-2042-9

A Technical Guide to IPSec Virtual
Private Networks
James S. Tiller
ISBN: 0-8493-0876-3

Using the Common Criteria for IT Security
Evaluation
Debra S. Herrmann
ISBN: 0-8493-1404-6

OTHER INFORMATION SECURITY BOOKS FROM AUERBACH

AU3045_title page 10/14/05 2:30 PM Page 1

Boca Raton New York

ENHANCING

COMPUTER

SECURITY WITH

SMART TECHNOLOGY

Editor

V Rao Vemuri

Published in 2006 by
Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-3045-9 (Hardcover)
International Standard Book Number-13: 978-0-8493-3045-2 (Hardcover)
Library of Congress Card Number 2005047840

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Enhancing computer security with smart technology / editor, V Rao Vemuri.
p. cm.

Includes bibliographical references and index.
ISBN 0-8493-3045-9 (alk. paper)
1. Computer networks--security measures. 2. Computer Security. 3. Artificial intelligence. 4.

Machine learning. I. Vemuri, V Rao.

TK5105.59.E62 2005
005.8--dc22 2005047840

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Publications Web site at
http://www.auerbach-publications.com

Taylor & Francis Group
is the Academic Division of T&F Informa plc.

AU3045_Discl.fm Page 1 Thursday, September 1, 2005 5:28 PM

v

Contributors List

Ajith Abraham

School of Computer Science and
Engineering

Chung-Ang University
Seoul, South Korea

Roshen Chandran

Paladion Networks
Vashi
Navi Mumbai, India

Dipankar Dasgupta

Intelligent Security Systems Research
Lab

The University of Memphis
Memphis, Tennessee, U.S.A.

Stephanie Forrest

University of New Mexico
Albuquerque, New Mexico, U.S.A.

Fabio A. González

Profesor Asistente, Departmento de
Ingeriera de Sistemas e Industrial

Universidad Nacional de Colombia
Bogota, Colombia

Kenneth Ingham

University of New Mexico
Albuquerque, New Mexico, U.S.A.

Abhishek Kumar

Paladion Networks
Vashi
Navi Mumbai, India

Khaled Labib

Department of Applied Science
University of California at Davis
Livermore, California, U.S.A.

Yihua Liao

Department of Computer Science
University of California at Davis
Davis, California, U.S.A.

Srinivas Mukkamala

Department of Computer Science
New Mexico Institute of Mining and

Technology
Socorro, New Mexico, U.S.A.

Sanjay Rawat

Artificial Intelligence Laboratory
Department of Computer and

Information Sciences
University of Hyderabad
Hyderabad, India

vi

�

Enhancing Computer Security with Smart Technology

Challa S. Sastry

Artificial Intelligence Laboratory
Department of Computer and

Information Sciences
University of Hyderabad
Hyderabad, India

Andrew H. Sung

Department of Computer Science
New Mexico Institute of Mining and

Technology
Socorro, New Mexico, U.S.A.

Vinod Vasudevan

Paladion Networks
Vashi
Navi Mumbai, India

V Rao Vemuri

Department of Applied Science
University of California at Davis
Livermore, California, U.S.A.

vii

Contents

1

Cyber-Security and Cyber-Trust .. 1

V Rao Vemuri

1.1 Introduction ... 1
1.2 Cyber-Security.. 2
1.3 Cyber-Trust... 5

1.3.1 Challenge 1: The Distribution of Expertise 6
1.3.2 Challenge 2: Proliferating Devices and Functionality 7
1.3.3 Challenge 3: Burgeoning Purposes ... 8

1.4 What the Future Holds ... 8

2

Network Firewalls .. 9

Kenneth Ingham and Stephanie Forrest

Abstract .. 9
2.1 Introduction ... 10
2.2 The Need for Firewalls... 12
2.3 Firewall Architectures.. 14

2.3.1 Packet Filtering.. 15
2.3.1.1 Packet Filtering with State 16
2.3.1.2 Improving Packet Filter Specification 17

2.3.2 Proxies ... 19
2.4 Firewalls at Various ISO Network Layers.. 22

2.4.1 Physical Layer.. 22
2.4.2 Data-Link Layer ... 22

2.4.2.1 Filtering on MAC Address.. 22
2.4.2.2 Bridging Firewalls ... 23

2.4.3 Network ... 23
2.4.3.1 Network- and Host-Based Filtering......................... 23
2.4.3.2 Multicast... 24
2.4.3.3 NAT.. 25

2.4.4 Transport.. 26
2.4.5 Presentation ... 26
2.4.6 Application... 26

viii

�

Enhancing Computer Security with Smart Technology

2.5 Other Approaches ... 27
2.5.1 Distributed Firewalls ... 27
2.5.2 Dynamic Firewalls... 28
2.5.3 Normalization .. 29
2.5.4 Signature-Based Firewalls ... 29
2.5.5 Transient Addressing... 29

2.6 Firewall Testing ... 30
2.7 What Firewalls Do Not Protect Against .. 31

2.7.1 Data That Passes through the Firewall 31
2.7.2 Servers on the DMZ ... 32
2.7.3 Insider Attacks... 32

2.8 Future Challenges for Firewalls ... 33
2.8.1 VPNs... 33
2.8.2 Peer-to-Peer Networking .. 33
2.8.3 HTTP as a “Universal Transport Protocol” 33

2.9 Conclusion ... 34
References.. 35

3

Web Application Security: The Next Battleground 41

Abhishek Kumar, Roshen Chandran, and Vinod Vasudevan

3.1 Threats to Web Applications .. 42
3.1.1 Origin of the Risks.. 42

3.2 Vulnerabilities in Web Applications... 43
3.3 Attack Techniques ... 46

3.3.1 SQL Injection ... 46
3.3.1.1 SQL Injection — Bypass Authentication................. 47
3.3.1.2 SQL Injection — Bypass Authentication,

a Variation ... 49
3.3.1.3 SQL Injection — Get Unauthorized Access

to Data... 50
3.3.1.4 SQL Injection — Get Unauthorized Access

to Data by Using the “Union” Operator 53
3.3.2 Cross-Site Scripting.. 55

3.3.2.1 Cross-Site Scripting to Steal a Session Cookie 58
3.3.2.2 Cross-Site Scripting to Steal Credit Card

Information.. 59
3.3.3 Stealing Passwords with Browser Refresh 61
3.3.4 Variable Manipulation Attacks.. 65

3.4 Preventing Vulnerabilities in Web Applications.................................. 66
3.4.1 Requirements ... 67
3.4.2 Design .. 68
3.4.3 Development ... 70
3.4.4 Testing.. 71

3.5 Conclusion ... 72
Notes .. 72
References.. 72

Contents

�

ix

4

Relevance of Machine Learning .. 75

V Rao Vemuri

4.1 Introduction ... 75
4.2 Place of Intrusion Detection in the Security Landscape.................... 77
4.3 Machine Learning beyond Intrusion Detection 79
4.4 Machine Learning and Computational Learning Theory 80
4.5 Some Popular Machine Learning Methods ... 82

4.5.1 Multilayer Networks with Back Propagation 82
4.5.2 Support Vector Machines.. 83
4.5.3 Probabilistic Models .. 83
4.5.4 Clustering ... 83
4.5.5 Decision Trees... 83
4.5.6 Bayesian Networks.. 84

4.6 Making Machine Learning More Useful .. 84
4.6.1 Ensemble of Classifiers ... 85
4.6.2 Constructing an Ensemble by Manipulating Training Data... 86

4.6.2.1 Cross Validation .. 86
4.6.2.2 Bagging.. 86
4.6.2.3 Boosting... 86
4.6.2.4 Adaboost.. 87

4.6.3 Constructing an Ensemble by Manipulating Input
Features.. 87

4.6.4 Constructing an Ensemble by Injecting Randomness 87
4.6.5 Constructing an Ensemble Using Different Learning

Algorithms.. 88
4.6.6 Combining the Results from an Ensemble of Classifiers....... 88

4.6.6.1 Majority Vote ... 88
4.6.6.2 Gating .. 88
4.6.6.3 Stacking ... 89

4.6.7 Why the Ensemble Idea Works ... 89
4.7 Summary .. 90
References.. 91

5

Machine Learning in Intrusion Detection 93

Yihua Liao and V Rao Vemuri

5.1 Introduction ... 93
5.2 Intrusion Detection ... 94
5.3 Machine Learning Approaches to Anomaly Detection 96

5.3.1 Machine Learning and Its Problem Formulations 96
5.3.2 Learning Methods for Anomaly Detection.............................. 97

5.4 Audit Data.. 99
5.4.1 DARPA/KDD Datasets... 100
5.4.2 UNM System Call Data ... 101
5.4.3 UNIX Command Data... 101

5.5 Issues in Anomaly Detection ... 102
5.5.1 Feature Selection ... 103
5.5.2 Skewed Class Distribution.. 103

x

�

Enhancing Computer Security with Smart Technology

5.5.3 Distance Metrics .. 104
5.5.4 Window Size for Sequential Data.. 104
5.5.5 IDS Performance Evaluation .. 105
5.5.6 Cost-Effectiveness of IDS.. 107

5.6 Open Questions and Future Directions .. 107
5.6.1 Theoretical Analysis .. 107
5.6.2 Learning for Understanding and Planning............................ 108
5.6.3 Ensemble Learning.. 108
5.6.4 Online, Adaptive Learning ... 109

5.7 Illustrative Example: Adaptive Anomaly Detection 109
5.7.1 Adaptive Anomaly Detection Framework 110
5.7.2 Experiments ... 114

5.7.2.1 Static Learning via SVMs.. 114
5.7.2.2 Cost Function .. 115
5.7.2.3 Network Intrusion Detection 115
5.7.2.4 Discussion ... 120

5.8 Summary .. 121
References.. 121

6

Cyber-Security Challenges: Designing Efficient
Intrusion Detection Systems and Anti-Virus Tools 125

Srinivas Mukkamala, Andrew Sung, and Ajith Abraham

6.1 Introduction to IDSs.. 126
6.2 A Review of IDSs .. 127

6.2.1 Intrusion Detection Models .. 128
6.2.1.1 Signature-Based or Misuse Intrusion Detection ... 129
6.2.1.2 Anomaly Detection ... 129

6.3 Computer Attack Taxonomy .. 130
6.3.1 Probing... 131
6.3.2 DoS Attacks ... 136

6.4 Significant Feature Selection for Intrusion Detection....................... 138
6.4.1 SVM-Specific Feature-Ranking Method.................................. 139

6.4.1.1 Support Vector Decision Function Ranking 145
6.4.2 Ranking Algorithm Using Linear Genetic Programming...... 146
6.4.3 Ranking Algorithm Using Multivariate Adaptive

Regression Splines... 146
6.5 Detection of Probes and DoS Attacks... 147

6.5.1 Real-Time Data Collection and Feature Extraction 147
6.5.2 Performance Evaluation.. 148

6.6 Attacks on IDSs ... 149
6.6.1 Vulnerabilities in IDSs... 150
6.6.2 Insertion and Evasion Attacks.. 150
6.6.3 Availability Attacks .. 151

6.7 Attacks on Anti-Virus Tools.. 152
6.7.1 Malware Used for Analysis... 152
6.7.2 Obfuscation.. 153

6.7.2.1 Data Obfuscation .. 153

Contents

�

xi

6.7.2.2 Control Flow Obfuscation...................................... 154
6.7.2.3 Other Techniques ... 154
6.7.2.4 Classification.. 154

6.7.3 Obfuscation Used for Defeating Commercial Scanners....... 158
6.8 Conclusions.. 160
Acknowledgments ... 161
References.. 161

7

Artificial Immune Systems in Intrusion Detection 165

Dipankar Dasgupta and Fabio Gonzalez

7.1 Introduction ... 165
7.1.1 Multilayered Protection... 166
7.1.2 Adaptive Immunity.. 167

7.1.2.1 Characteristics of Adaptive Immunity 167
7.1.3 Computational Aspects of the Immune System 169

7.2 Artificial Immune Systems .. 170
7.2.1 NSA... 171

7.3 Real-Valued Negative Selection (RNS)... 173
7.3.1 Negative Selection with Detection Rules (NSDR) 173

7.4 Intrusion Detection Problem .. 176
7.4.1 Positive or Negative Characterization?................................... 176

7.5 Experimentation... 177
7.5.1 Dataset ... 177
7.5.2 PC Approach ... 179

7.5.2.1 PC Experiments... 180
7.5.3 Evolving Negative-Selection Detection Rules (NSDR) 186

7.5.3.1 Experiments: NSDR-GA with SN 188
7.5.3.2 NSDR-GA Using Deterministic Crowding 194

7.5.4 Extending NSDR to Use Fuzzy Rules.................................... 197
7.5.4.1 NSFDR Experimentation... 200

7.6 Summary .. 204
Bibliography .. 205

8

Application of Wavelets in Network Security 209

Challa S. Sastry and Sanjay Rawat

8.1 Introduction ... 209
8.2 A Brief Introduction to Self-Similarity ... 210
8.3 A Brief Introduction to Wavelet Analysis.. 211
8.4 Application of Wavelets .. 212

8.4.1 Some Applications in Data Mining.. 212
8.4.2 Some Applications in IDS .. 213

8.5 Wavelets for HIDS... 215
8.6 Wavelets for Network-Based IDS... 216
8.7 Simulation Results ... 218
8.8 An Observation for Future Work and Conclusion 219
Appendix ... 220
Acknowledgment .. 227
References.. 227

xii

�

Enhancing Computer Security with Smart Technology

9

Application of Exploratory Multivariate Analysis
for Network Security .. 229

Khaled Labib and V Rao Vemuri

Abstract .. 229
9.1 Introduction ... 230
9.2 The Intrusion Detection Problem .. 231
9.3 The S Language and Its Environment ... 233
9.4 Introduction to Multivariate Analysis Methods 236

9.4.1 Exploratory Multivariate Analysis... 236
9.4.2 Visualization Methods ... 236
9.4.3 Clustering Methods ... 237

9.4.3.1 Partitioning Methods... 237
9.4.3.2 Hierarchical Methods.. 238

9.4.4 Self-Organizing Maps .. 239
9.4.5 PCA... 239
9.4.6 ICA ... 240
9.4.7 Stars Plots .. 240
9.4.8 Mosaic Plots... 241

9.5 DoS and Network Probe Attacks... 241
9.6 Data Collection and Preprocessing.. 242

9.6.1 Data Collection.. 242
9.6.2 Data Preprocessing ... 242

9.7 Results .. 243
9.7.1 Data Collection and Processing ... 244
9.7.2 Application of Multivariate Analysis Algorithms................... 244

9.7.2.1

k

-means Clustering ... 244
9.7.2.2 Hierarchical Clustering ... 246
9.7.2.3 SOM Clustering ... 247
9.7.2.4 PCA .. 249
9.7.2.5 ICA ... 249
9.7.2.6 Stars Plots .. 251
9.7.2.7 Mosaic Plots .. 253

9.7.3 Evaluation of Results .. 256
Acknowledgment .. 257
References.. 257

Index .. 261

xiii

Preface

This book is about enhancing computer security through smart technology.
This is compiled with the intention of bringing together two groups of
people: those coming from a computer security background and those
from an artificial intelligence and machine learning background. Toward
this objective, this book is organized into two parts. The first part provides
tutorial introductions to some of the challenging problems in computer
security to students and researchers coming from the area of machine
learning. The second part introduces some of the more important machine
learning concepts to students coming from the computer security area.
Space here is not adequate to cover the entire range of issues pertaining
to machine learning and computer security. Emphasis is therefore placed
on problems related to the detection of intrusions by using machine
learning methods. Although complexity issues (sample complexity and
computational complexity) play significant roles in the computational
learning theory, much of the emphasis here is on practical algorithmic
aspects of machine learning and its role in computer security.

This book is conceived as a collection of tutorial chapters. Each self-
contained chapter is written by a specialist in the subject field. A reader
who has a basic background in computer science, such as that represented
by a B.S. degree in computer science, but not necessarily some background
either in security or in machine learning, should be able to read, under-
stand, and benefit from this book. This book is not about recipes to secure
your computer from attacks.

That there is a need for such a book can be easily seen. After two
decades of computer security research, are we better off today than we
were 25 years ago? The answer is an emphatic “no.” People who routinely
use computers to check their e-mails, pay bills, and make travel reserva-
tions are being inundated with spam (unsolicited e-mail messages), phish-
ing attacks (a sort of identity theft), and so on, in addition to viruses and

xiv � Enhancing Computer Security with Smart Technology

worms. If this trend continues, people may begin to lose their trust in
conducting business transactions online — a not-so-desirable conse-
quence. Cyber-security and cyber-trust are two issues that are likely to
dominate research in the next decade.

To address these difficult problems, we have chosen to draw from a
broad spectrum of views, expertise, and experience. Chapter 1 by Vemuri
is a tutorial introduction to the general issue of cyber-security and cyber-
trust. Chapter 2 by Ingham and Forrest provides a comprehensive survey
of the state-of-the-art in firewall technology, the first line of defense.
Anyone familiar with the spate of phishing attacks since early 2004 will
appreciate the relevance of Web application security, discussed by Kumar,
Chandran, and Vasudevan in Chapter 3. These three chapters constitute
an introduction to the issues facing our cyber-society.

The rest of the book is on the use of machine learning methods and
tools and their performance. In Chapter 4, Vemuri gives a very brisk
introduction to machine learning and computational learning theory. In
Chapter 5, Liao and Vemuri provide a basic introduction to the exciting
field of machine learning as it applies to intrusion detection.

Chapter 6 by Mukkamala, Sung, and Abraham delves into computer
attack taxonomy; gives specific examples of common attack signatures;
and presents feature selection, extraction, and ranking algorithms. This
chapter concludes with a discussion of the limitations of current anti-virus
tools in detecting malware variants, with emphasis on obfuscated (poly-
morphic) malware and mutated (metamorphic) malware.

In Chapter 7, Dasgupta and Gonzalez introduce the immune system
metaphor to solve a variety of problems relevant to computer security.
Chapter 8 and Chapter 9 belong to a category that can be dubbed as
“methods in the making.” In Chapter 8, a relatively small chapter, Challa
and Rawat explore the potential of wavelets in detecting attacks in their
early stages by monitoring and analyzing network traffic. Finally, in
Chapter 9, Labib and Vemuri propose the use of a statistical toolbox and
environment to streamline the computational steps common to many
security-related applications. Results reported in these two chapters are
recent and tentative, and need the scrutiny of time for their acceptance.

The maxim that “an author does not write a book alone” is even truer
for an editor. This book would not have taken this shape without the
untiring effort of each and every author who contributed. I thank all of
them for responding in a timely fashion to my requests. However, I would
like to single out a few individuals. It was V. Sreeharirao of the Jawaharlal
Nehru Technological University, Hyderabad, India, who planted the idea
of writing this book in my head after I conducted a one-day seminar on
machine learning and computer security. I thank Arun K. Pujari and B.L.
Deekshatulu for arranging my sabbatical at the University of Hyderabad

Preface � xv

and making all the arrangements for the said seminar, and finally, my
doctoral student, Yihua Liao, who not only maintained the Web site but
also acted as a sounding board for many of the ideas that shaped this book.

V Rao Vemuri

xvii

About the Editor

V Rao Vemuri, Ph.D. received his doctoral degree from the University
of California, Los Angeles, and currently holds appointments in the Depart-
ment of Applied Science and in the Department of Computer Science at
the University of California, Davis. He also holds an appointment as a
Computer Scientist at the Lawrence Livermore National Laboratory in
Livermore, California.

Prior to his current appointments, Dr. Vemuri taught at Purdue Uni-
versity at West Lafayette, Indiana, SUNY at Binghamton, New York, and
worked at TRW at Redondo Beach, California.

At TRW, he worked on a variety of projects including the MX missile
and Hubble Space Telescope. Dr. Vemuri co-founded and acted as the
CEO of Smartifacts, LLC and worked on the development of Web-based
smart artifacts. He is also the founding president of Eco Foundation, a
non-profit foundation.

Dr. Vemuri served as the editor-in-chief for CS Press, associate editor
for IEEE Transactions on Neural Networks, and as a member of the editorial
board of Differential Equations and Dynamical Systems. He delivered
several keynote addresses at international conferences and authored or
edited ten books and published well over 100 papers in reviewed journals.

Dr. Vemuri’s teaching and research interests are in artificial intelligence
and machine learning. He applies these technologies to a variety of
problems including computer security, knowledge discovery, data mining,
and information filtering. Some of his major contributions in the recent
past include the development of a neural network technique for the
Comprehensive Test Ban Treaty Verification Project and a genetic algorithm
method to support the Human Genome Project.

1

Chapter 1

Cyber-Security and
Cyber-Trust

V Rao Vemuri

1.1 Introduction
History is undergoing the third in a succession of great changes in
technology and cost of transportation. The 19th century was characterized
by the falling cost of transporting goods; the 20th, by the falling cost of
transporting people; and the 21st century will be dominated by the falling
cost of transporting ideas and information. “Death of distance” is very
much here.

The last two decades of the 20th century witnessed a steep increase
in the pervasiveness and ubiquity of digital technologies in our lives. The
trip from mainframes to personal computers, laptops, and PDAs took place
at breathtaking speed. The radio frequency identification tag (RFID),
embedded in everyday objects from smart toys to smart clothing, is another
journey that has already begun. Indeed, much of what we do is getting
inexorably tied to digital technologies.

With the declining costs of Internet access and information processing,
more and more people are beginning to use computers. The rank and
file of these users is not the literati of cyber-world; it is the ordinary person
who is seeing the desktop computer, connected to the Internet, as another

2 � Enhancing Computer Security with Smart Technology

utility outlet — just plug in and use the services. And these folks are
expecting a quality of service (QoS) that is commensurate with the QoS
they are accustomed to with other utilities such as electricity, gas, and
telephone. People expect such service to be continuously available any-
time and anywhere — reliable, secure, and easy to use.

Nowadays, computers are being sold in department stores along with
microwave ovens, television sets, and music players. Many households
(in the United States) that own an automobile also own a computer. Just
like getting behind the wheel, turning the key, and driving to the grocery
store, people are expecting to get in front of the terminal, fire it up, log
on, read mail, make reservations, find driving directions, play games, and
pay the bills. With the advent of wireless technologies, people are able
to perform these functions from anywhere using their laptops.

This rosy picture is not without its thorns. People are not able to
perform these routine functions without facing a host of problems. Indeed,
the need to wait for a long time for the computer to boot up, even in
dire emergencies, has been caricatured in Hollywood films. The need to
memorize usernames and the associated passwords and PINs is a familiar
headache, with each service provider imposing its own set of rules on
the user. Is there a way a user can be helped to learn to choose good
passwords and memorize them? Should the technique of password-based
authentication be the same for desktops and handheld devices? Is there
a way to train users to learn the process of selecting new passwords when
the old ones expire? Is there some way users can manage the plethora
of passwords that they are required to memorize? Would graphical pass-
words solve the problem? Are graphical passwords immune to dictionary
attacks?

In addition to these, there are many other problems. For example,
there is a need to know the procedures of handling files with a host of
extensions. Another particularly vexing problem that is grabbing headlines
is the issue of coping with virus and worm attacks.

1.2 Cyber-Security
We, as a society, are paying a price for these developments. A program
called Elk Cloner, written for Apple II systems in 1982, is credited with
being the first computer virus to appear “in the wild” — that is, outside
the single computer or lab where it was created. On November 2, 1988,
a Cornell University graduate student named Robert Morris purportedly
launched one of the first computer worms that gained significant main-
stream media attention. Around 6,000 major UNIX machines were infected
by the Morris worm. The General Accounting Office of the United States

Cyber-Security and Cyber-Trust � 3

put the cost of the damage at $10 to $100 million. Robert Morris was tried
and convicted of violating the 1986 Computer Fraud and Abuse Act (Title
18). After appeals, he was sentenced to three years’ probation, 400 hr of
community service, and a fine of $10,000. During 2003–2004, virulent
attacks by viruses and worms, such as CodeRed, Slammer, and MyDoom,
have taken a toll on organizations and individuals that rely on computers.
The sad realization is that the computer community is still vulnerable to
attacks — after two decades of research and in the face of threats of
prosecution.

Table 1.1 is one estimate of the damage (in U.S. dollars) caused by
viruses and worms alone. These costs include services and hardware
needed to remove viruses from networks, shore up defenses, and repair
damage.

The years 2003 and 2004 seemed to be especially harsh on computer
security professionals. In the immediate aftermath of the MyDoom attack
in early 2003, a New York Times article, “Geeks Put the Unsavvy on Alert:
Learn or Log Off,” dated February 5, 2004, quotes the president of the
World Wide Web Artists Consortium as lamenting, “It takes affirmative
action on the part of the clueless user to become infected … How to beat
this into these people’s heads?” A similar know-all geekish attitude exhib-
ited by U.S. automobile manufacturers in the 1960s paved the way for
the high-quality Japanese imports we are enjoying today. “The tension
over the MyDoom virus underscores a growing friction between techno-
philes and what they see as a breed of technophobes who want to enjoy
the benefits of digital technology without making the effort to use it
responsibly,” concludes the New York Times.

One hears more about viruses and worms because they impact every-
one, and the media also gives these events high coverage because every
user can identify with them. However, the damage caused by these
nuisance makers — high as it is — pales in the face of the damage caused
by someone stealing confidential information from high-profile organizations

Table 1.1 Computer Economics’ Estimate
of Damages Caused by Viruses and Worms

Virus/Worm Year Cost (Billions)

Melissa 1999 $1.10

LoveBug 2000 $8.75

CodeRed 2001 $2.75

Slammer 2003 $1.25

SoBig.F 2003 $1.10

4 � Enhancing Computer Security with Smart Technology

(e.g., a bank) — which is rarely disclosed in public or even within closed
groups. This is done to protect the interests of the organization. One
exception to this trend can be cited. On February 10, 2004, the Associated
Press reported the discovery of a major vulnerability in the Windows
operating system, although researchers at eEye had discovered the prob-
lem more than six months earlier: “Microsoft Corporation warned custom-
ers … about unusually serious security problems with its Windows
software that could let hackers quietly break into their computers to steal
files, delete data, or eavesdrop on sensitive information.” As some of
Microsoft’s built-in security features — such as its Kerberos cryptography
system — rely on the flawed software, the breadth of systems affected is
probably the largest ever. Computer systems that control critically impor-
tant infrastructures, such as power and water utilities, are now vulnerable.
Intrusion detection systems, therefore, play a supporting role in identifying
virus and worm spreads and a key role in protecting organizations with
confidential data.

Indeed, products are available to block viruses and worms at the
gateway to an organization, at the desktop level, at the server level, and
at the application level (e.g., messaging servers). Once such technology
is in place, there should be strong processes to monitor and track viruses
and worms. What is needed is teamwork between management personnel
who are aware and will provide focus, system administrators who are trained
in countering these threats, and end users who are aware. (Don’t open
unknown attachments from strangers!) Virus and worm control is a classic
example of the requirement for technology, processes, and people to secure
an environment. It is these interrelationships that make security complex.

The computer community’s effort to develop patches each time a new
virus is detected is somewhat analogous to the medical community’s effort
to look for known pathogens in a community’s blood supply before a
transfusion is attempted. In the early days of the AIDS epidemic, many
innocent people were inadvertently infected via blood transfusions
because the doctors at that time had no idea about what causes AIDS.
There is no reason to believe that the current blood supply is completely
safe because we still have no idea what other hitherto unidentified viruses
are lurking out there. What is potentially more useful than screening for
known pathogens is something analogous to pasteurization — a process
by which all pathogens are eliminated. In the case of milk, one simply
heats the milk. In the case of blood, we have no analog to pasteurization.
The computer security community also needs a process analogous to the
pasteurization process. Any hope of finding such an analogy is not
dependent on luck; it can only come from a deeper understanding of the
current crop of intrusion detection methods. Many subtle issues are making

Cyber-Security and Cyber-Trust � 5

it difficult to exploit this pasteurization metaphor in the context of com-
puter security.

With the popularity of wireless and mobile networks, attacks have
taken a different flavor. Attacks need not be concentrated over a particular
direction or link and are hence difficult to detect. Every bit of the data is
transmitted through an open medium and, thus, intruders have free access
to it. In such a scenario, security becomes even more challenging. Lack
of resources available at the mobile device for processing and encoding
of messages makes these challenges much harder to overcome than in
conventional networks.

1.3 Cyber-Trust
Associated with security, but not synonymous with it, are other issues
such as privacy and trust. Privacy, from a business point of view, is
influenced by how personal information is collected and stored. Almost
all businesses collect some information about their customers. They must
find a way to manage this information in a responsible manner. How an
organization manages confidential information with which it is entrusted
speaks a lot about that organization’s respect for its customers. Major
companies such as JetBlue, Mrs. Fields Cookies, and Victoria’s Secret have
learned their lessons at great cost. Some hospitals also learned the hard
way when they outsourced their transcription work to untrustworthy
offshore companies.

Trust is a critical element in Web-based communities, E-commerce,
and in influencing the attitudes of laypeople toward Web-based informa-
tion systems. Trustworthiness is a concept that is intertwined with depend-
ability and security. The attributes of dependability ar e reliability,
availability, integrity, and safety, whereas the attributes of security are
confidentiality, availability, and integrity. It is easier to recognize an
untrustworthy system when you see one than to define it. For example,
the National Science Foundation made an attempt to define their vision
of cyber-trust by seeking answers to questions such as:

� Can people justifiably rely on computer-based systems to perform
critical functions securely?

� Can people justifiably rely on computer-based systems to process,
store, and communicate sensitive information securely?

� Can people justifiably rely on a well-trained and diverse workforce
to develop, configure, modify, and operate essential computer-
based systems?

6 � Enhancing Computer Security with Smart Technology

Today, one of the most common situations happening when anyone
uses a computer is the trail of records, such as HTTP logs and cookies,
left behind. Records of user activity are invaluable tools for research, but
every hidden history file is a potential threat to security and individual
privacy. Because of this conflict and other proprietary considerations, it
is becoming almost impossible for academic researchers to work with
realistic data.

Consider a simple user transaction. From a naive user’s point of view,
trust comes from flexibility of the operation sequence and transparency
to what is happening. The solution to the twin problems of security and
trust is not to remove all records of activity or make records hard to access
but to provide feedback to users so they know what is being recorded
about their transaction and give the user some control and access to what
is being recorded about the transaction. This means that we must first
understand how people view different types of records of their activity. A
user may not mind leaving behind aggregated access patterns so that some
search engine can be built based on page ranks derived from these patterns.

Trustworthiness of, say, Web sites can be improved by process-oriented,
design-oriented, or security-oriented features. Different domains inspire
trust in different ways. Branding is a popular business strategy. Customers
flock to a familiar (not necessarily a better) brand. Brand recognition and
reputation go hand in hand. To earn that reputation, companies should
publish reliable reports of their performance (say, on-time arrival statistics),
or they may seek certification from a third party (say, VeriSign certification
for secure data transfer), and so on. A popular mechanism for building
reputation is by tracking the past behavior of earlier participants. Under
its Feedback Forum initiative, eBay seeks feedback from users and makes
it available to all. Amazon.com allows users to submit their own book
reviews. Such peer-rating schemes have their own drawbacks.

In view of these considerations, designers of cyber-trust are facing
three basic challenges.

1.3.1 Challenge 1: The Distribution of Expertise

This refers to the distribution of knowledge or expertise about computing
systems throughout society. The relationships between different categories
of users can be visualized as a pyramid built of several layers. The base
level is by far the biggest because it consists of ordinary people who
possess relatively little technical expertise, whose interest is based on the
capacity of computers to facilitate communication for transactions, and
who often lack access to the expert consultants that users with technical

Cyber-Security and Cyber-Trust � 7

expertise take for granted. The next level is one containing fewer people,
who routinely use a digital infrastructure to complete work tasks. Doing
so requires them to be savvy and sophisticated (e.g., many business and
industry users), although they often have access to technical assistance
through formal and informal pathways at work. The third level is that of
individuals with technical expertise in information technology and engi-
neering. Our pyramid is capped by a still-smaller number of computing
professionals who design and build systems (hardware and software) and
whose technical competence provides deeper knowledge of how a com-
puter functions. They typically take for granted operational knowledge
that is utterly incomprehensible to most other users.

1.3.2 Challenge 2: Proliferating Devices and Functionality

The second challenge is the proliferation of computing systems, the variety
of digital devices, and their increasing functionality. Examples abound:

� Cars are becoming laden with digital devices that increase func-
tionality: navigation systems, sensors that alert drivers when they
drift from the center of a lane, remote unlocking from a central
place, tracking the position of cars, plug-and-play diagnostics of
vehicles, etc.

� Toys are getting smarter.
� Products from companies such as Nokia are concealing the tech-

nology, emphasizing usability by careful study of everyday users,
and simplifying design and functionality.

Such digital devices are characterized by, among other things:

� Shrinking sizes (e.g., laptop versus desktop)
� Greater mobility (e.g., PDAs)
� The specialization of device functionality (and, paradoxically,

increasingly diverse functionality of individual devices; e.g., “smart”
cellular phones/cameras)

� A variety of operating systems
� The embedding of digital devices in various products (e.g., auto-

mobiles with GPS capability)
� Incorporating them into larger, geographically distributed systems

(e.g., cellular phone that allows the user to point and click at a
vending machine that then automatically charges the soft drink to
the user’s bank account)

8 � Enhancing Computer Security with Smart Technology

1.3.3 Challenge 3: Burgeoning Purposes

Accompanying the proliferation of digital devices and their incorporation
into society is an expansion of the purposes to which they are put. It
was not so long ago that experts contemplated how ordinary households
would ever use personal computers (and be convinced to buy one), which
seemed destined to remain in the realms of work and education. The
implication here is that concerns about trustworthy computing systems
may have as much to do with the nature of information sent, stored, and
received as it does with the devices per se. Ordinary users may be relatively
less concerned about these issues, for example, the trustworthiness of
digital devices and the systems of which they are part, than they are about
the use and misuse of particular categories of information. These include:

� Health and medical records, such as test results
� Personal and family finance, investment, and banking data
� Specific purchases and larger patterns of consumption
� Recreational activities, hobbies, and networks of friends and family
� Physical location and movements between locations
� Political affiliations
� Educational and training certifications and transcripts

1.4 What the Future Holds
No one predicted the Internet and WWW as we are experiencing them
today, although there are people who claim that they “invented” the
Internet. No one predicted viruses, worms, spam, phishing, identity theft,
and the host of other ills that we are putting up with. Hence, it would
be foolhardy to make predictions in a textbook such as this. However,
there is one prediction we can safely make: Usage of computers, in some
form or another, will continue to increase. We will continue to face
challenges to our security and privacy. Even if the underlying technologies
change, there is commonality in the challenges brought forth by these
technologies.

The rest of this book introduces some of the techniques and methods
that are likely to survive and find their way into the cyber-world to help
us combat the attendant ills.

9

Chapter 2

Network Firewalls

Kenneth Ingham and Stephanie Forrest

Abstract
Firewalls are network devices that help enforce an organization’s security
policy. Since their development, various methods have been used to
implement firewalls. These methods filter network traffic at one or more
of the seven layers of the ISO network model, most commonly at the
application, transport, network, and data-link levels. Newer methods,
which have not yet been widely adopted, include protocol normalization
and distributed firewalls.

Firewalls involve more than the technology required to implement
them. Specifying a set of filtering rules, known as a policy, is typically
complicated and error prone. High-level languages have been developed
to simplify the task of correctly defining a firewall’s policy. Once a policy
has been specified, testing is required to determine if the firewall correctly
implements it.

Because some data must be able to pass in and out of a firewall for
the protected network to be useful, not all attacks can be stopped by
firewalls. Some emerging technologies, such as virtual private networks
(VPNs) and peer-to-peer networking, pose new challenges to existing
firewall technology.

10 � Enhancing Computer Security with Smart Technology

2.1 Introduction
The idea of a wall to keep out intruders dates back thousands of years.
Over 2000 years ago, the Chinese built the Great Wall for protection from
neighboring northern tribes. European kings built castles with high walls
and moats to protect themselves and their subjects, both from invading
armies and from marauding bands intent on pillaging and looting. The
term “firewall” was in use as early as 1764 to describe walls that separated
the parts of a building most likely to have a fire (e.g., a kitchen) from
the rest of a structure [40]. These physical barriers prevented or slowed
a fire’s spread throughout a building, saving both lives and property. A
related use of the term is described by Schneier [60]:

Coal-powered trains had a large furnace in the engine room,
along with a pile of coal. The engineer would shovel coal into
the engine. This process created coal dust, which was highly
flammable. Occasionally the coal dust would catch fire, causing
an engine fire that sometimes spread into the passenger cars.
Since dead passengers reduced revenue, train engines were
built with iron walls right behind the engine compartment. This
stopped fires from spreading into the passenger cars, but didn’t
protect the engineer between the coal pile and the furnace.

This chapter is concerned with firewalls in a more modern setting —
computer networks. The predecessors to firewalls for network security
were the routers used in the late 1980s to separate networks from one
another. A network misconfiguration that caused problems on one side
of the router was largely isolated from the network on the other side. In
a similar vein, the so-called “chatty” protocols on one network (which
used broadcasts for much of their configuration) would not affect the
other network’s bandwidth [2]. These historical examples illustrate how
the term firewall came to describe a device or collection of devices that
separates its occupants from potentially dangerous external environments
(e.g., the Internet). A firewall is designed to prevent or slow the spread
of dangerous events.

Firewalls have existed since about 1987, and several surveys and
histories have been written [11,34,42,52]. In this chapter, we present an
updated and more comprehensive survey of firewall technology. Several
books have been written that describe how to build a firewall [15,71].
These books are excellent for people either wanting to evaluate a com-
mercial firewall or implementing their own firewall. However, neither

Network Firewalls � 11

spends much time on firewall history, nor do they provide references to
peer-reviewed literature.

For the purposes of this chapter, we define a firewall as a machine
or collection of machines between two networks, meeting the following
criteria:

� The firewall is at the boundary between the two networks.
� All traffic between the two networks must pass through the firewall.
� The firewall has a mechanism to allow some traffic to pass while

blocking other traffic (often called filtering). The rules describing
what traffic is allowed make up the firewall’s policy.

Additional desirable criteria include:

� Resistance to security compromise.
� Auditing and accounting capabilities.
� Resource monitoring.
� No user accounts or direct user access.
� Strong authentication for proxies (e.g., smart cards rather than

simple passwords).
� Fail-safety: If it fails, the protected system is still secure because

no traffic is allowed to pass through the firewall.

The fact that a firewall is at the boundary between two networks has
also led to them being called “perimeter security” — see, for example,
Figure 2.1.

Firewalls function by filtering traffic at one or more (today, normally
multiple) layers in the network protocol stack. These layers are described
using the ISO seven-layer model for networking [36]:

Figure 2.1 A firewall at the perimeter of an organization’s network. The inside
network may be as simple as a few machines or may consist of several divisions
located in geographically distant locations connected by telecommunication lines.

Outside

network
Inside

network
Firewall

12 � Enhancing Computer Security with Smart Technology

The protocols used on the Internet for these layers, as well as all other
Internet standards, are specified by documents known as Requests for
Comments (RFCs) [67].

This chapter is divided into several sections. Section 2.2 describes the
history and rationale for organizations adopting firewalls. Security profes-
sionals build firewalls using many different architectures, depending on
the security needs of the organization, and Section 2.3 describes several
of these choices. Section 2.4 reviews the ISO protocol layers, describing
firewall technology at each relevant layer. Section 2.5 considers alternative
approaches to firewall construction; these approaches are typically more
experimental, but they represent technology that could appear in common
firewalls in the near future. Once a firewall is constructed, it must be
tested to show that it actually enforces the organization’s security policy;
testing is the subject of Section 2.6. Although firewalls are an important
tool for securing an organization’s network, they have limitations, which
are discussed in Section 2.7. Section 2.8 discusses some projected chal-
lenges for firewalls in the face of technological change, and Section 2.9
concludes the chapter.

2.2 The Need for Firewalls
In the early years, the Internet supported a small community of users who
valued openness for sharing and collaboration. This view was challenged
by the Morris worm [22]. However, even without the Morris worm, the
end of the open, trusting community would have come soon through
growth and diversification. Examples of successful or attempted intrusions
around the same time include Clifford Stoll’s discovery of German spies
tampering with his system [63] and Bill Cheswick’s “Evening with Berferd”

ISO Layer Internet Example

Application File Transfer Protocol (FTP) and Telnet

Presentation Common Object Request Broker Architecture (CORBA)

Session No directly corresponding protocol

Transport Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP)

Network Internet Protocol (IP)

Data link Ethernet or Asynchronous Transfer Mode (ATM)

Physical Twisted pair or fiber-optic cable

Network Firewalls � 13

[13], in which he set up a simple electronic “jail” for an attacker. In this
jail, the attacker was unable to affect the real system but was left with
the impression that he or she had successfully broken in. Cheswick was
able to observe everything the attacker did, learning from these actions
and alerting system administrators of the networks from which the attacks
were originating. Such incidents clearly signaled the end of an open and
benign Internet. In 1992, Steve Bellovin described a collection of attacks
that he had noticed while monitoring the AT&T firewall and the networks
around it [7]. The result was clear — there were many untrustworthy and
even malicious users on the Internet.

When networks are connected together, different levels of trust often
exist on the different sides of the connection. “Trust” in this sense means
that an organization believes that both the software and the users on its
computers are not malicious. Firewalls enforce trust boundaries, which
are imposed for several reasons:

Security problems in operating systems: Operating systems have a
history of insecure configurations. For example, Windows 95
and Windows 98 were widely distributed with file sharing
enabled by default; many viruses exploited this vulnerability (for
example, see Reference 16 and Reference 17). A second example
is Red Hat Linux version 6.2 and version 7.0, which were
vulnerable to three remote exploits when the operating system
was installed using default options [18]. It is an ongoing and
expensive process to secure every user’s machine, and many
organizations consciously decide not to secure the machines
inside their firewall. If a machine on the inside is ever compro-
mised, the remaining machines also are likely vulnerable [53],
a situation that has been described as “a sort of crunchy shell
around a soft, chewy center” [14].

Preventing access to information: National firewalls attempt to limit
the activities of their users on the Internet, for example, China
[49]. A similar idea in the United States is the Children’s Internet
Protection Act (CHIPA), which mandates that certain information
be filtered. This law requires that schools and libraries that
receive federal funding block certain classes of Web content.

Preventing information leaks: Because all traffic leaving a network
must pass through the firewall, it can be used to reduce infor-
mation leaks [55]:

The key criterion for success for the digital corporate
gateways is preventing an unauthorized or unnoticed
leak of data to the outside.

14 � Enhancing Computer Security with Smart Technology

Enforcing policy: Firewalls are one part of an overall security policy;
they enforce the rules about which network traffic is allowed
to enter or leave a network. These policies control the use of
certain applications, restrict which remote machines may be
contacted, or limit the bandwidth.

Auditing: If a security breach (which does not include the firewall)
occurs, audit trails can be used to help determine what hap-
pened. Audit trails have also been used to monitor employees,
e.g., for using office network resources for nonwork purposes.

Using a personal firewall, individuals can protect a single machine
connected to the Internet. Rather than trying to secure the underlying
operating system, these firewalls simply prevent some types of commu-
nication. Such firewalls are often used in homes and on laptops when
they are outside their normal firewall. In this case, the trust boundary is
the network interface of the machine.

Organizations often use firewalls to prevent a compromised machine
inside from attacking machines outside. In this case, the firewall protects
the organization from possible liability because of propagating an attack.

2.3 Firewall Architectures
Firewalls range from simple machines designed to be purchased off-the-
shelf and installed by a person unskilled in network security (e.g., as
shown in Figure 2.1) to complex, multiple-machine, custom installations
used in large organizations. Regardless of their complexity, all firewalls
have the concept of “inside” for the protected network and “outside” for
the untrusted network. These terms are used even when a firewall protects
the outside world from potentially compromised machines inside.

Another common feature of firewalls is the existence of a DMZ (named
after the demilitarized zone separating North Korea and South Korea) or
“screened network.” Examples of how a DMZ may be constructed are
illustrated in Figure 2.2 and Figure 2.3. Machines such as e-mail and Web
servers are often placed in the DMZ. These machines are not allowed to
make connections to machines inside the firewall, but machines on the
inside are allowed to make connections to the DMZ machines. Thus, if a
server in the DMZ is compromised, the attacker cannot directly attack
machines on the inside. Servers are particularly vulnerable because they
must be accessed to be useful, and current firewalls are largely ineffective
against attacks through these services (see Section 2.4). Examples of attacks
on servers include the CodeRed and Nimda worms that attacked Microsoft

Network Firewalls � 15

Windows machines running Microsoft’s Web server, IIS, and in the case
of Nimda, several additional routes.

Firewall architectures are constrained by the type of filtering (described
in the following text) and the presence or absence of a DMZ.

2.3.1 Packet Filtering

Packet filtering is the process of analyzing the headers in network packets
and deciding whether or not to allow the packets, based on the policy
enforced by the firewall. Packet filtering for network security began with
Mogul’s paper describing screend in 1989 [50]. Most of the early work on
packet filtering for security emphasized performance [4]; later papers
continued this trend [43,66]. In addition to its efficiency, packet filtering
is appealing because, unlike proxies, it does not require the cooperation
of users, nor does it require any special action on their part (see Subsection
2.3.2).

Figure 2.2 A firewall with a DMZ on a third network attached to the firewall
router. Some commercial products are configured this way, as are custom fire-
walls.

Figure 2.3 A screened network as a DMZ. The firewall is enclosed by the dashed
line.

DMZ

network

Outside

network

Inside

network
Firewall

router

Inside

network

Packet
filtering
router

Packet

filtering

router

DMZ
networkOutside

network

16 � Enhancing Computer Security with Smart Technology

Packet filters use one or more of the following pieces of information
to decide whether or not to forward the packet: source address, destination
address, options in the network header, transport-level protocols (i.e., TCP,
UDP, ICMP, etc.), flags in the transport header, options in the transport
header, source port or equivalent if the protocol has such a construct,
destination port or equivalent if the protocol has such a construct, the
interface on which the packet was received or will be sent, and whether
the packet is inbound or outbound.

Although packet filtering is fast, it has some drawbacks, the most
important of which is the difficulty in writing correct filters. For example,
Chapman compares packet filter languages to assembly language [12]. In
1995, Molitor proposed an improved commercial filter language [51].

A second drawback is that packet filtering cannot identify which user
is causing what network traffic. It can inspect the IP address of the host
from which the traffic originates, but a host is not identical to a user. If
an organization with a packet-filtering firewall is trying to limit the services
some users can access, it must either implement an additional, separate
protocol for authentication (see Subsection 2.3.2 for an example of how
this might be done) or use the IP address of the user’s primary machine
as a weak replacement for true user authentication.

Also, because IP addresses can be spoofed, using them for authenti-
cation can lead to other problems. If the router is running a properly
configured filter, remote attackers should not be able to spoof local
addresses, but they could spoof other remote addresses. Local machines
can spoof other local machines easily. In spite of these problems, many
organizations still use IP addresses or DNS names for access control.

With packet filters, the local machine directly initiates the connection
to the remote machine. A result is that the entire internal network is
potentially reachable from external connections; otherwise, reply packets
from the remote host would not be delivered properly. As a consequence,
hostile remote computers can potentially exploit weaknesses in the protocol
implementation of the local computer [61].

Protocols such as FTP are difficult for packet filters. FTP uses a control
channel opened from the client to the server for commands. However,
when getting a file, one method of using FTP (active FTP) has the server
open a connection back to the client, contrary to the communication
patterns in other client/server protocols. FTP’s lack of encryption protect-
ing user authentication data has led to reduced usage, and eventually it
may no longer be used.

2.3.1.1 Packet Filtering with State

Originally, packet filters ignored the state of a connection. This means
that a remote host could send in packets that appeared to be part of an

Network Firewalls � 17

established TCP connection (with the TCP ACK flag set), but which in
reality were not. Attacks against bugs in the TCP/IP protocol stack [61]
can pass through the packet-filtering firewalls that do not keep state by
claiming to be part of an established TCP session. Some network-mapping
software [24] can map the inside network as if the firewall did not even
exist.

The solution to this problem is to record the state of a connection, a
property referred to variously as stateful firewalls, adaptive firewalling,
and packet inspection. In other words, the packet filter records both the
network-level and the transport-level data. For example, a router can
monitor the initial TCP packets with the SYN flag set and allow the return
packets only until the FIN packet is sent and acknowledged. A similar
pseudostate can be kept for most UDP (e.g., DNS and NTP) and some
ICMP communication (e.g., ping) — a request sent out opens a hole for
the reply, but only for a short time. In 1992, Chapman was one of the
first to point out the problem of the stateless packet-filtering firewalls [12].
The first peer-reviewed paper to describe adding state to packet filters
was by Julkunen and Chow in 1998, which describes a dynamic packet
filter for Linux [37]. Today, all major packet-filtering firewalls are capable
of using connection state.

2.3.1.2 Improving Packet Filter Specification

Firewalls were originally built and configured by experts. However, fire-
walls are now commodity products that are sold with the intent that nearly
anyone can be responsible for their network’s security. Typically, a graph-
ical user interface (GUI) is used to configure packet-filtering rules. Unfor-
tunately, this GUI requires the user to understand the complexities of
packet filters, complexities originally pointed out by Chapman in 1992
[12]. In many cases, the only advance since then is the GUI. The prevalence
of transparent proxies only increases the complexity of the administrator’s
task because he or she must understand the advantages and drawbacks
of using proxies compared to packet filtering.

Some researchers have therefore developed higher-level languages for
specifying packet filters. Specific examples include using binary decision
diagrams (BDDs) to specify the policy, a compiler for a higher-level
language that produces packet-filtering rules, a LISP-like language describing
policy, and the Common Open Policy Service (COPS) protocol standard.

In 2000, Hazelhurst proposed BDDs for visualizing router rule sets [31].
Because BDDs represent Boolean expressions, they are ideal for repre-
senting the block or pass rules that occur in packet filters. BDDs also
make automated analyses of packet filter rules easier, in addition to
providing better performance than the table lookups used in many routers.

18 � Enhancing Computer Security with Smart Technology

The filter language compiler, flc [58], allows the use of the C prepro-
cessor, specification of a default block or pass policy for various directions
of traffic flow, and provides a simple if-then-else facility. flc also generates
rules for several different packet filters (IPF, ipfw, ipfwadm, ipfirewall,
Cisco-extended access lists, and screend).

Guttman described a LISP-like language for expressing access control
policies for networks in which more than one firewall router is used to
enforce the policy [28]. The language is then used to compute a set of
packet filters that will properly implement the policy. He also describes
an algorithm for comparing existing filters to the policy to identify any
policy breaches. However, the automatically generated filters are not
expressed in the language of any router; the network administrator must
build them manually from the LISP-like output.

The Internet standards RFC2748, RFC3060, and RFC3084 describe the
COPS protocol. This protocol is used between a policy server (policy
decision point or PDP) and its clients (policy enforcement points or PEPs).
The basic idea is that the policy is specified at a different location from
the firewall (a PEP), and the policy server ensures that the various policy
enforcers have and use the correct policy. The policy may relate to quality
of service (QoS), to security, or to some other part of network policy
(e.g., IPSec); the COPS protocol is extensible. The network is modeled
as a finite state machine, and a policy is modeled as a collection of policy
rules. These rules have a logical expression of conditions and a set of
actions. If the logical expression is true, then the actions are executed.
These actions may cause a state change in the network finite state machine.
The policy rules can be prioritized, allowing conflict resolution when two
or more rules match but specify conflicting actions. As these proposed
standards are adopted, they will likely have a significant impact on how
firewalls are constructed.

Stone et al. survey policy languages through 2000 and describe a new
approach to policy specification [64]. In addition to security concerns,
their approach also takes into account QoS. In specifying policies, they
note that some policies are static, e.g., for security reasons, all access to
certain network addresses are prohibited. Other policies are dynamic, e.g.,
if the available bandwidth is too low, streaming video is no longer allowed.
Finally, different users may receive different levels of service (e.g., cus-
tomers in the company Web store have priority over employees browsing
the Web). Their policy language is called the path-based policy language
(PPL), and it corrects some of the deficiencies in the other policy languages.

Damianou et al. describe a policy language called Ponder [19]. Ponder
is a declarative, object-oriented language, which uses its structures to
represent policies. Constraints on a policy can also be represented in
Ponder. Although Ponder appears to be a rich and expressive language

Network Firewalls � 19

for expressing policies, there is not yet an automated policy implemen-
tation path.

Bartal et al. describe firmato [5], which has an underlying entity-
relationship model that specifies the global security policy, a language in
which to represent the model, a compiler that translates the model into
firewall rules, and a tool that displays a graphical view of the result to
help the user visualize the model. A module for use with firmato is the
firewall analysis engine, Fang (Firewall ANalysis enGine) by Mayer et al.
[48]. Fang reads the firewall configurations and discovers what policy is
described. The network administrator can then verify whether the actual
policy on various routers matches the desired policy. For example, the
network administrator can ask questions such as “From which machines
can our DMZ be reached, and with which services?” Fang builds a
representation of the policy; it is not an active testing program. This
difference allows Fang to test both the case in which authorized packets
succeed and the one in which unauthorized packets are blocked. It also
allows testing before the firewall is deployed; by contrast, active test tools
require the firewall to be up and running to test it. Also, active testing
cannot test the network’s vulnerability to spoofing attacks, whereas Fang
can. Fang provides a GUI to collect queries and to display the results.

A recent example of this family of firewall test and analysis tools is
the Lumeta Firewall Analyzer (LFA) [70]. LFA is a commercial product that
extends Fang to synthesize its own “interesting” queries based only on
the firewall configuration. The result is a system that hides the complexities
of the underlying router configurations, providing a much more compre-
hensible picture of the resulting policy.

Other tools for analyzing packet filter rules and highlighting problems
(in some cases, with proposed solutions) include those by Hari et al. [30]
and Al-Shaer and Hamed [1].

2.3.2 Proxies

A proxy is a program that receives traffic destined for another computer.
Proxies sometimes require user authentication; they can verify that the
user is allowed to connect to the destination and then connect to the
destination service on behalf of the user. One example of a firewall
architecture that makes use of a proxy server is shown in Figure 2.4.

When a proxy is used, the connection to the remote machine comes
from the machine running the proxy instead of the original machine
making the request. Because the proxy generates the connection to the
remote machine, it has no problems determining which connections are
real and which are spoofed; this is in contrast to stateless packet-filtering
firewalls (described in Subsection 2.3.1).

20 � Enhancing Computer Security with Smart Technology

Proxies appear in firewalls primarily at the transport and application
layers of the ISO network model. On the Internet, the transport level
consists of only two protocols, TCP and UDP. This small number of
protocols makes writing a proxy easy — one proxy suffices for all
protocols that use TCP. Contrast this with the application-level proxies
(covered in the following text), in which a separate proxy is required for
each service, e.g., Telnet, FTP, HTTP, SMTP, etc.

Transport-level proxies have the advantage that a machine outside the
firewall cannot send packets through the firewall that claim to be a part
of an established connection (some of the packet filters described in
Subsection 2.3.1 have this problem). Because the state of the TCP con-
nection is known by the firewall, only packets that are a legitimate part
of a communication are allowed inside the firewall.

Proxies at the application level provide the benefits of transport-level
proxies, and additionally, they can enforce the proper application-level
protocol and prevent the abuse of the protocol by either client or server.
The result is excellent security and auditing. Unfortunately, application
proxies are not without their drawbacks:

� The proxy must be designed for a specific protocol. New protocols
are developed frequently, requiring new proxies; if there is no
proxy, there is no access.

� To use an application proxy, the client program must be changed
to accommodate the proxy. The client needs to understand the
proxy’s authentication method, and it must communicate the actual
packet destination to the proxy. Because source code is not publicly
available for some applications, the required changes in these cases
can be made only by the application’s vendor, a significant bot-
tleneck.

Figure 2.4 A network using a proxy server. Some commercial products combine
all the machines shown in the dashed lines into one to reduce the cost.

Inside

network

Outside

network

Packet

filtering

router

Packet

filtering

router

Application

or transport

proxy

server

Network Firewalls � 21

� Each packet requires two trips through the complete network
protocol stack, which adversely affects performance. This is in
contrast to packet filtering, which handles packets at the network
layer.

One of the most common proxies is SOCKS, by Kolbas and Kolbas
[2]. SOCKS simplifies the changes needed to the source code of the client
application; a SOCKS call replaces a normal socket call, which results in
all outbound traffic using the proxy. This approach is a clean solution,
and it works well if one has the source code for the relevant operating
system utilities. Some commercial applications (e.g., Netscape) were writ-
ten to accommodate SOCKS. A system using SOCKS and TCP connections
is transparent to the user (assuming the proxy allows access to the
destination host). In 2000, Fung and Chang described an enhancement to
SOCKS for UDP streams, such as that used by RealNetworks’ RealPlayer [23].

Ranum and Avolio developed the Trusted Information Systems (TIS)
Firewall Toolkit (FWTK), a collection of proxies for building firewalls
[3,57]. This freely available toolkit provided SMTP, the Network News
Transport Protocol (NNTP), FTP, and Telnet application proxies, as well
as a generic circuit-level proxy. To improve security, the proxies used the
UNIX system called chroot to limit how much of the system is exposed;
this way, if a proxy were compromised, the rest of the firewall would
more likely remain trustworthy. The TIS FWTK had no proxies for UDP
services; instead, the firewall machine ran DNS and the Network Time
Protocol (NTP). The internal machines used the firewall for those services.
When TIS and Network Associates, Inc. (NAI), merged in February 1998,
the TIS firewall became NAI’s Gauntlet Internet Firewall.

A limitation of proxies is that client software must be modified or the
user must work differently when using the proxy. Transparent proxies
address this limitation. With a transparent proxy, the client sends packets
to the destination as usual. When the packets reach the firewall, access
control checks and logging are performed as in a classical proxy system.
The “magic” is implemented by the firewall, which notes the destination
address and port, opens up a connection to it, and then replies to the
client, as if the proxy were the remote machine. This relaying can take
place at either the transport level or the application level. RFC1919
compares classical proxies with transparent proxies.

Transparent proxies are demanding because the firewall must operate
both at the network and application levels, affecting performance. One
solution proposed by Spatscheck et al. [62] and Maltz and Bhagwat [45]
is that of “splicing.” In splicing, after the proxy verifies that communication
is allowed to proceed, the firewall converts to a network-level packet-filtering

22 � Enhancing Computer Security with Smart Technology

firewall for that communication. Splicing provides the extra control of
proxies but maintains performance closer to that of packet filters.

2.4 Firewalls at Various ISO Network Layers

2.4.1 Physical Layer

The physical layer of the network is usually covered by an organization’s
physical security — conventional locks, keys, and other forms of physical
access control. Untrusted persons must not have access to the physical
cables and other network hardware that make up the network.

Wireless communication, especially radio, introduces new complica-
tions. For example, radio waves travel through most walls easily. This
feature necessitates the use of encryption. Wired Equivalent Privacy (WEP)
was the first attempt at providing security on wireless links. However,
Borisov et al. [10] discovered a weakness in key management, with the
result that after an attacker had received a sufficient number of packets,
he or she could see all traffic and inject fake packets. The new standard
is Wi-Fi Protected Access (WPA), which, at the time of this writing, has
no known flaws.

2.4.2 Data-Link Layer

At the data-link layer, two types of firewall technologies are used. Filtering
based on the media access control (MAC)-layer address (in most cases,
the MAC address is the 48-bit Ethernet address) determines which
machines are allowed to communicate with which. Bridging firewalls are
more traditional firewalls, but with the advantage that they can be placed
anywhere in a network.

2.4.2.1 Filtering on MAC Address

The MAC address of a machine uniquely identifies it on the local network.
Some switches and firewalls are able to use this address to decide what
communication to allow. This form of filtering has three limitations:

1. The MAC address is not routed; therefore, any filtering must occur
at or before the first router.

2. Some Ethernet cards can have a MAC address programmed into
them via software running on the machine. Therefore, the MAC
address must be verified at the connection to the network for it
to provide security.

Network Firewalls � 23

3. A machine is not a person; determining who is actually operating
the machine is not possible with the MAC address.

2.4.2.2 Bridging Firewalls

A bridge is a network device that works at the ISO data-link layer.
Operating at this level, it does not need access to routing information. A
bridging firewall uses the information listed in Subsection 2.3.1 to decide
whether or not to block a packet. As a result, a bridging firewall can
examine data in several other levels of the IP suite, including the network
and transport layers. Because a filtering bridge is still a filter, the disad-
vantages of packet filtering still apply to it.

What makes a bridging firewall different from a packet-filtering router
is that it can be placed anywhere — it is transparent at the network level.
It can be used to protect a single machine or a small collection of machines
that would not normally warrant the separate network required when
using a router. As it does not need its own IP address, the bridge itself
can be immune to any attack that makes use of IP (or any of the protocols
on top of IP). Also, no configuration changes are needed in the protected
hosts when the firewall is installed. Installation times can be minimum
(for example, Limoncelli claims 3-s installation times [41]), so users are
minimally disrupted when the bridge is installed.

2.4.3 Network

At the network level, addresses indicate routing information, and hosts
can be grouped together into networks. These differences from the data-
link layer provide important filtering options. An additional firewall feature
at this level is network address translation (NAT), in which an address on
one side of the router is changed to a different one on the other side. In
addition, multicast protocols — sending packets to a collection of hosts
— operate at this level. Multicast presents a new set of problems: the
sender does not necessarily know the identities of all the participants in
the session. This is also true for the recipients, who do not know in
advance all the possible people who might be sending to them.

2.4.3.1 Network- and Host-Based Filtering

Sometimes, all machines attached to a network can be assigned a similar
trust level; for example, consider a DMZ network as in Figure 2.2 or
Figure 2.3. In this case, packet-filtering rules can be developed that enforce
the trust (or lack thereof). Two problems must be addressed:

24 � Enhancing Computer Security with Smart Technology

1. IP version 4 (IPv4) does not contain authentication (unless IPSec
is in use, which is rare for non-VPN communication), and it is not
required in IP version 6 (IPv6). Many programs exist that can spoof
another host — they put packets on the network claiming to have
originated from the spoofed host. Any IP-based authentication faces
the problem of not knowing that the correct host generated these
packets. Blocking spoofed packets generated on a remote network
is easy with packet filters: add a rule that says any packet with a
source address cannot arrive on a network interface attached to
any other network. However, preventing one machine on the local
network from impersonating another is more difficult; a firewall
that is not on the offending machine cannot help.

2. IP has a feature known as source routing, in which the source
indicates the routing the packet should take (instead of allowing
the routing algorithms on the intervening routers to determine the
route). Return packets take the reverse route to return. The spec-
ified source route may be bogus, or it may be valid and allow a
spoofed IP address to communicate with a remote machine. The
result is that most firewalls block all source-routed packets.

2.4.3.2 Multicast

On the Internet, multicast is often used for various forms of multimedia.
In contrast to traditional unicast communication, the sender in a multicast
communication does not necessarily know the identities of the recipients,
and recipients do not know in advance who might be sending data to
them. This difference makes proxies such as SOCKS difficult to implement
unless they change the multicast into a collection of unicasts, a change
that defeats the benefits of multicast. With multicast, once a client inside
the firewall has joined a group, others may join without needing to
authenticate. Additionally, the Multicast Routing Protocol, the Internet
Group Management Protocol (IGMP), specifies only multicast groups and
not UDP ports; in a default configuration, a multicast source has access
to the complete set of UDP ports on client machines. If a source has
access to all UDP ports, then it could potentially attack other services
(e.g., Microsoft networking) that are unrelated to the service it is providing.

A classic paper on multicast and firewalls was published by Djahandari
and Sterne [20]. In this paper, they describe an application proxy for the
TIS Firewall Toolkit. The proxy has the following features: it allows
authentication and auditing, it prevents multicast traffic from reaching
hosts that did not request it, and it allows the multicast traffic to be sent
only to safe ports. The proxy converts multicast traffic into unicast traffic.

Network Firewalls � 25

Unfortunately, this approach also means that it does not scale well, as a
collection of N users, all receiving the same multicast stream, increases
the traffic inside the firewall by a factor of N over what it would have
been if multicast had been retained. On the other hand, they do solve all
of the security problems mentioned in the previous paragraph and later
in this subsection.

RFC2588 suggests several possible solutions to the problem of multicast
and firewalls. For example, communication between external and internal
machines could be tunneled through the firewall using the UDP Multicast
Tunneling Protocol (UMTP). This protocol was designed to connect clients
to the Multicast Backbone (the MBone), but would work for tunneling
through multicast-unaware firewalls.

RFC2588 also mentions the possibility of dynamic firewall rules, and
Oria describes in further detail how they can be implemented [54]. A
program runs on the router, which monitors multicast session announce-
ments. The program reads the announcements, and if the specified group
and UDP port are allowed by the policy, it generates the necessary rules
permitting the data to pass through the firewall. When a client informs
the router that it wishes to join a multicast group, it sends an IGMP join
message to the router. The dynamically generated rules permit or deny
this access. This approach to multicast on the firewall assumes that session
announcements can be trusted. Unfortunately, this is not a valid assump-
tion because they can be spoofed.

2.4.3.3 NAT

Because the Internet is short of IPv4 addresses, many people use NAT to
gain more mileage out of a single IP address. When a router uses NAT,
it changes the source address of outbound packets to its own address (or
one from a pool of addresses that it controls). It chooses a local, unused
port for the upper-layer protocol (TCP or UDP) and stores in a table the
association between the new address and port and the real sender’s
address and port. When the reply arrives, it looks up the real destination
in this table, rewrites the packet, and passes it to the client. When the
connection is finished (or after the timeout period for UDP packets), the
entry is removed from the table.

NAT provides a form of protection similar to that of proxies. In NAT,
all connections originate from the router performing the address transla-
tion. As a result, someone outside the local network cannot gain access
to the protected local machines unless the proper entry exists in the table
on the router. The network administrator can manually install such an
entry, causing all traffic destined for a specific port to be forwarded to a

26 � Enhancing Computer Security with Smart Technology

server for that service (in effect, providing an Internet-accessible service
on an inside machine*).

RFC2663 notes some limitations of NAT. For example, NAT may prevent
IPSec from working correctly. One feature of IPSec is the ability to ensure
that a packet is not modified in transit. However, one of the purposes of
NAT is to modify packets; the source address and possibly the source
port must be modified for NAT to work. DNS problems can also occur.
A machine behind a router using NAT has a name and an IP address.
However, most networks using NAT also use RFC1918 private IP addresses,
which are not globally unique. Therefore, DNS inside the network is not
meaningful outside.

2.4.4 Transport
When they can be used, transport-level proxies (from Subsection 2.3.2)
work well. Because a transport-level proxy initiates the connection, it
cannot be spoofed by a packet claiming to be part of an established
communication. A problem analogous to the authentication problem of
the data-link and network layers exists here: one cannot guarantee that
the expected application is running on its “well-known” port. The solution
to this problem lies in using an application-level proxy.

Note that packet filtering is faster than using proxies, so performance
considerations may dictate which to use.

2.4.5 Presentation
Little exists on the Internet at the presentation layer, and even less exists
in terms of firewalls. The CORBA allows applications written in one
language to make requests of objects possibly written in different lan-
guages or running on a different machine. CORBAgate by Dotti and Rees
[21] is a presentation-level proxy. When a request is made to an object
that is on the other side of the firewall, the proxy transparently changes
the references. The result is that objects on either side of the firewall end
up referring to an object on the firewall.

2.4.6 Application
If the performance needs can be met, application-level proxies offer the
best security. They can:

* Setting up such an entry is usually a bad idea from a security standpoint. Maintaining
a server inside a firewall is risky because, if it is compromised, the attacker then
has access inside the network, which, as noted in Section 2.2, is likely to be insecure.

Network Firewalls � 27

� Avoid being deceived into accepting spoofed packets
� Ensure that both sides follow the expected application-level protocol
� Limit the communication to an approved subset of the application-

level protocol
� Authenticate users and limit their communication according to their

authorization
� Monitor traffic for known problems, such as worms in e-mail or

hostile Web server attacks against vulnerable clients

With the advent of transparent proxies, network administrators can
achieve most of these benefits without the awareness or cooperation of
the users. The primary drawbacks were described in Subsection 2.3.2:
performance concerns, each protocol requiring a separate proxy, and the
development of proxies lagging behind the development of new protocols.

2.5 Other Approaches
Although filtering and proxies are the most common approaches to
firewalls, they are not the only ones. Researchers have experimented with
dynamic or distributed firewalls. Because attackers abuse protocol speci-
fications, protocol normalization can also be beneficial. As some commu-
nication is known to be hazardous, signature-based firewalls might help
improve security against already-known attacks. Transient addressing pro-
vides the security benefits of NAT to a single machine. This section will
discuss all of these approaches in more depth.

2.5.1 Distributed Firewalls

There are several limitations to the firewall technology that we have
presented so far. One common assumption is that all the hosts inside a
firewall are trustworthy. This assumption is not always valid — for exam-
ple, see Subsection 2.8.1. A related problem is that firewalls are unaware
of internal traffic that violates the security policy. Because firewalls are
typically centralized in one location, they can become performance bot-
tlenecks and provide a single point of failure. A further limitation of
conventional firewalls is that, in some cases, the local machines know
context that is not available to the firewall. For example, a file transfer
may be allowed or denied based on what file is being transferred and by
whom. The firewall does not have this local, contextual knowledge.

One solution to these problems, proposed by Bellovin [8], is a distributed
firewall. This was implemented by Ioannidis et al. in 2000 [35] and by
Markham and Payne in 2001 [46]. In this firewall, the network administrator

28 � Enhancing Computer Security with Smart Technology

has a single policy specification, loaded onto all machines. Each host runs
its own local firewall implementing the policy. Machines are identified by
cryptographic certificates, a stronger form of authentication than IP
addresses. With a distributed firewall, the common concept of a DMZ or
screened network, in which servers accessible to the outside world are
located, is no longer necessary (for examples of a DMZ or screened
network, see Figure 2.2 or Figure 2.3).

Gangadharan and Hwang [25,33] propose using firewalls on all devices
attached to the protected network, in which the firewalls can be combined
with an intrusion detection system (IDS). When the IDS detects an anom-
alous event, it modifies the firewall to react to the threat. Lower overhead
can be achieved with this approach than that reported for the distributed
firewall developed by Ioannidis [35].

Distributed firewalls have a different set of problems from centralized
ones. The most significant is that a distributed firewall relies on its users
(who have physical access to the machine) not to override or replace the
policy. Additionally, if the firewall is running as a part of the operating
system, then the operating system must protect the firewall software.
However, the local firewall is protecting the operating system, creating a
circular set of dependencies. Markham and Payne propose implementing
the distributed firewall on a programmable network interface card (NIC)
to reduce reliance on the operating system for protection [46].

Around the same time that Bellovin proposed the distributed firewall,
Ganger and Nagle also proposed a distributed approach to security [26]
in which each device is responsible for its part of the security policy.
Ganger and Nagle argue that if each device were more secure, then an
attacker who succeeds in passing the outer defenses (the firewall) would
not find vulnerable targets inside. They propose installing security devices
on many parts of a network, including NICs, storage devices, display
devices, routers, and switches. The idea is that the devices would dynam-
ically adjust their approach to security based on the overall network
defense level. As with Bellovin’s proposal, programmable NICs are an
important part of the overall strategy.

2.5.2 Dynamic Firewalls

Dynamic firewalls change their rules depending on the traffic passing
through them. The simplest approach is to just block traffic deemed as
bad. However, this approach leaves one open to attacks in which an
attacker spoofs an attack from an important site (e.g., Google), causing
the important site to get blocked. Better systems do more than just block,
e.g., throttle network traffic [32]. Others that can be dynamic include
OpenBSD’s pf, Linux iptables, and some commercial products.

Network Firewalls � 29

2.5.3 Normalization

Attackers often abuse protocol specifications, e.g., by sending overlapping
IP fragments or out-of-order TCP byte sequences. Handley et al. stressed
that a firewall is a good location for enforcing tight interpretation of a
protocol [29]. Besides protecting the computers behind the firewall from
attacks based on protocol abuses, this so-called “normalization” also makes
signature-based intrusion detection systems more reliable because they
see a consistent data stream. Handley et al. provide a list of possible
normalizations, ranging from those guaranteed to be safe to others that
are potentially too strict in their interpretation of the standard. They were
not the first to suggest normalization, however. Malan et al. describe
“transport scrubbing” [44], and more recently the idea is elaborated by
Watson et al. [69]. At about the same time, Strother [65] proposed a similar
idea. Her solution involved different rings of trust, in which a network
packet must pass through one ring before proceeding to the next. Many
of her rings achieve the same effect as normalization.

2.5.4 Signature-Based Firewalls

Malan et al. discuss “application scrubbing” [44]. In this approach, a user-
level program is established as a transparent proxy (see Subsection 2.3.2)
that monitors the data stream for strings known to be hazardous (and
presumably to prevent these strings from reaching the client). Watson et
al. refer to the same concept as a “fingerprint scrubber” [69].

Snort [59] is a common intrusion detection system. Hogwash [39] is a
firewall that blocks packets matching the Snort rules. It runs on a bridging
firewall (Subsection 2.4.2.2), and the authors claim that it can handle
network speeds of up to 100 Mbps on hardware that is not state-of-the-art.

Commercial products such as Web and e-mail anti-virus and anti-spam
software often make use of signatures. The advantage is high accuracy
on known attacks. The disadvantage is that they do not prevent attacks
that are not in their database of signatures.

2.5.5 Transient Addressing

Many protocols, such as FTP, RealAudio, and H.323 (a protocol used for
programs such as Microsoft’s NetMeeting), open secondary channels for
additional communication. These additional channels are a problem for
firewalls unless the firewall makes use of a stateful proxy. Gleitz and
Bellovin propose a solution to this problem by taking advantage of IPv6,
which has 128 bits of address space [27]. This is large enough for each
host to have multiple addresses. A client initiating a connection to an FTP

30 � Enhancing Computer Security with Smart Technology

server uses an address that includes the process group ID of the FTP
client process. The firewall sees a connection from a specific IPv6 address
going to an FTP server at a remote site, and then allows all communication
from the server back to the client’s address. On the client side, this address
is only used for the FTP process; connections from the FTP server to other
ports on the client will not be accepted, because only the FTP client is
using that specific address.

2.6 Firewall Testing
As communications needs and patterns of no two organizations are
identical, few, if any, will have identical firewalls. This leads to the problem
of determining whether or not the firewall is correctly enforcing the policy.
Firewall testing was originally an ad hoc exercise, with the thoroughness
being determined by the skill of the person running the tests. A second
phase of testing methodology included security scanners such as the
Security Administrator Tool for Analyzing Networks (SATAN) and the
Internet Security Systems (ISS) Internet scanner. These scanners provided
the basis for the National Computer Security Association (NCSA) certifi-
cation [68] for a period of time. Vigna extended this approach by defining
a formal model of a network’s topology [68]. His model can also represent
the TCP/IP protocol stack up through the transport level. Using this model,
he was able to generate logical statements describing the requirements
for the firewall. Given these requirements, he then generated a series of
locations for probes and packets to attempt to send when testing the real
firewall. From a formal standpoint, this work is promising, but it fails to
address the common problem of how to develop a correct formal descrip-
tion. Producing complete formal descriptions for realistic networks repre-
sents a significant amount of work and is difficult to perform correctly.
Additionally, the test generator must have a complete list of vulnerabilities
for which to generate tests.

Marcus Ranum took a different approach to firewall testing in [56]; he
notes that firewalls are (or at least should be) different for different
organizations. After a firewall is deployed, an expert can study the policy
specification for the firewall and decide which tests will verify that the
firewall properly implements the policy, using a top-down approach. He
emphasizes the importance of testing both the security of the firewall itself
(that the firewall is secure from attack) and the correctness of the policy
implementation. Unfortunately, such testing is both expensive and time
consuming.

Some of the tools for firewall policy specification (Subsection 2.3.1.2)
also provide testing or guidance for testing.

Network Firewalls � 31

2.7 What Firewalls Do Not Protect Against
No firewall provides perfect security. Several problems exist that are not
addressed by the current generation of firewalls. In the event that a firewall
does try to provide protection for the problems discussed in this section,
either it is not in widespread use or there are problems with the protection
it provides.

2.7.1 Data That Passes through the Firewall

A firewall is probably best thought of as a permeable membrane. That is,
it is only useful if it allows some traffic to pass through it (if not, then
the network could be isolated from the outside world and the firewall
would not be needed). Unfortunately, any traffic passing though the
firewall is a potential avenue of attack. For example, most firewalls have
some provision for e-mail, but e-mail is a common method of attack; a
few of the many e-mail attacks include the “I Love You” letter, the “Sobig”
worm, VBS/OnTheFly (Anna Kournikova) worm, etc. The serious problem
of e-mail-based attacks has resulted in demand for some part of the firewall
to check e-mail for hostile code. Open-source products such as AMaViS
and commercial e-mail virus scanners are responses to this challenge.
However, they are only as good as the signatures for which they scan;
novel attacks pass through without a problem. Additionally, spam is
turning into a denial-of-service attack because of the volume, causing anti-
spam products to be merged into anti-virus e-mail-checking systems.

If Web traffic is allowed through the firewall, then network adminis-
trators must cope with the possibility of malicious Web sites. With scripting
languages such as Java, JavaScript, and ActiveX controls, malicious Web
administrators can read arbitrary files on client machines (e.g., when a
bug in Netscape allows Java applets to read protected resources) and
execute arbitrary code on the client (e.g., when an ActiveX control allows
local files to be executed or when a weakness in the Java bytecode verifier
allows applets to do whatever they want). ActiveX controls are of particular
concern, because they do not run in any form of “sandbox” the way Java
applets do [6]. ActiveX controls can be digitally signed, and if properly
used, can be used to authenticate the author, if not the author’s intentions.

In 1997, Martin et al. described some attacks written in Java [47]. They
advocate the draconian solution of blocking all applets, on the grounds
that it cannot be determined which Java applets are dangerous. They
suggest the following methods of blocking Java applets at the firewall:

1. Using a proxy to rewrite <applet> tags. This requires that the proxy
be smart enough to rewrite only the tags in HTML files and not if

32 � Enhancing Computer Security with Smart Technology

they appear in other file types, such as image files. This requires
that the proxy parse the HTML documents in the same manner as
the browser.

2. Java class files always begin with a four-byte hex signature CAFE
BABE. A firewall could block all files that begin with this sequence.
A possibility of false-positives exists with this scheme, but Martin
et al. believe that this problem is less likely to occur than the
<applet> tag appearing in non-HTML files.

3. Block all files whose names end in .class. This solution is weak
because Java classes can come in files with other extensions, for
example, packing class files in a Zip file is common.

Their suggestion is to implement all three of these, and they wrote a
proxy that does everything except look inside Zip files.

2.7.2 Servers on the DMZ

Because the networks inside a firewall are often not secure, servers that
must be accessible from the Internet (e.g., Web and mail servers) are often
placed on a screened network, called the DMZ (for a picture of one way
a DMZ may be constructed, see Figure 2.2 or Figure 2.3). Machines in
the DMZ are not allowed to make connections to machines inside the
firewall, but machines on the inside are allowed to make connections to
the DMZ machines. The reason for this architecture is that if a server on
the DMZ is compromised, the attacker cannot directly attack the other
machines inside the firewall. Because a server must be accessible to be
of use, current firewalls other than signature-based ones (Subsection 2.5.4)
can do little against attacks through the services offered. Examples of
attacks on servers include worms such as CodeRed and Nimda.

2.7.3 Insider Attacks

In spite of the fact that early firewalls such as the DEC SEAL were initially
set up to prevent information leaks, they cannot protect against insiders
intent on getting information out of an organization. Consider a hostile
employee with access to a DVD burner. The resulting DVD will not be
traveling through the firewall, so the firewall cannot prevent this data loss.
Muffett also points out that inside a firewall, security tends to decrease
over time unless the internal machines are frequently updated [53]. There-
fore, a hostile insider can generally penetrate other internal machines, and
because these attacks do not go through the firewall, it cannot stop them.
To reduce this threat, some organizations have set up internal firewalls.

Network Firewalls � 33

2.8 Future Challenges for Firewalls
All the topics discussed in the previous section pose serious challenges
to firewalls. In addition, two emerging technologies will further complicate
the job of a firewall: VPNs and peer-to-peer networking.

2.8.1 VPNs

Because firewalls are deployed at the network perimeter, if the network
perimeter is expanded, the firewall must somehow protect this expanded
territory. VPNs provide an example of how this can happen. A laptop
being used by a traveling employee in an Internet cafe or a home machine
that is connected to an ISP via a DSL line or cable modem must be inside
the firewall. However, if the laptop’s or home machine’s security is
breached, the entire internal network becomes available to the attackers.

Remote-access problems are mentioned by Avolio and Ranum [3].
Because of the fact that VPNs had not yet been invented then, it is easy
to understand why they failed to discuss the problem of a remote perimeter
that includes hosts always connected to the Internet (via DSL or cable
modems) and which are also allowed inside through a VPN tunnel.

2.8.2 Peer-to-Peer Networking

The music-sharing system Napster is the most famous example of peer-
to-peer networking. However, several other peer-to-peer systems exist as
well, including Gnutella and AIMster (file sharing over AOL Instant Mes-
senger). When not used for music sharing, peer-to-peer file sharing is
used to support collaboration between distant colleagues. However, as
Bellovin points out [9], these systems raise serious security concerns. These
include the possibility of using Gnutella for attacks, buggy servants (server
+ client programs), and the problems of Web and e-mail-based content
in yet another form. Current firewalls are unable to provide any protection
against these types of attacks beyond simply blocking the peer-to-peer
networking.

2.8.3 HTTP as a “Universal Transport Protocol”

The development of firewalls and the filtering that usually occurs at an
organization’s perimeter has affected the design of new protocols. Many
new protocols are developed on top of HTTP because it is often allowed
through firewalls. In some cases, this piggybacking is a reasonable use

34 � Enhancing Computer Security with Smart Technology

of HTTP. In other cases, such as the Simple Object Access Protocol (SOAP),
HTTP is used as a remote procedure call protocol. A good proxy is
required to determine what HTTP is allowed with whom.

2.9 Conclusion
The need for firewalls has led to their ubiquity. Nearly every organization
connected to the Internet has installed some sort of firewall. The result
of this is that most organizations have some level of protection against
threats from the outside. Attackers still probe for vulnerabilities that are
likely to only apply to machines inside the firewall. They also target servers,
especially Web servers. However, these attackers are also now targeting
home users (especially those with full-time Internet connections), who are
less likely to be well protected. The purpose of these attacks is twofold: (1)
to take advantage of the lower security awareness of the home user and (2)
to get through a VPN connection to the inside of an organization.

Because machines inside a firewall are often vulnerable to both attack-
ers who breach the firewall as well as hostile insiders, we will likely see
increased use of the distributed firewall architecture. The beginnings of
a simple form of distributed firewalls are already here, with personal
firewalls being installed on individual machines. However, many organi-
zations will require that these individual firewalls respond to configuration
directives from a central policy server. This architecture will simply serve
as the next level in an arms race, as the central server and the protocols
it uses become special targets for attackers.

Firewalls and the restrictions they commonly impose have affected
how application-level protocols have evolved. Because traffic initiated by
an internal machine is often not as tightly controlled, newer protocols
typically begin with the client contacting the server, not the reverse as
active FTP did. The restrictions imposed by firewalls have also affected
the attacks that are developed. The rise of e-mail-based attacks is one
example of this change.

An even more interesting development is the expansion of HTTP and
port 80 for new services. File sharing and remote procedure calls can
now be accomplished using HTTP. This overloading of HTTP results in
new security concerns, and as a result, more organizations are beginning
to use a (possibly transparent) Web proxy so they can control the remote
services used by the protected machines. The future is likely to see more
of this coevolution between protocol developers and firewall designers
until the protocol designers consider security when the protocol is first
developed. Even then, firewalls will still be needed to cope with bugs in
the implementations of these protocols.

Network Firewalls � 35

References
1. E.S. Al-Shaer and H.H. Hamed. Firewall policy advisor for anomaly dis-

covery and rule editing. 8th International Symposium on Integrated Net-
work Management, pp. 17–30, 2003.

2. Frederic Avolio. Firewalls and Internet security, the second hundred (Inter-
net) years. The Internet Protocol Journal, 2(2): 24–32, June 1999. http://
www.cisco.com/warp/public/759/ipj_2-2/ipj_2-2_fis1.html. Accessed Feb-
ruary 20, 2002.

3. Frederick M. Avolio and Marcus J. Ranum. A network perimeter with secure
external access. In Internet Society Symposium on Network and Distributed
Systems Security, February 3–4, 1994, San Diego, CA, USA, pp. 109–119,
Reston, VA, USA. Internet Society. http://www.ja.net/CERT/Avolio_and_
Ranum/isoc94.ps. Accessed February 20, 2002.

4. Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L. Peterson, and
Prasenjit Sarkar. Pathfinder: a pattern-based packet classifier. In 1st Sym-
posium on Operating Systems Design and Implementation, November
14–17, 1994, Monterey, CA, USA, pp. 115–123, Berkeley, CA. USENIX
Association.

5. Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A
novel firewall management toolkit. In 1999 IEEE Symposium on Security
and Privacy, May 9–12, 1999, Oakland, CA, USA, pp. 17–31, Los Alamitos,
CA, USA. IEEE. http://www.wisdom.weizmann.ac.il/˜kobbi/papers/firmato.
ps. Accessed February 20, 2002.

6. S.M. Bellovin, C. Cohen, J. Havrilla, S. Herman, B. King, J. Lanza, L. Pesante,
R. Pethia, S. McAllister, G. Henault, R.T. Goodden, A. P. Peterson, S.
Finnegan, K. Katano, R.M. Smith, and R.A. Lowenthal. Results of the Security
in ActiveX Workshop Pittsburgh, PA, USA, August 22–23, 2000. Technical
report, CERT Coordination Center, Software Engineering Institute, Carnegie
Mellon University, Pittsbur g, PA 15213, USA, December 2000.
http://www.cert.org/reports/activeX_report.pdf. Accessed February 20,
2002.

7. Steven M. Bellovin. There be dragons. In UNIX Security Symposium III
Proceedings, September 14–16, 1992, Baltimore, MD, USA, pp. 1–16, Ber-
keley, CA. USENIX Association. http://www.research.att.com/˜smb/papers/
dragon.pdf. Accessed February 20, 2002.

8. Steven M. Bellovin. Distributed firewalls. Login, 24(Security), November
1999. http://www.usenix.org/publications/login/1999-11/features/firewalls.
html. Accessed February 20, 2002.

9. Steven M. Bellovin. Security aspects of Napster and Gnutella, June 2000.
Invited talk at the USENIX 2001 Annual Technical Conference, June 25–30,
2001. http://www.research.att.com/˜smb/talks/NapsterGnutella/index.htm.
Accessed February 20, 2002.

10. Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile
communications: The insecurity of 802.11. In Proceedings of the 7th Inter-
national Conference on Mobile Computing and Networking, July 16–21,
2001, Rome, Italy.

36 � Enhancing Computer Security with Smart Technology

11. R. Braden, D. Clark, S. Crocker, and C. Huitema. Report of IAB workshop
on security in the Internet architecture, February 8–10, 1994, RFC 1636
June 1994. ftp://ftp.isi.edu/in-notes/rfc1636.txt. Accessed February 20, 2002.

12. D. Brent Chapman. Network (in)security through IP packet filtering. In
UNIX Security Symposium III Proceedings, September 14–16, 1992, Balti-
more, MD, USA, pp. 63–76, Berkeley, CA. USENIX Association. http://www.
greatcircle.com/pkt_filtering.html. Accessed February 20, 2002.

13. B. Cheswick. An evening with Berferd in which a cracker is lured, endured,
and studied. In Winter 1992 USENIX Conference, January 20–24, 1992, San
Francisco, CA, USA, pp. 163–173, Berkeley, CA. USENIX Association. http://
www.cheswick.com/ches/papers/berferd.ps. Accessed February 20, 2002.

14. William R. Cheswick. The design of a secure Internet gateway. In USENIX
1990 Summer Conference, Berkeley, CA, June 1990. USENIX Association.
http://www.cheswick.com/ches/papers/gateway.ps. Accessed February 20,
2002.

15. William R. Cheswick, Steven M. Bellovin, and Ariel D. Rubin. Firewalls
and Internet Security: Repelling the Wily Hacker, Second Edition. Addison-
Wesley, Reading, MA, 2003.

16. Computer Emergency Response Team (CERT). CERT incident note IN-2000-
02: Exploitation of unprotected windows networking shares, April 2000.
http://www.cert.org/incident_notes/IN-2000-02.html.

17. Computer Emergency Response Team (CERT). CERT incident note IN-2000-
03: 911 worm, April 2000. http://www.cert.org/incident_notes/IN-2000-
03.html.

18. Computer Emergency Response Team (CERT). CERT incident note IN-2001-
01: Widespread compromises via “ramen” toolkit, January 2001. http://
www.cert.org/incident_notes/IN-2001-01.html.

19. N. Damianou, N. Dulay, E. Lapu, and M. Sloman. The ponder policy
specification language. In Policies for Distributed Systems and Networks.
International Workshop, Policy 2001. Proceedings, January 29–31, 2001,
Bristol, UK, Springer-Verlag, Berlin, Germany. http://www.doc.ic.ac.uk/
˜mss/Papers/Ponder-Policy01V5.pdf. Accessed February 20, 2002.

20. K. Djahandari and D. Sterne. An MBone proxy for an application gateway
firewall. In Proceedings of the 1997 Conference on Security and Privacy
(S&P-97), pp. 72–81, Los Alamitos, CA, USA, May 4–7, 1997. IEEE Press.

21. Paola Dotti and Owen Rees. Protecting the Hosted Application Server.
Technical Report HPL-1999-54 990413, Hewlett-Packard Labs, Bristol, UK,
1999. http://www.hpl.hp.com/techreports/1999/HPL-1999-54.pdf. Accessed
February 20, 2002.

22. Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers: An
analysis of the Internet virus of November 1988. In 1989 IEEE Computer
Society Symposium on Security and Privacy, pp. 326–343, Los Alamitos,
CA, USA, May 1989. IEEE Computer Society.

23. King P. Fung and Rocky K.C. Chang. A transport-level proxy for secure
multimedia streams. IEEE Internet Computing, 4(6): 57–67, November–
December 2000.

Network Firewalls � 37

24. Fyodor. Nmap — free security scanner for network exploration and security
audits, May 2004. http://www.insecure.org/nmap/. Accessed June 8, 2004.

25. Muralidaran Gangadharan and Kai Hwang. Intranet security with micro-
firewalls and mobile agents for proactive intrusion response. In Proceedings
of the International Conference on Computer Networks and Mobile Com-
puting, 2001, pp. 325–332, Los Alamitos, CA, USA, 2001. IEEE Computer
Society.

26. Gregory R. Ganger and David F. Nagle. Enabling Dynamic Security Man-
agement of Networked Systems via Device-Embedded Security. Technical
Report CMU-CS-00-174, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 15213-3890, USA, December 2000. http://reports-
archive. adm.cs.cmu.edu/anon/2000/CMU-CS-00-174.pdf. Accessed Febru-
ary 20, 2002.

27. Peter M. Gleitz and Steven M. Bellovin. Transient addressing for related
processes: Improved firewalling by using IPV6 and multiple addresses per
host. In Proceedings of the 10th USENIX Security Symposium, pp. 99–113,
Berkeley, CA, USA, August 2001. USENIX Association. http://www.usenix.
org/publications/library/proceedings/sec01/full_papers/gleitz/gleitz.pdf.
Accessed February 20, 2002.

28. Joshua D. Guttman. Filtering postures: Local enforcement for global policies.
In 1997 IEEE Symposium on Security and Privacy, May 4–7, 1997, Oakland,
CA, USA, pp. 120–129, Los Alamitos, CA, USA, 1997. IEEE Computer Society
Press. http://www.mitre.org/support/papers/filtering_postures/filtering_
postures.pdf. Accessed February 20, 2002.

29. Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion
detection: Evasion, traffic normalization, and end-to-end protocol seman-
tics. In Conference Proceedings: 10th USENIX Security Symposium, pp.
115–131, Berkeley, CA, USA, August 2001. USENIX Association. http://
www.aciri.org/vern/papers/norm-usenix-sec-01.pdf. Accessed February 20,
2002.

30. Hari Adiseshu Hari, Subhash Suri, and Guru M. Parulkar. Detecting and
resolving packet filter conflicts. In Proceedings IEEE INFOCOM 2000. Con-
ference on Computer Communications. Nineteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, pp. 1203–1212,
2000.

31. Scott Hazelhurst, Adi Attar, and Raymond Sinnappan. Algorithms for
improving the dependability of firewall and filter rule lists. In Proceedings
of the International Conference on Dependable Systems and Networks (DSN
2000), pp. 576–585, Los Alamitos, CA, USA, June 2000. IEEE Computer
Society.

32. R. Hunt and T. Verwoerd. Reactive firewalls — a new technique. Computer
Communications, 26(12):1302–17, July 21, 2003.

33. Kai Hwang and Muralidaran Gangadharan. Micro-firewalls for dynamic
network security with distributed intrusion detection. In IEEE International
Symposium on Network Computing and Applications, NCA 2001, pp. 68–79,
Los Alamitos, CA, USA, 2001. IEEE Computer Society.

38 � Enhancing Computer Security with Smart Technology

34. Kenneth Ingham and Stephanie Forrest. A History and Survey of Network
Firewalls. Technical Report 2002-37, University of New Mexico Computer
Science Department, 2002. http://www.cs.unm.edu/colloq-bin/tech_
reports.cgi?ID=TR-CS-2002-37. Accessed December 29, 2002. May be
accepted for publication in the International Journal of Information Security.

35. Sotiris Ioannidis, Angelos D. Keromytis, Steven M. Bellovin, and Jonathan
M. Smith. Implementing a distributed firewall. In ACM Conference on
Computer and Communications Security, pp. 190–199, One Astor Plaza,
1515 Broadway, New York, NY 10036-5701, USA, 2000. Association for
Computing Machinery. http://www.cis.upenn.edu/˜angelos/Papers/df.
ps.gz. Accessed February 20, 2002.

36. ISO/TC97/SC16. Reference Model of Open Systems Interconnection. Technical
Report N. 227, International Organization for Standardization, June 1979.

37. H. Julkunen and C.E. Chow. Enhance network security with dynamic packet
filter. In K. Makki, I. Chalamrac, and N. Pissinou, Eds., 7th International
Conference on Computer Communications and Networks, October 12–15,
1998, Lafayette, LA, USA, pp. 268–275, Piscataway, NJ, USA, 1998. IEEE.

38. Davis Koblas and Michelle R. Koblas. Socks. In UNIX Security Symposium
III Proceedings, September 14–16, 1992, Baltimore, MD, USA, pp. 77–83,
Berkeley, CA, USA. USENIX Association.

39. Jason Larsen. HogWash, November 2001. http://hogwash.sourceforge.net/.
Accessed February 20, 2002.

40. T. Lightoler. The gentleman and farmer’s architect. A new work. Containing
a great variety of … designs. Being correct plans and elevations of parsonage
and farm houses, lodges for parks, pinery, peach, hot and green houses, with
the fire-wall, tan-pit, &c particularly described … R. Sayer, London, UK, 1764.

41. Tom Limoncelli. Tricks you can do if your firewall is a bridge. In 1st
Conference on Network Administration, April 7–10, 1999, Santa Clara, CA,
USA, pp. 47–55, Berkeley, CA, USA, April 1999. USENIX Association. http://
www.bell-labs.com/user/tal/papers/. Accessed February 20, 2002.

42. Steven W. Lodin and Christoph L. Schuba. Firewalls fend off invasions
from the net. IEEE Spectrum, 35(2): 26–34, February 1998.

43. Michael R. Lyu and Lorrien K.Y. Lau. Firewall security: Policies, testing and
performance evaluation. In Proceedings of the 24th Annual International
Computer Software and Applications Conference, Los Alamitos, CA, USA,
October 2000. IEEE Computer Society.

44. G. Robert Malan, David Watson, Farnam Jahanian, and Paul Howell.
Transport and application protocol scrubbing. In IEEE INFOCOM 2000.
Conference on Computer Communications. 19th Annual Joint Conference
of the IEEE Computer and Communications Societies, March 26–30, 2000,
Tel Aviv, Israel, pp. 1381–1390, Piscataway, NJ, USA, March 2000. IEEE
Computer Society; IEEE Communications Society.

45. D. Maltz and P. Bhagwat. TCP Splicing for Application Layer Proxy Per-
formance. Technical Report RC 21139, IBM, March 1998. http://domino.
watson.ibm.com/library/cyberdig.nsf/a3807c5b4823c53f85256561006324be/
88d1e552b09ffa65852565e6006616f1?. Open Document Accessed February
20, 2002.

Network Firewalls � 39

46. T. Markham and C. Payne. Security at the network edge: A distributed
firewall architecture. In DARPA Information Survivability Conference and
Exposition II. DISCEX’01, June 12–14, 2001, Anaheim, CA, USA, pp.
279–286, Los Alamitos, CA, USA. IEEE Computer Society.

47. Martin, D.M., Jr., S. Rajagopalan, and A.D. Rubin. Blocking Java applets at
the firewall. In SNDSS ’97: Internet Society 1997 Symposium on Network
and Distributed System Security, February 10–11, 1997, San Diego, CA,
USA, pp. 16–26, Los Alamitos, CA, USA. IEEE Computer Society.

48. Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis
engine. In Proceedings of the 2000 IEEE Symposium on Security and Privacy
(S&P 2000), pp. 177–187, Los Alamitos, CA, USA, May 2000. IEEE Computer
Society.

49. Niall McKay. China: The great firewall, December 1998. Web publication:
http://www.wired.com/news/politics/0,1283,16545,00.html. Accessed Feb-
ruary 20, 2002.

50. Jeffrey C. Mogul. Simple and flexible datagram access controls for Unix-
based gateways. In Proceedings of the USENIX Summer 1989 Conference,
pp. 203–222, Berkeley, CA, 1989. USENIX Association. ftp://ftp.digital.com/
pub/Digital/WRL/research-reports/WRL-TR-89.4.ps.gz. Accessed February
20, 2002.

51. Andrew Molitor. An architecture for advanced packet filtering. In Proceedings
of the Fifth USENIX UNIX Security Symposium, pp. 117–126, Berkeley, CA,
USA, June 1995. USENIX Association. http://www.usenix.org/publications/
library/proceedings/security95/full_papers/molitor.ps. Accessed February
20, 2002.

52. Alec Muffett. Proper care and feeding of firewalls. In Proceedings of the
UKERNA Computer Security Workshop, Atlas Centre, Chilton, Didcot,
Oxfordshire, OX11 0QS UK, November 1994. United Kingdom Education
and Research Networking Association. ftp://coast.cs.purdue.edu/pub/doc/
firewalls/Muffett_Alec_feeding_firewalls.ps. Accessed February 20, 2002.

53. Alec Muffett. Wan-hacking with AutoHack — auditing security behind the
firewall. In The Fifth USENIX UNIX Security Symposium, pp. 21–34, Berke-
ley, CA, USA, June 1995. USENIX Association.

54. Loic Oria. Approaches to multicast over firewalls: An analysis. Technical
Report HPL-IRI-1999-004 990827, Hewlett-Packard Laboratories, August
1999. http://www.hpl.hp.com/techreports/1999/HPL-IRI-1999-004.html.
Accessed February 20, 2002.

55. Marcus J. Ranum. A network firewall. In Proceedings of the First World
Conference on System Administration and Security, 5401 Westbard Ave.
Suite 1501, Bethesda, MD 20816, USA, 1992. SANS Institute.

56. Marcus J. Ranum. On the topic of firewall testing, 1995. http://web.ranum.
com/pubs/fwtest/index.htm. Accessed February 20, 2002.

57. Marcus J. Ranum and Frederick M. Avolio. A toolkit and methods for
Internet firewalls. In Conference Proceedings: USENIX Summer 1994 Tech-
nical Conference, pp. 37–44, Berkeley, CA, USA, 1994. USENIX Association.

58. Darren Reed. Filter language compiler, Undated Web page. http://
coombs.anu.edu.au/ipfilter/flc.html. Accessed February 20, 2002.

40 � Enhancing Computer Security with Smart Technology

59. Martin Roesch. Snort — lightweight intrusion detection for networks. In
13th Systems Administration Conference — LISA ’99, pp. 229–238, 1999.
http://www.usenix.org/events/lisa99/roesch.html. Accessed June 30, 2002.

60. Bruce Schneier. Secrets and Lies: Digital Security in a Networked World,
pp. 188–193. John Wiley & Sons, New York, 2000.

61. Securityfocus.com. Multiple vendor “out of band” data (winnuke.c) DoS
vulnerability, May 1997. Vulnerability database. http://www.securityfocus.
com/bid/2010. Accessed February 20, 2002.

62. Oliver Spatscheck, Jorgen S. Hansen, John H. Hartman, and Larry L.
Peterson. Optimizing TCP forwarder performance. IEEE/ACM Transactions
on Networking, 8(2): 146–157, 2000. http://www.cs.arizona.edu/scout/
Papers/TR98-01.ps. Accessed February 20, 2002.

63. Cliff Stoll. Stalking the wily hacker. Communications of the ACM, 31(5):
484–497, May, 1988.

64. Gary B. Stone, Bert Lundy, and Geoffrey G. Xie. Network policy languages:
A survey and a new approach. IEEE Network, 15(1): 10–21, January–February
2001.

65. Elizabeth Strother. Denial of service protection: The nozzle. In Annual
Computer Security Applications Conference, December 11–15, 2000, New
Orleans, LA, USA, pp. 32–41, Los Alamitos, CA, USA, December 2000. IEEE
Computer Society. http://www.acsac.org/2000/papers/41.pdf. Accessed
February 20, 2002.

66. Subhash Suri and George Varghese. Packet filtering in high speed networks.
In Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99),
pp. 969–970, 3600 University City Science Center, Philadelphia, PA 19104-
2688, USA, 1999. SIAM. http://siesta.cs.wustl.edu/˜suri/psdir/soda_filter.ps.
Accessed February 20, 2002.

67. The RFC Editor. Request for comments (RFC), frequently asked questions,
April 2001. http://www.rfc-editor.org/rfcfaq.html. Accessed February 20,
2002.

68. Giovanni Vigna. A Formal Model for Firewall Testing. Unpublished paper.
1997. http://citeseer.nj.nec.com/279361.html. Accessed February 20, 2002.

69. D. Watson, M. Smart, G.R. Malan, and F. Jahanian. Protocol scrubbing:
Network security through transparent flow modification. In DARPA Infor-
mation Survivability Conference and Exposition II, 2001. DISCEX ’01. Pro-
ceedings, Vol. 2, pp. 108–118, Los Alamitos, CA, USA, 2001. IEEE Computer
Society.

70. Avishai Wool. Architecting the Lumeta firewall analyzer. In Conference
Proceedings: 10th USENIX Security Symposium, pp. 85–97, Berkeley, CA,
USA, August 2001. USENIX Association. http://www.usenix.org/events/
sec01/full_papers/wool/wool.pdf. Accessed February 20, 2002.

71. Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman. Building
Internet Firewalls, 2nd ed. O’Reilly and Associates, 101 Morris St., Sebas-
topol, CA 95472, USA, 2000.

41

Chapter 3

Web Application Security:
The Next Battleground

Abhishek Kumar, Roshen Chandran, and
Vinod Vasudevan

Web technologies have evolved over the last five years. This evolution
has led to enterprises developing Web-enabled applications and to brows-
ers becoming the user interface of choice for most applications. This trend
has been significant in industries such as banking, insurance, manufac-
turing, and telecom. Business imperatives have required companies to
expose core applications to customers, partners, and vendors over public
networks via Web interfaces. Thus, Web applications — applications
accessible via a browser — are now used for business-critical functions
and to handle transactions of high value. This makes Web applications
attractive targets for attackers who rely on the anonymity of the Web and
hope to reap rich gains by compromising these systems.

Weaknesses in operating systems and insecure network devices were
the traditional focal points of attackers. With better awareness, stronger
operating systems, and improved security defenses, the underlying systems
are not easy to exploit anymore. From what we have seen recently, the
attacker’s battlefield has shifted from the network layer to the application
layer. Thus, it is essential that developers and security practitioners under-
stand the security of Web applications better.

This chapter presents the risks that Web applications face today, the
origin of these risks, the types of vulnerabilities that result in these risks,

42 � Enhancing Computer Security with Smart Technology

and the techniques used by attackers to exploit these vulnerabilities.
Drawing on our work of assessing the security of Web applications such
as online banking applications, financial trading applications, sales force
automation software, and others, we take the reader from the big picture
about the risks to specific vulnerabilities and exploit mechanisms used by
attackers. In the process, we also study a few of the more common exploit
techniques in greater detail to understand how easy these attacks are.
Finally, we present steps for integrating security into the development
lifecycle of Web applications.

3.1 Threats to Web Applications
Web applications are vulnerable to a number of threats. A Web application
uses the HTTP protocol and is accessed over the Internet using a Web
browser such as Internet Explorer. Unlike client/server applications that
relied on a proprietary client connecting through private links to the server,
Web applications can be accessed from anywhere on the Internet with a
Web browser. This significantly increases the population of users who can
access the application and abuse it. Attackers can hide behind the relative
anonymity of the Internet to attack Web applications. Anonymous attackers
who want to abuse the system, industrial espionage agents who steal
corporate secrets, and disgruntled employees who want to harm the
company can use Web applications to inflict damage.

To understand the threats a Web application faces, let us take the
example of an Internet banking application. What are the typical threats
to a typical online banking application? Here are five things that an attacker
could do to harm the bank or its clients:

� Impersonate a customer or a bank employee and execute fraudu-
lent transactions

� Illegally transfer funds from another customer’s account
� Steal financial and personal information about the bank’s customers
� Open fake accounts for money laundering
� Deny access to the application to the bank’s clients

Clearly, these have a high impact on the safe functioning of the bank.
A vulnerable Web application can lead to these threats being realized, so
let us take a look at the origin of vulnerabilities in Web applications.

3.1.1 Origin of the Risks

Web applications, similar to all other applications, frequently have bugs
in their code that could be used by an attacker to compromise the system.

Web Application Security: The Next Battleground � 43

These range from simple errors of omission to more complex flaws in
logic. However, the consequences of these are usually much greater in
Web applications. Why are Web applications more at risk in the first place?
What is it that makes them insecure? We have seen three reasons why
many Web applications are insecure:

� Lack of awareness of the threats: Developers and application
designers are frequently unaware of the threats that a Web appli-
cation faces. Developers are often trained in a new language or
technology; however, they are seldom taught the security issues
underlying the technology or the language. They develop blind
spots about security issues, and this leads to insecurely developed
applications. Developers, at times, wrongly assume that security
should be built in at the infrastructure level with firewalls and
encryption. Although firewalls and encryption might indeed be
required, they are only a part of the security strategy. They cannot
protect against an insecurely developed application.

� Testing methods have not matured: Whereas the functional testing
techniques that have evolved over the last 30 years have been
adapted to Web application testing, a similar model does not exist
for testing security. Security testing, especially for Web applications,
is an evolving discipline and will take time to mature. The absence
of strong tools to perform automated testing, the relative obscurity
of some of these tests, and the shortage of skilled professionals to
perform these tests have resulted in applications going into pro-
duction inadequately tested for security. The race to meet deadlines
also results in security testing’s being missed out in many softwares.

� Ease of reverse engineering: Web applications use the HTTP pro-
tocol, a plaintext protocol, to transport application-layer requests
and responses. The commands and variables used by Web appli-
cations are easy to reverse engineer, and an attacker can predict
vulnerabilities in a Web application by studying the flow of requests
and responses.

3.2 Vulnerabilities in Web Applications
In this section, we discuss common vulnerabilities affecting Web applica-
tions. It is these weaknesses that let attackers abuse a Web application
and inflict harm.

� Inadequate input validation: If the application accepts user input
without validating the content, it might inadvertently accept overly

44 � Enhancing Computer Security with Smart Technology

long inputs and special characters where they should not be
allowed and cause unforeseen side effects, some of which might
be harmful. The most damaging of these attacks have their origins
in developers missing out strong validation for specific inputs. In
the next section, we discuss the SQL injection technique that
exploits inadequate validation of user inputs.

� Undue faith on client-supplied information: Web application devel-
opers tend to implicitly trust the data in query-string variables,
cookies, and hidden variables, as the data in these variables were
originally set by the application. However, when the data comes
back from the client, it is possible that the data may have been
modified (even if it is inside a hidden variable); hence, the application
must verify that the data from the client is authentic. If the application
trusts the data supplied by the client without checking again, an
attacker could manipulate select variables and inflict damage.

� Insecure use of cryptography: At times, developers choose the
wrong set of cryptographic schemes for solving a problem. Encryp-
tion of the highest grade may not be the right solution for every
problem. Improper understanding of the merits and demerits of a
cryptographic solution leads to wrong and unsafe implementations.
For instance, we have seen instances of a strong one-way hash
algorithm being used during the log-in process to transmit the
password from the client to the server. This algorithm is indeed a
good solution for storing passwords; but it is insecure for trans-
mitting passwords, as it is vulnerable to replay attacks.1

� Improper use of page caching: The lifetime of HTML pages in the
client’s browser cache is controlled by cache control tags set by
the application while serving the page to the client.2 If sensitive
pages are cached on the browser, unauthorized users might get
access to them after a valid user has used the application. Developers
sometimes mistakenly use the wrong cache control directives, and
this leads to pages being visible in the cache after the safe duration.

� Wrong choice of HTTP actions and variable types: The HTTP
requests made by the client may be either a GET or a POST
request.3 Developers sometimes use the two actions interchange-
ably, as the server-side programming language understands both
the requests equally well. However, a GET request is unsafe if
sensitive information is being sent, as the request is subsequently
visible in the history of the browser and in the Web server’s access
log. When sensitive data is to be sent to the server, the query
string is also an unsafe location to place them for the same reason;
instead, it is safer to use hidden variables that are POST-ed to the
server in such situations.

Web Application Security: The Next Battleground � 45

� Inadequate sanitization of output: When HTML is served to the
browser, Web applications sometimes do not check the data that
is being inserted into the HTML template. Developers assume that
the data must be safe because it is coming from a database or a
trusted system. However, it is quite possible that the database
contains data that was received from a malicious user. Thus, a
contact’s e-mail address might contain an embedded JavaScript that
executes on a victim’s machine when rendered on the browser. In
the next section, we also discuss cross-site scripting attacks, a
technique used to exploit this weakness to steal sensitive informa-
tion from an innocent user.

� Insecure configuration of application on the Web server: The appli-
cation is at times deployed insecurely after devoting a lot of care
to developing it safely. This usually happens because adequate
care has not been given for documenting the safe deployment
environment for the application. For instance, a Web application
that requires a file system folder to give “write” access to users
might wrongly be assigned “execute” permissions additionally,
making the entire system unsafe. Thus, improper configurations
make Web applications vulnerable.

� Insecurely designed authentication mechanisms: Weaknesses are
very common in the log-in sections of Web applications. Log-in
systems are sometimes poorly designed, and this results in high-
risk vulnerabilities. For instance, consider the authentication system
that locks out a user for 24 hr after three failed log-in attempts.
An attacker could exploit this feature to continuously lock out all
users by using a script to make three log-in attempts for every
user. Similarly, log-in best practices require that the application
redirect the browser to a new location after authentication and
then proceed. However, many applications skip the redirection
and serve pages directly. This could let an attacker steal the
previous user’s password from a logged-out browser window.

� Weak “forgot-password” schemes: Another common vulnerability is
poorly designed forgot-password schemes. From applications that
use hint questions whose range of answers is limited (your favorite
color would be any one of 12 popular guessable colors) to those
that e-mail a new password in plaintext to the user, the forgot-
password scheme is frequently used by attackers in tandem with
social-engineering techniques to steal valid accounts.

� Browser vulnerabilities: Frequently, limitations of the browser result
in vulnerabilities for the application. For instance, some popular
browsers store all the variables posted in a session in plaintext in
their memory. This could let an attacker extract passwords from

46 � Enhancing Computer Security with Smart Technology

the memory of the browser. If the application has not taken
precaution against this browser vulnerability and designed its log-
in mechanism accordingly, it could let an attacker steal passwords.

� Insecure server hosting the application: The Web server that hosts
the Web application is another source of vulnerabilities. If the Web
server is compromised, it could give an attacker very high privileges
on the application and the database. The default configurations of
popular Web servers have become safer recently; however, these
Web servers need to be patched regularly to fix new holes that
are discovered. If the server is not patched, it is a source of high
risk to the application.

3.3 Attack Techniques
Now that we have seen the general class of vulnerabilities, let us dive
deeper into specific exploit techniques for these vulnerabilities. These
exploits could allow a person to bypass authentication or get unauthorized
access to sensitive data from vulnerable applications.

3.3.1 SQL Injection

One popular and very damaging attack on Web applications is SQL
injection.4 SQL injection is an exploit technique in which dynamically
generated SQL queries are manipulated by specially crafted inputs to
achieve the goal of the attacker.

Most Web applications work on data stored in a database. This data
is very important for the organization. SQL injection becomes the weapon
of attack for retrieving sensitive data through vulnerable Web applications.
In this technique, the attacker sends malicious input that modifies the SQL
queries the application creates to interact with the database. The execution
of these modified SQL queries can cause damage. The risk can be understood
by looking at a few consequences of a successful SQL injection attack:

1. SQL injection gives the attacker the ability to bypass the authen-
tication system. It can be used to avoid the authentication process
and let a user log in to the application without a valid username
and password.

2. SQL injection can result in the unauthorized retrieval of data. It
can be used to access data that does not belong to the user who
has logged in. Thus, a malicious user could view sensitive data
belonging to other users.

Web Application Security: The Next Battleground � 47

3. SQL injection can be used to modify or delete sensitive data in
the database. This can lead to permanent loss of data.

How does SQL injection work? Let us understand this by looking at a
few fundamental concepts. We shall then drill into the details with some
examples.

Most SQL queries either read data from or write to a database. The
data retrieved is based on the selection criteria given in the SQL query.
The criteria are given in the “where” clause of a “Select” query. For
example, the following SQL query will retrieve records for a user named
“SAM” from the User_Details table:

Select * from User_Details where User_Name = ‘SAM’;

The selection criterion in this query is the value of the User_Name
field of the User_Details table. It dictates which records should be retrieved
from the database. Now, a malicious user could try to retrieve or modify
some other data by supplying an input that effectively modifies the actual
SQL query. The query can be modified by supplying an input that changes
the selection criterion in the where clause. Another method could involve
supplying an input that appends a different query to a valid query.

A point worth noting here is that the exact input for SQL injection
depends on the type of database being used. Although all databases can
be exploited, the input may need modification to suit the database in use.

3.3.1.1 SQL Injection — Bypass Authentication

Authentication is usually the first hurdle in compromising an application.
Let us look at an example of how SQL injection can be used to bypass
authentication and log in to an application. For purposes of illustration,
let us assume a banking application www.SampleBankApplication.com.
The user logs in to the banking application by supplying the username
and password in the log-in page. A user table called User_Login_Details
stores the details of the user in the database as shown in Table 3.1.

When a user submits the credentials, a program in the application
server performs the authentication. This code, in most cases, would use
an SQL query to retrieve user details and compare against the user-supplied
input. Here is what the SQL query would look like:

“Select User_Id, User_Password from User_Login_Details where
User_Id = ‘ “ & strUserId & “ ‘ and User_Password = ‘ “
& strUserPassword & “‘;”

48 � Enhancing Computer Security with Smart Technology

(Here, strUserId and strUserPassword are the variables that store the
username and password supplied by the user in the log-in page.)

The SQL query would be used to check whether the combination of
username and password supplied by the user exists in the
User_Login_Details table. If the query retrieves at least one row, the
authentication is considered a success; but if no rows are returned, the
authentication fails. For example, if a user supplies the following infor-
mation, the query would retrieve the record set for Anderson from the
User_Login_Details table, and the authentication process would succeed:

strUserName = Anderson

strUserPassword = Qaz123

But an attacker does not know a valid username or password. The
attacker can still log in by using the right combination of some special
characters that modify the SQL query — this is termed SQL injection. For
instance, let us assume that the user supplies the following information
in the log-in page:

strUserName = ‘ or 1=1--

strUserPassword = <blank>

(The value of the password field may be left blank or any random
value could be given; we shall see that it is immaterial.)

Let us replace the user-supplied information in the SQL query as shown
in Figure 3.1.

After replacement, the original query would be framed as given in the
following text:

Select User_Name, User_Password from User_Login_Details
where User_Name = ‘ ‘ or 1=1-- ‘ and User_Password = ‘ ‘;

The -- is used to comment statements in an SQL query. Any text after
-- is regarded as a comment and is ignored while executing the query.

Table 3.1 User Log-In Details

User_Id User_Password User_Age User_Sex User_Role

Anderson Qaz123 21 M Admin

Trinity Wsx098 25 F User

Morpheus Edc456 36 M User

Smith Rfv765 40 M User

Web Application Security: The Next Battleground � 49

Thus, the final modified query will be executed effectively as given in
the following text:

Select User_Name, User_Password from User_Login_Details
where User_Name = ‘ ‘ or 1=1

If we look closely at the where clause [User_Name=‘‘ or 1=1], we find
that though the username field is blank, the query will execute successfully
and return all rows from the User_Login_Details table. This happens
because the second condition in the where clause [or 1=1] always holds
true. Because the query returns one or more rows, the authentication is
considered a success. Hence, the user can log in to the application. We
also notice that the exact value of the password field really does not
matter, as it becomes part of the comment fragment that is ignored.

But whose account would the attacker be logged into? Although this
usually depends on the application, it is a fair guess that the user would
log in to that user’s account whose record is first in the record set returned
by the query.

3.3.1.2 SQL Injection — Bypass Authentication, a Variation

Now let us look at a variation of the previous exploit. What if a malicious
user wants to log in to the account of a particular user, i.e., a targeted
attack? It is possible to log in to the account of a particular user only if
the user ID of that user is known when the application is vulnerable to
SQL injection. Now, let us assume that the malicious user supplies the
following information in the log-in page:

strUserId = Trinity’--

strUserPassword = <blank>

Let us replace the user-supplied information in the SQL query as shown
in Figure 3.2.

Figure 3.1 SQL injection query.

“Select User_Id, User_Password from User_Login_Details where
User_Id = ‘ “ & strUserName & “ ‘ and User_Password = ‘ “ &
strUserPassword & “‘;”

Leave the password field blank

‘ or 1=1−

50 � Enhancing Computer Security with Smart Technology

After replacement, the original query would be framed as:

Select User_Id, User_Password from User_Login_Details where
User_Id = ‘Trinity’--’ and User_Password = ‘ ‘;

The -- would comment out everything after it. Thus, the final modified
query would be executed as:

Select User_Name, User_Password from User_Login_Details
where User_Name = ‘Trinity’

The execution of this query would allow a user to log in to the account
of Trinity even though a valid password has not been given. Now, if the
username of an administrator is known, then the attacker can log in to
that account and have administrative privileges. We hope you have under-
stood how attackers use SQL injection to bypass authentication.

3.3.1.3 SQL Injection — Get Unauthorized Access to Data

Most banking applications will provide the user with a facility to view
account details by submitting the account number. The banking application
has tables that hold the account details of users. Consider the sample
table Account_Details shown in Table 3.2.

Figure 3.2 SQL injection query.

Table 3.2 User Account Details

Account_No Acc_Balance Account_Type User_Name

10006789 4656 Current Anderson

10006245 57676 Current Trinity

10002459 19873 Current Morpheus

10001456 236990 Current Smith

“Select User_ID, User_Password from User_Login_Details where
User_ID = ‘ “ & strUserName & “ ‘ and User_Password = ‘ “ &
strUserPassword & “‘;”

Leave blank or give random password

Trinity’−

Web Application Security: The Next Battleground � 51

The application uses an SQL query to extract account information from
the Account_Details table based on a user-supplied account number. The
SQL query might look like this:

Select * from Account_Details where Account_Number = ‘ “
& accNumber & “ ‘ ;

(accNumber is the variable that stores the account number supplied
by a user.)

For example, if a user named Anderson logs in to the application and
makes a query for account details by providing the account number
10006789, the following query will be executed:

Select * from Account_Details where Account_Number =
‘10006789’;

Now, a malicious user may try to access account details of some other
user by providing account numbers at random. This could be difficult
considering the fact that the account numbers will often be a long string
of random numbers. Moreover, the chances of a malicious user finding
account details of a particular user by giving account numbers at random
is very remote.

But SQL injection can be used to find details of not just a particular
user but many more users all at one time. Assume the attacker supplies
the following information while making a query for account details:

Account Number = ‘ or 1=1--

Let us replace the user-supplied information in the SQL query as shown
in Figure 3.3.

After replacement, the original query would be framed as:

Select * from Account_Details where Account_Number = ‘ ‘
or 1=1--’;

Figure 3.3 SQL injection query.

“Select * from Account_Details where Account_Number = ‘ “ &
accNumber & “ ‘ ;”

‘ or 1=1−

52 � Enhancing Computer Security with Smart Technology

The modified query would return account details of all the users in
the Account_Details table. This is possible because the where clause of
the query always evaluates to “true,” thanks to the subclause ‘or 1=1’.

We shall now illustrate this SQL injection attack with a real Web
application. We use WebGoat, which is a test application developed by
the OWASP foundation to illustrate common Web application vulnerabil-
ities. This application is freeware and can be downloaded from
www.owasp.org. Displayed in Figure 3.4 is a page in which a user can
see the credit card details by using the account number. The SQL statement
used is:

Select * from user_data where userid = ‘101’

Figure 3.5 displays the SQL injection used in the account number field.
This SQL injection modifies the original SQL query to the one given below:

Select *from user_data where userid = ‘101’ or 1=1’

The execution of the modified SQL query returns all the records from
the user_data table. The retrieved records are displayed in Figure 3.6.

Figure 3.4 WebGoat — SQL injection attack.

Web Application Security: The Next Battleground � 53

3.3.1.4 SQL Injection — Get Unauthorized Access to Data
by Using the “Union” Operator

An operator that is sometimes used in an SQL query is “union.” The union
operator combines the results of two or more SQL queries into a single
set. This operator can also be used to craft an SQL injection attack. Using
a union operator, a malicious user can extract data from a table other
than the original table intended by the query.

Once again, consider our banking application. The application provides
the user with the facility to view and change user details. The SQL query
given in the following text is used to select and display user details based
on the user ID supplied by user:

Select * from User_Login_Details where User_Id = ‘ “ &
strUserId & “‘;

To craft an SQL injection, a user could input the following value instead
of a valid user ID:

‘ union select username, password from DBA_USERS where ‘1’=‘1

Figure 3.5 WebGoat — SQL injection attack.

54 � Enhancing Computer Security with Smart Technology

(DBA_USERS table contains the username, password, and other details
for users created in the database.)

Assume that an attacker replaces the user-supplied information in the
SQL query as shown in Figure 3.7.

After replacement, the query would be framed as:

Select * from User_Login_Details where User_Id = ‘ ‘ union
select username, password from DBA_USERS where ‘1’ = ‘1’;

Figure 3.6 WebGoat — SQL injection attack.

Figure 3.7 SQL injection query.

“Select * from User_Login_Details where User_Id = ‘ “ &
strUserId & “‘;”

‘Union select username, password from

DBA USERS where ‘1’ = ‘1

Web Application Security: The Next Battleground � 55

This query would not select any rows from the User_Login_Details
table as the User_Id field is blank, but it would select the username and
password records from the DBA_USERS table. Some databases may not
accept a blank value in an SQL query. In such cases, any random value
can be sent for the User_Id field, as shown in the SQL injection:

Xv1yd56’ union select username, password from DBA_USERS
where ‘1’=‘1

One prerequisite to using the union operator is that the number and
type of columns returned from the first table should be the same as those
returned from the second table. A blank or random value is sent for the
User_Id field to ensure that no r ecord is selected fr om the
User_Login_Details table. Otherwise the number and type of columns
returned from User_Login_Details table may be different from those
returned by the DBA_USERS table, and the SQL injection would not work.

Now, instead of DBA_USERS, a malicious user could supply any known
table name. At times, the error messages returned from the Web application
reveal a lot of information about database structure, including table name
or column name. Sometimes the error messages contain parts of SQL
queries used by the application. All this information can help a malicious
user in crafting an exact input for SQL injection and obtaining sensitive
information from the database.

3.3.2 Cross-Site Scripting

A unique and interesting way to exploit a Web application is through
cross-site scripting attacks.5 In cross-site scripting, the attack is not directly
targeted at the Web application but at a different user accessing the
application. As the name suggests, cross-site scripting uses scripts to
achieve its purpose. Scripts are pieces of code written for specific actions.
These scripts can be written using common scripting languages such as
VBScript or JavaScript. Most Web browsers know how to interpret and
execute these scripts. Modern scripting languages are very powerful, and
a script can be written for malicious activities as well. The impact of a
cross-site scripting attack would depend on the way a script has been
written. For example, a script could be written to steal the valid session
ID or the username and password of a user. For all these attacks, the
attacker must first execute the script on the victim’s browser. So, an attacker
must find a way to send the script to the victim’s browser, and a vulnerable
application can help send such a script. There are different methods by
which an attacker can deliver a malicious script to the victim’s browser.
Some of these techniques are:6

56 � Enhancing Computer Security with Smart Technology

� Many Web applications deliver dynamic content to a user in
response to some request. Often, the information sent by a user
in a request is returned by the server and displayed in the user’s
browser. It is possible for an attacker to send a link to another
user, possibly in an e-mail message with some embedded malicious
script. The unsuspecting user would click on the link to make a
request to a Web application, sending along the script content.
The server would reflect the response along with the script that
has been input. This script gets executed on the user’s browser
when the response from the server is rendered. This concept is
illustrated in Figure 3.8 with the following sequence of actions:

1. An attacker crafts an e-mail with an embedded script and sends
it to the targeted user.

2. The victim clicks on a link in the e-mail and sends the script
to a vulnerable Web application.

3. The web application reflects the user-supplied script, and the
script is rendered in the user’s browser.

4. The script, on execution, transfers the cookie that may contain
a session ID of the targeted user to the attacker.

5. The attacker utilizes the session ID to log in to the account of
the targeted user in the vulnerable application.

Figure 3.8 Cross-site scripting attack.

Victim
1

4

5

2
3

Web application

vulnerable to XSS

The attacker

Web Application Security: The Next Battleground � 57

� A Web-based application may also provide the user with the facility
to upload information that is stored in the database. This informa-
tion may later be viewed by another user, say a Help Desk Admin
responding to a query. An attacker could use such a facility to
upload a script to the server instead of genuine content. The script
gets executed in the victim’s browser when the user views the
uploaded content.

It is important to understand that in both these examples, the appli-
cation is used to transfer the malicious script to an unsuspecting user. But
before executing a cross-site scripting attack, the attacker needs to find
out whether the application can actually act as a channel or not. An
application is vulnerable and can serve as a channel if it does not clean
user input of scripts and instead sends the script to the client’s browser.
This can be checked using a simple script as given in the following text.
The script is written in between the two HTML tags <script> and </script>.

<script>alert(Vulnerable To XSS);</script>

When this script is displayed in the browser, it gets executed and
displays a popup message box as shown in Figure 3.9.

The attacker can use it as a test script to check whether the application
is vulnerable. The script can either be sent appended to some URL
parameter or through some form field. In the URL given in the following
text, the script is sent appended to a parameter. If the value of this
parameter is sent back to the user for display, it will get executed in the
browser instead of being displayed:

http://SampleBankApplication.com/servlets/AccountView?
Product=Current&SubProduct=</script>alert
(Vulnerable);</script>

Figure 3.9 Popup message box.

58 � Enhancing Computer Security with Smart Technology

Once the execution of the script is confirmed, it is up to the attacker
how it is exploited. Let us take a simple example to understand the cross-
site scripting attack.

3.3.2.1 Cross-Site Scripting to Steal a Session Cookie

Many Web applications provide an e-mail facility that is used by the
organization to communicate with its customers who have an account in
the application. We will again take the example of our banking application,
which provides a Web-based e-mail feature. The mail can be used by
various employees of the bank in different departments to send informa-
tion to the customers as well as to allow customers to send messages
back to employees. Figure 3.10 shows the input fields of a mail page.

If an application is not validating user input, then an attacker can send
the script through the mail message body. To check mail, a user logs in
to the application and gets a valid session ID. When the targeted user
views mail messages, the malicious mail is rendered in the browser, and
the script gets executed. This script can be written in such a way that on
execution it reads the user’s session ID and sends it to the attacker. The
attacker would then be able to access the user’s account with the valid
session ID.

We now illustrate this attack using the WebGoat Web application. Figure
3.11 displays a page in which a user can send a mail message to another
user. The message body contains a test JavaScript that, on execution,
would display an Alert message box.

Figure 3.12 displays a link to the message sent earlier. On clicking the
link, the mail message is displayed in the user’s browser.

Figure 3.10 Mail message with script.

To: (Recipients mail Id)

Subject: (Title of the message)

Message: (Message body)
Script goes here along with other

contents.

Web Application Security: The Next Battleground � 59

Figure 3.13 confirms the execution of the script in the user’s browser
by displaying an Alert message box. This script could instead have been
written to achieve tasks such as stealing a session ID.

3.3.2.2 Cross-Site Scripting to Steal Credit Card Information

Web-based applications sometimes use persistent cookies to remember
returning users and track their session. The persistent cookies are stored
on the user’s permanent storage. Sometimes these cookies contain some
sensitive information such as credit card numbers, etc. An attacker may
not have direct access to the user’s computer but could still use a
vulnerable application to steal the cookie containing sensitive information.

Consider a fictitious Web application called www.eshopping-
Demo.com. This application allows the users to shop online using credit
cards. Once the user has performed a transaction, the user’s credit card
number is stored in a persistent cookie. This is done so that the next time
the same user visits the site, the credit card number field can be auto-
matically filled in by reading the cookie.

Typically, an attacker would start by locating a page within the appli-
cation that reflects inputs supplied by the user in the URL. Once such a

Figure 3.11 WebGoat — cross-site scripting attack.

60 � Enhancing Computer Security with Smart Technology

page has been identified, the attacker could craft a link to that page with
an embedded script. The link is sent to a user in an e-mail message that
lures the user into clicking the link.

Now consider the following URL. A request to this URL is sent when
a user confirms the purchase.

www.eshoppingDemo.com/goods/electronics?ItemCode=12001&
Action=Yes&Delivery=Local

In the server response, the ItemCode number is sent back to the user
and displayed in the browser. Now, the attacker crafts a link with the
script embedded in the ItemCode parameter as shown:

www.eshoppingDemo.com/goods/electronics?ItemCode=<script>
alert(ScriptContentGoesHere);</script>&Action=Yes&
Delivery=Local

When the victim clicks on this link, the script is sent to the server in
the ItemCode field. The server would send back the response with some
error information and the script, which then gets executed on the user’s

Figure 3.12 WebGoat — cross-site scripting attack.

Web Application Security: The Next Battleground � 61

browser. The script, on execution, can send the cookie to the malicious
user.

3.3.3 Stealing Passwords with Browser Refresh

Two common ways of making a request to the Web server are GET and
POST. If some information is sent to the Web application in a GET request,
then it can be seen by viewing the history of the browser. But the links
associated with the POST request are not cached in the browser’s history.
Hence, sensitive information such as username and password should be
sent to the Web application only as a POST request. But the information
associated with a POST request can also be retrieved by exploiting some
of the features of the browser.7

The browser keeps track of the pages recently browsed by a user and
the variables sent in a POST request. Please note that this is not to be
confused with the storing of links in the history of the browser, which
happens with GET but not with POST. We shall show that an attacker
can utilize the “Back” and “Refresh” features of the browser to retrieve
critical information such as username and password that had been POST-
ed by a previous user if the application has been designed incorrectly.

Figure 3.13 WebGoat — cross-site scripting attack.

62 � Enhancing Computer Security with Smart Technology

Let us take an example to understand the vulnerability. Consider the log-
in page of the sample banking application, www.SampleBankApplication.
com/Login.jsp. A user would type in the username and password and
press “Submit” to log in. On pressing Submit, a POST is made to the page
www.SampleBankApplication.com/afterLogin.jsp with the following two
variables containing the username and password:

userInput = “Morpheus”

passwordInput = “Edc456”

This page first performs the authentication and then displays its content
if the authentication succeeds. After this, the user may visit a number of
other pages and finally log out. At this stage, if the browser window is
left open after log-out, then an attacker with access to the machine can
find the username and password by using the Back and Refresh buttons
of the browser cleverly. (The Back button allows a user to navigate to
previous pages. The Refresh button allows a user to resubmit the Web
request along with the POST-ed data.) The attacker would start by pressing
the Back button several times to reach the www.SampleBankApplication.
com/afterLogin.jsp page. This is the page for which the POST was made
in the log-in page with the username and password. The page would be
shown to be expired as in Figure 3.14.

Now, if the Refresh button is pressed, the browser would prompt the
user with a Retry message, as shown in Figure 3.15.

If the attacker presses Retry, the browser would repost the username
and password of the last logged-in user. Now, how do we view the
information that is reposted? This is possible through the use of a Web
proxy tool such as Achilles. (A Web proxy can be used to intercept, view,
and modify the requests made by the browser and also the response sent
by the server.) On reaching the www.SampleBankApplication.com/
afterLogin.jsp page, the attacker can configure the browser to use a Web
proxy and then press the Refresh button. The POST request made by the
browser can then be intercepted and seen in the proxy as shown in Figure
3.16.

This vulnerability affects any information that is sent to the application
in a POST request. Thus, another vulnerable page from which a password
can be found is the “change password” page. It should be kept in mind
that this vulnerability is applicable only if the user does not close the
browser after logging out. Because information about POST requests are
kept in memory, it is lost once the browser window is closed.

This vulnerability can be prevented by introducing an intermediate
page (say, www.SampleBankApplication.com/IntermediateLogin.jsp) that
does the authentication but is not sent to the user. Instead, once the

Web Application Security: The Next Battleground � 63

Figure 3.14 Expired Web page.

Figure 3.15 Resubmission of information.

64 � Enhancing Computer Security with Smart Technology

authentication process succeeds, the intermediate page can send a redi-
rection command to the browser to reach the next page. The username
and password is POST-ed to IntermediateLogin.jsp, but because this page
is never displayed in the user’s browser, there is no possibility of an
attacker reaching that page by pressing the Back button. This concept is
explained further in Figure 3.17.

1. User makes a request for the log-in page of Web application
(www.SampleBankApplication.com/Login.jsp)

2. Server sends the log-in page to user
3. User posts user ID and password to an intermediate page through

the log-in page
(www.SampleBankApplication.com/IntermediateLogin.jsp)

4. IntermediateLogin.jsp page sends a redirect to user after successful
authentication
(www.SampleBankApplication.com/AfterIntermediateLogin.jsp)

5. User makes a request for AfterIntermediateLogin.jsp page
6. Server sends the AfterIntermediateLogin.jsp page to user

Figure 3.16 Intercepting information using Achilles.

Web Application Security: The Next Battleground � 65

3.3.4 Variable Manipulation Attacks

Let us now look at a different vulnerability, which is easier to exploit and
can have a huge impact. Often, Web applications use hidden form fields
to transfer sensitive information to the server. Consider our banking
application, www.SampleBankApplication.com. This application gives an
option to users to view their account details. The server retrieves account
details based on the account number that is sent to the server in a hidden
form field. An attacker could modify the account number assigned in the
hidden form field. This is possible by using a Web proxy tool such as
Achilles. The browser used to access the application can be configured
to use a Web proxy tool. All Web requests and responses can then be
seen and modified in the Web proxy. Using a Web proxy, an attacker can
intercept requests for account details and change the account number
before it reaches the server. Retrieval of records would now depend on
whether the changed account number is present in the database or not.

To illustrate this attack, let us again take the help of the WebGoat
application. The screen in Figure 3.18 asks a user to confirm the purchase
of a television. The price of the television is sent to the server in a form
field variable named “Price.”

Figure 3.17 Stealing password with browser refresh.

User Server

1

2

3

4

5

6

66 � Enhancing Computer Security with Smart Technology

A normal user would not be aware of the Price field and go ahead to
purchase the television, which is priced at $4999.99 as shown in Figure 3.19.

An attacker, however, could intercept the request sent from the browser
by using a Web proxy tool, change the value assigned in Price variable, and
resend it to the server. These steps are shown in Figure 3.20 and Figure 3.21.

Finally, a malicious user can reduce the price of a television before
buying it, as shown in Figure 3.22.

This example portrays the dangers of form field modification. An
application may use form field values such as user ID, account number,
etc., for a number of tasks. Real implications of such modification would
depend on the purpose of the form field value. Variable manipulation
attacks could be performed on any variable and not just form fields. We
have even come across applications that are vulnerable to their cookie
variables being manipulated.

3.4 Preventing Vulnerabilities in Web Applications
The adage that prevention is better than cure applies to Web application
security vulnerabilities, too. Because most application vulnerabilities have

Figure 3.18 WebGoat — variable manipulation attack.

Web Application Security: The Next Battleground � 67

their origin during the software development lifecycle, prevention of
vulnerabilities also starts there. An application designed and developed
with knowledge of potential security vulnerabilities will be safer than one
that is not. In this section, we discuss best practices that you could adopt
to prevent security vulnerabilities from entering your Web application at
each stage of the software development lifecycle.

Traditional software development lifecycles use four stages — require-
ments, design, development, and testing — before an application is ready
for deployment. From our experience, each of these stages contributes to
the overall security of the system; hence, it is important that enough time
be invested in addressing security issues at each stage.

3.4.1 Requirements

The requirements phase focuses on capturing the functional requirements
of the application; the specifications from this phase help the designers
design the system. Thus, if security-related information is captured in this
phase, it helps the designers conceptualize a more secure system.

Figure 3.19 WebGoat — variable manipulation attack.

68 � Enhancing Computer Security with Smart Technology

1. Explicitly define the security requirements of the application, in
addition to the functional requirements.

2. Specify the threats to the business and the risks it exposes the
business to as it helps the designer understand the threat environ-
ment better and choose the appropriate technologies.

3. Specify the relevant regulatory systems that the application must
comply with. These help the designers understand minimum secu-
rity and privacy requirements of the application.

3.4.2 Design

The design phase conceptualizes the overall architecture of the system,
the composition of each component, and the interactions between these
components. This is where technology and protocol decisions are made.
In our experience, this is the most critical stage for preventing security
weaknesses in the system. Errors made at this level are frequently difficult
to fix once coding has begun, and are very costly to fix during testing.
A few guidelines for designing secure software are presented in the
following text:

Figure 3.20 Intercepting information using Achilles.

Web Application Security: The Next Battleground � 69

� Design for a fail-safe system, i.e., if the system fails, design it to
fail to a safe state. For instance, if a bank account has inconsistent
transactions that the system cannot resolve, lock the account and
not just the transaction.

� Factor the presence of firewalls into the deployment architecture
while designing the protocols. Application-layer protocols that
initiate reverse connections or carry transport-layer information
frequently break while traversing a firewall. If the firewall is
removed to accommodate the application, your entire system
becomes less secure.

� For each input, specify what the valid inputs are in as much detail
as possible. This will let the developers write code to reject any
input that does not meet the specifications. For instance, specify
that a specific input is for a name field and should allow only up
to ten English letters and numerals.

� Choose the appropriate cryptographic solution for the problem.
Choosing the strongest level of encryption might not always be
the best solution; message digests, salted hashes, or signed mes-
sages may be a more appropriate solution for your requirement.

Figure 3.21 Changing information using Achilles.

70 � Enhancing Computer Security with Smart Technology

Study your requirement closely before deciding on the crypto-
graphic system.

� Specify the abuse-test cases that the testing team should derive to
test the system.

� Specify the deployment conditions that affect the security of the
system, so that the documentation for the application includes
these for the engineers who deploy the application. For instance,
if the file upload directory should have only write permissions for
Internet users, then specify this during the design stage.

3.4.3 Development

Good designs followed through with safe coding practices go a long way
in ensuring a safe application.8 Here are a few guidelines that Web
application developers should follow to ensure security:

� Do not trust the data coming from the client; use the session token
from the client and rely on data stored in internal session variables
as far as possible. Use inputs supplied by the user only when it

Figure 3.22 WebGoat — variable manipulation attack.

Web Application Security: The Next Battleground � 71

is absolutely required. For instance, the user’s account number
need not be received from the client each time, but can be
populated in the session object directly from the database. Not all
data can, however, be taken from the database. The amount of
money that the user wants transferred is an example of when the
user’s input is absolutely required.

� Validate each input before accepting it. It is quite likely that
attackers are using invalid input to try fraudulent activity. If the
design has specified the content type or format that is acceptable
for an input field (and they should, wherever possible), then verify
that the data received meets those criteria. Exploits like SQL injec-
tion can be thwarted by ensuring that all inputs are valid.

� Check the output that is to be rendered before dispatching it.
Please ensure that the HTML your application generates contains
scripts that you intended and none injected by an attacker. Sanitize
the output of all scripts that were not explicitly placed by the
application. Cross-site scripting attacks can be prevented by cleans-
ing the output of such scripts.

� Do not place comments in the HTML to be rendered. Although it
is generally a good practice to add comments in the code, please
ensure that these comments are not placed in HTML pages that
are to be rendered. Whenever required, place comments in the
code processed by the server-side engine. This lets developers who
read the application code understand the logic, while ensuring that
the comments are not sent out in the generated HTML.

3.4.4 Testing

Introducing security testing during the regular testing phase improves the
overall security of the software.

� Develop abuse-test cases that mimic an attacker’s behavior.
Although routine functional testing focuses on use cases and the
boundaries for them, it is important to recognize that an attacker
might rely on fundamentally different inputs to cause harm. Fore-
seeing those and including them in the test plan goes a long way
in detecting security weaknesses at the testing stage.

� Use fault injection techniques to check if the application is safe
even when faults are deliberately introduced.

� Train the testing team on the attacks that are popular on Web
applications. Their ability to conceptualize security test cases will
improve when they are familiar with the techniques used by
attackers.

72 � Enhancing Computer Security with Smart Technology

� If security is critical, do an independent third-party assessment of
the application. Although your testers might be very competent,
their job might not let them become experts in security testing.
Professional security-testing teams usually have wide experience
across multiple applications; they track new security issues con-
stantly and could complement your regular testing team.

3.5 Conclusion
Web application security is still an emerging field that deserves to get
more attention in the developer community. The large number of new
attack techniques that are getting published and the lack of awareness
about these issues do not bode well for the security of Web applications.
Web applications can be secured by a combination of better awareness
and employing security principles correctly in the various stages of the
software development lifecycle.

Notes
1. Pakala, Sangita. Paladion Networks, OWASP Application Security FAQ.

www.owasp.org/documentation/appsecfaq.
2. Nottingham, Mark. Caching Tutorial for Web Authors and Webmasters.

http://www.mnot.net/cache_docs/.
3. World Wide Web Consortium. HTTP RFC. www.w3.org/Protocols/rfc2616/

rfc2616-sec14.html#sec14.9.1.
4. Integrigy. Introduction to SQL Injection. www.integrigy.com/info/

IntegrigyIntrotoSQLInjectionAttacks.pdf.
5. Olmann, Gunter. Cross Site Scripting. www.technicalinfo.net/papers/CSS.

html.
6. CGI Security. The Cross Site Scripting FAQ. www.cgisecurity.net/articles/

xss-faq.shtml.
7. Kohli, Karmendra. Stealing passwords via browser refresh, Paladion Networks.

www.paladion.net/papers/Stealing_passwords_via_browser_refresh. pdf.
8. Howard, Michael and LeBlanc, David. Writing Secure Code. www.microsoft.

com/mspress/books/toc/5612.asp.

References
1. CGI Security. The Cross Site Scripting FAQ. www.cgisecurity.net/articles/

xss-faq.shtml.
2. Grossman, Jeremiah. Cross Site Tracing. www.cgisecurity.com/

whitehat-mirror/WhitePaper_screen.pdf.

Web Application Security: The Next Battleground � 73

3. Howard, Michael and LeBlanc, David. Writing Secure Code. www.microsoft.
com/mspress/books/toc/5612.asp.

4. Integrigy. Introduction to SQL Injection. www.integrigy.com/info/
IntegrigyIntrotoSQLInjectionAttacks.pdf.

5. Kohli, Karmendra. Stealing passwords via browser refresh, Paladion Net-
works. www.paladion.net/papers/Stealing_passwords_via_browser_refresh.
pdf.

6. Kumar, Abhishek. Discovering passwords in memory, Paladion Networks.
www.paladion.net/papers/Discovering_Passwords_In_Memory.pdf.

7. Microsoft. HTTP Only cookies. http://msdn.microsoft.com/library/default.
asp?url=/workshop/author/dhtml/HTTPonly_cookies.asp.

8. Nottingham, Mark. Caching Tutorial for Web Authors and Webmasters.
http://www.mnot.net/cache_docs/.

9. Olmann, Gunter. Cross Site Scripting. www.technicalinfo.net/papers/CSS.html.
10. OWASP. The OWASP Guide to Building Secure Web Application and Web

Services. www.owasp.org/documentation/guide.
11. Pakala, Sangita. Paladion Networks, OWASP Application Security FAQ.

www.owasp.org/documentation/appsecfaq.
12. RSA Security. Secure Sockets Layer FAQ. www.rsasecurity.com/standards/

ssl/basics.html.
13. Securiteam. SQL Injection. www.securiteam.com/securityreviews/

5DP0N1P76E.html.
14. Shah, Saumil. HTTP Fingerprinting. http://net-square.com/HTTPrint/

HTTPrint_paper.html.
15. Spett, Kevin. Cross Site Scripting: Are your web applications vulnerable?

www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf.
16. Ummer, Firosh. Insecurities in non-exclusive socket binding, Paladion

Networks. www.paladion.net/papers/SocketBinding.pdf.
17. W3C. HTTP RFC. www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec

14.9.1.
18. Wheeler, David. Secure Programming for Linux and Unix HOWTO. www.

dwheeler.com/secure-programs.

75

Chapter 4

Relevance of Machine
Learning

V Rao Vemuri

4.1 Introduction
This book is about enhancing computer security through smart technology.
The previous three chapters examined various facets of the security
problem. Chapter 5 to Chapter 9 will discuss various methods of intro-
ducing the “smarts” into the security domain. This chapter provides some
rationale for the need for smart technology and, in a brisk manner, covers
some of the relevant ideas from artificial intelligence (AI) and machine
learning.

Today’s computer systems comprise a broad range of processors,
communication networks, and information depositories. These systems
are increasingly ubiquitous and, consequently, they are increasingly subject
to attack, misuse, and abuse. The complexity of these systems makes it
exceedingly difficult to reason about their behavior. It is difficult to design
security policies that are simple to understand and flexible to tolerate.
Power and bandwidth limitations constrain security features in lightweight
wireless devices. Cost considerations limit the usage of high-assurance
implementation methods. Software-bundling policies make the software
unwieldy; many vulnerable functions present in these bundles are rarely
used by many users. System engineering tradeoffs are rarely based on

76 � Enhancing Computer Security with Smart Technology

technology issues alone; social, organizational, economic, regulatory, and
legal factors play a major role. Unfortunately, at today’s state-of-the-art,
we do not have adequate understanding to develop an integrated solution
to these challenging problems. The best we can do in the rest of the book
is to present those technology issues we do understand and hope to lay
the foundation so as to develop an ability to address the broader issues
at a future time.

An examination of security issues reveals that security threats and
vulnerabilities have been evolving very rapidly. Indeed, over the past 25
years, the knowledge and expertise levels required to make a successful
attack have been decreasing, and the quality levels of tools available to
attackers have been increasing. This changing environment obsoletes many
security measures. For example, the current methods of malware (short
for “malicious software,” i.e., software designed specifically to damage or
disrupt a system, such as a virus or a Trojan horse) detection do not work
with polymorphic malware (i.e., malware that uses encryption as a defense
mechanism to change itself to avoid detection, typically by encrypting
itself with an encryption routine, and then providing a different decryption
key for each mutation). Even if detection methods are successful in some
cases, it often gives precious little time to react and respond. Serendipitous
seeding of malware makes the attacks hard to detect until the damage is
done. The key to defending against this type of threat is to recognize that
the attack mechanisms (viruses, worms, DDOS, etc.) are evolving and
mutating. New connectivity options are opening doors for new types of
attacks. The old model of “perimeter protection” is not keeping pace with
these threats and vulnerabilities. This realization opens the doors for
intelligent and adaptive methods for developing protection strategies.

According to current conventional wisdom, one promising way of
protecting a computer system is based on an approach called defense-in-
depth, which advocates multiple layers of protection to guard against
failure of a single security component; hardware devices can fail, software
can have flaws and bugs, and system administrators can make configura-
tion errors. To overcome these potential vulnerabilities, defense-in-depth
advocates a layered approach. The first step of this approach is the
separation of systems into several “network sections” in one of the defense
layers. Placement of a firewall to control the flow of traffic between section
boundaries is another step. Another defense mechanism would be a
“border router,” placed between the Internet service provider (ISP) and
the firewall, to filter traffic entering and leaving a network. Another layer
of defense could be the placement of switches (a combination of a hub
and a bridge) on individual sections of a network to make sniffing less
effective. Yet another layer of defense is to use encryption. In spite of

Relevance of Machine Learning � 77

this battery of defensive weapons, intrusions still occur. The final layer of
defense includes network-based intrusion detection systems (NIDSs) and
host-based intrusion detection systems (HIDSs). Much of the AI and
machine learning work, to date, has been targeted at this layer.

The defense-in-depth strategy is a general concept. Instead of looking
at the system as a collection of physical layers, one can look at the logical
or functional layers for defense. For example, in the so-called enclave/pol-
icy-tuned approach, the normal mode of operation has security policies
that allow free flow of information between clients and servers. An event,
such as Internet propagation of a new worm, could trigger a degraded
mode of operation, tightening security policies to allow communication
between essential users and servers, but excluding or at least severely
limiting access by nonessential entities. Nonessential clients can be quar-
antined either through brute-force network methods (turn off router port)
or through implementation of autonomics/circuit breakers on hosts them-
selves. Essential IT services can include directory services, DNS, messaging,
and e-mail. Priority-mode policy changes can include rate-limiting con-
nections, throttling system connectivity to the network to minimum levels,
and elevated intrusion detection and prevention.

4.2 Place of Intrusion Detection in the
Security Landscape

Information security is best achieved in three stages: prevention, detection,
and response. The earlier one intervenes, the more cost effective the
solution will be. Although prevention gives the biggest bang for the buck,
to rely solely on prevention would be a bad tactic; one may end up
paying a heavy price if an attack eventually manages to get through.

Preventing subversion by building completely secure systems from the
requirements stage upward is considered by many to be a very difficult
task. The vast installed base of systems worldwide is a virtual guarantee
that any transition to a fully secure design would take a long time. Secure
systems, designed and built from the requirements stage up, are never-
theless vulnerable to insider attacks. Enforcing levels of access control
mechanisms is believed to lower efficiency and user-friendliness. Thus,
there is a need for intrusion detection systems (IDSs).

Detecting intrusions to take remedial actions is a more reachable goal
than preventing them altogether. The term intrusion detection refers to
the broad range of techniques used to protect computer systems from
malicious attacks. An intruder can be someone from within an organization
(insider) or an outsider. An efficient detection system and a well-articulated

78 � Enhancing Computer Security with Smart Technology

incident-response procedure should be an integral part of any defensive
strategy.

Network-based IDSs are necessary because most of the attacks come
from the Internet. Although most of these attacks can be stopped by a
properly configured firewall, one needs to be concerned about attacks
that succeed in penetrating this outside perimeter. The final defensive
layer is the HIDS. In this case, the defensive software is installed on every
protected host computer. This requires an expenditure of system resources
as well as administrative resources to monitor each and every system.
Furthermore, this may demand a customized detection policy to reduce
false-alarm rate. In spite of these drawbacks, HIDS does have a place
because NIDS has limitations imposed by high-speed, switched, and
encrypted networks.

Many IDSs are based on detecting signatures of previously seen attacks.
Schemes that identify attacks based on anomalies (i.e., behaviors deviating
from normal activity) exhibit unacceptably high false-alarm rates and
relatively poor coverage of the attack space. Whichever method is used,
these methods often use data gathered from sensors that were originally
designed for audit purposes — not for detecting attacks. These audit trails
are records of activities that are logged to a file in chronological order
and are of the order of 100 MB/day. These records can be inspected, and
attributes that are believed to shed some light on the intrusive behavior
of a user are extracted: machine-oriented attributes (host attributes) such
as user ID, host ID, time of log-in, duration of a session, as well as items
such as instructions used, speed of keyboard entry, CPU and memory
resources consumed, number of processes created, system calls generated,
and so on. Instead of analyzing a host machine’s audit trails, one can also
look at network-related attributes such as TCP/IP packet data, TCP/IP
connection data, and so on. Instead of building one centralized IDS
passively defending a system, one can conceivably have a team of coop-
erating autonomous agents actively defending and maintaining the integrity
and trustworthiness of a system.

Although much emphasis, in the subsequent chapters, is placed on
the detection problem, the issue of responding to an intrusion is no less
important. A majority of intrusion response systems (IRSs) react to intru-
sions by generating reports and alarms. Research indicates that the greater
the time gap between detection and response, the greater the probability
of success of the attack. For rapid response, manual methods are not
quite adequate. Most of the automated response methods depend on using
stateless methods (say, a decision table) in which a particular response
is associated with a particular attack; the same response is used for the
same type of attack — always. More work is necessary in automating the

Relevance of Machine Learning � 79

response mechanism. Perhaps intelligent software agents and cooperating
agents can play a role here. Some of the ideas discussed in Section 4.6
of this chapter will come in handy while developing a single-policy
decision based on inputs from multiple agents, each having its own world
view and each monitoring the system and making recommendations to a
“head agent” [Vemuri, 2000].

Although there is no shortage of ideas in detection per se, there is,
however, very little understanding — at a theoretical level — of how
attacks manifest. Indeed, there is inadequate understanding of how to
characterize an attack. On the flip side, there is no adequate definition
of what constitutes normal behavior either. In the absence of this knowl-
edge, it is not easy to detect wide excursions from the norm. One
possibility is to design systems that are capable of learning, over time,
their own normal behavior. With this capability, a system would be better
capable of analyzing itself, tune its operation on the fly, and exhibit better
robustness in performance.

As the rest of the book is devoted to an examination of the issues
related to intrusion detection from the point of view of machine learning,
this chapter provides a brief overview of machine learning formulations
and identifies considerations that might lead to a better insight into the
intrusion detection problem.

4.3 Machine Learning beyond Intrusion Detection
Clearly, there is a role for machine learning in computer security research
that transcends intrusion detection. A typical university course in computer
security covers such topics as authentication and identification, policies
and models, architectures, malicious software, cryptographic algorithms
and protocols, access control, network security, database security, social
engineering and awareness, intrusion detection and response, and cyber
forensics. Machine learning has a potential role to play in many of these areas.

For example, one can consider the design of self-adaptive systems that
can survive an attack. There is certainly a need to understand multistage
attack processes in which cascading failures can occur because the com-
promise of one resource may lead to the compromise of a more valuable
resource. Modeling these processes can lead to a better design of self-
adaptive systems that can survive attacks.

Learning for the diagnosis of a system state as a classification problem
is another way machine learning can be harnessed for computer security.
In this case, the current system state can be assigned to normal or abnormal
state.

80 � Enhancing Computer Security with Smart Technology

4.4 Machine Learning and Computational
Learning Theory

Unlike in the natural sciences — in which one proposes a hypothesis,
tests it using well-defined metrics, and validates it to build a theoretical
foundation — much of the current research in intrusion detection is ad
hoc. The use of empirical observations to augment knowledge derived
from first principles to develop a scientific model (or hypothesis) is called
learning. In many learning scenarios, it has become popular to use the
computer to learn the correct model based on examples of observed
behavior. When computers are used to implement these learning algo-
rithms, the discipline is termed machine learning.

Besides artistic creativity, ethical behavior, and social responsibility,
the most difficult intellectual skill to computerize is learning. A possible
reason for this difficulty is that learning is the result of the confluence of
several intellectual capabilities. At the current state-of-the-art, four different
types of activities appear to fall under the machine learning rubric: symbol-
based, connectionist-based, behavior-based, and immune-system–based
learning.

Symbol-based learning has its roots in classical AI. It draws its strength
from the symbol system hypothesis, which states that all knowledge can
be represented in symbols, and the ability to manipulate these symbols
to produce new symbols — and therefore new knowledge — is the
essence of intelligence. Classical AI methods such as search and decision
tree induction belong to this category.

Connectionist-based learning, inspired by the biology of the brains,
deemphasizes the explicit representation of knowledge using symbols.
Neural-network–based methods are exemplars of connectionist systems.
Symbol-based systems are implemented as computer programs and draw
their conclusions from logical inference procedures. Connectionist systems
are also implemented, quite often, as computer programs, but they are
“trained” and draw their conclusions by recognizing patterns. Supervised
classification methods such as perceptrons, support vector machines,
kernel machines, and a whole host of unsupervised classification (called
clustering) methods belong to this category.

Behavior-based learning is inspired by Darwinian evolution. Here, one
assumes that a population of candidate solutions is always available, and
the challenge is to search this pool to find one that fits the problem at
hand. These methods can be characterized by the phrase, “solutions in
search of problems.” Genetic and evolutionary algorithms fall in this
category.

Relevance of Machine Learning � 81

Immune-system–based learning draws its strength from the observation
that the human body (or, for that matter, any biological system) is very
adept at recognizing foreign objects entering the body. This ability to
discriminate “self” from “nonself” can be exploited to develop powerful
pattern recognition and classification algorithms.

Which of these four approaches is considered superior? The spate of
experimental evidence from the 1990s suggests that none of these is
markedly superior to the others. However, there is reason to believe that
factors such as feature selection and the encoding methods used for their
representation may have some beneficial impact.

In contrast to the representational view, the learning task can also be
viewed by considering the utilitarian objective of the learning system:
learning for classification, learning for planning, learning for acting, learn-
ing for understanding, and so on.

The theoretical underpinning of machine learning is called computa-
tional learning theory (COLT). Machine learning, then, is the science of
building predictors from data randomly sampled from an assumed prob-
ability distribution while accounting for the computational complexity of
the learning algorithm and the predictor’s performance on future data.
Much of the work in machine learning is empirical. In such research, the
performance of learning algorithms heavily depends upon the type of
training experience from which the learning machine will learn. The
learning algorithms themselves are typically judged by their performance
on sample sets of data. Stated differently, in machine learning, training
data is used to search (or build or learn) for a model (or a hypothesis)
in a space of possible models (hypotheses). Given some training data,
machine learning is tantamount to searching the hypothesis space (or
model space) for the best possible hypothesis that describes the observed
training data. Evidently, a well-defined learning problem requires a well-
posed problem, a performance metric, and a source of training experience.

Although ad hoc approaches do provide some insight, it is difficult to
compare two learning algorithms carefully and rigorously, or to understand
situations in which a given learning algorithm performs well. Therefore,
the following issues become central to machine learning:

� Given sufficient training data, what algorithms exist so as to guar-
antee convergence to a hypothesis?

� How much training data is sufficient? Is there a particular sequence
in which training data is to be presented for optimum learning
experience? Does more training data give more confidence in what
the machine learned?

82 � Enhancing Computer Security with Smart Technology

� How does one go about getting the training data? If a sufficient
amount of real data is not available or is hard to get, can one
create training datasets via simulation experiments conducted in a
laboratory setup? In such a case, how much confidence can one
place on a machine’s predictions while it is operating in a real
operational condition?

� Can prior knowledge about potential hypotheses help guide the
learning process? If learning is not a memorization of what the
machine saw during training but an ability to generalize from
examples, how can prior knowledge help if it is only approximately
correct?

COLT provides a framework under which a rigorous analysis of both
the predictive power and computational efficiency of learning algorithms
can be carried out. COLT can shed light on some important questions:
What kinds of guarantees can one provide about learning algorithms?
What are good algorithms for achieving certain types of goals? Can one
devise models that are both amenable to mathematical analysis and make
sense empirically? What can be said about the inherent ease or difficulty
of learning problems? Addressing these questions will require pulling in
notions and ideas from AI, probability and statistics, computational com-
plexity theory, cognitive psychology, game theory, and empirical machine
learning research.

4.5 Some Popular Machine Learning Methods
Among the more popular methods implementing the classification step
are neural nets, clustering methods, decision trees, Bayesian nets, and a
whole host of hybrid methods. Within the broad category of neural nets
fall perceptrons, support vector machines, multilayer nets with gradient-
type training, radial basis function networks, and self-organizing nets.

4.5.1 Multilayer Networks with Back Propagation

This is a multilayer (typically input, hidden, and output layers), feed-
forward neural network that relies on the classical gradient-descent method
for error minimization. During the forward pass, a feature vector is
presented at the input layer, which propagates toward the output layer
and produces an output. This output is compared with the expected
output, assumed to be known, and the resulting error is propagated
backward through a system of interconnected weights between the neural

Relevance of Machine Learning � 83

layers. These weights are adjusted until an error measure (typically the
sum of the squares of errors) is minimized. This process is called training.
The algorithm is a well-established procedure and is described in many
textbooks. The challenge really is at the preprocessing stage: selecting the
features in the feature vector, the feature vectors to use during training
and testing, deciding when to stop training, and so on. This method has
been applied by many for intrusion detection [Dao and Vemuri, 2002].

4.5.2 Support Vector Machines

These are really sophisticated versions of perceptrons. Whereas a percep-
tron allows many, theoretically infinite, possible separating hyperplanes
between classes, an SVM produces a unique, optimum hyperplane. If a
pattern is not linearly separable in the original feature space, an SVM
permits linear separability in a higher-dimensional space. SVMs have been
successfully applied to the intrusion detection problem [Hu et al., 2003].

4.5.3 Probabilistic Models

It appears that many probabilistic models such as Markov chains, hidden
Markov models as well as non-Markovian models such as Gaussian
classifiers, naive Bayes [Valdes and Skinner, 2000], Fuzzy neural systems
(ARTMAPs, neurofuzzy ART [Liao et al., 2004; Hoffmann et al., 2003]),
and statistical models (decision trees, Markov models, etc.) can be effec-
tively used for intrusion detection with comparable results. For example,
the generalized Markov chain may improve the accuracy of detecting
statistical anomalies. However, these are complex and time consuming to
construct.

4.5.4 Clustering

The k-nearest neighbor method [Liao and Vemuri, 2002; Rawat et al., 2004]
and one-class classification for masquerade detection [Pasos, 2004] also
gave promising results. Some research is also going on in behavior-based
security via user profiling [Dao and Vemuri, 2000; Stolfo et al., 2003].
Profiling users, characterizing user intent, and capturing profile drift are
problems that are waiting for a satisfactory solution.

4.5.5 Decision Trees

Although decision trees are easy to learn and implement, they do not
seem to enjoy as much popularity as, say, neural nets in the context of

84 � Enhancing Computer Security with Smart Technology

intrusion detection. A possible reason for this is that the problem of finding
the smallest decision tree that is consistent with a set of training examples
is known to be NP-hard.

4.5.6 Bayesian Networks

Bayes networks are powerful tools for decision and reasoning under
uncertainty. A very simple form of Bayes networks is called naive Bayes,
which is particularly efficient for inference tasks. However, naive Bayes
is based on a very strong independence assumption. Surprisingly, the
naïve Bayes still gives good results even if the independence assumption
is violated, triggering further research in this area.

The exemplar for using any of the methods to develop IDSs is based
on implementing the following four canonical steps: (a) data collection,
(b) feature extraction, (c) creation of training and test datasets, and (d)
pattern recognition and classification. This recipe has been followed by
a number of investigators. Implementation methods may differ, but the
general recipe has been the same. Insofar as intrusion detection applica-
tions are concerned, much of the published work seems to follow this
sequence of steps: selecting a feature set to characterize a user, selecting
a metric to measure similarity (or distance) between users, using a training
dataset (the most widely used being the DARPA dataset) [Lippmann et al.,
2000] to train and test their models, and representing the results in terms
of detection rates, false-alarm rates, ROC curves, and so on.

4.6 Making Machine Learning More Useful
In a canonical supervised learning problem, a learner (or a learning
program) is given a set of training examples in the form {(x 1 , y1), (x 2,
y2), …, (x m, ym)}, and the learner is asked to learn some unknown function
y = f(x) from this data. Here, the values x i are typically vectors of the
form < xi1, xi2, …, xin > where the components xij are typically discrete
or real values such as height, weight, color, and age and are termed
features (or attributes) of the vector x i — the feature vector. The notation
xij refers to the jth feature of the feature vector x i . The subscript j is
usually dropped if the context makes the meaning obvious. The y values
are drawn from a discrete set of classes {1, 2, …, K} if the problem is a
classification problem, and the real line if it is a regression problem. It is
generally assumed that the training examples might be corrupted with
noise. It is generally convenient to assume that the training examples are

Relevance of Machine Learning � 85

indeed a sample drawn from a known probability distribution (say, the
normal distribution) whose parameters may or may not be known.

Given a sample set S of training examples, a learning algorithm outputs
a classifier. The classifier is a hypothesis of the unknown function f. Just
as a number of regression lines can be drawn for a given dataset, one
can develop a family of classifiers (or hypotheses) from a given set of
training examples. Given a new x , each of these hypotheses h1, h2, …,
hL can be used to make a prediction.

The classification step can be implemented by a variety of supervised
methods such as neural nets (e.g., back propagation, radial basis functions,
and support vector machines), probabilistic methods (e.g., decision trees,
Gaussian, Bayesian, and Markov models), as well as by unsupervised
methods such as clustering (e.g., k-nearest neighbor, k-means). Some of
these methods will be discussed later in this chapter as well as in the
next two chapters.

Most of the methods listed in the preceding paragraph share some
common drawbacks. For example, no rationale seems to exist in selecting
the features (number of features and the features themselves) defining a
feature vector. A similar comment can be made about the selection of
distance metrics (see Chapter 5). Finally, little progress appears to have
been made in defining fundamental concepts such as normal behavior
and intrusive behavior. Is there an abstract way to characterize an intrusion?
Can one build a model that can generate intrusive sequences with specified
characteristics? Is there a way to explain the behavior of the current crop
of intrusion detection models? Are there any limits to the learning methods
in terms of their performance (say, in terms of false-positives)?

There are several ways of overcoming these drawbacks. The bulk
material in the rest of this section is summarized from a 1997 survey paper
by Dietterich.

4.6.1 Ensemble of Classifiers

One method of improving the classification accuracy is to combine the
outputs of different classifiers (hypotheses) in some suitable fashion by
some sort of voting. If all the classifiers agree, the question of voting
becomes mute. If the classifiers disagree and if the errors committed by
the classifiers are uncorrelated, then a majority vote would produce a
good answer [Dietterich, 1997]. However, if the error rates of individual
classifiers exceed 0.5, then the error rate of the voted ensemble increases
as a result of voting. The key to the success of this method is to make
the individual classifiers as good as possible to start with.

86 � Enhancing Computer Security with Smart Technology

4.6.2 Constructing an Ensemble by Manipulating
Training Data

A fairly general method of constructing an ensemble of classifiers is by
manipulating the training examples. Instead of using up all of the training
data for one swoop, it is divided into subsets, and different classifiers are
trained with each subset. This strategy works well when the hypothesis
generated is fairly sensitive to small changes in training data. This is indeed
the case with neural nets and decision trees.

4.6.2.1 Cross Validation

A popular method of manipulating training data is to subdivide the training
data into m disjoint subsets and to reconstruct training sets by leaving out
some of the subsets, in turn, from the training process. For example, if
the training data is divided randomly into ten disjoint subsets, ten over-
lapping training sets can be constructed by dropping out one of the
subsets, in turn, to get the leave-one-out method of cross validation. This
process can be generalized to get leave-k-out cross validation.

4.6.2.2 Bagging

A second method of manipulating the training data is to pick a subset of
m training examples as a random sample “with replacement.” Such a
sample is called bootstrap replicate of the original training data. Each of
these bootstrap datasets is used to train a different component classifier.
It is customary to select the same type of learning machine for all
component classifiers — say, all neural nets, all hidden Markov models,
all decision trees, and so on. The final classification decision is based on
a voting procedure. For this reason, the method is also called bootstrap
aggregation, from which the name bagging is derived [Breiman, 1996]. It
can be shown that each bootstrap aggregate contains, on the average,
63.2 percent of the original training set. In general, bagging improves the
classification accuracy of those classifiers whose classification accuracy is
sensitive to small changes in training data. Decision trees and neural nets,
which are deemed sensitive, are therefore called unstable.

4.6.2.3 Boosting

A third method of manipulating training data — similar to bagging — is
boosting, which is a general method of converting a rough rule of thumb
(or a weak hypothesis) into a highly accurate prediction rule.

Relevance of Machine Learning � 87

4.6.2.4 Adaboost

Adaboost, a variation of boosting, picks — at iteration l — a subset of m
training examples “with replacement,” according to a probability distribu-
tion pl (x). The hypothesis generated with this training data is labeled hl.
The error rate εl of this classifier is computed and used to adjust pl(x).
This procedure puts more weight on instances that were misclassified. A
final classifier is then constructed by a weighted average of the individual
classifiers [Freund and Schapire, 1996].

4.6.3 Constructing an Ensemble by Manipulating
Input Features

Another general method of constructing an ensemble of classifiers is by
manipulating the input features. Selecting what and how many features
to be included in the feature vector is an early design decision. Quite
often, this decision is made for expediency by looking at features that are
already there in the available training data. For example, in intrusion
detection, NIDES uses up to 30 attributes such as CPU and I/O usage,
commands used, local network activity, and so on, to define a feature
vector. Values of these attributes are typically logged routinely. Is it really
necessary to use all these? Would a subset suffice? If so, what subset?
How does one select that subset? As the size of the featur e vector
influences the size of the classifier, and therefore the effort in building it,
there is some merit in trying to work with feature vectors of small
dimension.

How does one select the subsets from the training data? There are no
standard rules. Typically, they are selected manually by using some ad
hoc criterion, not necessarily justified by any problem-driven consider-
ations. For example, 100 contiguous samples of a signal (in the time
domain or in the frequency domain) can be grouped into several contig-
uous nonoverlapping segments, or into several overlapping segments by
sliding a window, or every tenth sample is placed in a bin to create ten
bins, and so on. Or, in a preprocessing stage, the input data is first
clustered into groups and training datasets created by using some system-
atic selection from the clusters. In any event, this process of manipulating
input features seems to work if the features are highly redundant.

4.6.4 Constructing an Ensemble by Injecting Randomness

This is probably the most commonly used method in neural networks. In
backpropagation training, for example, a recommended method is to start

88 � Enhancing Computer Security with Smart Technology

with a randomly selected initial weight set, train the network, and then
restart with a different random set of initial weights, and repeat the
experiment several times. Each such trial results in a different classifier.
This approach is fairly widespread and has been successfully applied to
decision trees and rule-based expert systems.

4.6.5 Constructing an Ensemble Using Different Learning
Algorithms

Finally, it is possible to build an ensemble of classifiers, each using a
different learning algorithm. Learning algorithms using radically different
principles probably will produce very different classifiers, but there is no
guarantee that they will produce the necessary diversity.

Indeed, there are many more ways of creating ensembles of classifiers.

4.6.6 Combining the Results from an Ensemble of Classifiers

Once results from a family of classifiers are available, there are many
ways of combining them. Indeed, there are as many ways as there are
voting procedures. Three prominent methods are: unweighted voting,
weighted voting, and gating.

4.6.6.1 Majority Vote

The simplest of these is to take a simple majority vote. This idea can be
extended if each classifier can produce not just a classification decision
but also a class probability estimate. The class probability estimate for
data point x is the probability that the true class is k, k = 1, 2, …, K,
given the hypothesis hl. Then the class probability of the ensemble is
given by

The class with the highest probability (analogue to majority vote)
becomes the predicted class.

4.6.6.2 Gating

Here, the idea is to learn a gating function that takes x as input and
produces as output the weights wl to be associated with classifier hl. That

P f x k
L

P f x k hl

l

L

(()) (() |)= = =
=

∑1

1

Relevance of Machine Learning � 89

is, one seeks to simultaneously learn the gating function while learning
the classifier.

4.6.6.3 Stacking

This starts with the assumption that there are L different training algorithms
A1, A2, …, AL. Each of these algorithms takes the training data as input
and produces L different hypotheses h1, h2, …, hL. In stacking, the goal
is to find a classifier h* such that the final classification will be computed
by h* (h1(x), h2(x), …, hL(x)). In other words, one has to learn h* in some
fashion.

4.6.7 Why the Ensemble Idea Works

The ensemble idea works because uncorrelated errors made by individual
classifiers can be removed by voting. Do individual classifiers commit
uncorrelated errors? Is it possible to find a single classifier that works as
well as a voting ensemble?

Answers to these questions can be found by looking at some of the
theoretical foundations of machine learning and COLT. Learning in
machine learning is tantamount to a search in the hypothesis space, H.
The search is carried out until one finds a hypothesis h that best approx-
imates the unknown function f. The success of this search depends upon
two important factors: size of the hypothesis space and the fact that such
a search indeed ends in finding a good hypothesis that meets the criterion
for “best.”

If the hypothesis space is large, then a large training set is required
to progressively constrain the search until a good approximation is found.
Indeed, each training example can be used to rule out all the hypotheses
that misclassify it. In a two-class classification problem — the most
common scenario in intrusion detection — it is theoretically possible to
use each training example to rule out one of the hypotheses in H. This
suggests that O (log |H|) training examples would suffice to select a
classifier.

Finding the weights for the smallest possible neural net consistent with
the training data is NP-hard. Therefore, people use local search methods,
such as the gradient method, to find locally optimum weights. Because
of these reasons, it is quite possible that one may never succeed in finding
the best hypothesis even after factoring in prior knowledge to assist the
search process.

In spite of these positive attributes of the ensemble methods, very few
attempts seem to have been made to apply this method to intrusion detection.

90 � Enhancing Computer Security with Smart Technology

4.7 Summary
The complexity of many learning problems of today goes well beyond
the capabilities of current machine learning methods. Specifically, in the
computer security area, the machine learning technology that has been
used until now is not adequate to allow the calculation of acceptable
solutions while simultaneously assessing their accuracy. This inadequacy
is responsible, in part, for the poor performance (high false-positive rates,
for instance) of the current crop of machine learning methods. Although
COLT, which has revolutionized the solution of classification, prediction,
and regression problems, has established itself as the framework of choice
in machine learning, its full potential has not yet been brought to bear
in addressing computer security problems.

In the intrusion detection problem domain, the available first principle
knowledge is generally not adequate to characterize an intruder. The
available empirical knowledge (in the form of labeled examples for training
and testing) is inadequate because of small sample sizes. Much of the
available data has been collected under artificial conditions, and even that
data does not contain an adequate number of intrusion scenarios to learn
from [McHugh, 2000].

To apply COLT to real-life problems, such as computer security in
general and intrusion detection in particular, the following methodological
steps are suggested:

1. Precisely define the problem, preserving key features while main-
taining simplicity.

2. Select the appropriate formal learning model.
3. Design a learning algorithm.
4. Analyze the performance of the algorithm using the formal model.

While selecting the formal learning model in step 2 in the preceding
list, there are a number of issues to consider:

� What is being learned?
� How does the learner interact with the environment? (Is there a

helpful teacher, a critic, or an adversary?)
� What is the prior knowledge of the learner?
� How is the learner’s hypothesis represented?
� What are the criteria for successful learning?
� How efficient is the learner in time, space, and data?

In the computer security area, it seems reasonable to restrict the type
of problems to the so-called concept-learning problems, in which there

Relevance of Machine Learning � 91

are a set of instances (training data) and a single target concept that
classifies each instance. The goal of the learner is to devise a hypothesis
(say, a neural net) that correctly classifies each instance as a positive
(intruder) or negative instance (nonintruder). The hypotheses in the
hypothesis space must make a binary prediction every time an instance
of data is presented; it is not acceptable for the learning machine to return
an “I do not know” for some instances.

References
1. Breiman, L. Bagging predictors, Machine Learning, 24: 2, pp. 123–140, 1996.
2. Dao, Vu and V Rao Vemuri. Profiling users in the UNIX OS environment,

International ICSC Conference on Intelligent Systems and Applications,
University of Wollongong, Australia, December 11–15, 2000.

3. Dao, Vu and V Rao Vemuri. Computer network intrusion detection: A
comparison of neural networks methods, Differential Equations and
Dynamical Systems, 10:1/2, pp. 201–214, 2002.

4. Dietterich, T.D. Machine Learning Research: Four Current Directions, AI
Magazine, AAAI, Winter 1997.

5. Dietterich, T.D. and P. Langley. Machine Learning for Cognitive Networks:
Technology Assessment and Research Challenges. http://web.engr.
oregonstate.edu/~tgd/kp/dl-report.pdf, May 11, 2003.

6. Freund, Y. and Schapire, R.E. Experiments with a new boosting algorithm,
Proc. 13th Intl. Conf. Machine Learning, Ed. L. Sattina, pp. 148–156, Morgan
Kaufmann, San Francisco, 1996.

7. Hoffmann, A. and B. Sick. Evolutionary optimization of radial basis function
networks for intrusion detection, Joint International Conference
ICANN/ICONIP 2003, Istanbul, Turkey, June 2003.

8. Hu, Wenjie, Yihua Liao, and V Rao Vemuri. Robust support vector machines
for anomaly detection in computer security, International Conference on
Machine Learning and Applications, Los Angeles, CA, July 2003.

9. Liao, Yihua and V Rao Vemuri. Using text categorization techniques for
intrusion detection, Proc. Usenix San Francisco, August 2002.

10. Liao, Yihua, V Rao Vemuri, and A. Pasos. A general framework for adaptive
anomaly detection with evolving connectionist systems. SIAM Inter. Con-
ference on Data Mining, Lake Buena Vista, FL, April 22–24, 2004.

11. Lippmann, R.P., R.K. Cunningham, D.J. Fried, S.L. Garfinkel, A.S. Gorton,
I. Graf, K.R. Kendall, D.J. McClung, D.J. Weber, S.E. Webster, D. Wyscho-
grod, and M.A. Zissman. MIT Lincoln Laboratory offline component of
DARPA 1998 Intrusion detection Evaluation, 2000. http://www.ll.mit.edu/
IST/ideval/docs/docs_index.html.

12. McHugh, John. Testing intrusion detection systems: A critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed by
Lincoln laboratories, ACM Trans. on Information and Systems Security, 3:4,
pp. 262–294, November 2000.

92 � Enhancing Computer Security with Smart Technology

13. Pasos, Alejandro. Machine Learning Techniques in Masquerader Detection.
Masters thesis, University of California, Davis, 2004.

14. Rawat, Sanjay, A.K. Pujari, V.P. Gulati, and V Rao Vemuri. Intrusion detec-
tion using text processing techniques with a binary-weighted cosine metric,
International Journal of Information Security, Springer-Verlag, Submitted
2004. http://www.cs.ucdavis.edu/~vemuri/publications.

15. Stolfo, S.J., S. Hershkop, K. Wang, O. Nimerkern, and C-W. Hu. A behavior-
based approach to securing e-mail systems, Proc. Mathematical Methods,
Models and Architectures for Computer Networks Security, Springer-Verlag,
September 2003.

16. Valdes, A. and K. Skinner. Adaptive, model-based monitoring for cyber
attack detection, Lecture Notes in Computer Science, Number 1907,
Springer-Verlag, Toulouse, France. October, 2000. In H. Debar, L. Me, and
F. Wu, Eds., Recent Advances in Intrusion Detection (RAID 2000).

17. Vemuri, Rao V. Agent assist for computer games, International ICSC Con-
ference on Intelligent Systems and Applications, University of Wollongong,
Australia, December 11–15, 2000.

93

Chapter 5

Machine Learning
in Intrusion Detection

Yihua Liao and V Rao Vemuri

5.1 Introduction
In this chapter, we examine various aspects of machine learning–based
anomaly detection in computer security. Indeed, detection of anomalies
in data is one of the fundamental machine learning tasks. Anomaly
detection (also known as novelty detection, outlier detection, change
detection, or activity monitoring) provides the core technology for a broad
spectrum of security-centric applications including detection (credit cards,
cell phones, etc.), crisis (e.g., epidemic or bioterrorism) monitoring, news
story monitoring, hardware fault detection, and network performance
monitoring [1]. Although these applications may differ greatly in repre-
sentation, they share significant characteristics that differentiate them from
other machine learning tasks. The goal of anomaly detection is to identify
anomalous activities (i.e., rare, unusual events) in a data stream accurately
and in a timely fashion. In applications such as computer security, it is
also desirable to be able to explain the reason for the anomaly and
propose the appropriate response actions. Because of the lack of first-
principle models to describe the complex behavior of the monitored
systems, learning from the audit data is necessary. Standard machine

94 � Enhancing Computer Security with Smart Technology

learning techniques such as classification, regression, and time series
analysis are useful as solution components, but they do not completely
address the goal of anomaly detection, which has its own idiosyncrasies
(e.g., the asymmetry of class distributions and error costs).

We begin by briskly reviewing the major problem formulations and
associated learning methods that have been studied for anomaly detection.
Then we examine some fundamental issues involved in anomaly detection
and discuss the open questions and future directions. Finally, we present
an adaptive anomaly detection example with evolving connectionist systems.

5.2 Intrusion Detection
Intrusion detection is an important component of computer security mech-
anisms. It aims to detect computer break-ins, penetrations, and other forms
of computer abuse that exploit security vulnerabilities or flaws in computer
systems. Examples of these include hackers using exploit scripts to gain
access to or deny the services of a computer system and insiders who
misuse their privileges. Traditional security mechanisms, such as access
control and information flow control, help protect systems, data, and
resources. However, nothing is perfect. Even the best-protected systems
must be monitored to detect successful and unsuccessful attempts to
breach security. This is why intrusion detection systems (IDSs) have
become an increasingly indispensable player in the arsenal against com-
puter misuse.

IDSs were first visualized in the 1980s as a promising method for
detecting and preventing intrusions and attacks. The goals of an IDS are
fourfold: (1) to detect a wide variety of intrusions, including intrusions
from outside and inside as well as both known and previously unknown
attacks; (2) detect intrusions in a timely fashion; (3) present the analysis
in a simple, easy-to-understand format; and (4) be accurate, that is, achieve
a low false-alarm rate. (A false-positive occurs when an IDS raises an
alarm when no attack is underway, and a false-negative occurs when an
IDS fails to report an ongoing attack.) For the last two decades, three
general approaches to intrusion detection have been developed, namely,
anomaly detection, misuse detection, and specification-based detection [2].

An anomaly detector analyzes a set of characteristics of the monitored
system (or users) and identifies activities that deviate from the normal
behavior, based on the assumption that such deviations may indicate that
an intrusion or attack exploiting vulnerabilities has occurred (or may still
be occurring). Any observable behavior of the system can be used to
build a model of the normal operation of the system. Audit logs, network

Machine Learning in Intrusion Detection � 95

traffic, user commands, and system calls are all common choices. Anomaly
detection has the potential of detecting novel attacks as well as variations
of known attacks. However, anomaly detection suffers from the basic
difficulty of defining what is normal. When the system or user behavior
varies widely, methods based on anomaly detection tend to produce many
false alarms because they are not capable of discriminating between
abnormal patterns triggered by an otherwise legitimate usage and those
triggered by an intrusion.

In misuse detection, a user’s activities are compared with the known
signature patterns of attackers. Those matched are then labeled as intrusive
activities. Most of today’s commercial IDSs are based on misuse detection.
Although misuse detection can be effective in recognizing known intrusion
types, it cannot detect novel attacks.

Anomaly detection has been called the art of looking for unusual states,
whereas misuse detection is the art of looking for states known to be
bad. Specification-based detection, in contrast, looks for states known not
to be good. It determines whether or not a sequence of instructions
violates a specification of how a program or system should execute. If
so, it reports a potential intrusion. Although specification-based detection
has the potential for providing a very low false-positive rate while detecting
a wide range of attacks, it is difficult to model complex programs or
systems and write security specifications for them. Figure 5.1 illustrates
the differences between the three general approaches to intrusion detec-
tion in terms of their computation and memory requirements and capability
to detect novel, unseen attacks. In practice, these general approaches are
often combined to detect attacks more efficiently.

Figure 5.1 Three general approaches to intrusion detection.

Detecting new

attacks

Only detecting

known attacks

Computation and memory requirements

Misuse

detection

Specification-based

detection

Anomaly

detection

96 � Enhancing Computer Security with Smart Technology

5.3 Machine Learning Approaches
to Anomaly Detection

5.3.1 Machine Learning and Its Problem Formulations

Learning is the process of estimating an unknown input–output depen-
dency, i.e., a model (or hypothesis) of a system using a limited number
of observations. In many learning scenarios, it has become popular to use
the computer to learn the correct model based on examples of observed
behavior. When computers are used to implement these learning algo-
rithms, the discipline is termed machine learning. In machine learning
research, a set of training data is used to search (or build or learn) for a
model (or a hypothesis) in a space of possible models (hypotheses). Given
some training data, machine learning is equivalent to searching the hypoth-
esis space (or model space) for the best possible hypothesis that describes
the observed training data. Evidently, a well-defined learning problem
requires a well-formulated problem, a performance metric, and a source
of training experience.

Depending on how the learning task is formulated in terms of the
inputs that drive learning and the manner in which the learned knowledge
is utilized, we can divide the machine learning tasks into three broad
formulations [3]:

� Learning for classification and regression. This is the most common
formulation of machine learning. Classification involves assigning
a test case to one of a finite set of classes, whereas regression
instead predicts the case’s value on some continuous variable or
attribute. There exist a variety of well-established methods for
classification and regression, including decision trees, rule induc-
tion, neural networks, support vector machines (SVMs), nearest
neighbor approaches, and probabilistic methods.

� Learning for acting and planning. It addresses learning of knowl-
edge for selecting actions or plans for an agent to carry out. One
well-known example is reinforcement learning, in which the agent
typically carries out an action and receives some reward that
indicates the desirability of the resulting states.

� Learning for interpretation and understanding. It focuses on learn-
ing knowledge that lets one interpret and understand situations or
events. Approaches of this formulation attempt to interpret obser-
vations in a more constructive way than simple classification, by
combining a number of separate knowledge elements to explain
them — a process often referred to as abduction.

Machine Learning in Intrusion Detection � 97

In the context of anomaly detection, it is straightforward to cast it as
a classification problem (with two classes: normal and abnormal). Indeed,
most existing approaches proposed for anomaly detection employ some
learning mechanisms to capture the monitored object’s normal usage
patterns and classify new behavior as either normal or abnormal. However,
one could also formulate it as a problem of understanding and explaining
anomalous behavior. Yet another option would be the formulation that
focuses on learning for selecting appropriate responses in the presence
of intrusions. Each of these three formulations suggests different
approaches to the anomaly detection task and requires different input
data and prior knowledge.

5.3.2 Learning Methods for Anomaly Detection

In this section, we review the major learning methods that have been
proposed for intrusion detection. Although they all represent “learning for
classification,” they do fall into two broad categories:

� A generative (also known as profiling) approach builds a model
solely based on normal training examples and evaluates each
testing instance to see how well it fits the model. Activities that
deviate significantly from normal trigger an alarm.

� A discriminative approach attempts to learn the distinction
between the normal and abnormal classes. Both normal and attack
examples are used in training. New activities are classified as either
normal or abnormal.

A generative approach aims to define the perimeter of “normal” and
thus tends to generate more false alarms. However, it is robust over noisy
training data. In contrast, a discriminative approach may give better
classification performance if clean, labeled training data is available from
both classes. Usually, normal examples are common, and attack examples
are rare. It is common to have a training set with skewed class distributions
— much more normal examples than attack examples.

Within each broad class of intrusion detection approaches, there exist
many learning techniques that differ in the knowledge representations
and their specific algorithms for using and learning that knowledge.
Common knowledge representations include rules, decision trees, linear
and nonlinear functions (including neural networks and SVMs), instance
libraries, probabilistic summaries, and so on. Table 5.1 summarizes the
major techniques that have been used for intrusion detection, some of
which can be employed in both generative and discriminative manners.

98 � Enhancing Computer Security with Smart Technology

It is nontrivial to compare these techniques against each other as each
has its own strengths and weaknesses, let alone their different knowledge
representations. In general, rule-based approaches can provide rules that
are easy to understand, but they require expensive training processes as

Table 5.1 Summary of Major Machine Learning Techniques
for Intrusion Detection

Style
Knowledge
Representation

Learning
Algorithm
Examples Features

Rule-based Classification
rules that
characterize
normal (and
intrusive)
behavior

RIPPER [4,5],
time-based
inductive
learning [6]

Concise and
intuitive rules,
easy to
understand and
inspect

Immunological-
based

Self (or nonself)
model
representing the
set of normal (or
anomalous)
instances

Negative
selection,
positive
selection [7,8]

Suitable for
distributed
processing

Neural nets Linear/nonlinear
classification
functions

Recurrent
networks [9],
SVM [10,11]

High
classification
accuracy

Instance-based Instance library KNN [12,13] No training
involved,
classification
cost can be high
when the
instance library
is large

Clustering and
outlier
detection

Clusters in input
(or feature)
space

KNN, one-class
SVM [14],
density-based
local outliers
[15]

Unsupervised
learning, no
class label
required

Probabilistic
learning

Probability
summaries

Markov models
[5,16], Mixture
model [17], and
Bayesian
networks [18]

Robust over
noisy data,
require large
data

Machine Learning in Intrusion Detection � 99

many neural nets–based learning methods do. On the other hand, the
cost of classifying a new instance is high for instance-based and immu-
nological-based approaches because the new instance is often compared
with a large corpus of normal or abnormal instances. Methods based on
clustering and probability-density estimation approaches usually require
a larger number of samples than other approaches.

5.4 Audit Data
To detect intrusions, some source of information in which the intrusion
is manifest must be observed, and some analysis that can reveal the
intrusion must be performed. Systems that obtain the data to analyze from
the operating system or applications subject to attack are called host-
based. The events audited by operating systems usually include the use
of identification and authentication mechanisms (log-in, etc.), file opens
and program executions, deletion of objects, administrative actions, and
other security-relevant events. The audit trail should be protected from
unauthorized access or tampering. Most modern operating systems have
such basic auditing capabilities. Windows NT and Solaris are examples of
operating systems that support the so-called C2-level security audit. The
Solaris BSM audit mechanism, in particular, provides the ability to collect
detailed security-relevant data at the system call level. Most host-based
systems collect data continuously as the system is operating. The substan-
tial amount of auditing, however, could impact the host system perfor-
mance and require large storage space. In addition, some intrusions may
not directly manifest themselves in the audit trail.

Alternatively, network-based IDSs observe the network traffic that goes
to and from the monitored systems and look for signs of intrusions in
that data. The advantage of network-based data collection is that a single
sensor, properly placed, can monitor a number of hosts and can look for
attacks that target multiple hosts. However, the rapidly increasing network
data rates and encrypted connections are the major challenges for network
monitoring. Depending on the type of information that is used for intrusion
detection, we can further distinguish between traffic and application
models. Systems that use traffic models monitor the flow of network
packets. The source and destination IP addresses and port numbers are
used to determine the features such as the number of total connection
arrivals in a certain period of time, the interarrival time between packets,
or the number of packets to and from a certain host. These features, in
turn, are used to model the normal traffic and detect attacks such as port
scans or denial-of-service (DoS) attacks. In contrast, the application (or
service) model attempts to incorporate application-specific knowledge of

100 � Enhancing Computer Security with Smart Technology

the network services (e.g., HTTP, DNS, and FTP) to detect more sophis-
ticated attacks. The packet header, as well as the application payload
information, is used to establish the normal traffic model for each service.

To facilitate quantitative evaluations of IDS performance and compar-
isons of different intrusion detection methods, researchers have realized
the need for standardized datasets. Described in the following text are
several widely cited and publicly available host-based and network-based
datasets for research purposes. Without such shareable datasets, IDS
researchers must either expend enormous resources creating proprietary
datasets or use fairly simplistic data for their testing. To our knowledge,
there are some privately owned audit datasets, including Windows NT
user-profiling data and network traffic data, which are not available in
the public domain.

5.4.1 DARPA/KDD Datasets

Sponsored by the Department of Defense Advanced Research Projects
Agency (DARPA), the MIT Lincoln Laboratory conducted the most com-
prehensive evaluations of research IDSs in 1998 and 1999 [19]. In these
evaluations, researchers were given sensor data in the form of sniffed
network traffic (tcpdump), Solaris BSM audit data, Windows NT audit data,
and file-system snapshots and asked to identify the intrusions that had
been carried out during the data collection period. The 1999 evaluation
effort used a test bed that generated live background traffic similar to that
of an Air Force base local area network. More than 200 instances of 58
attack types (including stealthy and novel attacks) were embedded in
seven weeks of training data and two weeks of test data. Automated
attacks were launched against three UNIX victim machines (SunOS, Solaris,
and Linux), Windows NT hosts, and a router in the presence of background
traffic. Attack categories included DoS, probe, remote-to-local, and user-
to-super-user attacks. The DARPA evaluations resulted in the development
of an intrusion detection corpus that includes weeks of background traffic
and host audit logs and hundreds of labeled and documented attacks.
Part of this corpus, the preprocessed tcpdump data consisting of 41
features, was used for the 1999 KDD Cup contest, held at the fifth ACM
International Conference on Knowledge Discovery and Data Mining. The
DARPA corpus, especially the preprocessed KDD dataset portion, has been
used extensively by researchers.

The DARPA evaluations have been criticized for their design and execu-
tion, however. As pointed out in Reference 20, the flaws in the DARPA
evaluations include failures to appropriately validate the background data
(especially with respect to its ability to cause false alarms), the lack of an
appropriate unit of analysis for reporting false alarms, and the use of

Machine Learning in Intrusion Detection � 101

questionable or inappropriate data analysis and presentation techniques.
Nevertheless, it is still possible to mix the well-behaved DARPA data with
real-world data and conduct meaningful intrusion detection analyses [21].

5.4.2 UNM System Call Data

In a ground-breaking study, Forrest et al. [7] discovered that the short
sequences of system calls made by a UNIX program during its normal
execution are very consistent. More importantly, the sequences are differ-
ent from the sequences of its abnormal, exploited executions as well as
the executions of other programs. Therefore, a concise database consisting
of these normal sequences can be used as the “self” definition of the
normal behavior of a program and as the basis to detect anomalies (i.e.,
“nonself”). A number of follow-up studies, for example [4,5,9], attempted
alternative models with the system call sequences including classification
rules, neural nets, hidden Markov model, variable-length patterns, etc.
Instead of modeling the local ordering of system calls invoked by a
program, Liao and Vemuri [13] used the frequencies of system calls to
characterize program behavior for intrusion detection. Their strategy allows
the treatment of long stretches of system calls as one unit, thus allowing
one to bypass the need to build separate databases and learn individual
program profiles.

Forrest’s group has collected several datasets of system calls executed
by active processes and made them publicly available at the University
of New Mexico [22]. These datasets include different kinds of programs
(e.g., programs that run as daemons and those that do not), programs
that vary widely in their size and complexity, and dif ferent kinds of
intrusions (buffer overflows, symbolic link attacks, and Trojan programs).
Only programs that run with privilege are included, because misuse of
these programs has the greatest potential for harm to the system.

5.4.3 UNIX Command Data

User profiling has been considered as an important technique for detecting
an insider’s or masquerader’s misuse of information systems. The under-
lying assumption is that hostile activity is unusual activity that will manifest
as significant excursions from normal user profiles. A user profile contains
information that characterizes a system user’s behavior, such as commands
issued, files normally accessed, resource usage, periods of time normally
logged in, keystroke patterns, and a wide variety of other attributes. A
popular choice has been the user commands. Lane and Brodley [12,16]
modeled truncated UNIX command data (no arguments) for intrusion

102 � Enhancing Computer Security with Smart Technology

detection using instance-based models and hidden Markov models. Two
different user populations were used in their study. The first group
comprised eight different UNIX users at Purdue University, monitored over
the course of more than two years. This set of UNIX command data does
not appear to be publicly available now. The second group is a subset
of 168 users monitored by Saul Greenberg at the University of Calgary.
The original Greenberg data, documented in Reference 23, comprised full
command-line entries from 168 volunteer users of the UNIX csh system.
The data is further split into four groups: 55 novice users, 36 experienced
users, 52 computer scientist users, and 25 nonprogrammer users, all of
whom were affiliated with the University of Calgary (Canada) as students,
faculty, researchers, or staff. This user command dataset is available for
research use on request.

Schonlau and his colleagues applied a number of techniques, including
Bayes 1-Step Markov, Hybrid Multi-Step Markov, IPAM, and so forth [24],
to the same UNIX command dataset. The data, available online [24],
contains user IDs and command names only (no arguments). This limita-
tion was imposed for privacy reasons. The first 15,000 commands for each
of about 70 users were recorded over a period of several months. Some
users generated 15,000 commands in a few days; others took a few months.
Some commands not explicitly typed by the user (e.g., those generated
by shell files or scripts) were also included, as were names of executable
programs. To evaluate the intrusion detection performance, Schonlau et
al. [24] randomly selected 50 users out of the 70 from whom data were
collected to serve as intrusion targets. The remaining 20 users were used
as masqueraders, and their commands were interspersed into the data of
the 50 intrusion targets. Each user’s data was decomposed into 150 blocks
of 100 commands each. The first 50 blocks (5,000 commands) of all users,
free of contamination by masqueraders, were kept aside as training data.
The last 10,000 (masquerader-injected with certain probability) commands
were used as testing data for each user. Maxion and Townsend [25]
analyzed the Schonlau data and suggested that command-line data alone,
without arguments, is not enough to profile users. More recently, using
the Greenberg data as the test bed, Maxion [26] demonstrated that the
command data, enriched with command-line flags and arguments, facili-
tated masquerade detection with a significant reduction in the overall cost
of errors, compared to truncated user command data.

5.5 Issues in Anomaly Detection
In addressing the anomaly detection problem with machine learning
techniques, several difficult issues arise. These issues are common to all

Machine Learning in Intrusion Detection � 103

methods of anomaly detection. Even though there are many proposed
methods, there are only a handful of fundamental issues.

5.5.1 Feature Selection

In anomaly detection, there are many different levels at which an IDS
could monitor activities in a computer system. Anomalies may be unde-
tectable at one level of granularity or abstraction but easy to detect at a
different level. For example, a worm attack might escape detection at the
level of a single host, but be detectable when the traffic of the whole
network is observed and analyzed. One of the biggest challenges in anomaly
detection is to choose features (i.e., attributes) that best characterize the user
or system-usage patterns so that intrusive behavior will be perceived, whereas
nonintrusive activities will not be classified as anomalous.

Even at a certain level of monitoring granularity, one often faces a
large number of features representing the monitored object’s behavior.
For instance, a network connection can be characterized with numerous
attributes, including basic features such as source and destination IPs,
ports and protocols, and many other secondary attributes. Meanwhile, an
audit trail usually consists of sequences of categorical symbols generated
from a large discrete alphabet. A program may issue several hundred
unique system calls. Similarly, a UNIX user’s command history can contain
hundreds of different commands or shell scripts. The high dimensionality
of the data or the large alphabet size gives rise to a large hypothesis
search space. This, in turn, not only increases the complexity of the
problem of learning normal behavior, but also can lead to large classifi-
cation errors. Therefore, selecting relevant features and eliminating redun-
dant features is vital to the effectiveness of the machine learning technique
employed. Similar to many other machine learning applications, anomaly
detection often heavily relies on domain knowledge to manually select
relevant features. Nevertheless, a few studies have attempted to automate
the process of feature selection. For example, Lee et al. [4] calculated
frequent patterns of the system audit data (e.g., association rules and
frequent episodes of the network connection records) and then con-
structed predictive features based on the frequent patterns. Mukkamala
and Sung [10] took a wrapper approach to feature selection; that is, features
were ranked based on the performance of an SVM classifier.

5.5.2 Skewed Class Distribution

There is a fundamental asymmetry in anomaly detection problems: normal
activity is common, and intrusive activity is rare. One often faces a training

104 � Enhancing Computer Security with Smart Technology

set consisting of a handful of attack examples and plenty of normal examples,
or no attack example at all. This presents a difficult challenge to machine
learning methods. Because of the lack of attack examples, discriminative
approaches may not be able to generate a meaningful and general hypoth-
esis of the intrusive behavior. Therefore, a generative approach, aiming
to define the perimeter of normal with normal examples only, can play
a significant role in intrusion detection.

A related issue is the base-rate fallacy in intrusion detection [27].
Because intrusive activity is relatively rare, to achieve substantial values
for the intrusion detection rate — i.e., the Bayesian probability P(Intrusion
| Alarm) — we have to achieve a very low false-positive rate. This
imposes a high classification accuracy requirement on IDSs.

5.5.3 Distance Metrics

Many anomaly detection methods, including immunology-based methods,
instance-based learning methods, and clustering techniques, rely on a
distance measure in the event space. The degree of suspicion attached to
an instance is directly proportional to the distance of the instance from,
for example, the nearest normal training examples or the center of the
nearest normal clusters. Common distance metrics include Euclidean dis-
tance, Manhattan distance, Hamming distance, the vector cosine measure,
and so on. A major difficulty is in the construction of a distance measure
that reflects a useful metric of similarity. A poor choice of distance metrics
may result in meaningless classifications. However, no rationale, except
empirical analysis, seems to exist in choosing distance metrics. For exam-
ple, in one study, the k-nearest neighbor (KNN) classifier with a modified
cosine metric gave far superior results when compared with the results
obtained from the standard cosine metric [13,28] with comparable com-
putational effort. Furthermore, KNN with the modified cosine metric
performed competitively with SVM, a much more complex algorithm than
KNN. Does the modified cosine metric capture the true nature of the
problem any better than the ordinary cosine metric? Indeed, this result is
rather intriguing and surprising because SVM to date provides the best
combination of computational efficiency and guaranteed accuracy.

5.5.4 Window Size for Sequential Data

To learn temporal or sequential patterns of the audit data stream, a
common practice is to slide a window of a certain size across the audit
trace and determine whether the short sequence within the sliding window
is anomalous or not. Sequences of the same length (i.e., the window size)

Machine Learning in Intrusion Detection � 105

are used for training and testing. A fundamental question is how to
determine the appropriate window size for anomaly detection in a sys-
tematic way instead of an ad hoc trial-and-error fashion. Lee and Xiang
[29] proposed to use several information-theoretic measures to describe
the regularity of an audit dataset and determine the best sliding-window
size based on the conditional entropy and information cost measures.
However, Tan and Maxion [30] demonstrated that for stide, a simple
instance-based detector that merely remembers previous training
sequences (no generalization capability), the appropriate window size was
influenced by the length of minimum foreign sequence in the data instead
of the conditional entropy. For a general learning method for anomaly
detection, choosing the optimum window size awaits further investigation.

5.5.5 IDS Performance Evaluation

It is important to quantitatively evaluate the technical performance of an
IDS. Security analysts who review the output of an IDS would like to
know the likelihood of an attack occurring when an alarm is issued.
Moreover, acquisition managers need to compare the strengths and weak-
nesses of currently available IDS products and select the right system.

Quantitatively measurable IDS characteristics include the coverage (i.e.,
the attacks that an IDS can detect under ideal conditions), probability of
false alarms, probability of detection, resistance to attacks directed at the
IDS, ability to handle high-bandwidth traffic, ability to correlate events,
and so on [31]. Among these measurements, probability of false alarms
(i.e., false-positive rate) and probability of detection (also known as hit
rate) are two of the most important characteristics of IDS and thus have
gained the most attention. The receiver operating characteristic (ROC)
analysis, a method from signal detection theory, is usually used to depict
the trade-off between probability of false alarms and probability of intrusion
detection. It can be obtained by varying the detection threshold. A variation
of ROC curves, AMOC, was proposed to reflect the cost of false alarms [1].

Figure 5.2 presents two ROC curves produced by two systems in an
IDS test. The x axis shows the percentage of false alarms produced during
a test, and the y axis shows the corresponding percentage of detected
attacks. Note that an IDS can be operated at any given point on the ROC
curve. If the detection threshold of the IDS is set so low that any activity
is deemed normal, the corresponding operational point is the origin (i.e.,
left bottom corner) of the ROC graph. Conversely, if any activity causes
an alarm because of the high detection threshold, both the percentage of
false alarms and the percentage of detected attacks will be 1, which corre-
sponds to the top right corner of the graph. The line y = x in Figure 5.2
represents an IDS that randomly assigns normal or intrusive (with 50-percent

106 � Enhancing Computer Security with Smart Technology

probability each) for every instance. All systems should perform better
than such a random-guessing–based system and appear above the y = x
line in the ROC graph. In this example, system 1 performs better than
system 2 in that it provides higher intrusion detection probability at any
given false-positive rate.

An interesting aspect of ROC curves is that there is an optimum
operating point for an IDS, given a particular environment being moni-
tored. However, to determine it, one must know the cost of a false alarm,
the value of a correct detection, and the prior probabilities of normal and
attack events [32].

IDS performance can be evaluated by injecting attacks into a stream
of real background activity or generating background on a simulated
network. It is not yet clear which approach is more effective for testing
IDSs because each has unique advantages and disadvantages. For example,
using real network traffic or host audit logs allows one to effectively
evaluate the intrusion detection rate because the background is real, and
it contains all of the anomalies and subtleties. However, it is difficult to
use this technique to determine false-positive rates (and ROC curves) as
it is virtually impossible to guarantee the identification of all attacks that
naturally occurred in the background (unless a thorough manual analysis
is performed with the real background). Other drawbacks include unre-
peatability and privacy issues. In contrast, a test-bed network can provide
a simulated background free of attacks and thus enable accurate mea-
surement of false-alarm rates and intrusion detection rates. However, the
difficulty of this approach lies in generating diverse background traffic
and in validating it. Regardless of the approach used, a major challenge
of IDS evaluation is the shortage of attack examples because of the
difficulty of collecting attack scripts and other reasons.

Figure 5.2 Receiver operating characteristic (ROC) curves.

1.2

1

0.8

0.6

0.4

0.2

0.0
0 0.5

False-positive rate

A
tt

ac
k

 d
et

ec
ti

o
n

 r
at

e

System 1

System 2

1

Machine Learning in Intrusion Detection � 107

5.5.6 Cost-Effectiveness of IDS

Cost-effectiveness is another important aspect of IDSs. An effective IDS
should provide light-weighted detection of intrusions and keep up with
the throughput of the audit data stream that it monitors so that intrusions
can be responded to in a timely manner. A trade-off has to be made
among not only the cost of damage caused by an intrusion and the cost
of manual or automatic response, but also the development cost and
operational cost that measures constraints on time and computing
resources. Lee et al. [33] proposed to use cost-sensitive machine learning
techniques that can automatically construct detection models optimized
for overall cost metrics. More recently, Liao and Vemuri [34] took a game-
theoretic approach to model the strategic interaction between IDS and
attackers and analyze the cost-effectiveness of IDS. The main difficulty is
in quantifying the site-specific cost factors.

5.6 Open Questions and Future Directions
Although a great deal of research has been done in intrusion detection,
current IDSs are still plagued by excessive false alarms and poor attack
detection accuracy (especially against novel attacks and insider threat).
Many fundamental questions remain unanswered, and the complexity of
intrusion detection problems of today presents new research challenges
in the field of machine learning.

5.6.1 Theoretical Analysis

Similar to many other fields, intrusion detection has been based on a
combination of intuition and ad hoc techniques. There is a lack of
underlying theoretic analysis in this field.

First of all, anomaly detection assumes that intrusive activities are
distinct from normal activities, and deviations from normal behaviors by
users or programs are indications of intrusions. Although the assumption
is intuitively appealing, there has been little theoretical support. Therefore,
there is a need to address the soundness and completeness of anomaly
detection methods. In other words, what types of intrusions can and
cannot be detected by anomaly detection? What are the powers and
limitations of a machine learning–based anomaly detection system? Is it
possible to reduce the false-positive rate to, for example, 1 percent, while
the attack detection rate is still high? Is it possible to distinguish anomalies
related to intrusions from those related to other factors? Despite a few
previous attempts [35,36], these questions remain largely open.

108 � Enhancing Computer Security with Smart Technology

Second, for a particular environment, what features, metrics, and
machine learning techniques provide the best performance to model the
normal behavior of the environment? How many training examples are
necessary to achieve the expected false-positive rate? Computational learn-
ing theory (COLT), the theoretical underpinning of machine learning,
might shed light on these fundamental questions.

Last, an equally important issue is to develop some theoretical under-
standing of intrusive behaviors. With an abstract view of various intrusions,
IDSs can better discriminate intrusive behaviors from normal and detect
classes of attacks instead of individual instances.

5.6.2 Learning for Understanding and Planning

Intrusion prevention, detection, and response are three general tasks of
security officers. Once an intrusion is detected, proper response should
be evoked to recover and prevent future attacks. The current state-of-the-
art of IDSs, mostly based on classification techniques, provides little insight
on the attacker’s intent (especially in the case of sophisticated attacks).
Therefore, intrusion response heavily relies on manual forensic analysis.
Machine learning techniques that aim to interpret observations, create
situation awareness, and plan automated response can play a significant
role in the progress of the IDS field.

5.6.3 Ensemble Learning

One method of improving the intrusion detection accuracy is to combine
the outputs of different classifiers, a strategy known as ensemble learning.
In practice, there are many different types of intrusions, and different
methods are needed to detect them using multiple and diverse sensors.
Combining the evidence from multiple classifiers can effectively improve
the accuracy and trustworthiness of IDSs. There are various ways of
constructing an ensemble of classifiers. For example, one can divide the
original training dataset into subsets, and different classifiers are trained
with each subset. This strategy works well when the hypothesis learned
is fairly sensitive to small changes in training data. Another general
approach is to manipulate the input features in a similar fashion. Further-
more, it is possible to build an ensemble of classifiers, each using a
different learning algorithm. Learning algorithms using radically different
principles probably will produce very different classifiers. The key is to
correlate the outputs of these classifiers (for example, using the majority
voting rule).

Machine Learning in Intrusion Detection � 109

5.6.4 Online, Adaptive Learning

Virtually all machine learning research assumes that the training sample
is drawn from a stationary data source — the distribution of the data
points and the phenomena to be learned are not changing with time. In
a practical environment, however, system and network behaviors as well
as user activities can change for bona fide reasons. For example, the
amount of traffic continues to rise. System and application programs are
updated frequently. The continually changing normal behavior, a problem
known as concept drift, presents a significant challenge in anomaly detec-
tion. An effective anomaly detection system should be capable of adapting
to normal behavior changes while still recognizing anomalous activities.
Otherwise, large amounts of false alarms would be generated if the model
fails to change adaptively to accommodate the new patterns. A seemingly
plausible solution is to update the training corpus with each new batch
of audit data and rebuild the normal behavior model. However, for a
continuously operating IDS, new data is available at every instant. It may
not have the luxury of frequent retraining. Furthermore, it is not compu-
tationally feasible for most existing methods (e.g., rule-based methods and
neural nets) because a model is expensive to generate and not suitable
for incremental learning. In addition, selecting appropriate training instances
without contaminating the normal behavior profile is a nontrivial issue.

The key to this difficult problem is online and adaptive learning, one
of the active areas of machine learning research. In Section 5.7, we present
an adaptive intrusion detection framework with the use of evolving
connectionist systems.

5.7 Illustrative Example: Adaptive Anomaly Detection
In this section, we present an adaptive anomaly detection framework to
address the concept drift issue. It is applicable to both host-based and
network-based intrusion detection. Our framework employs unsupervised
evolving connectionist systems to learn system, network, or user behavior
in an online, adaptive fashion without a priori knowledge of the underlying
data distributions. Adaptive learning and evolving connectionist systems
are an active area of machine learning research. Evolving connectionist
systems are artificial neural networks that resemble the human cognitive
information-processing models. Because of their self-organizing and adap-
tive nature, they provide powerful tools for modeling evolving processes
and knowledge discovery [37].

Our adaptive anomaly detection framework performs a one-pass clus-
tering of the input data stream that represents a monitored subject’s

110 � Enhancing Computer Security with Smart Technology

behavior patterns. Each new incoming instance is assigned to one of the
three states: normal, uncertain, and anomalous. Two different alarm levels
are defined to reduce the risk of false alarming. We evaluated our adaptive
anomaly detection systems, based on the fuzzy adaptive resonance theory
(Fuzzy ART) [38] and evolving fuzzy neural networks (EFuNN) [39], on
the KDD Cup 1999 network data. Our experiments show that both evolving
connectionist systems are able to adapt to network normal behavior
changes and at the same time detect anomalous activities. Compared to
SVM-based static learning, our adaptive anomaly detection systems signif-
icantly reduced the false-alarm rate.

5.7.1 Adaptive Anomaly Detection Framework

In addressing the problem of adaptive anomaly detection, two fundamental
questions arise: (1) How do we generate a model or profile that can
concisely describe a subject’s normal behavior, and more importantly, can
it be updated efficiently to accommodate new behavior patterns? (2) How
do we select instances to update the model without introducing noise
and incorporating abnormal patterns as normal? Our adaptive anomaly
detection framework addresses these issues through the use of online
unsupervised learning methods, under the assumption that normal
instances cluster together in the input space, whereas the anomalous
activities correspond to outliers that lie in sparse regions of the input
space. Our framework is general in that the underlying clustering method
can be any online unsupervised evolving connectionist system, and it can
be used for different types of audit data. Without loss of generality, we
assume that the audit data that is continuously fed into the adaptive
anomaly detection system has been transformed into a stream of input
vectors after preprocessing, the input features describing the monitored
subject’s behavior. The evolving connectionist systems are designed for
modeling evolving processes. They operate continuously in time and adapt
their structure and functionality through a continuous interaction with the
environment. They are stable enough to retain patterns learned from previ-
ously observed data while being flexible enough to learn new patterns from
new incoming data. They can learn in unsupervised, supervised, or rein-
forcement learning modes. The online unsupervised evolving connectionist
systems provide one-pass clustering of an input data stream, there being no
predefined number of different clusters that the data belongs to.

A simplified diagram of an evolving connectionist system for online
unsupervised learning is given in Figure 5.3(a). Some systems such as
EFuNN may have an additional fuzzy input layer, shown in Figure 5.3(b),
which represents the fuzzy quantization of the original inputs with the

Machine Learning in Intrusion Detection � 111

use of membership functions. A typical unsupervised evolving connec-
tionist system consists of two layers of nodes: an input layer that reads
the input vectors into the system continuously, and a pattern layer (or
cluster layer) representing previously learned patterns. Each pattern node
corresponds to a cluster in the input space. Each cluster, in turn, is
represented by a weight vector. Then the subject’s normal behavior profile
is conveniently described as a set of weight vectors that represent the
clustering of the previous audit data.

A distance measure has to be defined to measure the mismatch between
a new instance (i.e., a new input vector) and existing patterns. Based on

Figure 5.3 (a) A simplified diagram of an evolving connectionist system for
unsupervised learning. The system has n input nodes and m pattern nodes. There
is a connection from each input node to every pattern node. Some connections
are not shown in the figure. (b) An evolving connectionist system that has an
additional fuzzy input layer. The task of the fuzzy input nodes is to transfer the
input values into membership degrees.

W
1

Input stream

X
1

Pattern layer

Input layer

Pattern layer

Fuzzy input

Input layer

X
2 X

3

(a)

(b)

X
4 X

n

X1
X2

Xn

W
2

W
m

W1 W2
Wm

112 � Enhancing Computer Security with Smart Technology

the distance measure, the system either assigns an input vector to one of
the existing patterns and updates the pattern weight vector to accommo-
date the new input, or otherwise creates a new pattern node for the input.
The details of clustering vary with different evolving connectionist systems.

As described earlier, to reduce the risk of false alarms (classifying
normal instances as abnormal), we define three states of behavior patterns
(i.e., the pattern nodes of the evolving connectionist system): normal,
uncertain, and anomalous. Accordingly, each instance is labeled as either
normal, uncertain, or anomalous. In addition, the alarm is differentiated
into two levels: level-1 alarm and level-2 alarm, representing different
degrees of anomaly.

As illustrated in Figure 5.4, a new instance is assigned to one of the
existing normal patterns and labeled normal if the similarity between the
input vector and the normal pattern is above a threshold (the vigilance
parameter). Otherwise, it is uncertain. The uncertain instance is either
assigned to one of the existing uncertain patterns if it is close enough to
that uncertain pattern, or becomes the only member of a new uncertain
pattern. A level-1 alarm is triggered whenever a new uncertain pattern is
created, as the new instance is different from all the learned patterns and
thus deserves special attention. At this point, some preliminary security
measures need to be taken. However, one cannot draw a final conclusion
yet. The new instance can be truly anomalous or merely the beginning
of a new normal behavior pattern, which will be determined by the

Figure 5.4 Adaptive anomaly detection framework.

Profile

Audit data

Create a new

Level 1

Level 2

Uncertain pattern

Profile Profile

Profile

Profile

Profile

Uncertain

Uncertain Uncertain

Uncertain

Uncertain

Normal pattern

Uncertain

Anomalous

Uncertain

Assign to a

normal pattern

Assign to an

uncertain pattern

Uncertain pattern

becomes anomalous

Uncertain pattern

becomes normal

Compare

Machine Learning in Intrusion Detection � 113

subsequent instances. After the processing of a certain number (the Nwatch

parameter) of the subsequent instances in the same manner, if the number
of members of an uncertain pattern reaches a threshold value (the Mincount

parameter), the uncertain pattern becomes a normal pattern, and the
labels of all its members are changed from uncertain to normal.

This indicates that a new behavior pattern has been developed and
incorporated into the subject’s normal behavior profile as enough instances
have shown the same pattern. On the other hand, after Nwatch subsequent
instances, any uncertain pattern with less than Mincount members will be
destroyed, and all its members are labeled anomalous. This will make
sure that anomalous patterns, corresponding to the sparse regions in the
input space, will not be included in the normal profile. A level-2 alarm
is issued when an instance is labeled anomalous, and further response
actions are expected.

The main tunable parameters of an adaptive anomaly detection system
are summarized as follows:

� Vigilance ρ. This threshold controls the degree of mismatch between
new instances and existing patterns that the system can tolerate.

� Learning rate β. It determines how fast the system should adapt
to a new instance when it is assigned to a pattern.

� Nwatch. It is the period that the system will wait before making a
decision on a newly created uncertain pattern.

� Mincount. It is the minimum number of members that an uncertain
pattern should have in order to be recognized as a normal pattern.

Our framework does not require a priori knowledge of the number
of input features. When a new input feature is presented, the system
simply adds a new input node to the input layer and connections from
this newly created input node to the existing pattern nodes. This can be
very important when the features that describe a subject’s behavior grow
over time and cannot be foreseen in a dynamic environment. Similarly,
accommodation of a new pattern is efficiently realized by creating a new
pattern node and adding connections from input nodes to this new pattern
node. The rest of the structure remains the same.

With the framework, the learned normal profile is expressed as a set
of weight vectors representing the coordinates of the cluster centers in
the input space. These weight vectors can be interpreted as a knowledge
presentation that can be used to describe the subject’s behavior patterns
and, thus, they can facilitate understanding of the subject’s behavior. The
weight vectors are stored in the long-term memory of the connectionist
systems. Because new instances are compared to all previously learned
patterns, recurring activities would be recognized easily.

114 � Enhancing Computer Security with Smart Technology

Although the underlying clustering method of the adaptive anomaly
detection framework can be any unsupervised evolving connectionist
system, Fuzzy ART and the unsupervised learning version of EFuNN are
adapted for anomaly detection in this paper. Both of them are conceptually
simple and computationally fast. Furthermore, they cope well with fuzzy
data, and the fuzzy distance measures help to smooth the abrupt separation
of normality and abnormality of a subject’s behavior. The details on Fuzzy
ART and EFuNN can be seen in [38,39]. Note that the original EFuNN has
a five-layer structure. Here, we only use its first three layers for unsuper-
vised learning. In addition, the vigilance parameter was originally named
sensitivity threshold.

5.7.2 Experiments

In this section, we describe some experiments. The emphasis of the
experiments is on the understanding of how Fuzzy ART–based and EFuNN-
based adaptive anomaly detection systems work in practice. One objective
of our experiments is to observe the influence of variability of the tunable
parameters on the performance of an anomaly detection system. Another
objective of the experiments is to compare SVM-based static learning and
evolving connectionist system–based adaptive learning.

5.7.2.1 Static Learning via SVMs

SVM is a relatively new and state-of-the-art classification method. It is
based on the so-called structural risk minimization principle, which min-
imizes an upper bound on the generalization error. The method performs
a mapping from the input space to a higher-dimensional feature space
through the use of a kernel function. It separates the data in the feature
space by means of a maximum-margin hyperplane. The SVM paradigm
has been extended to the one-class problem. The origin of the coordinate
system, after transforming the feature via a kernel, is treated as the only
member of the second class. Training an SVM is equivalent to solving a
linearly constrained quadratic programming problem.

In our experiments, we used SVM to demonstrate the weakness of
static learning and the importance of adaptive learning. SVM was employed
to learn a model (i.e., support vectors) that fits the training dataset. The
model was then tested on the testing dataset without any update (thus,
it is static learning). SVM is optimum when the data is independent and
identically distributed (iid). If there was a concept drift between the
training dataset and the testing dataset, SVM would generate classification
errors. Adaptive learning can adapt to concept changes incrementally and

Machine Learning in Intrusion Detection � 115

learn new patterns when new testing instances are presented to the
learning system. Therefore, the classification accuracy is improved.

5.7.2.2 Cost Function

To facilitate performance comparison among different methods, we used
the cost function:

where the hit rate is the rate of detected intrusions, the false-positive rate
is the probability that a normal instance is classified as anomalous, and
the parameter represents the cost difference between a false alarm and a
miss. Here, we set the value to 6. The lower the cost, the better the
performance an IDS has.

5.7.2.3 Network Intrusion Detection

We conducted a series of experiments on a subset of the dataset KDD
Cup 1999 [39] prepared for network intrusion detection. Many methods
have been tested with this popular dataset for supervised intrusion detec-
tion. The data labels were usually used for training the learning systems.
Our evolving connectionist systems, however, do not rely on the data
labels. They build network connection patterns incrementally in an online,
unsupervised learning mode.

The 1999 KDD Cup network traffic data is connection based. Each
data record, described by 7 symbolic attributes and 34 continuous
attributes, corresponds to a TCP/IP connection between two IP addresses.
In addition, a label is provided, indicating whether the record is normal
or it belongs to one of the four attack types (Probe, DoS, U2R, and R2L).
The symbolic attributes that have two possible values (e.g., logged in)
were represented by a binary entry with the value of 0 or 1. For symbolic
attributes that have more than two possible categorical values, we used
multiple entries to encode them in the vector representation, one entry
for each possible value. The entry corresponding to the category value
has a value of 1 while the other entries are set to 0. The attribute service
has 41 types, and we further classified them into {http, smtp, ftp, ftp data,
and others } to reduce the vector dimensions. The resulting feature vectors
have a total of 57 dimensions.

Because different continuous attributes were measured on very differ-
ent scales, the effect of some attributes might be completely dwarfed by
others that have larger scales. Therefore, we scaled the attributes to the
range of [0, 1] by calculating:

Cost = (1-hit rate) + false-positive rateγ ×

116 � Enhancing Computer Security with Smart Technology

where Vi is the actual value of attribute i, and the maximum and minimum
are taken over the whole dataset. However, we are aware that this scaling
technique would not work if the maximum and minimum values are not
known a priori.

We formed a subset of the original dataset consisting of 97,277 normal
connections and 9,199 attacks by randomly sampling. We then conducted
two experiments with this subset. The first experiment (Experiment 1)
was designed to test our evolving connectionist systems. In the data stream
of Experiment 1, the attack examples randomly drawn from the 9,199
attacks were inserted into the 97,277 normal examples with a 1-percent
probability. Fuzzy ART and EFuNN were employed to model the network
connections on the fly from an empty set of normal patterns and detect
the intrusions in the data stream. For the second experiment (Experiment
2), the training dataset and testing dataset were formed to compare the
performance between static learning and adaptive learning. The first 40
percent of the 97,277 normal examples was used for training, and the rest
for testing. The testing dataset also included attacks interspersed into the
normal examples with the probability of 1 percent. The model learned from
the training examples was applied to the testing dataset. The model remained
unchanged during the testing process for static learning, whereas it was
updated continuously for adaptive learning methods. Table 5.2 lists the
numbers of normal and attack examples in Experiment 1 and Experiment 2.

5.7.2.3.1 Effectiveness of Varying Vigilance

The vigilance parameter controls the degree of mismatch between new
instances and previously learned patterns. The greater the value of ρ, the
more similar the instances ought to be for them to be assigned to a pattern.
We studied the effect of varying ρ while keeping the values of other
parameters fixed. Table 5.3 presents the results when values were varied

Table 5.2 Numbers of Normal and Attack Examples
in Experiment 1 and Experiment 2

Experiment 1 Experiment 2

Normal Attacks Training Normal Testing Normal Attacks

97,277 998 38,910 58,367 580

X
V V

V V
i

i i

i i
= −

−
min()

max() min()

Machine Learning in Intrusion Detection � 117

from 0.9 to 0.99 with the data stream of Experiment 1. The learning rate
parameter was set to 0.1, Nwatch was 8, and Mincount was 4. The false-
positive rate was calculated as the percentage of normal instances that
were labeled anomalous out of the 97,277 normal examples. Similarly,
the hit rate was the percentage of detected attacks (i.e., labeled anomalous)
out of the 998 attacks.

The results show that the false-positive rate increases monotonically
as the vigilance threshold is raised. This is because of the fact that more
normal instances are classified as uncertain and then anomalous when
the value of ρ increases. Meanwhile, the hit rate oscillates at lower values
and then approaches to 100 percent as ρ is raised nearer to 1.0. The cost
of Fuzzy ART reaches the lowest value at ρ = 0.93 with a false-positive
rate of 2.35 percent and hit rate of 86.3 percent. For EFuNN, the lowest
cost is obtained at ρ = 0.96 while the hit rate is 90 percent and the false-
positive rate is as low as 1.97 percent.

5.7.2.3.2 Effectiveness of Varying Learning Rate β

The learning rate parameter β determines how fast the system should adapt
to new instances to accommodate them. A higher value of β places more

Table 5.3 The Performance (False-Positive Rate, Hit Rate, and Cost)
of Fuzzy ART and EFuNN with the Experiment 1 Data Stream

Fuzzy ART EFuNN

ρ

False-Positive
Rate

(Percentage)
Hit Rate

(Percentage) Cost

False-Positive
Rate

(Percentage)
Hit Rate

(Percentage) Cost

0.90 1.82 79.8 0.311 0.259 33.4 0.682

0.91 2.07 73.6 0.389 0.340 37.2 0.649

0.92 2.06 66.3 0.460 0.421 39.3 0.632

0.93 2.35 86.3 0.278 0.573 66.4 0.370

0.94 2.31 66.9 0.469 0.823 57.4 0.475

0.95 3.13 66.6 0.521 1.29 74.9 0.328

0.96 3.33 64.4 0.556 1.97 90.0 0.218

0.97 4.42 89.7 0.369 3.30 91.7 0.281

0.98 5.81 93.2 0.417 6.99 98.7 0.433

0.99 8.84 98.1 0.549 18.3 99.6 1.10

Note: Results illustrate the impact of varying vigilance ρ on performance.

118 � Enhancing Computer Security with Smart Technology

weight on the new instance when it is assigned to a pattern and less
weight on existing members of the pattern. We evaluated the performance
of Fuzzy ART and EFuNN with the Experiment 1 data stream by widely
varying the learning rate β. The results are described in Table 5.4. The
vigilance parameter was set to 0.93 for Fuzzy ART and 0.96 for EFuNN
because they provided the lowest cost when the effectiveness of varying
vigilance was studied. Nwatch was set to 8, and Mincount was 4.

It is interesting to note that for the Experiment 1 dataset, β = 1 appears
to be the best choice for both Fuzzy ART and EFuNN in terms of the
cost. Higher β values provide relatively stable false-positive rates and hit
rates. For Fuzzy ART, lower β values (β = 0.01 or 0.001) cause much lower
false-positive rates as well as lower hit rates. For EFuNN, however, the
false-positive rate gets even higher at lower β values, whereas the hit rate
declines slightly.

5.7.2.3.3 Effectiveness of Varying Nwatch and Mincount

Nwatch and Mincount are two other important parameters for an adaptive
anomaly detection system. Nwatch represents the delay the system will
experience before it evaluates a newly created uncertain pattern. If it is
too long, there is a risk that an anomalous instance cannot be handled in
a timely manner. If it is too short, a large amount of false alarms may be

Table 5.4 The Performance of Fuzzy ART and EFuNN
with the Experiment 1 Data Stream

Fuzzy ART EFuNN

β

False-Positive
Rate

(Percentage)
Hit Rate

(Percentage) Cost

False-Positive
Rate

(Percentage)
Hit Rate

(Percentage) Cost

0.001 0.256 24.9 0.766 2.34 76.4 0.377

0.01 0.675 54.7 0.493 2.20 88.3 0.249

0.1 2.35 86.3 0.278 1.97 90.0 0.218

0.3 3.17 68.6 0.504 1.69 77.3 0.329

0.5 3.44 71.0 0.496 1.64 72.7 0.371

0.7 3.58 70.1 0.513 1.60 77.4 0.322

0.9 3.53 79.0 0.369 1.47 76.1 0.327

1.0 3.23 67.8 0.515 1.55 74.9 0.343

Note: Results illustrate the impact of varying learning rate β on performance.

Machine Learning in Intrusion Detection � 119

generated. Mincount is the minimum number of members that an uncertain
pattern ought to have before it is changed to normal. We empirically
studied the effect of varying Nwatch and Mincount on the performance of
Fuzzy ART and EFuNN. Different values of Nwatch and Mincount and the
corresponding results are described in Table 5.5. The vigilance parameter
was set to 0.93 for Fuzzy ART and 0.96 for EFuNN, and the learning rate
was 0.1 for both.

The results show that Nwatch = 8 and Mincount = 4 is a better choice
than others for Fuzzy ART as it provides the lowest cost. Similarly, Nwatch

= 4 and Mincount = 2 gives the best performance for EFuNN. The hit rate
of EFuNN is higher and more stable than that of Fuzzy ART as the values
of Nwatch and Mincount change. It indicates that, given the distance measure
of EFuNN, the attacks are more distinguishable among the normal
instances.

5.7.2.3.3 Static Learning versus Adaptive Learning

We compared Fuzzy ART and EFuNN with SVM using the Experiment 2
datasets. During the training process, Fuzzy ART and EFuNN assumed
that every pattern was normal and that no instance was discarded. During
the testing process, however, the task of Fuzzy ART and EFuNN became
twofold: evolving their structure to accommodate new patterns and detect-
ing anomalous instances. For simplicity, we set Nwatch to 8 and Mincount to

Table 5.5 The Performance of Fuzzy ART and EFuNN
with the Experiment 1 Data Stream

Fuzzy ART EFuNN

Nwatch Mincount

False-Positive
Rate

Hit
Rate Cost

False-Positive
Rate

Hit
Rate Cost

4 2 1.71 74.2 0.360 1.53 88.9 0.203

8 4 2.35 86.3 0.278 1.97 90.0 0.218

12 4 1.77 77.1 0.335 1.65 89.4 0.205

12 6 4.03 70.0 0.542 3.66 92.9 0.291

12 8 6.04 95.4 0.408 5.04 95.7 0.345

16 6 2.97 61.1 0.567 2.95 92.9 0.248

16 8 4.95 72.0 0.577 4.19 94.3 0.309

16 10 6.77 84.2 0.564 6.41 96.3 0.422

Note: Results illustrate the impact of varying Nwatch and Mincount on performance.

120 � Enhancing Computer Security with Smart Technology

4. We then varied the vigilance parameter ρ’s value from 0.9 to 0.99 and
the learning rate β’s value from 0.01 to 0.9. The parameter settings that
provide the lowest cost for Fuzzy ART and EFuNN are shown in Table
5.6. The SVM model learned from the one-class training dataset was
applied to the testing dataset. Common types of kernel functions used in
SVM include linear, radial-basis, and polynomial functions. In our exper-
iments, we found that the radial-basis kernel performed better than other
kernel functions for one-class learning.

Table 5.5 compares the performance of SVM, Fuzzy ART, and EFuNN.
SVM was able to detect 90 percent of the attacks in the testing dataset.
However, the false-positive rate was as high as 12.4 percent, which
indicates the presence of concept drift between the training dataset and
the testing dataset. Compared to SVM, Fuzzy ART and EFuNN generated
significantly fewer false alarms. Fuzzy ART was the best in terms of hit
rate, whereas EFuNN gave the lowest cost.

5.7.2.4 Discussion

Our experiments have shown that our adaptive anomaly detection systems
are able to adapt to normal behavior changes while still recognizing
anomalous activities. Compared to the SVM-based static learning, the
adaptive anomaly detection methods can significantly reduce the false-
positive rate.

Our approach assumes that normal instances vastly outnumber anom-
alies, and the anomalous activities appear as outliers in the data. This
approach would miss the attacks or masquerades if the underlying assump-
tions do not hold. For example, some DoS attacks would not be identified
by our adaptive anomaly detection systems. Nevertheless, our anomaly
detection framework can be easily extended to incorporate signature
detection. Previously learned patterns can be labeled in such a way that
certain patterns may generate an alert no matter how frequently they are

Table 5.6 The Performance of SVM, Fuzzy ART, and EFuNN
in Experiment 2

SVM Fuzzy ART EFuNN

ρ 0.93 0.96

β 0.2 0.01

False-positive rate (percentage) 12.4 2.98 0.884

Hit rate (percentage) 90.7 94.0 85.0

Cost 0.836 0.239 0.203

Machine Learning in Intrusion Detection � 121

observed, whereas other patterns do not trigger an alarm even if they are
rarely seen.

With our adaptive anomaly detection framework, it is possible that
one can deliberately cover his or her malicious activities by slowly chang-
ing his or her behavior patterns without triggering a level-2 alarm. How-
ever, a level-1 alarm is issued whenever a new pattern is formed. It is
then the security officer’s responsibility to identify the user’s intent, to
distinguish malicious from benign anomalies.

To make an adaptive anomaly detection system scalable, it might be
necessary to prune or aggregate pattern nodes as the system evolves,
which is a significant issue for our future work. Other issues of our future
work include exploring automated determination of the parameters and
comparing more evolving connectionist systems, such as evolving self-
organizing maps.

5.8 Summary
Over the past two decades, machine learning has played a significant role
in building anomaly detection models for detecting previously unknown
attacks. Yet, the current state-of-the-art of IDSs is still primitive, and much
remains to be explored. In this chapter, we examined the fundamental
issues involved in anomaly detection and outlined its future directions.
With the ever-increasing connectivity and accessibility of computer sys-
tems, machine learning will continue to make its contribution to the
development of next-generation IDSs.

References
1. Fawcett, T. and Provost, F. Activity monitoring: Noticing interesting changes

in behavior. In Proc. 5th ACM SIGKDD Int. Conf. Knowledge Discovery and
Data Mining (KDD), 53, 1999.

2. Bishop, M. Computer Security: Art and Science. Pearson Education, 2003.
3. Dietterich, T. and Langley, P. Machine Learning for Cognitive Networks:

Technology Assessment and Research Challenges, Draft of May 11, 2003.
http://web.engr.oregonstate.edu/~tgd/kp/dl-report.pdf.

4. Lee, W. and Stolfo, S.J. A framework for constructing features and models
for intrusion detection systems. ACM Trans. Information and System Security
(TISSEC), 3, 227, 2000.

5. Warrender, C., Forrest, S., and Pearlmutter, B. Detecting intrusions using
system calls: alternative data models. In Proc. IEEE Symp. Security and
Privacy, Oakland, CA, 1999.

6. Teng, H.S., Chen, K., and Lu, S.C. Adaptive real-time anomaly detection
using inductively generated sequential patterns. Proc. IEEE Symp. Security
and Privacy. Oakland, CA, p. 278, 1990.

122 � Enhancing Computer Security with Smart Technology

7. Forrest, S. et al., A sense of self for Unix processes. In Proc. IEEE Symp.
Security and Privacy, Oakland, CA, 120, 1996.

8. Esponda, F., Forrest, S. and Helman, P. Positive and negative detection,
IEEE Trans. Systems, Man, and Cybernetics, 34(1), 357, 2004.

9. Ghosh, A.K. and Schwartzbard, A. A study in using neural networks for
anomaly and misuse detection. In Proc. 8th USENIX Security Symp., 1999.

10. Mukkamala, S. and Sung, A.H. Identifying significant features for network
forensic analysis using artificial intelligent techniques. Int. J. Digital Evi-
dence, 4, 1, 2003.

11. Hu, W., Liao, Y. and Vemuri, V.R. Robust support vector machines for
anomaly detection in computer security. In Proc. Int. Conf. Machine Learn-
ing and Applications. Los Angeles, CA, 2003.

12. Lane, T. and Brodley, C.E. Temporal sequence learning and data reduction
for anomaly detection. ACM Transactions on Information and System
Security (TISSEC), 2, 295, 1999.

13. Liao, Y. and Vemuri, V.R. Use of k-nearest neighbor classifier for intrusion
detection, Computers and Security, 21, 439, 2002.

14. Eskin, E. et al. A geometric framework for unsupervised anomaly detection:
Detecting intrusions in unlabeled data. In Applications of Data Mining in
Computer Security, D. Barbara and S. Jajodia (Eds.). Kluwer, 2002.

15. Lazarevic, A. et al. A comparative study of anomaly detection schemes in
network intrusion detection. In Proc. 3rd SIAM Int. Conf. Data Mining
(SDM), San Francisco, CA, 2003.

16. Lane, T.D. Machine Learning Techniques for the Computer Security Domain
of Anomaly Detection. Ph.D. thesis, Purdue Univ., West Lafayette, IN, 2000.

17. Eskin, E. Anomaly detection over noisy data using learned probability
Distributions. In Proc. 17th Int. Conf. Machine Learning, San Francisco,
CA, 255, 2000.

18. Kruegel, C. et al. Bayesian event classification for intrusion detection. In
Proc. 19th ACSAC, 2003.

19. Lippmann, R.P. et al. The 1999 DARPA offline intrusion detection evaluation.
Computer Networks, 34(2), 579, 2000. DARPA Intrusion Detection datasets:
http://www.ll.mit.edu/IST/ideval/data/data_index.html. KDD Cup 1999
dataset: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

20. McHugh J. Testing intrusion detection systems: A critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lin-
coln Laboratory. ACM Trans. Information and System Security, 3(4), 262,
2000.

21. Mahoney, M.V. and Chan, P.K. An analysis of the 1999 darpa/lincoln
laboratory evaluation data for network anomaly detection. In Proc. 6th
Intl. Symp. Recent Advances in Intrusion Detection (RAID), Pittsburgh, PA,
220, 2003.

22. Forrest S. et al. Sequence-Based Intrusion Detection. Computer Immune
Systems Data Sets and Software, Computer Science, The University of New
Mexico. http://www.cs.unm.edu/%7Eimmsec/data-sets.htm.

Machine Learning in Intrusion Detection � 123

23. Greenberg, S. Using Unix: Collected traces of 168 users. Research Report
88/333/45, Department of Computer Science, University of Calgary, Calgary,
Canada, 1988.

24. Schonlau, M. et al. Computer intrusion: Detecting masqueraders. Statistical
Science, 16(1), 58, 2001. UNIX command dataset: http://www.schon-
lau.net/.

25. Maxion, R.A. and Townsend, T.N. Masquerade detection using truncated
command lines. In Proc. Int. Conf. Dependable Systems and Networks,
Washington, D.C., 219, 2002.

26. Maxion, R.A. Masquerade detection using enriched command lines. In
Proc. Int. Conf. Dependable Systems & Networks, San Francisco, CA, 5, 2003.

27. Axelsson, S. The base-rate fallacy and the difficulty of intrusion detection.
ACM Trans. Information and System Security (TISSEC), 3(3), 186, 2000.

28. Rawat, S. et al. Intrusion detection using text processing techniques with
a binary-weighted cosine metric. International Journal of Information
Security, Springer-Verlag, Submitted 2004.

29. Lee, W. and Xiang, D. Information-theoretic measures for anomaly detec-
tion. In Proc. IEEE Symp. Security and Privacy, Oakland, CA, 130, 2001.

30. Tan, K.M.C. and Maxion, R.A. Why 6? Defining the operational limit of
stide, an anomaly-based intrusion detector. In Proc. IEEE Symp. Security
and Privacy, Oakland, CA, 188, 2002.

31. Mell, P. et al. An Overview of Issues in Testing Intrusion Detection Systems.
National Institute of Standards and Technology Interagency report 7007,
June 2003. http://csrc.nist.gov/publications/nistir/nistir-7007.pdf.

32. Gaffney, J. and Ulvila, J. Evaluation of intrusion detectors: A decision theory
approach. In Proc. IEEE Symp. Security and Privacy, Oakland, CA, 50, 2001.

33. Lee, W. et al. Toward cost-sensitive modeling for intrusion detection and
response. J. Computer Security, 10, 5, 2002.

34. Liao, Y. and Vemuri, V.R. Intrusion Detection and Response: A Game
Theoretic Perspective. Technical Report, Computer Science Department,
University of California, Davis, 2004.

35. Helman, P. and Liepins, G., Statistical foundations of audit trail analysis
for the detection of computer misuse. IEEE Trans. Software Engineering,
19, 9, 886, 1993.

36. Tan, K.M.C. Killourhy, K.S., and Maxion, R.A. Undermining an anomaly-
based intrusion detection system using common exploits. In Proc. 5th Int.
Symp. Recent Advances in Intrusion Detection (RAID), 2002.

37. Kasabov, N. Evolving Connectionist Systems: Methods and Applications. In
Bioinformatics, Brain Study and Intelligence Machines. Springer-Verlag, 2002.

38. Carpenter, G.A., Grossberg, S., and Rosen, D.B. Fuzzy art: Fast stable
learning and categorization of analog patterns by an adaptive resonance
system. Neural Networks, 4, 759, 1991.

39. Kasabov, N. Evolving fuzzy neural networks for supervised/unsupervised
on-line, knowledge-based learning. IEEE Trans. Man, Machine and Cyber-
netics, Part B: Cybernetics, 31(6), 902, 2001.

125

Chapter 6

Cyber-Security
Challenges: Designing
Efficient Intrusion
Detection Systems and
Anti-Virus Tools

Srinivas Mukkamala, Andrew Sung, and
Ajith Abraham

Several information security technologies are available today to protect
information and systems against unauthorized use, duplication, alteration,
destruction, and virus attacks. Intrusion detection, a key component of
information security (protect, detect, and react) and network defense,
provides information on successful and unsuccessful attempts to compro-
mise information assurance (availability, integrity, and confidentiality).
Intruders can broadly be categorized into two types: external intruders,
who are unauthorized users of the information and systems that they
attack; and internal intruders, who have permission to access information
and systems, with a few restrictions. In this chapter, we first present the

126 � Enhancing Computer Security with Smart Technology

state-of-the-art of the evolution of intrusion detection technology and
address a few intrusion detection techniques and intrusion detection
system (IDS) implementations. An overview of computer attack taxonomy
and computer attack demystification, along with a few detection signatures,
is presented. Special emphasis is also given to the current IDS limitations.
Further, we describe a few obfuscation techniques that were applied to
recent viruses and used to thwart commercial-grade anti-virus tools.

6.1 Introduction to IDSs
Intrusion detection is a problem of great significance in protecting infor-
mation systems security, especially in view of the worldwide increase in
incidents of cyber-attacks on the critical infrastructures. Because the ability
of an IDS to classify a large variety of intrusions in real-time or in near–
real-time with accurate results is important. Intrusion detection, an impor-
tant component of information security technology, helps in discovering,
determining, and identifying unauthorized use, duplication, alteration, and
destruction of information and information systems. Intrusion detection
relies on the assumption that information and information systems under
attack exhibit several distinguishable behavioral patterns or characteristics.
Though intrusion detection technology is becoming ubiquitous in current
network defense, it lacks basic definitions and mathematical understand-
ing. Intrusion detection is subjective; each IDS has different classification
and attack-labeling mechanisms. It is most common for IDSs to raise an
alarm on any set of known attack behaviors. In the due course of
determining whether a particular activity is normal or malicious, IDS can
fail to raise alarm on an attack (false-negative) or can raise alarm on
normal activity as malicious (false-positive).

The most popular way to detect intrusions has been by using the audit
data generated by operating systems and by networks. Because almost
all activities are logged on a system, it is possible that a manual inspection
of these logs would allow intrusions to be detected. It is important to
analyze the audit data even after an attack has occurred, for determining
the extent of damage; this analysis helps in attack trace-back and also
helps in recording the attack patterns for future prevention of such attacks.
An IDS can be used to analyze audit data for such insights. This makes
IDS a valuable real-time detection and prevention tool as well as a forensic
analysis tool. One of the main problems with IDSs is the overhead, which
can become unacceptably high. To analyze system logs, the operating
system must keep information regarding all the actions performed, which
invariably results in huge amounts of data, requiring disk space and
CPU resources. Next, the logs must be processed and converted into a

Cyber-Security Challenges � 127

manageable format and then compared with the set of recognized misuse
and attack patterns to identify possible security violations. Further, the
stored patterns need to be continually updated, which would normally
involve human expertise. Constructing novel attack signatures is a bit
more complex as the attackers use carefully crafted packets over a period
of time, making the network traffic appear to be normal.

A brief review on IDSs is given in Section 6.2. A brief introduction to
computer attack taxonomy and a few common attack signatures are given
in Section 6.3. Section 6.4 presents significant feature selection and three
feature-ranking algorithms. Real-time data collection and feature extraction
are described in Section 6.5, as well as performance evaluation of probes
and DoS-attack detection. Section 6.6 describes different attacks on IDSs.
In Section 6.7, we present the limitations of current anti-virus tools in
detecting malware variants, with emphasis on obfuscated (polymorphic)
malware and mutated (metamorphic) malware. The conclusions are given
in Section 6.8.

6.2 A Review of IDSs
An intrusion is an activity or a sequence of activities that results in a
compromise or that intends to compromise the aspects of information
assurance. Intrusion detection is a security technology of great significance
to critical infrastructure protection. It attempts to detect and respond to
intrusions against information and information systems. IDSs that rely on
audit trails (for deciding whether a particular activity is intrusive or not)
compliment other security technologies (firewalls, file integrity checkers,
vulnerability scanners, and anti-virus tools). IDS also provides information
for forensic analysis and to detect non-repudiation activities based on the
audit trails collected. An IDS that detects intrusions based on deviations
from normal to abnormal state using user or systems profiles is said to
perform anomaly detection. Anomaly detection tends to detect novel
attacks at the expense of false-positives. Signatures are a set of actions,
conditions, or activities that, when met, indicate an intrusion. IDSs that
rely on signatures are defined as misuse or signature-based detection
systems. Misuse detection systems tend to have higher detection rates at
the expense of false-negatives.

Soft computing techniques are being widely used by the IDS commu-
nity because of their generalization capabilities that help in detecting
known and unknown intrusions or the attacks that have no previously
described patterns. Earlier studies have utilized a rule-based approach for
intrusion detection, but had difficulty in identifying new attacks or attacks
that had no previously described patterns [1–4]. Lately, the emphasis is

128 � Enhancing Computer Security with Smart Technology

being shifted to learning by examples and data-mining paradigms. Neural
networks have been extensively used to identify both misuse and anom-
alous patterns [5–9]. Recently, kernel-based methods, support vector
machines, and their variants have been proposed to detect intrusions
[9–13]. Several researchers have proposed data-mining techniques to iden-
tify key patterns that help in detecting intrusions [14,15]. Distributed agent
technology has been proposed by a few researchers to overcome the
inherent limitations of the client/server paradigm and to detect intrusions
in real-time [16–19].

6.2.1 Intrusion Detection Models

Though there are several IDS implementations, most of them share the
common task of detecting intrusions based on audit trails or system state.
These components include the data collection module, analysis module,
storage module, and response module. Most IDSs are either software
packages or hardware, or a combination of both, or are part of larger
systems. IDSs are built with a set of components that together define the
IDS model. A generic model of IDS is illustrated in Figure 6.1.

The data collection module provides information to the rest of the
system to decide whether a particular activity is intrusive or not. This
module collects audit trails (user logs, network trails, system calls, etc.)
for the other IDS components to make decisions. The IDS cannot function
without this module. An important issue in the data collection module is
audit data reduction. Instead of passing the raw data in great detail to the
analysis module to decide whether a particular activity is malicious or

Figure 6.1 Generic intrusion detection system (IDS) model.

Analysis

(statistical

analysis, pattern

matching, machine

learning)

Response

(Reactive or

proactive)

Data collection

(network trails,

system calls, etc.)

Storage

Ethernet User logs system logs system cells

Cyber-Security Challenges � 129

normal, designers implement systems that eliminate audit information
believed to be unimportant for intrusion analysis. The goal of audit
reduction might not be limited to passing important, reduced, or summa-
rized audit trails to the analysis module; they also help in reducing the
complexity of the analysis module.

The analysis module analyzes inputs (audit trails) from the data col-
lection module. A large chunk of IDS research is concentrated on creating
novel classifiers in terms of better IDS performance (faster classification,
lower false alarms, and higher accuracies). Several analysis techniques
have been proposed, ranging from statistical analysis, pattern matching,
machine learning, and file integrity checkers, to artificial immune system
methods. The analysis module helps in automated analysis of data by
reducing human intervention and speeds up the process of identifying
intrusions in real-time.

The storage module provides a mechanism to store data, collected by
the data collection and analysis modules, in a secure fashion. Data stored
may be used for building new signatures, updating user and system
profiles, forensics analysis, and identifying key audit information.

The response module can be designed in active or proactive modes.
Most of the current IDSs are designed to be proactive; they set an alarm
when an intrusion takes place. A significant technological advance in the
field of IDSs would be to design and implement them as reactive devices
rather than as a device that responds to an intrusion. Intrusion detection
prevention systems (IDPSs) not only spot intrusions but also intercept and
stop them.

6.2.1.1 Signature-Based or Misuse Intrusion Detection

The idea of misuse detection is to represent attacks in the form of a
pattern or a signature so that the same attacks can be detected and
prevented in the future [20,21]. These systems can detect many or all
known attack patterns, but they are of little use for detecting naive attack
methods. The main issues in misuse detection are building signatures that
match possible signatures of attacks and all possible variations of the
pertinent attack to avoid false-negatives, and building signatures that do
not match nonintrusive activities to avoid false-positives.

6.2.1.2 Anomaly Detection

The idea here is that if we can establish a normal activity profile for a
system, we can, in theory, flag all system states varying from the established
profile as intrusion attempts [22–25]. However, if the set of intrusive

130 � Enhancing Computer Security with Smart Technology

activities is not identical to the set of anomalous activities, the situation
becomes more interesting; instead of being exactly the same, we find few
interesting possibilities. Anomalous activities that are not intrusive and are
flagged as intrusive are called false-positives. Actual intrusive activities that
go undetected are called false-negatives. This is an issue far more serious
than the problem of false-positives. One of the main issues in anomaly
detection systems is the selection of threshold levels such that neither of
these problems is unreasonably magnified. Anomaly detection is usually
computationally expensive because of the overhead associated with keep-
ing track of and possibly updating several system profiles.

6.3 Computer Attack Taxonomy
Good attack taxonomy makes it possible to classify individual attacks into
groups that share common properties. Taxonomy should be done such
that classifying an attack in one category excludes all others because
categories do not overlap. Good attack taxonomy should have the fol-
lowing characteristics:

� Mutually exclusive: Categories should not overlap. Classifying an
attack into one category excludes it from others.

� Exhaustive: An attack classified into a category includes all possi-
bilities.

� Unambiguous: It should be applied to all systems, irrespective of
what is used or who is classifying. It should be clear and precise
so that classification does not become uncertain.

� Repeatable: Repeated applications result in the same classification,
regardless of who is classifying.

� Acceptable: Classifications should be logical and intuitive so that
they become generally approved.

Network and computer elements identify the specific parts of software,
hardware, or protocols in which the attacks take place. The view of probe
and denial-of-service (DoS) characterization focuses attention on specific
and tangible, as opposed to logical, elements of a system, protocol, or
data packet that allows the attackers to achieve their goal of reconnaissance
and denial of some service. This entity may not be the service that the
attacker wishes to compromise, but instead may be the element of the
network that will allow their ultimate purpose to succeed. Given that a
probe and DoS attack can consist of multiple exploits, there exist multiple
targets spread out over time and space. With this view of the attack space,

Cyber-Security Challenges � 131

we recognize that attackers identify and attack real elements of networks
and computers for — whether hardware, software, or firmware. Services
mapped to Open Systems Interconnection (OSI) and the TCP/IP models
are given in Figure 6.2. The OSI model includes two layers not often
distinguished in a communication process, i.e., the presentation and
session layers, whereas the TCP/IP model only utilizes four levels of
granularity. OSI probe and DoS-attack views, specific to network and
computer elements, are given in Figure 6.3.

6.3.1 Probing

Probing is a class of attacks in which an attacker scans a network to
gather information or find known vulnerabilities. An attacker with a map
of machines and services that are available on a network can use the
information to cause trouble. There are different types of probes. Some
of them abuse the computer’s legitimate features, whereas others use
social engineering techniques. This class of attacks is very common and
requires very little technical expertise. Different types of probe attacks are
illustrated in Table 6.1 [26,27].

Figure 6.2 Layered approach to network and computer elements.

Application

Presentation

Session

Transport

Data Link

Physical

Applications

Network

FTP

File

Transfer

Protocol

TCP

Transmission control

Protocol

Connection oriented

ARP

Address

Resolution

Protocol

RARP

Reverse

ARP

ICMP

Internet

Control

Message

Protocol

IGMP

Internet

Group

Management

Protocol

UDP

User datagram protocol

Connectionless

SMTP

Simple mail

Transfer

Protocol

DNS

Domain

Name

System

Telnet

Remote

Machine

Access

Transport protocols

IP Internetworking protocol (datagram)

 Protocols defined by underlying networks

IEEE802.3 (Ethernet), IEEE 802.4 (Token bus), IEEE802.5

(Token bus), IEEE802.11 (Wireless).

132 � Enhancing Computer Security with Smart Technology

� Ipsweep: This probing attack is one that is performed against all
operating systems that use the Internet Control Message Protocol
(ICMP) service, in which an attacker performs a surveillance sweep
to determine which hosts are responding on a network. Information
obtained from surveillance is useful in launching automated attacks
or in using the vulnerable hosts as stepping stones for future
distributed attacks. This attack helps the attacker identify active
machines on the network and might degrade services for legitimate
users. Looking for multiple ping requests that are destined for all
possible machines on a network, all coming from the same host,
can help detect this attack.

� Mscan: This is a probing tool, used to perform an attack against
all operating systems that use multiple services, in which an attacker
uses either DNS zone transfers or brute-force scanning of IP
addresses, or both, to locate machines and look for vulnerabilities
to launch future attacks. This attack helps the attacker identify
known vulnerabilities on the network and the host machine. Look-
ing for connection requests to vulnerable services from an outside

Figure 6.3 Layered attack views to network and computer elements.

Application

Presentation

Session

Transport

Applications

Data Link

Physical

Network

FTP

FTP Bounce

Attack

TCP

SYN flood

Land

UDP

UDP Flood

Echo-chargen

Land

SMTP

Mail bomb

DNS

DNS cache

Poisoning

Telnet

Integrity and

confidentiality

Attacks

Transport protocols

Network protocols

IP internetworking protocol (datagram)

ARP

ARP cache poisoning

ARP watch

ICMP

UDP Flood

ICMP Flood

Ping of death

Smurf

IP sweep

IGMP

IGMP Nuke

IGMP

Flood

Protocols defined by underlying networks

Sniffers (active and passive)

 RTS/CTS interference

Cyber-Security Challenges � 133

machine (NetBIOS NS, epmap, ms-sql-m, DameWare, Microsoft-ds,
realsecure, domain, bind, IMAP, POP, NFS, cgi-bin, and open X
servers), within a specified period of time, can help detect this
attack.

� Nmap: This is a general-purpose probing tool used to perform
network scans against all operating systems that use multiple
services with user-specified time intervals; an attacker can specify
which services to scan for, how much time to wait between each
service, and whether the services should be scanned sequentially
or in random order. This attack helps the attacker identify the
running services, operating system, and known vulnerabilities on
the network and the target machine. Looking for connection
requests to multiple services within a specific time window can
help detect this attack.

� SAINT: Security Administrator’s Integrated Network Tool is used to
gather information about remote hosts (all operating systems) that
use multiple services; an attacker uses a few network services such
as finger, FTP, TFTP, statd, RPC, NIS, NFS, etc. This attack helps

Table 6.1 Different Types of Probe Attacks

Attack Type Service Mechanism Effect of the Attack

Ipsweep ICMP Abuse of feature Identifies active machines

Mscan Many Abuse of feature Looks for known vulnerabilities

Nmap Many Abuse of feature Identifies active ports on a
machine

Saint Many Abuse of feature Looks for known vulnerabilities

Satan Many Abuse of feature Looks for known vulnerabilities

SYN stealth Multiple Abuse of feature Identifies active machines

FIN stealth Multiple Abuse of feature Identifies active services

Ping sweep ICMP Abuse of feature Identifies active machines

UDP scan Multiple Abuse of feature Identifies active UDP services

Null scan Multiple Abuse of feature Identifies active services

IP scan Multiple Abuse of feature Identifies active protocols

ACK scan Multiple Abuse of feature Identifies the firewall
mechanism

Window scan Multiple Misconfiguration Identifies active services

RCP scan Multiple Abuse of feature Identifies active RPC ports

134 � Enhancing Computer Security with Smart Technology

the attacker identify the running network services, system flaws,
and critical security flaws on the victim’s machine. Looking for
connection requests to specific network services from a machine
other than an authorized machine within a specific time window
can help detect this attack.

� Satan: This is a probing tool used to perform scans against all
operating systems that use a few network services, in which an
attacker uses legitimate network services to gather information on
particular vulnerabilities on the victim’s machine. Looking for con-
nection requests to specific vulnerable network services from a
machine other than an authorized machine within a specific time
window can help detect this attack.

� SYN stealth scan: This is a probing attack performed against all
operating systems that use multiple TCP services, in which an
attacker performs surveillance to determine which hosts are
responding to specific services on a network. Information obtained
from surveillance is useful to an attacker in launching automated
attacks, in using the vulnerable hosts as stepping stones for future
distributed attacks, or for launching future DoS attacks. This attack
helps the attacker identify active machines on the network and
might degrade services for legitimate users. Looking for multiple,
half-open TCP connection requests, destined for all possible
machines on a network, can help detect this attack.

� FIN stealth scan: This is a probing attack performed against all
operating systems except Windows 95/NT when SYN scanning is
not clandestine enough. In theory, closed ports are required to
reply to a probe packet with an RST, whereas open ports must
ignore the packets. An attacker abuses this feature to determine
what services are running on a network or a host system. This
scan bypasses the traditional firewalls and network filters. This
attack helps the attacker identify active services and the host’s
operating system. Looking for connection requests to closed ser-
vices within a specific time window can help detect this attack.

� Ping sweep: This is a type of snooping performed against all
operating systems that use ICMP, in which an attacker performs a
surveillance sweep to determine which hosts are responding on a
network. Information obtained from surveillance is useful to an
attacker in launching automated attacks or in using the vulnerable
hosts as stepping stones for future distributed attacks. This attack
helps the attacker identify active machines on the network and
might degrade services for legitimate users. Ping sweep, if repeated
continuously or launched in a coordinated fashion, might result in

Cyber-Security Challenges � 135

a low-level DoS attack. Looking for multiple ping requests, destined
for all possible machines on a network, all coming from the same
host or within a specific time window from multiple hosts, can
help detect this attack.

� UDP scan: This is a probing attack performed against all operating
systems that use UDP, in which an attacker sends 0-byte UDP
packets to each UDP service on the target machine to determine
which services are running on the victim’s machine. This attack
helps the attacker identify vulnerable UDP services on the victim’s
network. This information is mostly used to launch automated,
distributed, and coordinated DoS attacks. Looking for multiple 0-
byte UDP packets within a specific time window can help detect
this attack.

� Null scan: This is a probing attack performed against all operating
systems except Windows 95/NT, in which an attacker turns off all
flag options (FIN, URG, PUSH, etc.). This attack helps identify the
victim’s operating system by sending connection requests to ser-
vices running on the host machine. Looking for multiple connection
requests with all the flags turned off within a specific time window,
destined for all possible machines on a network, can help prevent
this attack.

� IP scan: This is a snooping attack performed against all operating
systems that use raw IP packets without any specified future protocol
header. An attacker sends raw IP packets without any specific future
protocol header to each specific protocol on the victim’s machine. If
an ICMP message stating that the protocol is unreachable is received,
then it is assumed that the specific protocol is not in use. This attack
helps identify all the supported protocols on a victim’s network.
Looking for multiple connection requests without a specific service
within a specific time window can help detect this attack.

� ACK scan: This is a snooping attack performed to map firewall
rule sets, in which an attacker sends ACK packets (random
acknowledgement/sequence numbers) to specific ports. If RST
comes back, the specified port is classified as “unfiltered.” If nothing
comes back or an ICMP error message comes, the specified port
is classified as “filtered.” This attack helps identify filtered services
and the type of firewall a victim’s network has. Looking for random
ACK packets can help detect this attack.

� Window scan: This is a probing attack performed against all
operating systems that use the vulnerability in TCP window–size
reporting. This attack helps the attacker identify active services as
well as filtered services on a victim’s machine.

136 � Enhancing Computer Security with Smart Technology

� RCP scan: This is a snooping attack performed against all operating
systems that use multiple services to identify active remote proce-
dure call (RPC) services. This attack helps the attacker identify
active RPC services as well as the associated program and version
numbers. This information is mostly used to execute arbitrary code
by the attacker on a victim’s machine. Looking for multiple con-
nection requests to specific RPC services within a specific time
window can help detect this attack.

6.3.2 DoS Attacks

DoS is a class of attacks in which an attacker makes the computing or
memory resource too busy or too full to handle legitimate requests, thus
denying legitimate users access to the machine. There are different ways
to launch DoS attacks: by abusing the computer’s legitimate features, by
targeting the implementation bugs, or by exploiting the system’s miscon-
figurations. DoS attacks are classified based on the services that an attacker
renders unavailable to legitimate users. Some of the popular attack types
are illustrated in Table 6.2 [26,27].

� Apache2: This is a type of DoS attack performed against an Apache
Web server, in which an attacker submits an HTTP request with

Table 6.2 Denial-of-Service Attacks

Attack Type Service Mechanism Effect of the Attack

Apache2 HTTP Abuse Crashes httpd

Back HTTP Abuse/bug Slows down server response

Land HTTP Bug Freezes the machine

Mail bomb N/A Abuse Annoyance

SYN Flood TCP Abuse Denies service on one or
more ports

Ping of Death ICMP Bug None

Process table TCP Abuse Denies new processes

Smurf ICMP Abuse Slows down the network

Syslogd Syslog Bug Kills Syslogd

Teardrop N/A Bug Reboots the machine

Udpstrom Echo/Chargen Abuse Slows down the network

Cyber-Security Challenges � 137

several HTTP headers. In theory, if the server receives too many
such requests, it will slow down the functionality of the Web server
and eventually crash. This attack temporarily denies the Web
service; the service can be regained with the system administrator’s
intervention.

� Back: This is a type of DoS attack performed against an Apache
Web server, in which an attacker submits a URL request with several
front slashes. While trying to process these requests, the server’s
service becomes unavailable for legitimate users. This attack tem-
porarily denies the Web service; the service can be regained
automatically.

� Land: This is a type of DoS attack performed against TCP/IP
implementations, in which an attacker sends a spoofed SYN packet
that has the same source and destination IP addresses. In theory,
it is not possible to have the same destination and source addresses.
The attacker targets the badly configured networks and uses the
innocent machines as zombies for performing distributed attacks.
This attack can be prevented by carefully configuring the network,
which prevents requests containing the same source and destina-
tion IP addresses.

� Mail bomb: This is a type of DoS attack performed against a server,
in which an attacker floods the e-mail queue, possibly causing
failure. The attacker tries to send thousands of e-mails to a single
user. This attack denies the service permanently. The service can
be regained by the system administrator’s intervention; blocking
the e-mails, coming from or to the same user within a short period
of time, can prevent the attack.

� SYN flood (Neptune): This is a type of DoS attack performed against
TCP/IP implementations, in which an attacker utilizes half-open
TCP connections to flood the data structure of half-open connec-
tions on an innocent server, causing it to deny access to legitimate
requests. This attack, in some cases, can cause permanent failure.
The service can be regained automatically. Looking for a number
of simultaneous SYN packets, coming from the same host or
unreachable host in a given short period of time, can prevent this
attack.

� Ping of Death (PoD): This is a type of DoS attack performed against
older versions of operating systems, in which an attacker tries to
send an oversized IP packet, and the system reacts in an unpre-
dictable manner, causing crashing, rebooting, and even freezing in
some cases. This attack causes temporary failure of services. Look-
ing for ICMP packets that are longer than 64,000 bytes and blocking
them is the way to prevent this attack.

138 � Enhancing Computer Security with Smart Technology

� Process table: This is a type of DoS attack performed against a
variety of different UNIX systems, in which an attacker tries to
allocate a new process for every incoming TCP/IP connection.
When the systems process table is filled completely, legitimate
commands are prevented from being executed. This attack causes
temporary failure of services. Looking for a large number of active
connections on a single port helps in preventing this attack.

� Smurf: This is a type of DoS attack performed against all the
systems connected to the Internet, in which an attacker sends ICMP
echo request packets to IP broadcast addresses from remote loca-
tions to deny services. This attack causes temporary DoSs and can
be automatically recovered. Looking for a large number of echo
replies to the innocent machine from different places without any
echo request made by the innocent machine helps in detecting
this attack.

� Syslogd: This is a type of DoS attack performed against Solaris servers,
in which an attacker tries to kill the syslogd service remotely. The
attacker exploits the DNS lookup feature; if the source IP address
does match the DNS record, then syslogd crashes with a segmentation
fault. This attack permanently denies services and can only be recov-
ered with the system administrator’s intervention.

� Teardrop: This is a type of DoS attack performed against older
versions of the TCP/IP stack, in which an attacker exploits the
feature of IP fragment reassembly. This attack denies the services
temporarily.

� Udpstorm: This is a type of DoS attack performed against networks,
in which an attacker utilizes the UDP service feature to cause
congestion and slowdown. This attack denies the services perma-
nently and can only be resumed with the system administrator’s
intervention. This attack can be identified by looking for spoofed
packets and inside-network traffic.

6.4 Significant Feature Selection
for Intrusion Detection

Feature selection and ranking is an important issue in intrusion detection
[28,29]. Of the large number of features that can be monitored for intrusion
detection purposes, which are truly useful? Which are less significant? And
which may be useless? These questions are relevant because the elimina-
tion of useless features (the so-called audit trail reduction) enhances the
accuracy of detection while speeding up the computation, thus improving
the overall performance of an IDS. In cases in which there are no useless

Cyber-Security Challenges � 139

features, by concentrating on the most important ones, we may well
improve the time performance of an IDS without affecting the accuracy
of detection in statistically significant ways. The feature ranking and
selection problem for intrusion detection is similar in nature to various
engineering problems that are characterized by:

� Having a large number of input variables x = (x1, x2, …, xn) of
varying degrees of importance to the output y; i.e., some elements
of x are essential, some are less important, some of them may not
be mutually independent, and some may be useless or irrelevant
(in determining the value of y)

� Lacking an analytical model that provides the basis for a mathe-
matical formula that precisely describes the input–output relation-
ship, y = F (x)

� Having available a finite set of experimental data, based on which
a model (e.g., neural networks) can be built for simulation and
prediction purposes

Because of the lack of an analytical model, one can only seek to
determine the relative importance of the input variables through empirical
methods. A complete analysis would require examination of all possibil-
ities, e.g., taking two variables at a time to analyze their dependence or
correlation, then taking three at a time, etc. This, however, is both
infeasible (requiring 2n experiments) and not infallible (because the avail-
able data may be of poor quality in sampling the whole input space).
Features are ranked based on their influence toward the final classification.

A subset of the DARPA intrusion detection dataset is used for offline
analysis. For each TCP/IP connection, 41 various quantitative and quali-
tative features were extracted for intrusion analysis.

The 41 features extracted fall into three categories: “intrinsic” features that
describe the individual TCP/IP connections that can be obtained from net-
work audit trails; “content-based” features that describe the payload of the
network packet that can be obtained from the data portion of the network
packet; and “traffic-based” features that are computed using a specific win-
dow (connection time or number of connections). Description of most
important features as ranked by three feature-ranking algorithms (support
vector decision function, linear genetic programming, and multivariate adap-
tive regression splines) is given in Table 6.3, Table 6.4, and Table 6.5.

6.4.1 SVM-Specific Feature-Ranking Method

It is of great interest and use to find exactly which features underline the
nature of connections of various classes. This is precisely the goal of data

140 � Enhancing Computer Security with Smart Technology

Table 6.3 Most Important Features Description
as Ranked by SVDF

Ranking Algorithm Feature Description

Normal Destination bytes: number of bytes received by the
source host from the destination host

dst_host_count: number of connections from the
same host to the destination host during a specified
time window

Logged in: binary decision
(1 successfully logged in, 0 failed log-in)

dst_host_same_srv_rate: percentage of connections
to same service ports from a destination host

Flag: normal or error status of the connection

Probe Source bytes: number of bytes sent from the host
system to the destination system

dst_host_srv_count: number of connections from
the same host with same service to the destination
host during a specified time window

Count: number of connections made to the same
host system in a given interval of time

Protocol type: type of protocol used to connect
(e.g., TCP, UDP, ICMP, etc.)

srv_count: number of connections to the same
service as the current connection during a specified
time window

DoS Count: number of connections made to the same
host system in a given interval of time

srv_count: number of connections to the same
service as the current connection during a specified
time window

dst_host_srv_serror_rate: percentage of
connections to the same service that have SYN
errors from a destination host

serror_rate: percentage of connections that have
SYN errors

dst_host_same_src_port_rate: percentage of
connections to same service ports from a
destination host

Cyber-Security Challenges � 141

visualization in data mining. The problem is that the high dimensionality
of data makes it hard for human experts to gather any knowledge. If we
knew the key features, we could greatly reduce the dimensionality of the
data and, thus, help human experts become more efficient and productive
in learning about network intrusions.

The information on which features play key roles and which is more
neutral is hidden in the support vector machine (SVM) decision function.
The decision function is formulated using linear kernels as follows [30,31].

F(X) = 〈W, X〉 + b (6.1)

The point X is predicted to be in class A or positive class if F(X) is
positive, and class B or negative class if F(X) is negative. We can rewrite
the formula (2) to expand the dot product of W and X.

F(X) = ΣWiXi + b (6.2)

U2Su Source bytes: number of bytes sent from the host
system to the destination system

Duration: length of the connection

Protocol type: type of protocol used to connect
(e.g., TCP, UDP, ICMP, etc.)

Logged in: binary decision
(1 successfully logged in, 0 failed log-in)

Flag: normal or error status of the connection

R2L dst_host_count: number of connections from the
same host to the destination host during a specified
time window

Service: type of service used to connect
(e.g., finger, FTP, Telnet, SSH, etc.)

Duration: length of the connection

Count: number of connections made to the same
host system in a given interval of time

srv_count: number of connections to the same
service as the current connection during a specified
time window

Table 6.3 Most Important Features Description
as Ranked by SVDF (continued)

Ranking Algorithm Feature Description

142 � Enhancing Computer Security with Smart Technology

One can see that the value of F(X) depends on the contribution of
each factor, WiXi. Because Xi only values >0, the sign of Wi indicates
whether the contribution is toward positive or negative classification. The
absolute size of Wi measures the strength of this contribution. In other

Table 6.4 Most Important Features Description
as Ranked by LGPs

Ranking Algorithm Feature Description

Normal Hot: number of “hot” indicators

Source bytes: number of bytes sent from the host
system to the destination system

Destination bytes: number of bytes received by the
source host from the destination host

num_compromised: number of compromised
conditions

dst_host_rerror_rate: percentage of connections that
have REJ errors from a destination host

Probe dst_host_diff_srv_rate: percentage of connections to
different services from a destination host

rerror_rate: percentage of connections that have REJ
errors

srv_diff_host_rate: percentage of connections that
have same service to different hosts

Logged in: binary decision
(1 successfully logged in, 0 failed log-in)

Service: type of service used to connect
(e.g., finger, FTP, Telnet, SSH, etc.)

DoS Count: number of connections made to the same host
system in a given interval of time

num_compromised: number of compromised
conditions

Wrong fragments: number of wrong fragments

Land: binary decision
(1 if connection is from/to the same host/port;
0 otherwise)

Logged in: binary decision
(1 successfully logged in, 0 failed log-in)

Cyber-Security Challenges � 143

words, if Wi is a large positive value, then the ith feature is a key factor
of the positive class or class A. Similarly, if Wi is a large negative value,
then the ith feature is a key factor of the negative class or class B.
Consequently, the Wi, which is close to zero, either positive or negative,
carries little weight. The feature that corresponds to this Wi, is said to be
the garbage feature, and removing it has very little effect on the classifi-
cation. Having retrieved this information directly from the decision function
of SVMs, we rank the Wi, from largest positive to largest negative. This
essentially provides the soft partitioning of the features into the key
features of class A, neutral features, and the key features of class B. We
say soft partitioning, as it either depends on a threshold on the value of
Wi, which will define the partitions, or the proportions of the features,
which we want to allocate to each of the partitions. Both the threshold
and the value of proportions can be set by the human expert.

Table 6.4 Most Important Features Description
as Ranked by LGPs (continued)

Ranking Algorithm Feature Description

U2Su root_shell: binary decision
(1 if root shell is obtained; 0 otherwise)

dst_host_srv_serror_rate: percentage of connections
to the same service that have SYN errors from a
destination host

num_file_creations: number of file creations

serror_rate: percentage of connections that have SYN
errors

dst_host_same_src_port_rate: percentage of
connections to same service ports from a destination
host

R2L Guest log-in: binary decision
(1 if the log-in is guest, 0 otherwise)

num_file_access: number of operations on access
control files

Destination bytes: number of bytes received by the
source host from the destination host

num_failed_logins: number of failed log-in attempts

Logged in: binary decision
(1 successfully logged in, 0 failed log-in)

144 � Enhancing Computer Security with Smart Technology

Table 6.5 Most Important Features Description
as Ranked by MARS

Ranking Algorithm Feature Description

Normal Destination bytes: number of bytes received by the
source host from the destination host

Source bytes: number of bytes sent from the host
system to the destination system

Service: type of service used to connect
(e.g., finger, FTP, Telnet, SSH, etc.)

Logged in: binary decision
(1 successfully logged in, 0 failed log-in)

Hot: number of “hot” indicators

Probe dst_host_diff_srv_rate: percentage of connections to
different services from a destination host

dst_host_srv_count: number of connections from the
same host with same service to the destination host
during a specified time window

Source bytes: number of bytes sent from the host
system to the destination system

dst_host_same_srv_rate: percentage of connections to
same service ports from a destination host

srv_count: number of connections to the same service
as the current connection during a specified time
window

DoS Count: number of connections made to the same host
system in a given interval of time

srv_count: number of connections to the same service
as the current connection during a specified time
window

dst_host_srv_diff_host_rate: percentage of
connections to the same service from different hosts
to a destination host

Source bytes: number of bytes sent from the host
system to the destination system

Destination bytes: number of bytes received by the
source host from the destination host

Cyber-Security Challenges � 145

6.4.1.1 Support Vector Decision Function Ranking

The input ranking is done as follows: First, the original dataset is used
for the training of the classifier. Then, the classifier’s decision function is
used to rank the importance of the features. The procedure is:

1. Calculate the weights from the support vector decision function.
2. Rank the importance of the features by the absolute values of the

weights.

U2Su dst_host_srv_count: number of connections from the
same host with same service to the destination host
during a specified time window

Count: number of connections made to the same host
system in a given interval of time

Duration: length of the connection

srv_count: number of connections to the same service
as the current connection during a specified time
window

dst_host_count: number of connections from the
same host to the destination host during a specified
time window

R2L srv_count: : number of connections to the same
service as the current connection during a specified
time window

Count: number of connections made to the same host
system in a given interval of time

Service: type of service used to connect
(e.g., finger, FTP, Telnet, SSH, etc.)

dst_host_srv_count: number of connections from the
same host with same service to the destination host
during a specified time window

Logged in: binary decision
(1 successfully logged in, 0 failed log-in)

Table 6.5 Most Important Features Description
as Ranked by MARS (continued)

Ranking Algorithm Feature Description

146 � Enhancing Computer Security with Smart Technology

6.4.2 Ranking Algorithm Using Linear Genetic Programming

The performance of each of the selected input feature subsets is measured
by invoking a fitness function with the correspondingly reduced feature
space and training set, and evaluating the intrusion detection accuracy.
Once the required number of iterations is completed, the evolved high-
ranked programs are analyzed for how many times each input appears
in a way that contributes to the fitness of the programs that contain it.
The best feature subset found is then output as the recommended set of
features to be used in the actual input for the classifier. In the feature
selection problem, the main interest is in the representation of the space
of all possible subsets of the given input feature set. Each feature in the
candidate feature set is considered as a binary gene, and each individual
consists of a fixed-length binary string representing some subset of the
given feature set. An individual of length d corresponds to a d-dimensional
binary feature vector Y, in which each bit represents the elimination or
inclusion of the associated feature. Then, yi = 0 represents elimination,
and yi = 1 indicates inclusion of the ith feature. Fitness F of an individual
program p is calculated as the mean square error (MSE) between the
predicted output () and the desired output () for all n training
samples and m outputs [32,33].

(6.3)

Classification error (CE) is computed as the number of misclassifica-
tions. Mean classification error (MCE) is added to the fitness function,
whereas its contribution is proscribed by an absolute value of weight (W).

6.4.3 Ranking Algorithm Using Multivariate Adaptive
Regression Splines

Generalized cross validation (GCV) is an estimate of the actual cross
validation that involves more computationally intensive goodness-of-fit
measures. Along with the multivariate adaptive regression splines (MARS)
[34] procedure, a GCV procedure is used to determine the significant input
features. Noncontributing input variables are thereby eliminated.

(6.4)

Oij
pred Oij

des

F p
n m

O O
w

n
CE M

i

n

j

m

ij
pred

ij
des() ()=

⋅
− + =

= =
∑ ∑1

1 1

2 SSE w MCE+ ⋅

GCV
N

y f x
k

N

i i

i

N

= −
−=

∑1

1

2

1

[
()

]

Cyber-Security Challenges � 147

where N is the number of records, and x and y are independent and
dependent variables, respectively. The variable k is the effective number
of degrees of freedom whereby the GCV adds penalty for adding more
input variables to the model. The contribution of the input variables may
be ranked using the GCV with or without an input feature [35].

6.5 Detection of Probes and DoS Attacks
As DoS and probe attacks involve several connections in a short timeframe
as opposed to R2L and U2Su, which are often embedded in the data
portions of a single connection, traffic-based features play an important
role in deciding whether a particular network activity is engaged in probing
or DoS. It is shown that probe attacks can be detected at the originating
hosts, and the class of DoS attacks can be detected at the network
boundary.

6.5.1 Real-Time Data Collection and Feature Extraction

Experiments were performed on a real network, using two clients and
the server that serves the New Mexico Tech Computer Science Department
network. The network packet parser uses the WINPCAP library to capture
network packets and extracts the relevant features required for classifica-
tion. The output of the parser for probe classification includes seven
features:

1. The duration of the connection to the target machine
2. The protocol used to connect
3. The service type
4. The number of source bytes
5. The number of destination bytes
6. The number of packets sent
7. The number of packets received

The output summary of the parser includes eleven features for DoS
classification:

1. The duration of the connection to the target machine
2. The protocol used to connect
3. The service type
4. The status of the connection (normal or error)
5. The number of source bytes
6. The number of destination bytes

148 � Enhancing Computer Security with Smart Technology

7. The number of connections to the same host as the current one
during a specified time window (in our case, 0.01 s)

8. The number of connections to the same host as the current one
using same service during the past 0.01 s

9. The percentage of connections that have SYN errors during the
past 0.01 s

10. The percentage of connections that have SYN errors while using
the same service during the past 0.01 s

11. The percentage of connections to the same service during the past
0.01 s

The output from the intrusion classifier is either normal or probe, or
normal or DoS for each connection. A variety of probes, including SYN
stealth, FIN stealth, ping sweep, UDP scan, null scan, xmas tree, IP scan,
idle scan, ACK scan, window scan, RCP scan, and list scan with several
options are targeted at the server. Normal data included multiple sessions
of FTP, Telnet, SSH, HTTP, SMTP, POP3, and IMAP. Network data origi-
nating from a host to the server that includes both normal and probes is
collected for analysis.

In the experiments performed, more than 24 types of DoS attacks are
analyzed. Network data originating from a host to the server is collected
for analysis. The set of features selected for stealthy probe detection and
DoS detection are based on our own feature ranking algorithms and
obtained using the DARPA intrusion dataset. The classifiers used in our
experiments are SVMs, MARS, and linear genetic programming (LGP).

6.5.2 Performance Evaluation

Network packets contain information on the protocol and service used to
establish the connection between a client and the server. Network services
have an expected number of bytes of data to be passed between a client
and the server. If data flow is too little or too much, it raises a suspicion
about the connection, as to whether it is a case of misuse. Normal, probing,
and DoS activities can be separated by using this information.

In our evaluation, we perform binary classification, normal/probe and
normal/DoS. The training and testing dataset for detecting probes contains
10,369 data points generated from normal traffic and probes. The training
and testing dataset for detecting DoS contains 5,385 data points generated
from normal traffic and DoS-attack traffic. Table 6.6 and Table 6.7 sum-
marize the overall classification accuracy, normal/probe and normal/DoS,
using MARS, SVM, and LGP, respectively.

Cyber-Security Challenges � 149

Table 6.7 (containing three “confusion matrices” for the different clas-
sifiers used in experiments) gives the performance in terms of DoS
detection accuracy.

The top-left entry in Table 6.7 shows that 2692, 2578, and 1730 of the
actual normal test set were detected to be normal by SVM, LGP, and
MARS, respectively; the last column indicates that 99.46, 95.26, and 63.9
percent of the actual normal data points were detected correctly by SVM,
LGP, and MARS, respectively.

6.6 Attacks on IDSs
IDS plays a vital role in a security chain by alerting site administrators
with all attempts to breach the information security policy of an organi-
zation. For IDS to be more useful in an information security chain,
information system policy administrators need to be able to rely on the
information provided by it; flawed systems not only provide false infor-
mation about the current security scenario but also generate large volumes
of false alarms. Moreover, the value of information from faulty systems is
not only negated, but also potentially misleading [36].

Most of the IDSs rely on several components (data collection module,
analysis module, storage module, and response module) to decide whether
a particular activity is normal or malicious. Given the implications of
malfunction of an IDS component, it is reasonable to assume that IDSs
are themselves logical targets for attack. Most of the time, information
security technologies become primary targets of a knowledgeable attacker.

Table 6.6 Performance Comparison of Testing for Detecting Probes

Class\Machine SVMs (Percentage) LGPs (Percentage) MARS (Percentage)

Normal 99.75 100 99.12

Probe 99.99 100 100

Table 6.7 Performance Comparison of Testing for Five-Class Classifications

Class/
Learning Machine

Normal
SVM /LGP/MARS

DoS
SVM/LGP/MARS

Overall Accuracy
SVM/LGP/MARS

Normal 2692/2578/1730 14/128/976 99.48/95.26/63.9

DoS 538/153/0 2141/2526/2679 79.91/94.28/100

Accuracy (percentage)
SVM/ LGP/ MARS

83.77/99.08/63.9 80.44/99.06/73.2

150 � Enhancing Computer Security with Smart Technology

A potential attacker targets IDS components and can make the IDS
ineffective by disabling it or forcing it to provide false information (false
alarms).

6.6.1 Vulnerabilities in IDSs

All the components of an IDS are vulnerable to multiple attacks and have
unique security implications for the functionality of the IDS.

� The data collection module collects audit trails (user logs, network
trails, system calls, etc.) for the other IDS components to decide
whether a particular activity is malicious or normal. If an attacker
targets this module, the IDS becomes nonfunctional.

� The analysis module analyzes inputs (audit trails) from the data
collection module to decide whether a particular activity is normal
or malicious. If an attacker knows the analysis technique, he or
she can mislead and circumvent the IDS from being functional.

� The storage module provides a mechanism to store the data col-
lected by data collection and analysis modules in a secure fashion.
Data stored might be used for building new signatures, updating
user and system profiles, forensics analysis, and identifying key
audit information. An attacker who can compromise the storage
module can prevent the IDS from logging the attack information,
insertion, or deletion of audit trails. A more advanced attacker can
also change the profiles and intrusion detection signatures of the
IDS.

� The response module provides a mechanism for aftermath opera-
tions. A compromise on a response module will allow the attacker
to continuously attack the system without generating an alarm. In
case of reactive devices, rather than aftermath devices, an attacker
can make the system deny legitimate activity and accept malicious
activity.

6.6.2 Insertion and Evasion Attacks

Insertion attacks are caused by inserting malfunction packets that an end
system rejects but an IDS accepts [13]. An attacker exploits this feature
by sending packets that an end system will reject but an IDS will still
accept and inspect for malicious activity. Attacks range from insertion of
malfunction packets to data modification. Evasion attacks are caused by
inserting legitimate packets that an IDS rejects but an end system accepts.
An attacker exploits this feature by sending packets that an end system

Cyber-Security Challenges � 151

will accept but an IDS will reject. This will cause an IDS to generate false
alarms and deny legitimate packets.

� Bad header fields: End systems reject packets that have invalid
header fields. Network peripheral devices do not route the packets
with invalid header fields, but if the IDS is on the same local
network as the attacker’s, it is still subject to insertion attacks. Most
of the IP implementations do not process packets with a bad
checksum. An IDS that does not check the packets for correct
checksums is thus vulnerable to simple insertion attacks. Every
packet requires a time to live (TTL) field to be routed by the
routers. The router decrements the TTL value as it routes the packet
to the next hop. An attacker can exploit this property by specifying
a time that is just enough for the packets to reach the IDS but not
the end system.

� IP options: Lack of proper knowledge of end-system implementa-
tions might lead an IDS to take ambiguous actions. Parsing of IP
options varies from system to system; an IDS requires special
processing capabilities for proper and correct interpretations. Most
end systems drop the packets if the IP checksum is wrong. An
IDS without the knowledge of the end system’s actions on wrong
IP checksums might lead to ambiguity in taking proper action.

� Media access control (MAC) address spoofing: Most of the network
peripheral devices do not check for matching the IP address and
MAC address. Because of the use of complex dynamic protocols
such as Dynamic Host Control Protocol (DHCP) and virtual private
networks (VPNs), network address translators (NATs), etc., it
becomes even harder to verify the legitimacy. An attacker who
knows the MAC address of the IDS sends packets to it. An IDS
that does not have the capability to check for legitimate IP and
MAC address pairs is subject to simple insertion attacks.

6.6.3 Availability Attacks

The recent trend of the attackers — “if I can’t have it, nobody can” —
has changed the emphasis of information assurance with respect to
information security. Legitimate networks packets consume various kinds
of shared resources, such as bandwidth, memory, processing power, and
operating system structures. Most of the IDS components require system
and network resources to process the information passed by the network.
An attacker identifies a few activities that are resource intensive and targets
the IDS with such activity, making it nonfunctional. A few possible
scenarios of resource exhaustion are: buffers exhausted, file descriptors

152 � Enhancing Computer Security with Smart Technology

exhausted, address space exhausted, disk space exhausted, CPU cycle
exhausted, and bandwidth exhausted.

6.7 Attacks on Anti-Virus Tools
Software security assurance and malware detection are important aspects
of information system assurance. Software obfuscation is a general tech-
nique that is used to protect the software from reverse engineering
techniques and is being used by malware writers to circumvent the current
detection mechanisms (anti-virus tools). Current static scanning techniques
for malware detection have serious limitations; on the other hand, neither
does sandbox testing provide a complete solution because of time con-
straints (e.g., time bombs cannot be detected before their preset times
expire). In this section, we describe a few obfuscation techniques that
were applied to recent viruses and were used to thwart commercial-grade
anti-virus tools.

6.7.1 Malware Used for Analysis

Several recent viruses (executables) are being used for analysis. We
describe the analysis of four viruses. The description of the virus is given
based on the payload, enabling vulnerability, propagation medium, and
the systems infected.

� W32.Mydoom: A mass-mailing worm and a blended backdoor that
arrives as an attachment with file extensions such as .bat, .cmd,
.exe, .pif, .scr, or .zip [37]. The payload performs a DoS against
www.sco.com and creates a proxy server for remote access using
TCP ports 3127 through 3198. Infects all Windows systems.

� W32.Blaster: Exploits Windows DCOM RPC vulnerability using TCP
port 135. The payload launches a DoS attack against windowsup-
date.com, causing systems to crash and opening a hidden remote
cmd.exe shell. Propagates via TCP ports 135 and 4444 and UDP
port 69. Infects only Windows 2000 and Windows XP systems.

� W32.Beagle: A mass-mailing worm blended with a backdoor. The
worm contains large-scale e-mail with extensions .wab, .htm, .xml,
.nch, .mmf, .cfg, .asp, etc. [38]. Uses its own SMTP engine and TCP
port 2745 to spread, and also tries to spread via file-sharing
networks such as Kazaa. Infects all Windows systems.

� Win32.Bika: According to the virus library, it is a harmless, per-
process, memory-resident, parasitic Win32 virus. It infects only
Win32 applications [39]. The virus writes itself to the end of the

Cyber-Security Challenges � 153

file while infecting an application. Once the host program is
infected, it starts the virus hooks “set current directory” Win32 API
functions (SetCurrentDirectoryA, SetCurrentDirectoryW) that are
imported by the host program and stays as a background thread
of infected process, and then infects files in the directories when
the current directory is being changed. The virus does not manifest
itself.

6.7.2 Obfuscation

In its simplest form, obfuscation is defined as obscuring some information
such that another person cannot construe its true meaning. This is certainly
true for code obfuscation, in which the objective is to hide the underlying
logic of a program.

Code obfuscation has been compared to code optimization, which is
some transformation that will minimize a program’s metric, such as exe-
cution time or execution size; code obfuscation has the additional require-
ment that the code transformation also maximizes obscurity [40]. When
we optimize for speed, we generally try to take advantage of hardware
pipelines, memory buffers, etc., while leaving the program essentially the
same. Any optimization that changes the program’s functionality or logic
cannot be applied blindly and is generally avoided.

Obfuscation has also been applied to program watermarking and is a
well-known technique to prevent reverse engineering [41]. In general,
obfuscating a program to prevent reverse engineering is similar to a classic
cryptography game: you try and make reversing your obfuscation hard
enough such that it is impractical to attack. Given enough time and
resources, any obfuscation can be reversed but as long as the reverse
engineering takes 100,000 years it is considered pretty secure. By obfus-
cating, you can prevent another individual from gaining knowledge about
your program. With respect to malware, code obfuscation is an appealing
technique to hinder detection. A simple obfuscation technique may render
a known virus completely invisible to conventional scanners with very
little effort on the part of the virus writer.

Applying an obfuscation transformation to a program has the advantage
that it is essentially a self-decrypting encryption. Although the code is
rendered incomprehensible, the program remains viable.

6.7.2.1 Data Obfuscation

Data obfuscation changes the look of a program by modifying the con-
stants or encapsulated bits of data. An example would be to split the

154 � Enhancing Computer Security with Smart Technology

string “hello world” into smaller strings, such as he, ll, and o. Another
method would be to separate a Boolean variable into two integers and
use comparisons between the two to emulate the true/false properties of
the original.

In general, complex data transformations require the addition of helper
code if the original functionality is to be maintained. In the example given
in the preceding text, we would need to generate code to concatenate
the small strings together to get the original “hello world” before using it.

6.7.2.2 Control Flow Obfuscation

Control flow transformations focus on obscuring how the program runs.
For example, inserting junk code into a program changes its appearance
considerably but does not change the logic. A more complex example
would be to use global pointers for control flow. If we used pointers p
and q and inserted a statement such as if (p == q) then, it is nearly
impossible to determine if this statement is true or false by using static
analysis. Such a combination of pointers and control flow statements is
considered opaque because of the difficulty inherent in pointer alias
analysis.

This type of obfuscation is particularly appealing to malware authors
because of its strength. We see control flow transformations implemented
in polymorphic and metamorphic engines in which the code changes with
each infected host.

6.7.2.3 Other Techniques

Data and control flow are not the only techniques that can be used to
obscure a program’s meaning or prevent reverse engineering. Many soft-
ware authors make use of antidisassembly and antidebugging techniques
to hinder analysis. In general, these are tricks that slow down automated
tools such as disassembles. Bytecode scramblers are also used to obfuscate
strongly typed bytecode such as that of Java. All of these techniques,
combined with a generous helping of data and control flow obfuscation,
help make code analysis exorbitantly difficult.

6.7.2.4 Classification

For simplicity, we have separated obfuscation techniques into six general
categories. Because of the complexity in implementing and detecting
pointer aliases, we gave them their own category. As a general rule, the
complexity and robustness of the technique increases with the type level.

Cyber-Security Challenges � 155

Straight control flow obfuscation is (in general) not as robust as both data
and control flow obfuscation together. These types assume a low-level
language such as x86 assembly.

� Type 0: None — Program is left unmodified and functions exactly
the same as before.

� Type 1: Null operations — NOPs are inserted into the code. There is
virtually no modification to data or control flow. An example of a
type-1 transformation is presented in Table 6.8. On the left, we have
the original code, and on the right, we have the modified code with
null operations inserted every second operation. Inserting null oper-
ations is essentially the same as inserting white space in a document:
it may take longer to read but the content is exactly the same.

� Type 2: Data — Some data obfuscation transformation is applied,
such as string splitting or variable-type replacement. For example,
we could replace a Boolean variable with two integers. If they are
equal, the statement is true; otherwise it is false. In Table 6.9, x
is a Boolean variable, and a and b are integers. The code on the
left is the original control flow, and the code on the right performs
exactly the same but has a different signature.

Table 6.8 Null Operations Obfuscation

Original Code

Mov eax, -44(ebp)

Mov -44(ebp), ebx

Sub 12, esp

Lea -24(ebp)

Push eax

After Transformation

Mov eax, -44(ebp)

Mov

Nop

-44(ebp), ebx

Sub 12, esp

Lea -24(ebp)

Nop Null operation

Push eax

156 � Enhancing Computer Security with Smart Technology

� Type 3: Control flow — Control flow transformations are applied.
Code is swapped around, and jump instructions are inserted. For
example, we could copy the contents of a subroutine to another
location in the file and add jumps to and from the subroutine. The
code would function in exactly the same manner but look quite
different. In Table 6.10, three lines of code have been shifted to
some location (denoted as [shift]), and helper code has been
inserted.

Table 6.9 Data Obfuscation

Original Code and Meaning Transformed Code and Meaning

cmpb 0, x if (x == true) mov a, eax if (a < b)

je .sub goto sub cmpl b, eax goto sub

jge .sub

Table 6.10 Control Flow Obfuscation

Original Code

Cmp 24, eax

Jne .sub

Sub 12, eax

Push eax

After Transformation

Jmp [shift]

Nop Helper code

Nop

Push eax
Original execution path resumes

Cmp 24, eax

Jne .sub – [shift]

Sub 12, eax

Jmp -[shift] Helper code

Cyber-Security Challenges � 157

� Type 4: Combination of 2 and 3 — We pull out all the stops and
combine data and control flow transformations. At this level, junk
code is inserted, and variables can be completely replaced with
large sections of needless code. For example, we can modify all
integer variables as given in the preceding text and transpose the
program’s entry point as in Table 6.11.

� Type 5: Pointer aliasing — The final step is to introduce pointer
aliasing. Variables are replaced with global pointers, and functions
are referred to by arrays of function pointers. This type of trans-
formation is relatively easy to implement using high-level languages
that allow pointer references but tricky (at best) using assembly
languages. Pointer aliasing can be as simple as changing a = b
into *a = **b or as complex as converting all variables and
functions into an array of pointers referenced by pointers to pointers.

Table 6.11 Combination of Null Operations
and Control Flow Obfuscation

Original Code

cmp 24, eax

jne .sub

sub 12, eax

push eax

After Transformation

jmp [shift]

nop Helper code

nop

push eax
Original execution path resumes

mov 24, eax data obfuscation

cmpl b, eax data obfuscation

jle .dead_code

jne .sub – [shift]

sub 12, eax

jmp -[shift] Helper code

158 � Enhancing Computer Security with Smart Technology

6.7.3 Obfuscation Used for Defeating Commercial Scanners

In our research, we discovered that most commercial virus scanners could
be defeated with very simple obfuscation techniques. For example, simple
program entry point modifications consisting of two extra jump instructions
effectively defeated most scanners. Therefore, we only used the bare
minimum level of obfuscation needed to prevent detection. Our goal was
to show how trivial it is to modify recent malware to defeat existing
scanning techniques using only the compiled executable and a few tools.

The obfuscation process is presented in Figure 6.4. The binary code
is disassembled into a more readable format so that we may understand
what the program is doing. Someone with foreknowledge about malware
need not spend so much time analyzing the program. Once we have the
disassembled program and have studied it, we pick out an area to attack.
The first target when applying a control flow transformation is to attack
the program’s entry point, but when using data transformation we gen-
erally have to guess. We decide where and what modifications need to
be performed and change the binary file directly, using the disassembled
version as a guide or map. Once all modifications have been made, the
file is examined using the anti-virus scanners.

All variants, with the exception of the MyDoom virus, were generated
using off-the-shelf hex-editing tools. We were fortunate enough to have
a copy of the MyDoom.A source code and made all our modifications
using the Microsoft .net environment. The Hackman hex-editing utility
was used to generate all other variants [41].

Table 6.12 shows the preliminary results of New Mexico Tech’s recent
investigation of the MyDoom worm and several other recent worms and
viruses, using eight different (commercial) scanners and proxy services

Figure 6.4 Resource exhaustion scenarios of an IDS.

Buffers

exhausted

Resource exhaustion

File

descriptors

exhausted

Address

space

exhausted

Disk space

exhausted

CPU cycle

exhausted

Bandwidth

exhausted

Cyber-Security Challenges � 159

(� indicates detection, ✘ indicates failure to detect, and ? indicates only
an alert; all scanners used are most current and updated versions) [42,43].

The obfuscation techniques (Figure 6.5) used to produce the polymor-
phic versions of different malware tested in the experiments include
control flow modification (e.g., MyDoom V2 and Beagle V2), data segment
modification (e.g., MyDoom V1 and Beagle V1), and insertion of dead
code (e.g., Bika V1).

Table 6.12 Obfuscation Attacks on Commercial Scanners

N M1 M2 D P K F A

W32.Mydoom.A � � � � � � � �

W32.Mydoom.A V1 ✘ � � ✘ ✘ � � ✘

W32.Mydoom.A V2 � ✘ ✘ ✘ ✘ ✘ ✘ ✘

W32.Mydoom.A V3 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

W32.Mydoom.A V4 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

W32.Mydoom.A V5 ✘ ? ✘ ✘ ✘ ✘ ✘ ✘

W32.Mydoom.A V6 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

W32.Mydoom.A V7 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

W32.Bika � � � � � � � �

W32.Bika V1 ✘ ✘ ✘ � ✘ � � �

W32.Bika V2 ✘ ✘ ✘ � ✘ � � �

W32.Bika V3 ✘ ✘ ✘ � ✘ � � �

W32.Beagle.B � � � � � � � �

W32.Beagle.B V1 � � � ✘ ✘ � � ✘

W32.Beagle.B V2 � ✘ ✘ ✘ ✘ ✘ ✘ ✘

W32. Blaster.Worm � � � � � � � �

W32. Blaster.Worm V1 ✘ � � � � � � ✘

W32. Blaster.Worm V2 � � � ✘ ✘ � � ✘

W32. Blaster.Worm V3 � � � � � ✘ ✘ ✘

W32. Blaster.Worm V4 ✘ ✘ ✘ ✘ ✘ � � ✘

Note: N = Norton, M1 = McAfee UNIX Scanner, M2 = McAfee,
D = Dr. Web, P = Panda, K = Kaspersky, F = F-Secure, A = Antiy
Ghostbusters.

160 � Enhancing Computer Security with Smart Technology

In our recent work, we developed robust and unique signature-based
malware (viruses, worms, trojans, etc.) detection, with emphasis on detect-
ing obfuscated (or polymorphic) malware and mutated (or metamorphic)
malware. The hypothesis is that all versions of the same malware share
a common or core signature — possibly a second-order signature that is
a combination of several features of the code. After a particular malware
has been first identified (through sandbox testing or other means), it can
be analyzed to extract the signature that provides a basis for detecting
variants and mutants of the same malware in the future. The detection
algorithm is based on calculating the similarity of the code under scanning
and the signatures; for more details of the detection algorithm, see Ref-
erence 42 and Reference 43.

6.8 Conclusions
In this chapter, we attempted to present the current cyber-security chal-
lenges from an IDS and anti-virus tools perspective. The state-of-the-art
of the evolution of intrusion detection technology with an overview of
computer attack taxonomy and computer attack demystification, along
with a few detection signatures, is presented.

Because malware is expected to become more lethal (third-generation
worms using multiple attack vectors to exploit both known and unknown

Figure 6.5 Obfuscation attack process on commercial scanners.

Malware PE binary code

Decompress

Program analysis

Obfuscation

Scanner?
Malware detected

Malware not detected

Record malware

and

obfuscation type

Cyber-Security Challenges � 161

vulnerabilities) and spread even faster (attacking prescanned targets with
lightning speed) in the future, it is important that the scanners be capable
of detecting polymorphic (obfuscated or variant) versions of known mal-
ware. The currently available scanners, however, are grossly inadequate
because they are not able to detect even slightly obfuscated versions of
known malware.

Acknowledgments
The authors would like to thank Professor Rao Vemuri for the editorial
comments, which improved the presentation of this chapter. Support for
this research, received from ICASA (Institute for Complex Additive Systems
Analysis, a division of New Mexico Tech), a Department of Defense IASP
Capacity Building grant, and an NSF SFS Capacity Building grant, is
gratefully acknowledged. We would also like to acknowledge the assis-
tance of Dennis Xu, Patrick Chavez, Authonis Suliman, Karthikeyan
Ramamoorthy, and Xie Tao for assisting in carrying out some experiments.

References
1. Lunt, T., Tamaru, A., Gilham, F., Jagannathan, R., Jalali, C., Neumann, P.G.,

Javitz, H.S., Valdes, A., and Garvey, T.D. (1992). A Real Time Intrusion
Detection Expert System (IDES) — Final Report, SRI International, Menlo
Park, CA.

2. Ilgun, K. (1993). USTAT: A real-time intrusion detection system for UNIX.
Proceedings of the 1993 Computer Society Symposium on Research in Security
and Privacy, IEEE Computer Society Press, pp. 16–29.

3. Anderson, D., Lunt, T.F., Javitz, H., and Tamaru, V.A. (1995). A. Detecting
Unusual Program Behavior Using the Statistical Component of the Next-
generation Intrusion Detection Expert System (NIDES), SRI-CSL-95-06. SRI
International, Menlo Park, CA.

4. Porras, A. and Neumann, P. (1997). Event monitoring enabling responses
to anomalous live disturbances. In Proceedings of the National Information
Systems Security Conference, pp. 353–365.

5. Debar, H. and Dorizzi, B. (1992). An application of a recurrent network
to an intrusion detection system. Proceedings of the International Joint
Conference on Neural Networks, pp. 78–83.

6. Debar, H., Becke, B., and Siboni, D. (1992). A neural network component
for an intrusion detection system. Proceedings of the IEEE Computer Society
Symposium on Research in Security and Privacy, pp. 240–250.

7. Ryan, J., Lin, M-J., and Miikkulainen, R. (1997). Intrusion detection with
neural networks. Advances in Neural Information Processing Systems 10,
Cambridge, MA: MIT Press.

8. Cannady, J. (1998). Artificial neural networks for misuse detection. Pro-
ceedings of National Information Systems Security Conference, pp. 368–381.

162 � Enhancing Computer Security with Smart Technology

9. Mukkamala, S., Janowski, G., and Sung, A.H. (2001). Intrusion detection
using neural networks and support vector machines. Proceedings of hybrid
information systems advances in soft computing, Physica Verlag, Springer-
Verlag, ISBN 3790814806, pp. 121–138.

10. Fugate, M. and Gattiker, J.R. (2003). Computer intrusion detection with
classification and anomaly detection, using SVMs. International Journal of
Pattern Recognition and Artificial Intelligence 17(3): 441–458.

11. Hu, W., Liao, Y., and Vemuri, V R. (2003). Robust support vector machines
for anamoly detection in computer security. International Conference on
Machine Learning, pp. 168–174.

12. Heller, K.A., Svore, K.M., Keromytis, A.D., and Stolfo, S. J. (2003). One
class support vector machines for detecting anomalous window registry
accesses. In 3rd IEEE Conference Data Mining Workshop on Data Mining
for Computer Security.

13. Lazarevic, A., Ertoz, L., Ozgur, A., Srivastava, J., and Kumar, V. (2003). A
comparative study of anomaly detection schemes in network intrusion
detection. In Third SIAM Conference on Data Mining.

14. Stolfo, J., Fan, W., Lee, W., Prodromidis A., and Chan, P.K. (2000). Cost-
based modeling and evaluation for data mining with application to fraud
and intrusion detection. Results from the JAM Project by Salvatore.

15. Jianxiong, L. and Bridges, S.M. (2000). Mining fuzzy association rules and
fuzzy frequency episodes for intrusion detection. International Journal of
Intelligent Systems, Vol. 15, No. 8, pp. 687–704.

16. Crosbie, M. and Spafford, E.H. (1995). Defending a Computer System Using
Autonomous Agents. Technical Report CSD-TR-95-022.

17. Prodromidis, L. and Stolfo, S.J. (1999). Agent-Based Distributed Learning
Applied to Fraud Detection. Technical Report, CUCS-014-99.

18. Dasgupta, D. (1999). Immunity-based intrusion detection system: A general
framework. Proceedings of 22nd National Information Systems Security
Conference (NISSC), pp. 147–160.

19. Helmer, G., Wong, J., Honavar, V., and Miller, L. (2003). Lightweight agents
for intrusion detection. Journal of Systems and Software, pp. 109–122.

20. Kumar, S. and Spafford, E.H. (1994). An Application of Pattern Matching
in Intrusion Detection, Technical Report CSD-TR-94-013. Purdue University.

21. Kumar, S. and Spafford, E.H. (1994). A pattern matching model for misuse
intrusion detection. In Proceedings of the 17th National Computer Security
Conference, pp. 11–21.

22. Denning, D. (1987). An intrusion-detection model. IEEE Transactions on
Software Engineering, SE-13 (2): 222–232.

23. Lee, W. and Stolfo, S.J. (2000). A framework for constructing features and
models for intrusion detection systems. ACM Transactions on Information
and System Security, Vol. 3, No. 4, pp. 227–261.

24. Mahoney, M. and Chan, P.K. (2003). An analysis of the 1999 DARPA/Lincoln
laboratory evaluation data for network anomaly detection. 6th Interna-
tional Symposium on Recent Advances in Intrusion Detection, pp. 220–237.

25. Chan, P.K., Mahoney, M., and Arshad, M. (2003). Learning rules and clusters
for anomaly detection in network traffic. Managing Cyber Threats: Issues,
Approaches and Challenges, Kluwer (to appear).

Cyber-Security Challenges � 163

26. Kendall, K. (1998). A Database of Computer Attacks for the Evaluation of
Intrusion Detection Systems. Master’s thesis, Massachusetts Institute of
Technology.

27. Webster, S.E. (1998). The Development and Analysis of Intrusion Detection
Algorithms. Master’s thesis, Massachusetts Institute of Technology.

28. Mukkamala, S. and Sung, A.H. (2003). Feature Selection for Intrusion
Detection Using Neural Networks and Support Vector Machines. Journal
of the Transportation Research Board of the National Academics, Trans-
portation Research Record No 1822; 1822: 33–39.

29. Mukkamala, S. and Sung, A.H. (2003). Identifying significant features for
network forensic analysis using artificial intelligence techniques. In Inter-
national Journal on Digital Evidence, IJDE; 1.

30. Vladimir, V.N. (1995). The Nature of Statistical Learning Theory. Springer-
Verlag, Berlin.

31. Joachims, T. (2000). Making Large-Scale SVM Learning Practical. LS8-Report,
University of Dortmund.

32. Banzhaf, W., Nordin, P., Keller, E.R., and Francone, F.D. (1998). Genetic
Programming: An Introduction on the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann.

33. Brameier, M. and Banzhaf, W. (2001). A comparison of linear genetic
programming and neural networks in medical data mining, IEEE Transac-
tions on Evolutionary Computation, 5(1): 17–26.

34. Friedman, J.H. (1991). Multivariate Adaptive Regression Splines. Annals of
Statistics, 19: 1–141.

35. Steinberg, D., Colla, P.L., and Martin, K. (1999). MARS User Guide, Salford
Systems, San Diego.

36. Ptacek, H.T. and Newsham, N.T. (1998). Insertion, Evasion and Denial of
Service: Eluding Network Intrusion Detection. Secure Networks.

37. Symantec Corporation. http://securityresponse.symantec.com/avcenter/
(accessed on September 16, 2004).

38. Virus Library. http://www.viruslibrary.com/virusinfo/Win32.Bika.htm
(accessed on September 16, 2004).

39. Collberg, C.S. and Thomborson, C. (2002). Watermarking, tamper-proofing,
and obfuscation — tools for software protection, IEEE Transactions on
Software Engineering 28: 8, 735–746.

40. Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., and Zhang, Y. (2000).
Experience with software watermarking. In the Proceedings of 16th Annual
Computer Security Applications Conference, pp. 308–316.

41. Hex, H. (Ed.). http://www.technologismiki.com/en/index-h.html.
42. Sung, A.H., Xu, J., Ramamurthy, K., Chavez, P., Mukkamala, S., Sulaiman,

T., and Xie, T. (2004). Static Analyzer for Vicious Executables (SAVE).
Presented in Work-in-progress Section of IEEE Symposium on Security and
Privacy.

43. Sung, A.H., Xu, J., Chavez, P., and Mukkamala, S. (2004). Static Analyzer
for Vicious Executables (SAVE). Proceedings of 20th Annual Computer
Security Applications Conference (to appear).

165

Chapter 7

Artificial Immune Systems
in Intrusion Detection

Dipankar Dasgupta and Fabio Gonzalez

7.1 Introduction
The biological immune system (BIS) is a complex network of specialized
tissues, organs, cells, and chemicals. Its main function is to recognize the
presence of strange elements in the body and respond to eliminate or
neutralize the foreign invaders. All living organisms are exposed to many
different microorganisms and viruses that are capable of causing illness.
These microorganisms are called pathogens. In general, organisms try to
protect against pathogens using different mechanisms including high tem-
perature, low pH, and chemicals that repel or kill the invaders. More
advanced organisms (vertebrates) have developed an efficient defense
mechanism called the immune system [26]. Substances that can stimulate
specific responses of the immune system are commonly referred to as
antigens (pathogens usually act as antigens).

To be effective, the immune system must respond only to foreign
antigens; therefore, it should be able to distinguish between the self (cells,
proteins, and in general, any molecule that belongs to or is produced by
the body) and the nonself (antigens) [7]. The self/nonself discrimination
is an essential characteristic of the immune system because the outcome
of an inappropriate response to self-molecules can be fatal.

166 � Enhancing Computer Security with Smart Technology

The immune system generates a large variety of cells and molecules
for defensive purposes. These cells and molecules interact with each other
and form a dynamic network of active immune cells while detecting and
eliminating antigens. It is difficult to give a concise picture of such a
complex system, as many of the mechanisms are not completely under-
stood. Detailed review of the natural immune system and its functionalities
may be found elsewhere [26,27,33].

7.1.1 Multilayered Protection

The immune system can be envisioned as a multilayer system with defense
mechanisms in several layers [24]. The three main layers include the
anatomic barrier, innate immunity, and adaptive immunity. They are
described as follows:

� Anatomic barrier: The first layer is the anatomic barrier, composed
of the skin and the surface of mucous membranes. Intact skin
prevents the penetration of most pathogens and also inhibits most
bacterial growth because of its low pH. On the other hand, many
pathogens enter the body by binding or penetrating through the
mucous membranes; these membranes provide a number of non-
specific mechanisms that help to prevent such entry. Saliva, tears,
and some mucous secretions act to wash away potential invaders
and also contain antibacterial and antiviral substances [33].

� Innate immunity: Innate immunity [26], which is also known as
nonspecific immunity, refers to the defense mechanism against
foreign invaders that individuals are born with. Innate immunity
is mainly composed of the following mechanisms:
– Physiologic barriers: This includes mechanisms such as temper-

ature, pH, oxygen tension, and various soluble chemicals. The
purpose of these mechanisms is to provide detrimental living
conditions for foreign pathogens. For instance, the low acidity
of the gastric system acts as a barrier to infection by ingested
microorganisms because they cannot survive the low pH of the
stomach.

– Phagocytic barriers: Some specialized cells (such as macro-
phages, neutrophils, and natural killer cells) are able to ingest
specific material, including whole pathogenic microorganisms.
This ingestion has two purposes: to kill the antigen and to
present fragments of the invader’s proteins to other immune
cells and molecules.

– Inflammatory response: Activated macrophages produce pro-
teins called cytokines. They work as hormone-like messengers

Artificial Immune Systems in Intrusion Detection � 167

that induce the inflammatory response, which is characterized
by vasodilation and rise in capillary permeability. These changes
allow a large number of circulating immune cells to be recruited
to the site of the infection. Cytokines are also produced by
other immune cells and nonimmune cells, for example, those
that secrete cytokines when damaged [26].

� Adaptive immunity: This layer is described in detail in the following
subsections.

7.1.2 Adaptive Immunity

It is also called acquired or specific immunity, which represents the part
of the immune system that is able to specifically recognize and selectively
eliminate foreign microorganisms and molecules. It is important to note
that acquired immunity does not act independently of innate immunity;
on the contrary, they work together to eliminate foreign invaders. For
instance, phagocytic cells (innate immunity) are involved in the activation
of adaptive immune response. Also, some soluble factors, produced during
a specific immune response, have been found to augment the activity of
these phagocytic cells [33].

7.1.2.1 Characteristics of Adaptive Immunity

An important part of the adaptive immune system is managed by white
blood cells, called lymphocytes. These cells are produced in the bone
marrow, circulate in the blood and lymph system, and reside in various
lymphoid organs to perform immunological functions.

� B-cells and T-cells: They represent the major population of lym-
phocytes. These cells are produced in the bone marrow and are
inert initially, i.e., they are not capable of executing their functions.
To become immune competent, they have to go through a matu-
ration process. In the case of B-cells, the maturation process occurs
in the bone marrow itself. For T-cells, they have to migrate first
to the thymus, where they mature. In general, a mature lymphocyte
can be considered as a detector that can detect specific antigens.
There are billions of these detectors that circulate in the body,
constituting an effective, distributed anomaly detection and
response system [33].

� Humoral immunity: Mature B-cells express unique antigen-binding
receptors (ABR) on their surface. The interaction of ABR with
specific antigens induces proliferation and differentiation of B-cells

168 � Enhancing Computer Security with Smart Technology

into antibody-secreting plasma cells. An antibody is a molecule
that binds to antigens and neutralizes them or facilitates their
elimination. Antigens coated with antibodies can be eliminated in
multiple ways: by phagocytic cells, by the complement system, or
by preventing them from performing any damaging functions (e.g.,
binding of viral particles to host cells) [40].

� Cellular immunity: During their maturation, T-cells express a
unique ABR on their surface, called the T-cell receptor. Unlike B-
cell ABR that can recognize antigens alone, T-cell receptors can
only recognize antigenic peptides that are presented by cell-mem-
brane proteins known as major histocompatibility complex (MHC)
molecules. When a T-cell encounters antigens associated with an
MHC molecule on a cell,* the T-cell proliferates and differentiates
into memory T-cells and various effector T-cells. The cellular
immunity is accomplished by these generated effector T-cells.
There are different types of T-cells that interact in a complex way
to kill altered self-cells (for instance, virus-infected cells) or to
activate phagocytic cells [36].

� Self/nonself discrimination: The immune system can distinguish its
own cells from foreign antigens, and so responds only to the
dangerous nonself molecules. As was mentioned before, T-cells
mature in the thymus. There, they go through a process of selection
that ensures that they are able to recognize nonself peptides
presented by MHC [7].

� Negative selection: The purpose of negative selection is to test for
tolerance of self-cells. T-cells that recognize the combination of
MHC and self-peptides fail this test. This process can be seen as
a filtering of a large diversity of T-cells; only those T-cells that do
not recognize self-peptides are retained [30].

� Immune memory: The immune system can “remember” a previous
encounter with an antigen. This helps to deliver a quick response
in subsequent encounters. In particular, immune-competent lym-
phocytes are able to recognize specific antigens through their ABR.
The specificity of each T-cell and B-cell is determined prior to its
contact with the antigen through random gene rearrangements in
the bone marrow (or thymus) during the maturation process [32].
The presence of an antigen in the system and its subsequent
interaction with mature lymphocytes trigger an immune response,
resulting in the proliferation of lymphocytes with a unique antigenic

* In general, T-cells do not recognize whole antigen molecules; instead, their receptors
detect fragments of the antigen called peptides, which are processed and presented
by antigen-presenting cells (APCs).

Artificial Immune Systems in Intrusion Detection � 169

specificity. This process of population expansion of particular T-
cells and B-cells is called clonal selection. Clonal selection contrib-
utes to the specificity of adaptive immunity response because only
lymphocytes whose receptors are specific to a given antigen will
be cloned and, thus, mobilized for an immune response.

Another important consequence of clonal selection is immune memory
[33]. The first encounter of naive immune-competent lymphocytes with
an antigen generates the primary response, which, as discussed before,
results in the proliferation of the lymphocytes that can recognize this
specific antigen. Most of these lymphocytes die when the antigen is
eliminated; however, some are kept as memory cells. The next occurrence
of the same antigen can be detected quickly, activating a secondary
response. This response is faster and more intense because of the avail-
ability of such memory cells.

7.1.3 Computational Aspects of the Immune System

From the point of view of information processing, the natural immune
system exhibits many interesting characteristics. The following is a list of
these characteristics [12,20]:

� Pattern matching: The immune system is able to recognize specific
antigens and generate appropriate responses. This is accomplished
by a recognition mechanism based on chemical binding of recep-
tors and antigens. This binding depends on the molecular shape
and on the electrostatic charge.

� Feature extraction: In general, immune receptors do not bind to
the complete antigen but to peptides. In this way, the immune
system can recognize an antigen just by matching segments of it.
Antigenic features are extracted (called peptides) and presented to
the lymphocyte receptors by antigen-presenting cells (APC). These
APCs act as filters that can extract the important information and
remove the molecular noise.

� Learning and memory: The main characteristic of the adaptive
immune system is that it is able to learn through interaction with
the environment. The first time an antigen is detected, a primary
response is induced that includes the proliferation of lymphocytes
and a subsequent reduction. Some of these lymphocytes are kept
as memory cells. The next time the same antigen is detected, the
memory cells generate a faster and more intense response (sec-
ondary response). Memory cells work as an associative (highly)
distributed memory.

170 � Enhancing Computer Security with Smart Technology

� Diversity: The adaptive immune system can generate billions of
different recognition molecules that are able to uniquely recognize
different structures of foreign antigens. Clonal selection and hyper-
mutation mechanisms constantly test different detector configura-
tions for known and unknown antigens. This is a highly
combinatorial process that explores the space of possible config-
urations for close-to-optimum receptors that can cope with the
different types of antigens. Exploration is balanced with exploita-
tion by favoring the reproduction of promising individuals.

� Distributed processing: Unlike the nervous system, the immune
system does not possess a central controller. Detection and
response can be executed locally and immediately without com-
municating with any central organ. This distributed behavior is
accomplished by billions of immune molecules and cells that
circulate in the blood and lymph systems and are capable of making
decisions in a local collaborative environment.

� Self-regulation: Depending on the severity of the attack, the
response of the immune system can range from very light and
almost imperceptible to very strong. A stronger response uses a
lot of resources to help repel the attacker. Once the invader is
eliminated, the immune system regulates itself to stop the delivery
of new resources and to release the used ones. Programmed cell
death and clonal expansions are parts of this self-regulatory pro-
cess.

7.2 Artificial Immune Systems
The study and design of artificial immune systems (AISs) is a relatively
new area of research that tries to build computational systems that are
inspired by the BIS [14]. There are many desirable computational features
in the BIS that can be used to solve computational problems. In many
respects, AISs are abstract computational models of the immune system;
in fact, some AIS techniques are based on theoretical models of the BIS.
However, the main difference lies in the use of AISs as a problem-solving
technique.

A theoretical model that has served as a basis for some AISs is the
idiotypic network theory proposed by Jerne [29]. This theory proposed
that the BIS regulates itself by forming a network of B-cells that can
enhance or suppress the expression of specific antibody types. This self-
regulatory mechanism maintains a stable immune memory. The formation
of such a network is only possible by the presence of paratopes on the
B-cells that can be recognized by other B-cell epitopes. This recognition

Artificial Immune Systems in Intrusion Detection � 171

usually extends to more than one level, resulting in the formation of
complex reaction networks. This model is a simplification of the BIS that
ignores important elements such as T-lymphocytes and macrophages and
concentrates on the modeling of the idiotypic networks.

Forrest and her group [21] proposed the negative-selection algorithm
(NSA), which is inspired by the mechanism used by the immune system
to train the T-cells to recognize antigens (nonself) and to prevent them
from recognizing the body’s own cells (self). Different variations of this
algorithm have been applied to problems in anomaly detection [14,25],
fault detection [13,41], and computer intrusion detection [15,21,24]. The
rest of this chapter describes in detail the NSA, its versions, and applica-
tions to intrusion detection.

7.2.1 NSA

The immune system can recognize and classify different novel patterns
(pathogenic patterns of interest) and generate selective responses in
nonself space. Self/nonself (or danger) discrimination may be one of the
important tasks of the immune system during the process of pathogenic
recognition.

This discrimination is achieved in part by T-cells, which have receptors
on their surface that can detect foreign proteins (antigens). During the
generation of T-cells, receptors are made by a pseudorandom genetic
rearrangement process. Then they undergo a censoring process in the
thymus, called negative selection, in which T-cells that react against self-
proteins are destroyed; hence, only those that do not bind to self-proteins
are allowed to leave the thymus. These matured T-cells then circulate
throughout the body to perform immunological functions to protect against
foreign antigens. Forrest et al. [21] proposed the NSA based on self/nonself
discrimination in the immune system.

The NSA is based on the principles of self/nonself discrimination in
the immune system (Figure 7.1 shows the concept of self and nonself
space). This can be summarized as follows [16]:

� Define self as a collection S of elements in a feature space U, a
collection that needs to be monitored. For instance, if U corre-
sponds to the space of states of a system represented by a list of
features, S can represent the subset of states that are considered
normal for the system.

� Generate a set F of detectors, each of which fails to match any
string in S. An approach that mimics the immune system generates
random detectors and discards those that match any element in

172 � Enhancing Computer Security with Smart Technology

the self set. However, a more efficient approach [17] tries to
minimize the number of generated detectors while maximizing the
coverage of the nonself space.

� Monitor S for changes by continually matching the detectors in F
against S. If any detector ever matches, then a change is known
to have occurred, as the detectors are designed not to match any
representative samples of S.

This description is very general and does not say anything about the
representation of the problem space and the type of matching rule that
is used. It is, however, clear that the algorithmic complexity of generating
good detectors can vary significantly, which depends on the type of
problem space (continuous, discrete, mixed, etc.), detector-encoding
scheme, and the matching rule (which determines if a detector matches
an element or not). Most of the past works on the NSA had been restricted
to the binary matching rules like r-contiguous, hamming distance, r-chunk,
etc. The primary reason for this choice is the ease of use, and there exist
efficient algorithms that exploit the properties of the binary representation
and its matching rules [17]. However, there are practical issues that prevent
the binary NSA from being applied more extensively:

� Scalability is one such issue. To guarantee good levels of detection,
a large number of detectors have to be generated (depending on
the size of the self). For some problems, the number of detectors
could be unmanageable.

� The low-level detector representation prevents the extraction of
meaningful domain knowledge. This makes it difficult to analyze
reasons for reporting an anomaly in a monitored system or process.

Figure 7.1 Conceptual view of self and nonself. Here, F1, F2, and F3 indicate
different known attack types.

Self

Self

Non self

F1

F2

F3

F4

Artificial Immune Systems in Intrusion Detection � 173

� A sharp distinction exists between the normal and abnormal. This
divides the space into two subsets: self (the normal) and the nonself
(abnormal). An element in the space is considered to be abnormal
if there exists a detector that matches it. In reality, normalcy is not
a crisp concept. A natural way to characterize the self space is to
define a degree of normalcy; this can be accomplished, for instance,
by defining the self as a fuzzy set.

� Other immune-inspired algorithms use higher-level representation
(e.g., real-valued vectors). A low-level representation, such as
binary, makes it difficult to integrate the NS algorithm with other
immune algorithms.

The following sections describe a real-valued negative-selection (RNS)
algorithm, which uses different encoding schemes to speed up the detector
generation process and to alleviate the limitations previously mentioned.

7.3 Real-Valued Negative Selection (RNS)
The RNS algorithm applies a heuristic process that iteratively changes the
position of the detectors. It is driven by two goals: to maximize the
coverage of the nonself subspace and to minimize the coverage of the
self samples. Different versions of RNS algorithms are being studied for
the generation of variably sized and shaped detectors, including spherical,
hyper-rectangular, and fuzzy-rule detectors [11,23]. In all these cases, the
self/nonself space, U, corresponds to a subset of Rn, unitary hypercube [0,1]n,
and each detector covers some nonself area in this high-dimensional space.

7.3.1 Negative Selection with Detection Rules (NSDR)

The first approach uses real-valued representation to characterize the
self/nonself space and evolves a set of detectors that can cover the
(nonself) complementary subspace (as shown in Figure 7.2). The structure
of these detection rules is (R1, R2, …, Rm):

where,

� Condi = x1 ∈ [low1
i , high1

i] and … and xn ∈ [lown
i , highn

i]
� (x1, …, xn) is a feature vector
� [lowi

j, highi
j] specifies the lower and upper values for the feature

xi in the condition part of the rule R j

The condition part of each rule defines hyper-rectangle in the self/non-
self space, [0.0,1.0]n. A set of these rules tries to cover the nonself space

174 � Enhancing Computer Security with Smart Technology

with hyper-rectangles. For the case n = 2, the condition part of a rule
represents a rectangle. Figure 7.2(a) illustrates an example of such a
coverage for n = 2.

The nonself characteristic function (crisp version) generated by a set
of rules R = {R1, …, Rm} is defined as follows:

Alternatively, the nonself space can be divided into different levels of
deviation. In Figure 7.2(b), these levels of deviation are shown as con-
centric regions around the self regions.

To characterize the different levels of abnormality, we considered a
variability parameter (v) to the set of normal descriptor samples, in which
v represents the level of variability that we allow in the normal (self)
space. A higher value of v means more variability (allows larger variation
in self characterization); a lower value of v represents less variability (a
smaller self space). Figure 7.3 shows two sets of rules that characterize
self subspaces with large and small values of v. Figure 7.3(a) shows
coverage using a smaller v. Figure 7.3(b) shows coverage using a larger
value of v. The variability parameter can be assumed as the radius of a
hypersphere around the self samples. Figure 7.3(c) shows the levels of
deviation defined by two coverings.

In the nonself space, different values of v are used to generate a set
of rules that can provide maximum coverage. An example of such a set
of rules is as follows:

Figure 7.2 Self/nonself space. (a) Approximation of the nonself space by rect-
angular interval rules. (b) Levels of deviation from the normal in the nonself space.

Self

Self

(a)

Normal

Normal

(b)

X x
R R x R

non self R

j j

_ (),

if such that

other

�
�

=
∃ ∈ ∈1

0 wwise

⎧
⎨
⎪

⎩⎪

Artificial Immune Systems in Intrusion Detection � 175

R1: If Cond1 then Level 1
. . .
. . .
. . .

Ri: If Condi then Level 1

Ri + 1: If Condi+1 then Level 2
. . .
. . .
. . .

R j: If Condj then Level 2
. . .
. . .
. . .

Figure 7.3 A set of normal samples is represented as points in 2-D space. The
circle around each sample point represents the allowable deviation. (a) Rectan-
gular rules cover the nonself (abnormal) space using a small value of v. (b)
Rectangular rules cover the nonself space using a large value of v. (c) Level of
deviation defined by each v, in which level 1 corresponds to nonself cover in (a)
and level 2 corresponds to nonself cover in (b).

(a)

(c)

Self

Level 1

Level 2

(b)

176 � Enhancing Computer Security with Smart Technology

The different levels of deviation are organized hierarchically such that
level 1 contains level 2, level 2 contains level 3, and so forth. This means
that an element in the self/nonself space can be matched by more than
one rule, but the highest level reported will be assigned as its level. This
set of rules generates a graded characteristic function for the nonself space:

where level (Rj) represents the deviation level reported by the rule Rj.

7.4 Intrusion Detection Problem
The anomaly-based intrusion detection problem can be viewed as a
learning task that tries to induce, from a training set, a general function
that can discriminate between normal and abnormal samples. However,
in many anomaly detection problems, only normal samples are available
for training. This means that the application of a conventional classification
algorithm is not straightforward.

7.4.1 Positive or Negative Characterization?

Normal behavior or normal data patterns will be represented by a subspace
S (called SELF) of the feature space, X. On the other hand, the complement
of S, N = X−S, will be referred to as NON_SELF. The techniques to generate
detectors can be classified as follows [19]:

� Positive characterization (PC): All the representative patterns are
chosen from the set of normal patterns, i.e., normal entities of the
system, denoted by S.

� Negative characterization: All the representative patterns are chosen
from the set of patterns in X−S, i.e., abnormal entities of the system.

Negative characterization does not seem to be as natural as PC in cases
in which the normal space is relatively small. So, what is the justification
for negative characterization? Esponda and Forrest [18] provided three
main reasons:

� There is practical evidence that the negative-detection approach
works, because it has been applied with some success to solve
practical problems.

� From an information theory point of view, characterizing the nor-
mal space is equivalent to characterizing the abnormal space.

µnon self
j jx l R R x R l_ () max({ | ,

� �= ∃ ∈ ∈ =and levell()} { }),R j ∪ 0

Artificial Immune Systems in Intrusion Detection � 177

� Negative characterization is more suitable for distributed anomaly
detection. That is, it is possible to divide a set of negative detectors
into subsets and apply them in a distributed fashion, because the
activation of only one negative detector is enough to classify a
sample as abnormal. If we use positive detection, it is necessary
to apply all the positive detectors before it can be concluded that
a sample is abnormal.

The third reason appears to be the strongest. However, if the descrip-
tion of the normal set is compact enough, it would be more efficient to
have multiple, redundant copies of positive detectors perform distributed
anomaly detection. Accordingly, negative detection is more suitable than
positive detection for performing distributed detection, but only if the
normal subspace is not very small.

Keogh et al. [31] argued that “a major limitation of the approach
(negative selection) is that it is only defined when the self space is not
exhaustive.” The authors provided an example of random walk data series,
in which the self set can have all possible patterns, causing the nonself
set to be empty. Notice that this is also a possible issue for the positive
detection strategy and, in general, for any learning strategy that tries to
induce a model of the normal profile from samples. So, the problem is
not associated with the algorithm itself, but with the set of features selected
to represent the system behavior, which are not useful to characterize the
system or process normalcy. For instance, in the case of the random walk
time series, a set of features that includes high-level statistical character-
istics of the time series may perform better than a set of features based
on a sliding-window scheme.

Once a uniform representation for the parameter space is chosen, a
set of patterns that correspond to normal entities is presented to the NSA.
Such a set is called the set of self patterns, and it is used during the learning
process to determine a set of representative elements that will be used
to detect novelties in the system. Depending on the context, a represen-
tative pattern is called a detector or a classification rule. We use these
terms interchangeably. In the next section, we test the proposed approach
with network traffic data.

7.5 Experimentation

7.5.1 Dataset

We tested the proposed approaches with network traffic data. The idea
was to examine if the system is able to detect some attacks after it is
trained with normal traffic patterns. This dataset is a version of the 1999

178 � Enhancing Computer Security with Smart Technology

DARPA intrusion detection evaluation dataset generated and managed by
MIT Lincoln Labs [35]. This data represents both normal and abnormal
information collected in a test network, in which simulated attacks were
performed. The purpose of this data is to test the performance of intrusion
detection systems. The datasets contain normal data (not mixed with
attacks) obtained over a period of several weeks. This provides enough
samples to train the detection system.

The dataset is composed of network traffic data (tcpdump, inside and
outside network traffic), audit data (BSM), and file systems data. For our
initial set of experiments, we used only the outside tcpdump network
data for a specific computer (e.g., hostname: marx), and then we applied
the tool tcpstat to get traffic statistics. We used the first week’s data for
training (attack free), and the second week’s data for testing, which
included some attacks. Some of these were network attacks, and the others
were inside attacks. Only network attacks were considered for our testing.
These attacks are described in Table 7.1, and the attack timeline is shown
in Figure 7.4.

Three parameters were selected to detect some specific types of attacks.
These parameters were sampled each minute (using tcpstat) and normal-
ized. Table 7.2 lists six time series Si and Ti for training and testing,
respectively.

The set S of normal descriptors is generated from a time series {r1, r2, …,
rn} in an overlapping–sliding-window fashion:

Table 7.1 Second-Week Attack Description

Day Attack Name Attack Type Start Duration

1 Back DoS 9:39:16 00:59

2 Portsweep Probe 8:44:17 26:56

3 Satan Probe 12:02:13 02:29

4 Portsweep Probe 10:50:11 17:29

5 Neptune DoS 11:20:15 04:00

Figure 7.4 Network attacks on the second week.

Atlaok

Time

(minutes)

0 1000 2000 3000 4000 5000 6000

Back
Ports

weep

Ports
weep

Neptune

Satan

Artificial Immune Systems in Intrusion Detection � 179

where w is the window size. In general, from a time series with n points,
a set of n − w + 1 of w-dimensional descriptors can be generated. In
some cases, we used more than one time series to generate the feature
vectors. In those cases, the descriptors were put side by side to produce
the final feature vector. For instance, if we used the three time series S1,
S2, and S3 with a window size of 3, a set of 9-dimensional feature vectors
was generated.

To evaluate the ability of the proposed approach to produce a good
estimation of the level of deviation, we implemented a simple (but
inefficient) anomaly detection mechanism. It uses the actual distance of
an element to the nearest neighbor in the self set as an estimation of the
degree of abnormality.

7.5.2 PC Approach

In this approach, we used the positive samples to build a characterization
of the self space, Self. In particular, we did not assume a model for the
self set. Instead, we used the positive sample set itself for a representation
of the self space. The degree of abnormality of an element is calculated
as the distance from itself to the nearest neighbor in the self set. We chose
to define the characteristic function of the nonself set, non_self, because
its definition is more natural, and the derivation of the self set characteristic
function is straightforward.

Table 7.2 Time Series for Different Parameters Used for Training and Testing

Name Description Week Type

S1 Number of bytes per second 1 Training

S2 Number of packets per second 1 Training

S3 Number of ICMP packets per second 1 Training

T1 Number of bytes per second 2 Testing

T2 Number of packets per second 2 Testing

T3 Number of ICMP packets per second 2 Testing

S r r r r r rw w n w n= …() …() … …(){ }+ − +1 2 1 1, , , , , , , , ,

µnon self x D x Self d x s s Sel_ , min , :
� � � � �() = () = () ∈ ff{ }

180 � Enhancing Computer Security with Smart Technology

Here, d(x, s) is a Euclidean distance metric (or any Minkowski metric).
D(, Self) is the nearest-neighbor distance, that is, the distance from
to the closest point in Self. Then, the closer an element x is to the self
set, the closer the value of µnon_self (x) is to 0.

The crisp version of the characteristic function is the following:

In a dynamic environment, the parameter values that characterize
normal system behavior may vary within a certain range over a period of
time. The term (1 − t) represents the amount of allowable variability in
the self space (the maximum distance that a point can be from the self-
samples to be considered normal). This PC can be implemented efficiently
by using spatial trees. In our implementation, a KD-tree [5,6] was used.
A KD-tree represents a set of k-dimensional points and is a generalization
of the standard one-dimensional binary search tree. The nodes of a KD-
tree are divided into two classes: internal nodes, which partition the space
with a cut plane defined by a value in one of the k dimensions, and
external nodes (leaves), which define “buckets” (resulting in hyper-rect-
angles) in which the points are stored.

This representation allows answering queries in an efficient way. The
amortized cost of a nearest-neighbor query is O(log N) [6]. We used a
library (which implements the KD-tree structure) developed at the Uni-
versity of Maryland [37].

7.5.2.1 PC Experiments

In each experiment, the training set was used to build a KD-tree to
represent the self set. Then, the distance (nearest neighbor) from each
point in the testing set to the self set was measured to determine deviations.
For this set of experiments, the variables were considered independently;
that is, the feature vectors were built using only one variable (time series)
each time. Figure 7.5 shows an example of the training and testing datasets
for the parameter number of packets per second. Figure 7.6(a) represents
the nonself characteristic function µnon_self(), that is, the distance from the
test set to the training set for the same parameter. In this case, the window
size used to build the descriptors was 1. Figure 7.6(b) and Figure 7.6(c)
show µnon_self () when a window size of 3 is used.

In Figure 7.6(b), the Euclidean distance is used, and in Figure 7.6(c),
the D∞ distance is used.

x
��

x
��

µ
µ

µnon self t
non self

non s

x
x t

_ ,
_

_

�
�

() =
() >1

0

if

if eelf x t

D x Self

D x Self
�

�

�() ≤

⎧
⎨
⎪

⎩⎪
=

()
(

1

0

if

if

,

,))
⎧
⎨
⎪

⎩⎪

x
��

x
��

Artificial Immune Systems in Intrusion Detection � 181

The plots (in Figure 7.6) of the nonself characteristic function show
some peaks that correspond to significant deviations from the normal. It
is easy to check that these peaks coincide with the network attacks present
on the testing data (Table 7.1 and Figure 7.6). We conclude the following
from these results:

� Using only one parameter is not enough to detect all five attacks.
Figure 7.8 shows how the function µnon_self() detects deviations
that correspond to attacks; however, none of the parameters is
able to independently detect all five attacks.

Figure 7.5 Behavior of the parameter number of packets per second. (a) Training
(self) set corresponding to the first week. (b) Testing set corresponding to the
second week.

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (minutes)

(a) Training set (S2)

N
u

m
b

er
 o

f
p

ac
k

et
s

p
er

 s
ec

o
n

d

0 1000 2000 3000 4000 5000 6000

Time (minutes)

(b) Testing set (T2)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.0

N
u

m
b

er
 o

f
p

ac
k

et
s

p
er

 s
ec

o
n

d

x
��

182 � Enhancing Computer Security with Smart Technology

Figure 7.6 Distance from the testing set (T2) to the self set (S2) (µnon_self (x)). (a)
Using window size 1. (b) Using window size 3 and Euclidean distance. (c) Using
window size 3 and D∞∞∞∞ distance.

D
is

ta
n

ce
 t

o
 s

el
f

0.25

0.2

0.15

0.1

0.05

0

(a) w =1

0 2000 1000 3000 4000

Time (minutes)

5000 6000

0.25

0.2

0.15

0.1

0.05

0

(b) W =3, Euclidean

0 2000 1000 3000 4000

Time (minutes)

5000 6000

0.25

0.2

0.15

0.1

0.05

0

(c) W =3, Dinf

0 2000 1000 3000 4000

Time (minutes)

5000 6000

D
is

ta
n

ce
 t

o
 s

el
f

(E
u

cl
id

ea
n

)
D

is
ta

n
ce

 t
o

 s
el

f
(D

_
in

f)

Artificial Immune Systems in Intrusion Detection � 183

� A higher window size increases the sensitivity; this is reflected in
the higher values of deviation.

� A higher window size allows for the detection of temporal patterns.
For the time series T1 and T3, increasing the window size does
not modify the number of detected anomalies. But, for the time
series T2, when the window size is increased from 1 in Figure
7.6(a) to 3 in Figure 7.6(b) and Figure 7.6(c), one additional
deviation (corresponding to attack 5) is detected. Clearly, this
deviation was not caused by a value of this parameter (number of
bytes per second) out of range; otherwise, it would be detected
by the window size 1. There was a temporal pattern that was not
seen in the training set, and that might be the reason why it was
reported as an anomaly.

� The change of the distance metric from Euclidean in Figure 7.6(b)
to D∞ in Figure 7.6(c) does not modify the number and type of
deviations detected.

As we found in previous experiments, to detect the four attacks, it is
necessary to take into account more than one parameter. In the following
experiments, we used three parameters to build the feature vector to test
whether the PC technique can detect all the attacks. Accordingly, we
performed two experiments by varying the sliding-window size.

Figure 7.7 shows the nonself characteristic function for feature vectors
conformed to samples of three time series. In all cases, there are five
remarkable anomalies that correspond to five attacks. Similar to previous
experiments, an increase in the size of the window increases the sensitivity
of the anomaly detection function. However, this could generate more
false-positives. To measure the accuracy of the anomaly detection function,

Figure 7.7 Distance from test sets to the self set (µµµµnon_self()) using S1, S2, and
S3. (a) Window size 1. (b) Window size 3.

1

0.8

0.6

0.4

0.2

0

Time (minutes)

0 1000 2000 3000 4000 5000 6000

1

0.8

0.6

0.4

0.2

0
0 1000 2000 3000 4000 5000 6000

Time (minutes)

D
is

ta
n

ce
 t

o
 s

el
f

(E
u

cl
id

ea
n

)

D
is

ta
n

ce
 t

o
 s

el
f

(E
u

cl
id

ea
n

)

x
��

184 � Enhancing Computer Security with Smart Technology

it is necessary to convert them to a crisp version. In this case, the output
of the function will be normal or abnormal. This output can be compared
with attack information to calculate how many anomalies (caused by an
attack) were detected accurately.

The crisp version of the anomaly detection function µnon_self(x) is
generated by specifying a threshold (t), indicating the frontier between
normal and abnormal. Clearly, the value of t will affect the capabilities of
the system to detect accurately. A very large value of t will allow large
variability on the normal (self), increasing the rate of false-negatives; a
very small value of t will restrict the normal set, causing an increase in
the number of detections, but also increasing the number of false-positives
(false alarms). To show this trade-off between the false-alarm rate and
the detection rate, receiver operating characteristics (ROC) diagrams [39]
are drawn. The anomaly detection function µnon_self , t(x) is tested with
different values of t, the detection and false-alarm rates are calculated,
and this generates a set of points that constitute the ROC diagram. The
detection and false-alarm rates are calculated using the following equations:

(7.1)

(7.2)

where:

TP: true positives, anomalous elements identified as anomalous
TN: true negatives, normal elements identified as normal
FP: false-positives, normal elements identified as anomalous
FN: false-negatives, anomalous elements identified as normal

Figure 7.8 shows the ROC diagrams for the µnon_self (x) functions shown
in Figure 7.9. In general, the behavior of these four functions is very
similar: high detection rates with a low false-alarm rate. The anomaly
detection functions that use window size 3 show a slightly better perfor-
mance in terms of detection rates. This could be attributed to the higher
sensitivity, produced by a larger window, to temporal patterns. However,
this causes more false alarms. A possible explanation is that after an attack,
some disturbance may still remain in the system, and the function with a
larger window size was able to detect it.

The PC technique has been shown to work well on the performed
experiments. The main drawback of this technique is its memory require-
ments, because it is necessary to store the samples that constitute the
normal profile. The amount of data generated by network traffic can be

Detection rate =
TP

TP FN+

False-alarm rate =
FP

TN FP+
,

Artificial Immune Systems in Intrusion Detection � 185

Figure 7.8 ROC diagrams for the µµµµnon_self (x) function shown in Figure 7.7. (a)
Full scale. (b) Detail of the upper-left corner.

0
0

0.2

D
et

ec
ti

o
n

 r
at

e

0.4

0.6

0.8

1

0.2 0.4

False-alarm rate

(a)

0.6 0.8 1

ws 1, Euclidean

ws 1, D_inf
ws 3, Euclidean

ws 1, D_inf

ws 1, Euclidean

ws 1, D_inf
ws 3, Euclidean

ws 1, D_inf

1

0.98

0.96

0.94

0.92

0.09
0 0.02 0.04 0.06

False-alarm rate

(b)

0.08 0.1

D
et

ec
ti

o
n

 r
at

e

186 � Enhancing Computer Security with Smart Technology

large, making this approach unfeasible. This is the main motivation for
the negative characterization approach, e.g., NSDR (discussed in the
following subsection), compressing the information of the normal profile
without significant loss in accuracy.

7.5.3 Evolving Negative-Selection Detection Rules (NSDR)
We used a genetic algorithm (GA) to evolve rules to cover the nonself
space. These rules constitute the complement of the normal values of the
feature vectors. Several criteria guide the evolution process performed by
the GA [9,10]. Hence, a rule is considered good if it does not cover positive
samples, and the covered space is large. Accordingly, the soundness of
a rule is determined by various factors: the number of normal samples
that it covers, its coverage, and the overlap with other rules. This is a

Figure 7.9 NSDR rule generation using a genetic algorithm (GA) with sequential
niching (SN).

Rule Generation

return ruleSet

yes

yes

numAttempts ←
numAttempts + 1

ruleSet ← ruleSet ∪ {R}

numAttempts ← 0

no

RunGA(S,v)

R ←best evolved rule

Fitness(R) > numFitness

no

ruleSet ←{}

numAttempts ←0

[ruleSet] < maxRules

and

numAttempts < maxAttempt

Artificial Immune Systems in Intrusion Detection � 187

multiobjective, multimodal optimization problem, because a set of rules
(solutions) that can collectively solve the problem (covering of the nonself
region) is desired.

A niching technique is used with GAs to generate different rules. The
input to the GA is a set of feature vectors S ′ = {x1, …, x l}, which indicate
normal behavior. Each element x j in S ′ is an n-dimensional vector x j = (x1

j,
…, x j

n). The algorithm for the rule generation is shown in Figure 7.9, where:

S ′: self-samples training set
v: level of variability
maxRules: maximum number of rules in the solution set
minFitness: minimum fitness allowed for a rule to be included in the

solution set
maxAttempts: maximum number of attempts to try to evolve a rule with

a fitness greater or equal to minFitness

The algorithm tries to generate a set of rules (ruleSet) using a GA
(procedure RunGA()). Each rule in the ruleSet is generated with different
runs of the GA. The rule must have a fitness value of at least minFitness.
If after a maximum number of attempts (maxAttempts) it cannot generate
a good rule, the algorithm stops (typical values for maxAttempts lie
between 3 and 5 runs).

The procedure RunGA() executes a tournament-selection–based GA.
Its execution time is (O num_gen ∗ pop_size ∗ ftime), where num_gen is the
number of generations, pop_size is the population size, and ftime is the
execution time of the fitness evaluation. In this case, ftime = O(|S ′|), where

|S ′| is the size of the self sample set. Therefore, the execution time of
the NSDR algorithm is O(m ∗ num_gen ∗ pop_size ∗ |S ′|), where m is the
number of generated rules.

Each individual (chromosome) in the GA represents the condition part
of a rule because the consequent part is the same for all the rules (the
descriptor belongs to the nonself). However, the levels of deviation in the
nonself space are determined by the variability factor (v). The condition
part of the rule is determined by the low and high limits for each dimension.
The chromosome that represents these values consists of an array of float
numbers. Uniform crossover and Gaussian mutation operators are used.

Given a rule R with a condition part (x1 ∈ [low1, high1] AND …AND
xn ∈ [lown, highn]), we say that a feature vector x j = (x1

j , …, xn
j) satisfies

the rule R (represented as x j ∈ R) if the hypersphere with center x j and
radius v intercepts the hyper-rectangle defined by the points (low1, …,
lown) and (high1, …, highn).

The raw fitness of a rule is calculated considering the following two
factors:

188 � Enhancing Computer Security with Smart Technology

1. The number of elements in the training set S ′ that are covered by
the rule:

num_elements (R) = {xi ∈ S | xi ∈ R}

2. The volume of the subspace represented by the rule:

volume(R) = (highi – lowi)

The raw fitness is defined as:

raw_fitnessR = volume(R) = C ∗ num_elements(R)

where C is the coefficient of sensitivity. It specifies the amount of penal-
ization that a rule suffers if it covers some normal samples. So, the larger
the coefficient (C), the higher is the imposed penalty. Raw fitness can
also take negative values.

The idea is to run the GA multiple times [4] to generate different rules
so as to cover the entire nonself region. In each run, we want to generate
a new rule, that is, a rule that can cover a portion of the nonself region.
The raw fitness of each rule is modified according to the overlap with
the previously chosen rules. The following pseudocode segment shows
how the final fitness of the rule R is calculated.

fitness ← raw_ fitnessR

for each R j ∈ ruleSet do
fitnessR ← raw_ fitnessR – volume(RR j)
end-For

where volume() calculates the volume of the subspace specified by the
argument.

Because the coverage of the nonself space is accomplished by a set
of rules, it is necessary to evolve multiple rules. To evolve different rules,
a sequential niching (SN) algorithm is applied.

7.5.3.1 Experiments: NSDR-GA with SN

To test the negative characterization approach (NSDR), we used the MIT
DARPA 99 dataset (mentioned in Section 7.4) [35]. We used as training set
the time series S1, S2, and S3, and as testing set the time series T1, T2,
and T3, with window sizes of 3 and 1, respectively (the time series are
described in Table 7.2).

i

n

=
∏

1

Artificial Immune Systems in Intrusion Detection � 189

The parameters for the GA were population size 100, number of
generations 1500, mutation rate 0.2, crossover rate 1.0, and coefficient of
sensitivity 1.0 (high sensitivity).

The GA was run with variability parameter (v) equal to 0.05, 0.1, 0.15,
and 0.2, respectively. Then, the elements in the testing set were classified
using rules generated for each level (different values of v). This process
was repeated ten times, and the results reported corresponded to the
average of these runs.

Table 7.3 shows the number of rules generated by the GA for each
level. There is a clear difference between the number of rules when the
window size changes; the number of rules changes with the size of the
window as the pattern space becomes larger.

Figure 7.10 shows two typical attack profiles produced by evolved
rules applied to the testing set. With a window size of 1, three out of five
attacks are detected, whereas with a window size of 3, four out of five
attacks are detected.

The negative characterization technique (NSDR) is more efficient (in
time and space) compared to the PC technique. In the case of a window
size of 1, the PC needs to store 5,202 × 3 = 15,606 floating-point values;
the NSDR technique only has to store 4 × 6 = 24 floating-point values,
so the compression ratio is approximately 1000:1.5. In the case of the
window size of 3, the ratio is 46,728:1,698,* approximately 100:8. It seems
to be a trade-off between compactness of the rule set representation and
accuracy. Validity of these arguments is observed in our results. Figure
7.11 shows how the rate of true positives (detection rate) changes accord-
ing to the value of the threshold t. In both cases, the PC technique has
better performance than the NSDR technique, but only by a small differ-
ence. In general, the NSDR technique shows detection rates similar to the

Table 7.3 Number of Generated Rules for Each Deviation Level

Level Radius
Average Number Rules

(Window Size = 1)
Average Number Rules

(Window Size = 3)

1 0.05 1.1 19.5

2 0.1 1.1 20.7

3 0.15 1 26

4 0.2 1.1 28

* The number of floating point numbers needed by the positive characterization is
equal to (5192 samples) ∗ (9 dimensions) = 46,728. The number of floating points
numbers needed by the negative characterization is (94 rules) ∗ (18 floating values
per rule) = 1,698.

190 � Enhancing Computer Security with Smart Technology

Figure 7.10 Indicates the deviations in the testing set detected by the evolved
rule set. (a) For window size 1. (b) For window size 3.

4−0.20

3−0.15

2−0.10

1−0.05

0−0
0 1000 2000 3000

Time (minutes)

(a) w=1

L
e

ve
l–

d
is

ta
n

ce

4000 5000 6000

(b) w=3

4−0.20

3−0.15

2−0.10

1−0.05

0−0

L
e

ve
l–

d
is

ta
n

ce

0 1000 2000 3000

Time (minutes)

4000 5000 6000

Artificial Immune Systems in Intrusion Detection � 191

Figure 7.11 Comparison of the true positives rate of the detection function
µµµµnon_self , t(x) generated by positive characterization (PC) and negative character-
ization (NSDR) for different values of t. (a) Window size 1. (b) Window size 3.

(a) w=1

D
et

e
ct

io
n

 r
at

e
1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6

Threshold (t)

0.8 1

D
et

e
ct

io
n

 r
at

e

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6

Threshold (t)

(b) w=3

0.8 1

Negative characterization

Positive characterization (Euclidean)

Positive characterization (D_inf)

Negative characterization

Positive characterization (Euclidean)

Positive characterization (D_inf)

192 � Enhancing Computer Security with Smart Technology

more accurate (but more expensive) PC technique. Table 7.4 summarizes
the best true positive rates (with a maximum false alarm of 1 percent)
accomplished by the two techniques. Esponda et al. [19] suggested that
this comparison between the PC technique and the NSDR method is not
meaningful, because the two methods are quite different. However, the
PC technique provides a point reference that facilitates the evaluation of
the performance of the NSDR technique.

As mentioned earlier, the proposed NSDR technique produces a good
estimate of the levels of deviation. To evaluate this estimate, a detailed
comparison of the NSDR output levels and PC distance range was per-
formed. The results are illustrated in Table 7.5 in the form of a confusion
matrix. For each element in the testing set, the function µnon_self (x) gen-
erated by the NSDR is applied to determine the level of deviation. This
level of deviation is compared with the distance range reported by the
PC algorithm. Each row (and column) corresponds to a range or level of
deviation. The ranges are specified in square brackets. A perfect output
from the NSDR algorithm should generate only values in the diagonal.

The results in Table 7.5 suggest that the NSDR approach better approx-
imates the deviation reported by PC using the D∞ distance. To support
this claim precisely, we measured the number of testing samples for all
the possible differences between the PC-reported level and the NSDR-
reported level. A difference of zero means that the reported levels are the
same, a difference of one means that the results differ by one level, etc.
The results for two distances and two window sizes are reported in Table
7.6. The results are very different when different distances are used for
the PC algorithm. Clearly, when the D∞ distance is used in the PC, results
of the comparison improved. Despite the fact that only 50.3 percent of
the outputs from the NSDR algorithm are the same as the PC approach,
100 percent of the NSDR outputs are in the range of 0 or 1 level of
difference from that of the PC. The distance metric determines the structure
of a metric space. For instance, in a Euclidean space, the set of points
that are at the same distance from a fixed point corresponds to a circle

Table 7.4 Best True Positive Rates for the Different Techniques with a
Maximum False-Alarm Rate of 1 Percent

Detection Technique
Window Size 1

(Percentage)
Window Size 3

(Percentage)

Positive characterization
(Euclidean)

92.8 96.4

Positive characterization (D) 92.8 92.8

Negative characterization 82.1 87.5

Artificial Immune Systems in Intrusion Detection � 193

Table 7.5 Confusion Matrix for PC- and NSDR-Reported Deviations

PC Output Level NSDR Output Level

Euclidean
No Deviation

[0.0,0.05]
Level 1

[0.05,0.1]
Level 2

[0.1,0.15]
Level 3

[0.15,0.2]
Level 4
[0.2,1]

[0.0,0.05] 5131 0 0 0 0

[0.05,0.1] 4 1 0 0 0

[0.1,0.15] 0 2.9 2.1 0 0

[0.15,0.2] 0 22 2 0 0

[0.2,1] 0 0 6.9 10.5 9.6

D

[0.0,0.05] 5132 0 0 0 0

[0.05,0.1] 3 7.8 0.2 0 0

[0.1,0.15] 0 18.1 3.9 0 0

[0.15,0.2] 0 0 6.9 9.5 0.6

[0.2,1] 0 0 0 1 9

Note: The values of the matrix elements correspond to the number of testing
samples in each class, and the diagonal values represent correct classification.

Table 7.6 The Difference between PC- and
NSDR-Reported Levels for Test Dataset

Difference
Euclidean Distance

(Percentage)
D∞ Distance
(Percentage)

0 20.8 50.3

1 31.8 49.7

2 47.3 0.0

3 0.0 0.0

4 0.0 0.0

Note: The difference is expressed as a percentage
of the abnormal feature vectors (distance greater
than 0.05). A difference of 0 means that the levels
reported by PC and NSDR are the same; a difference
of 1 means that the results differ by 1 level, etc.

194 � Enhancing Computer Security with Smart Technology

(a hypersphere in higher dimensions). In the D∞ metric space, this set of
points corresponds to a rectangle (hyper-rectangle). Therefore, the rect-
angular rules used by the NSDR approach are better suited to approximate
the structure of the D∞ metric space, and this is reflected in the experi-
mental results.

We investigated GAs to evolve detectors in the complement pattern
space to identify any changes in the normal behavior of monitored
behavior patterns. This technique (NSDR) is used to characterize and
identify different intrusive activities by monitoring network traffic, and is
compared with the other approach (PC). We used a real-world dataset
(MIT Lincoln Labs) that has been used by other researchers for testing
different approaches. The following are some preliminary observations
from these experiments:

� When PC and NSDR approaches are compared, PC appears to be
more precise, but it requires more time and space resources. The
negative characterization is less precise but requires fewer resources.

� Results demonstrate that the NSDR approach to detector generation
is feasible. It was able to detect four of the five attacks detected
by the PC (with a detection rate of 87.5 percent and a maximum
false-alarm rate of 1 percent).

� The best results were produced when we used a window size of
3. We observed that a larger window size makes the system more
sensitive to deviations.

7.5.3.2 NSDR-GA Using Deterministic Crowding

The main drawback of the SN approach is that the GA must be run
multiple times to generate multiple rules. The deterministic crowding (DC)
[34] approach allows the generation of multiple rules in a single run. The
NSDR algorithm using DC [23] is shown in Figure 7.12. The main inputs
to the algorithm are a set of n-dimensional feature vectors S ={x1, …, xl},
which represents samples of the normal behavior of the parameter, the
number of different levels of deviation (num_levels), and the allowed
variability for each level {v1, …, vnumLevels}. Additional parameters to the
algorithm are the population size (pop_size) and number of generations
(num_gen).

The execution time of this algorithm is O(num_levels∗num_gen∗pop_size
|S ′|, where |S ′| is the number of self-samples, which is included in the
expression because the time complexity of the fitness calculation is O(| S ′|).
Notice that the time complexity depends on the number of levels and not
on the number of rules; this makes this algorithm more efficient than the
NSDR algorithm based on SN. A good measure of distance between

Artificial Immune Systems in Intrusion Detection � 195

individuals is important for DC niching, because it allows the algorithm
to replace individuals with closer individuals. This allows the algorithm
to preserve niche formation. The distance measure used in this work is
the following:

where c is a child, and p is its parent.
Note that the distance measure is not symmetric. The purpose is to

give more importance to the area of the parent that is not covered. The
justification is as follows: if the child covers a high proportion of the
parent, that means that the child is a good generalization of it, but if the
child covers only a small portion, then it is not so. We used the same
dataset as before as the training set time series S1, S2, and S3 for training,
and time series T1, T2, and T3 for testing, with a window size of 3. This
means that the size of the feature vectors was 9.

The parameters for the GA were population size 200, number of gener-
ations 2000, mutation rate 0.1, and coefficient of sensitivity 1.0 (high sensi-
tivity). The GA was run with variability for each level equal to 0.05, 0.1,

Figure 7.12 Evolving negative-selection detection rules (NSDR) using determin-
istic crowding (DC).

NS-DETECTOR-RULES(S’, num_levels,{ v1,..............,vnumLevels})
S : set of self samples
num_levels : number of deviation levels
{ v1,..............,vnumLevels}: allowed variability for each level
1:for i = 1 to num_levels
2: initialize population with random individuals
3: For j = 1 to num_gen
4: For k = 1 to pop_size/2
5: select two individuals,(parent1 parent2) , with uniform probability
and without replacement
6: apply crossover to generate an offspring(child)
7: mutate child
8: If dist (child, parent1) < dist(child, parent2)

^ fitness(child)> fitness(parent1)

10: Then parent1 ← child
11: ElseIf dist(child, parent1)>= dist(child, parent2)
12: ^ fitness(child)> fitness(parent2)

13: Then parent2 ← child
14: EndIf
15: EndFor
16: EndFor
17: extract the best individuals from the population and add them to
the final solution
18:EndFor

dist c p
volume p volume p c

volume p
, ,() =

() − ∩()
()

196 � Enhancing Computer Security with Smart Technology

0.15, and 0.2, respectively. Then, the elements in the testing set are classified
using rules generated for each level (radius). This process is repeated ten
times, and the results reported correspond to the average of these runs.

Table 7.7 shows the number of rules NSDR generated by the GA with
two niching techniques (NSDR with SN and NSDR with DC). The DC
technique produces less rules, which suggests the possibility that the DC
technique is discarding some good rules and, therefore, ignoring some
niches. However, the performance of the set of rules generated by each
technique is apparently similar. This shows that the DC technique is able
to find a set of more compact rules producing the same performance.
This can be explained by the fact that SN is more sensitive to the definition
of the distance between individuals than DC.

Another notable point is the efficiency of the DC technique, as it only
needs four runs (one per level) to generate a rule set. For the SN technique,
it is necessary to run the GA as many times as the number of rules we
want to generate. This is a clear improvement on computational time.

In Section 7.5.3.1, it is shown that the NSDR with SN technique
produces a good estimate of the level of deviation when this is calculated
using the D∞ distance. Table 7.8 shows the confusion matrix for the NSDR
technique using SN and DC. For each element in the testing set, the
function µnon_self (x) generated by the NSDR is applied to determine the
level of deviation. This level of deviation is compared with the distance
range reported by the PC algorithm (using the D∞ distance). Each row
(and column) corresponds to a range or level of deviation. The ranges
are specified on square brackets. A perfect output from the NSDR algorithm
will generate values only in the diagonal.

In both cases, the values are concentrated around the diagonal, indi-
cating that the two techniques produced a good estimate of the distance
to the self set. However, the NSDR approach with DC appears to be more
precise. One possible explanation for this performance difference seems
to be the fact that the SN requires derating the fitness function for each
evolved rule. This arbitrary modification in the fitness landscape can
prevent evolving better rules in subsequent runs.

Table 7.7 Number of Generated Rules for Each Deviation Level

Level Radius

Average Number Rules

Sequential Niching Deterministic Crowding

1 0.05 19.5 7.75

2 0.1 20.7 8.25

3 0.15 26 10

4 0.2 28 10

Artificial Immune Systems in Intrusion Detection � 197

7.5.4 Extending NSDR to Use Fuzzy Rules
We next extended the NSDR algorithm to evolve fuzzy rules instead of
crisp rules [23]. That is, given a set of self-samples, the algorithm will
generate fuzzy detection rules in the nonself space that can determine if
a new sample is normal or abnormal. The use of fuzzy rules appears to
further improve the accuracy of the method and produces a measure of
deviation from the normal that does not need to partition the nonself space.

The normal and the abnormal behaviors in networked computers are
hard to predict, as the boundaries cannot be well defined. Hence, fuzzy
logic can provide varying degrees of normalcy in system behavior.

A fuzzy detection rule has the following structure:

where
(x1, …, xn): elements of the self/nonself space being evaluated

Table 7.8 The Values of the Matrix Elements Correspond
to the Number of Testing Samples in Each Class

PC Output Level

NSDR Output Level

Sequential Niching

0 1 2 3 4

1: [0.0,0.05] 5132 0 0 0 0

2: [0.05,0.1] 3 7.8 0.2 0 0

3: [0.1,0.15] 0 18.1 3.9 0 0

4: [0.15,0.2] 0 0 6.9 9.5 0.6

5: [0.2,1] 0 0 0 1 9

Deterministic Crowding

0 1 2 3 0

1: [0.0,0.05] 5132 0 0 0 0

2: [0.05,0.1] 3 4 4 0 0

3: [0.1,0.15] 0 0 22 0 0

4: [0.15,0.2] 0 0 0 17 0

5: [0.2,1] 0 0 0 0 10

Note: The diagonal values represent correct classification.

If thenx T x Tn n1 1∈ ∧… ∈ non_self,

198 � Enhancing Computer Security with Smart Technology

Ti: fuzzy set

^: fuzzy conjunction operator (in this case, min ())

The fuzzy set Ti is defined by a combination of basic fuzzy sets
(linguistic values).

Given a set of linguistic values S = {S1, …, Sm} and a subset Ti S
associated with each fuzzy set Ti,

where U corresponds to a fuzzy disjunction operator, which is defined as
follows:

An example of fuzzy detection rules in the self/nonself space with
dimension n = 3 and linguistic values S = {L, M, H}:

In our experiments, the basic fuzzy sets correspond to a fuzzy division
of the real interval [0.0,1.0] using triangular and trapezoidal fuzzy mem-
bership functions. Figure 7.13 shows an example of such a division using
five basic fuzzy sets representing the linguistic values low, medium-low,
medium, medium-high, and high.

Given a set of rules {R1, …, Rk}, each one with a condition part Condi,
the degree of abnormality of a sample x is defined by

Figure 7.13 Partition of the interval [0,1] in basic fuzzy sets.

T Si j
S Tj i

=
∈

,
ˆ

∪

µ µ µA B A Bx x x∪ () = () + (){ }min ,1

If thenx L x L M x M H1 2 3∈ ∧ ∈ ∪() ∧ ∈ ∪() non_self,

µnon_self x Cond x
i k

i() = (){ }
= …
max ,

,1

M
em

b
er

sh
ip

 d
eg

re
e

1.0 L ML

0.166 0.333

Universe of discourse

0.5 0.666 0.833 1.0

M MH H

Artificial Immune Systems in Intrusion Detection � 199

where Condi(x) represents the fuzzy true value produced by the evaluation
of Condi in x, and µnon_self(x) represents the degree of membership of x
to the nonself set; thus, a value close to 0 means that x is normal, and a
value close to 1 indicates that x is abnormal.

To generate the fuzzy-rule detectors, we will use the same evolutionary
algorithm described in NSDR with DC. However, the use of fuzzy rules
does not require the generation of rules for different levels of deviation.
Thus, all the rules are generated in a simple run of the DC algorithm.
Figure 7.14 shows the NSFDR algorithm. The time complexity of the
algorithm is O(num_gen ∗ pop_size ∗|Self ′|).

The use of fuzzy rules requires changes in GA implementation such
as chromosome representation, fitness evaluation, and distance calculation.

Each individual (chromosome) in the GA represents the condition part
of a rule, because the consequent part is the same for all rules (the sample
belongs to nonself). As was described before, a condition is a conjunction
of atomic conditions. Each atomic condition, xi, Ti, corresponds to a gene
in the chromosome that is represented by a sequence (si

1, …, si
m) of bits,

where m = |S| (the size of the set of linguistic values), and si
j = 1 if and

only if Sj ⊆ Ti. That is, the bit si
j is “on” if and only if the corresponding

basic fuzzy set Sj is part of the composite fuzzy set Tj . Figure 7.14 shows
the structure of a chromosome that is n × m bits long (n is the dimension
of the space and m is the number of basic fuzzy sets).

Figure 7.14 Negative selection with fuzzy detection rules (NSFDR) algorithm.

200 � Enhancing Computer Security with Smart Technology

Given here is the structure of the chromosome representing the con-
dition part of a rule. The fitness of a rule Ri is calculated by taking into
account the following two factors:

� The fuzzy true value produced when the condition part of a rule,
Condi, is evaluated for each element x from the self set:

� The fuzzy measure of the volume of the subspace represented by
the rule:

where measure(Ti) corresponds to the area under the membership func-
tion of the fuzzy set Ti.

The fitness is defined as follows:

fitness(R) = C ∗ (1 − selfCovering(R)) + (1 − C) ∗ volume(R)

where C, 0 C 1, is a coefficient that determines the amount of penalization
that a rule suffers if it covers normal samples. The closer the value of the
coefficient to 1, higher is the penalization. In our experiment, we used
values between 0.8 and 0.9.

In this work, we used Hamming distance because there is a strong
relation between each bit in the chromosome with a single fuzzy set of
some particular attribute in the search space. For example, if the s j

i bit in
both parent and child fuzzy-rule detectors is set to 1, both individuals
include the atomic sentence xi ∈ sj, i.e., they use the jth fuzzy set to cover
some part of the ith attribute. Then, the more bits the parent and the
child have in common, the more common area they will cover.

7.5.4.1 NSFDR Experimentation

We applied the fuzzy algorithm (negative selection with fuzzy detection
rules—NSFDR) and the crisp version (NSDR using DC) to three different

s1
1,…,s1

m … sn
1,…,sn

m

gene 1 gene n

selfCovering R
Cond x

Self

i
x Self() =

()∑
∈

volume R measure Ti
i

n() = ()∏
=

,
1

Artificial Immune Systems in Intrusion Detection � 201

datasets as shown in Table 7.9 (two of these are considered here). The
algorithms were run 1000 iterations with a population size of 200 indi-
viduals. The mutation probability was fixed to 0.1, and the NSDR algorithm
was run four times, each time with a different level of deviation (0.1, 0.2,
0.3, and 0.4). The crisp detectors (hyper-rectangles) generated by each
run were combined to define the final set of detectors produced by the
NSDR.

To access the performance of both methods, we calculate the detection
rate (DR, Equation 7.1) and false-alarm rate (FA, Equation 7.2) and plot
the result using ROC curves. Also, the reported DR was obtained for each
algorithm when the FA was fixed to 3 percent.

We used the same MIT DARPA 99 dataset described in Section 7.4.
Additionally, we used the dataset corresponding to the 1998 version of
the DARPA intrusion detection evaluation, also prepared and managed by
MIT Lincoln Labs [34]. The dataset was generated by processing the original
tcpdump data to extract 42 attributes (33 of them numerical) that charac-
terize the network traffic. This set was used in the KDD Cup 99 competition
and is available at the University of California Machine Learning repository
[35]. Even though the dataset corresponds to 10 percent of the original
data, its size is still considerably large (492,021 records).

We generated a reduced version of the 10-percent dataset, taking only
the numerical attributes. Therefore, the reduced 10-percent dataset is
composed of 33 attributes. The attributes were normalized between 0 and
1 using the maximum and minimum values found. Of the normal samples,
80 percent were picked randomly and used as training datasets, whereas
the remaining 20 percent were used along with the abnormal samples as
a testing set. Five fuzzy sets were defined for the 33 attributes. One percent
of the normal dataset (randomly generated) was used as a training dataset
(MIT DARPA 98 dataset).

The NSFDR algorithm shows a better performance than the NSDR
algorithm (Figure 7.15) with the MIT DARPA 98 dataset. The results of
the NSDR algorithm are competitive only for a high FA rate (greater than
4 percent). Table 7.10 compares the performance of the tested algorithms
and some results reported in the literature. The result produced by the

Table 7.9 Datasets Used for Experimentation

Dataset Training

Testing

Normal Abnormal

Mackey-Glass 497 396 101

MIT DARPA 99 4,000 5,136 56

MIT DARPA 98 1,474 19,056 396,745

202 � Enhancing Computer Security with Smart Technology

NSFDR algorithm and reported in Table 7.10 is the closest value to the
optimum point (0,1). Amazingly, the number of detectors using fuzzyfication
is very small compared to the number of detectors using the crisp charac-
terization. This suggests that the fuzzy representation can handle high dimen-
sionality better (the dimensionality of this dataset is 33 attributes).

According to Table 7.10, the performance of NSFDR is comparable
with the performance of other approaches reported in the literature and
in many cases is better. For example, when NSFDR is compared with

Figure 7.15 ROC curves generated by the two algorithms tested with the MIT
DARPA 98 dataset.

Table 7.10 Comparative Performance in the MIT DARPA 98 Dataset

Algorithm DR (Percentage) FA (Percentage) Number of Detectors

NSFDR 98.22 1.9 14

NSDR 96.02 1.9 699

EFRID[64] 98.95 7.0 —

RIPPER-AA[53] 94.26 2.02 —

1

0.95

0.9

0.85

0.8

0.75

0.7
0 0.05 0.01

False-alarm rate

NSFDR

NSDR

D
et

ec
ti

o
n

 r
at

e

0.15 0.2 0.25 0.3

Artificial Immune Systems in Intrusion Detection � 203

RIPPER-AA, the FA rate is almost the same (close to 2 percent), but NSFDR
has a higher DR (4 percent more abnormal samples detected). Now,
compared with the crisp approach (NSDR), the performance is also
superior (2.2 percent more abnormal samples detected). Clearly, the fuzzy
characterization of abnormal space reduces the number of false alarms
while the detection rate is increased.

When the MIT DARPA 99 dataset is used, the performance of the NSDR
algorithm is better than that of the NSFDR algorithm for very small values
of the FA rate. However, if the FA rate is allowed to be at most 2 percent,
the NSFDR is clearly superior (Figure 7.16). Table 7.11 compares the
performance of the tested algorithms over the MIT DARPA 99 dataset (for

Figure 7.16 ROC curves generated by the two algorithms tested with the MIT
DARPA 99 dataset.

Table 7.11 Comparative Performance in the MIT DARPA 99 Problem

Algorithm DR (Percentage) Number of Detectors

NSFDR 94.63 7

NSDR 89.37 35

0

1

0.95

0.9

0.85

0.8

0.75

0.7
0.05 0.1 0.15

False-alarm rate

NSFDR

NSDR

D
et

ec
ti

o
n

 r
at

e

0.2 0.25 0.3

204 � Enhancing Computer Security with Smart Technology

FA rate less than 3 percent). Again, the fuzzy method (NSFDR) generates
a smaller set of rules without sacrificing performance. This supports our
claim that the fuzzy representation permits a more compact representation
of the self/nonself space.

7.6 Summary
In this chapter, we investigate a technique to perform intrusion detection
based on the NSA. Earlier studies showed that binary NS performed well
in two of the experiments; however, it failed to produce acceptable results
in two other cases. The real-valued NSA starts with a set of hyperspherical
antibodies (detectors) randomly distributed in the self/nonself space. The
algorithm applies a heuristic process that changes iteratively the position
of the detectors driven by two goals: to maximize the coverage of the
nonself subspace and to minimize the coverage of the self-samples. The
NSDR algorithm uses a GA to evolve detectors with a hyper-rectangular
shape that can cover the nonself space. These detectors can be interpreted
as If-Then rules, which produce a high-level characterization of the
self/nonself space. The first version of the algorithm [11] used sequential
nitching technique to evolve multiple detectors. The second version of
the algorithm used deterministic crowding as the niching technique. The
algorithm was applied to detect attacks in network traffic data. We further
extended the NSDR algorithm to use fuzzy rules, which is called NSFDR.
This improves the accuracy of the method and produces a measure of
deviation from the normal that does not need a discrete division of the
nonself space.

The real-valued NSDR technique uses a GA to generate good anomaly
detector rules. To test this technique, a set of experiments to detect
anomalies in network traffic data was performed. We used a real-world
dataset (MIT Lincoln Labs), used by different researchers in computer
security, for testing. The following are some preliminary observations:

� The immunogenetic algorithm was able to produce good detectors
that gave a good estimation of the amount of deviation from the
normal. This shows that it is possible to apply the NSA to detect
anomalies on real network traffic data. The real representation of
the detectors was very useful in this work.

� The proposed algorithm is efficient; it was able to detect four of
the five attacks detected by the PC (with a detection rate of 87.5
percent and a maximum false-alarm rate of 1 percent), while only
using a fraction of the space (when compared to PC).

� The use of DC as a niching technique improved the results obtained
using SN. While retaining the performance, in terms of a high

Artificial Immune Systems in Intrusion Detection � 205

detection rate, the new algorithm generated a smaller set of rules
that estimated the amount of deviation in a more precise way. The
new technique is also more efficient in terms of computational
power because it is able to generate multiple rules for each
individual run of the GA.

When NSFDR technique was used to evolve fuzzy rules for negative
detection, it performed better than NSDR approach and was comparable
with other results reported in the literature. The following are the main
advantages of the NSFDR approach:

� It provides a better definition of the boundary between normal
and abnormal. The previous approach used a discrete division of
the nonself space, whereas the new approach does not need such
a division because the fuzzy character of the rules provide a natural
estimate of the amount of deviation from the normal.

� It shows an improved accuracy in the anomaly detection problem.
This can be attributed to the fuzzy representation of the rules that
reduce the search space, allowing the evolutionary algorithm to
find better solutions.

� It generates a more compact representation of the nonself space
by reducing the number of detectors. This is also a consequence
of the expressiveness of the fuzzy rules.

Bibliography
1. M. Ayara, J. Timmis, L. de Lemos, R. de Castro, and R. Duncan, Negative

selection: how to generate detectors, in Proceedings of the 1st International
Conference on Artificial Immune Systems (ICARIS), Canterbury, UK: Uni-
versity of Kent at Canterbury Printing Unit, September 2002, pp. 89–98.

2. J. Balthrop, F. Esponda, S. Forrest, and M. Glickman, Coverage and gen-
eralization in an artificial immune system, in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), San Francisco, CA:
Morgan Kaufmann Publishers, July 9–13, 2002, pp. 3–10.

3. J. Balthrop, S. Forrest, and M.R. Glickman, Revisiting LISYS: Parameters
and normal behavior,” in Proceedings of the 2002 Congress on Evolutionary
Computation (CEC), USA: IEEE Press, 2002, pp. 1045–1050.

4. D. Beasley, D. Bull, and R. Martin, A sequential niche technique for
multimodal function optimization, Evolutionary Computation, Vol. 1, No.
2, pp. 101–125, 1993.

5. J.L. Bentley, Multidimensional binary search trees used for associative
searching, Communications of the ACM, Vol. 18, No. 9, pp. 509–517, 1975.

6. J.L. Bentley, K-D trees for semidynamic point sets, in Proceedings of the
6th Annual ACM Symposium Computational Geometry, 1990, pp. 187–197.

206 � Enhancing Computer Security with Smart Technology

7. A. Coutinho, The self non-self discrimination and the nature and acquisition
of the antibody repertoire, Annals of Immunology. (Inst. Past.), Vol. 131D,
1980.

8. T.M. Cover and P.E. Hart, Nearest neighbor pattern classification, IEEE
Transactions on Information Theory, Vol. 13, pp. 21–27, 1967.

9. M. Crosbie and E. Spafford, Applying genetic programming to intrusion
detection, in Working Notes for the AAAI Symposium on Genetic Program-
ming, MIT, Cambridge, MA: AAAI, November 10–12, 1995, pp. 1–8.

10. D. Dasgupta and F. González, Evolving complex fuzzy classifier rules using
a linear genetic representation, in Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO), San Francisco, CA: Morgan
Kaufmann, July 2001, pp. 299–305.

11. D. Dasgupta and F. Gonzalez, An immunity-based technique to characterize
intrusions in computer networks, IEEE Transactions on Evolutionary Com-
putation, Vol. 6, No. 3, pp. 281–291, June 2002.

12. D. Dasgupta, An overview of artificial immune systems and their applica-
tions, in Artificial Immune Systems and Their Applications, D. Dasgupta,
Ed. Springer-Verlag, Berlin, 1999, pp. 3–23.

13. D. Dasgupta and S. Forrest, Tool Breakage Detection in Milling Operations
Using a Negative Selection Algorithm, Department of Computer Science,
University of New Mexico, Technical Report CS95-5, 1995.

14. D. Dasgupta, Artificial immune systems and their applications. Springer-
Verlag, Berlin, January 1999.

15. D. Dasgupta, Immunity-based intrusion detection system: a general frame-
work, in Proceedings of the 22nd National Information Systems Security
Conference (NISSC), October 1999, pp. 147–160.

16. D. Dasgupta and S. Forrest, Novelty detection in time series data using
ideas from immunology, in Proceedings of the 5th International Conference
on Intelligent Systems (ISCA), June 1996, pp. 82–87.

17. P. D’haeseleer, S. Forrest, and P. Helman, An immunological approach to
change detection: algorithms, analysis and implications, in Proceedings of
the 1996 IEEE Symposium on Computer Security and Privacy, USA: IEEE
Press, 1996, pp. 110–119.

18. F. Esponda and S. Forrest, Detector coverage under the r-contiguous bits
matching rule, Department of Computer Science, University of New Mexico,
Technical Report TRCS-2002-03, 2002.

19. F. Esponda, S. Forrest, and P. Helman, A formal framework for positive
and negative detection schemes, July 2002.

20. S. Forrest and S.A. Hofmeyr, Immunology as information processing, in
Design Principles for the Immune System and Other Distributed Autono-
mous Systems, L.A. Segel and I. Cohen, Eds. New York: Oxford University
Press, 2000.

21. S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, Self-nonself discrimina-
tion in a computer, in Proceedings IEEE Symposium on Research in Security
and Privacy. Los Alamitos, CA: IEEE Computer Society Press, 1994, pp.
202–212.

Artificial Immune Systems in Intrusion Detection � 207

22. J. Friedman, J. Bentley, and R. Finkel, An algorithm for finding best matches
in logarithmic expected time, ACM Transactions on Mathematical Software,
Vol. 3, No. 3, pp. 209–226, 1977.

23. F. Gonzalez, A Study of Artificial Immune Systems Applied to Anomoly
Detection, Ph.D. thesis, The University of Memphis, May, 2003.

24. S.A. Hofmeyr, An interpretative introduction to the immune system, in
Design Principles for the Immune System and Other Distributed Autono-
mous Systems, I. Cohen and L.A. Segel, Eds. New York: Oxford University
Press, 2000.

25. S. Hofmeyr and S. Forrest, Architecture for an artificial immune system,
Evolutionary Computation, Vol. 8, No. 4, pp. 443–473, 2000.

26. C.A. Janeway, How the immune system recognizes invaders, Scientific
American, Vol. 269, No. 3, pp. 72–79, 1993.

27. C.A. Janeway, P. Travers, S. Hunt, and M. Walport, Immunobiology: The
immune system in Health and Disease, Garland Pub., New York, 1997.

28. N.K. Jerne, Clonal selection in a lymphocyte network, in Cellular Selection
and Regulation in the Immune Response, Raven Press, New York, 1974,
pp. 39–48.

29. N.K. Jerne, Towards a network theory of the immune system, Ann. Immu-
nol. (Inst. Pasteur), Vol. 125C, pp. 373–389, 1974.

30. J. Kappler, N. Roehm, and P. Marrack, T cell tolerance by clonal elimination
in the thymus, Cell, No. 49, pp. 273–280, 1987.

31. E. Keogh, S. Lonardi, and B. Chiu, Finding surprising patterns in a time
series database in linear time and space, in Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD), USA: ACM Press, 2002, pp. 550–556.

32. T.B. Kepler and A.S. Perelson, Somatic hypermutation in B-cells: an optimal
control treatment, Journal of Theoretical Biology, Vol. 164, pp. 37–64, 1993.

33. J. Kuby, Immunology, 3rd ed., W.H. Freeman and Co., New York, 1997.
34. S.W. Mahfoud, Crowding and preselection revisited, in Parallel Problem

Solving From Nature 2, Amsterdam: North-Holland, 1992, pp. 27–36.
35. 1999 Darpa intrusion detection evaluation, MIT Lincoln Labs, 1999. [Online].

Available: http://www.ll.mit.edu/IST/ideval/index.html.
36. P.A. Moss, W.M. Rosenberg, and J.I. Bell, The human T-cell receptor in

health and disease, Annu. Rev. Immunol., Vol. 10, No. 71, 1993.
37. D. Mount and S. Arya, ANN: a library for approximate nearest neighbor

searching, in 2nd Annual CGC Workshop on Computational Geometry,
1997. [Online]. Available: http://www.cs.umd.edu/mount/ANN.

38. P. Murphy and D. Aha, UCI Repository of machine learning databases,
Irvine, CA: University of California, Department of Information and Com-
puter Science, 1992. [Online]. Available: http://www.ics.uci.edu/~mlearn/
MLRepository.html.

39. F. Provost, T. Fawcett, and R. Kohavi, The case against accuracy estimation
for comparing induction algorithms, in Proceedings of 15th International
Conference on Machine Learning, CA: Morgan Kaufmann, 1998, pp.
445–453.

208 � Enhancing Computer Security with Smart Technology

40. I. Tizzard, The response of B-cells to antigen, in Immunology: An Intro-
duction, 2nd ed., Saunders College Publishing, 1988, pp. 199–223.

41. A. Tyrrell, Computer know thy self: a biological way to look at fault
tolerance, in Proceedings of the 2nd Euromicro/IEEE workshop on Depend-
able Computing Systems, Milan, 1999, pp. 129–135.

42. J. Kim and P. Bentley, An evaluation of negative selection in an artificial
immune system for network intrusion detection, in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), San Fran-
cisco, CA: Morgan Kaufmann, 2001, pp. 1330–1337.

43. J. Kim and P.J. Bentley, Toward an artificial immune system for network
intrusion detection: An investigation of dynamic clonal selection, in Pro-
ceedings of the 2002 Congress on Evolutionary Computation (CEC), USA:
IEEE press, May 2002, pp. 1015–1020.

209

Chapter 8

Application of Wavelets
in Network Security

Challa S. Sastry and Sanjay Rawat

8.1 Introduction
Design of intrusion detection systems (IDSs) has been an active area of
research for more than a decade because of the increasing rate of attacks
on computer systems. There are two families of techniques to build an
IDS: The first is misuse-based IDS, which works on the signatures of
known attacks and, thus, cannot capture new attacks. The second is
anomaly-based IDS, which learns the normal behavior of a system (viz.,
users, computer networks, or programs), and any deviation from this
behavior is considered as a probable attack. IDSs based on the latter
technique are generally capable of detecting new attacks. Based on the
data being analyzed by the IDS to detect an intrusion, there are host-
based IDSs (HIDSs) and network-based IDSs (NIDSs). An HIDS collects
data from the system it is protecting, whereas NIDS collects data from the
network, usually in the form of packets.

It has been observed that Internet traffic is self-similar in nature. Self-
similarity is the property that is associated with objects whose structure
is unchanged on different scales. It is pointed out [9] that the self-similarity
of Internet traffic distributions can often be accounted for by a mixture
of the actions of a number of individual users, and hardware and software
behaviors at their originating hosts, multiplexed through an interconnection

210 � Enhancing Computer Security with Smart Technology

network. It has been observed that the traffic related to attacks, especially
denial-of-service (DoS) attacks, is bursty in nature. Traffic that is bursty
on many or all timescales can be described statistically using the notion
of self-similarity.

In view of its multiscale framework and localization aspects, the wavelet
technique is capable of being used for the analysis of scaling and local
“burstiness” features of a function. In recent literature on wavelet-based
IDS, wavelet analysis has been used both to describe and analyze network
data traffic. In addition, it has been used to characterize network-related
problems such as congestion, device failure, etc. [6]. The basic philosophy
in wavelet-based IDS is that self-similarity is prevalent in the network
traffic under normal conditions and, therefore, can be considered as a
signature for normal behavior. The loss of self-similarity, signifying a
possible attack, can be taken as a deviation from normal behavior.

Wavelets do seem to have some merit for various applications in data
mining [1,15,18,22] and therefore are useful in IDS. In reality, as far as
the method is concerned, there is no difference between HIDS and NIDS.
In view of the use of the self-similarity property in NIDS (and not in
HIDS), it seems appropriate to study the applicability of wavelets in HIDS
and NIDS separately. As this chapter, which deals with the application of
wavelets in IDS, is primarily tutorial in nature, it discusses some of the
applications of wavelets in HIDS separately and concentrates more on
NIDS, presenting some computational results.

The rest of the chapter is organized as follows: In Section 8.2 and
Section 8.3, we discuss the notion of self-similarity and give a brief
introduction to wavelets, respectively. Section 8.4 talks about the usability
of wavelets in different applications, including those in IDS. A motivation
is presented in Section 8.5 for the applicability of wavelets in HIDS.
Following this, Section 8.6 discusses the application of wavelets in NIDS.
In Section 8.7, we provide some simulation work to illustrate the relation-
ship between self-similarity and network traffic anomaly. In addition to
presenting the concluding remarks, Section 8.8 suggests a different use
of wavelet coefficients for the detection of not only the presence of
anomaly in data, but also the time instances in which anomalies occur.
A detailed treatment of the fundamentals of wavelet theory is provided
in the appendix at the end of the chapter.

8.2 A Brief Introduction to Self-Similarity
In this section, we present the definition of self-similarity and the basic
concepts associated with it, followed by a brief introduction to wavelets.
Formally, we can define self-similarity as follows [11]:

Application of Wavelets in Network Security � 211

Definition: A process or function is said to be self-
similar with self-similarity parameter H, if and only if
and , and have the same distribu-
tions, which is referred to as the scaling property of the process f. To say
that a time series or a process or a measure displays the scaling property
means many different things, depending on the context and the definition
of scaling properties [11]. Underlying all such definitions is the intuitive
notion that the process being considered has no inherent characteristic
scale, i.e., it enjoys scale invariance.

The high variability in network data traffic is because of the long-range
dependence (LRD) property of the traffic processes. It is commonly
accepted [25] that, by definition, the LRD property means that the auto-
correlation function r(k) of a wide-sense-stationary process Xn slowly
decreases according to a power law such as as ,
where and . The parameter H is called the Hurst param-
eter. For a general self-similar process, the parameter H measures the
degree of self-similarity. For random processes suitable for modeling
network traffic, H is basically a measure of the speed of decay of the tail
of the autocorrelation function. If H lies between 0.5 and 1, the process
is LRD, and if it lies between 0 and 0.5, the corresponding process is said
to have short-range dependence (SRD). Hence, H is widely used to capture
the intensity of LRD. In traffic modeling, however, the term “self-similar”
is usually used to refer to the asymptotically second-order self-similar
process [25]. Hence, in the study of anomalous behavior of traffic data,
any deviation of H from the 0.5 to 1 range signifies the presence of
anomaly in the data [2,11]. Throughout this chapter, we use this observa-
tion for the detection of intrusion present in the data. From now on, we
consider f to be a finite-variance self-similar process with the self-similarity
parameter . In mathematical terms, however, we treat the
function f as being a self-similar finite energy function possessing finite
(support) duration.

8.3 A Brief Introduction to Wavelet Analysis
A wavelet is a “little wave" that is both localized and oscillatory. The
representation of a function in terms of wavelet basis functions (generated
by dyadic scaling and integer translates of the wavelet) involves a low-
frequency block containing the identity of the function and several high-
frequency blocks containing the visually important features or “flavors”
(such as edges or lines). Therefore, the wavelet transform is expected to
provide economical and informative mathematical representation of many
objects of interest [16]. Because of the easy accessibility of many software

{ () ()}f t t: ∈ −∞,∞
{ () ()}c f ct tH− : ∈ −∞,∞

{ () ()}f t t: ∈ −∞,∞ ∀ >c 0 t ∈ −∞,∞()

r k c kr
H() ()∼ − −2 2 k → ∞

cr > 0 H ∈ . ,()0 5 1

H ∈ . ,()0 5 1

212 � Enhancing Computer Security with Smart Technology

packages that contain fast and efficient algorithms [8] to perform wavelet
transforms, wavelets have quickly gained in popularity among scientists
and engineers working on both theoretical issues and applications. Above
all, wavelets have been widely applied in such computer science areas as
image processing, computer vision, network management, and data mining.

Wavelets have many favorable properties, such as compact support,
and can generate different classes of (wavelet) bases. The property of
wavelets being compactly supported implies their localization feature. The
main advantage of this feature is that the presence of local error (noise)
in the data reflects local changes in wavelet coefficients, unlike the Fourier
technique, in which a local change in data has a global effect on the
Fourier coefficients. This feature, along with the multiresolution feature,
is being widely used in image/signal/pattern analysis [21]. To add to this,
in contrast to the Fourier technique (in which one uses the sine and
cosine functions to generate a representation of a suitable function), in
wavelet technique, different wavelet bases such as orthonormal, biorthog-
onal (symmetric), multiwavelets, wavelet packets, M-band wavelets, etc.,
are constructed [10] to tackle various applications. The choice of wavelet
basis can be made depending on the requirement. For example, in image
compression and boundary value problems, biorthogonal (symmetric)
wavelets are found to be useful. In some of the feature extraction algo-
rithms, orthonormal wavelets are found to be useful [21]. Although one
can use different types of wavelets in IDS, throughout this chapter we
use orthonormal Daubechies wavelets. Besides the properties stated ear-
lier, wavelet bases possess other properties such as zero moments, hier-
archical and multiresolution frameworks, and decorrelated coefficients.
These features could provide considerably more efficient and effective
solutions to many practical problems. A fairly detailed mathematical
description of wavelets and their properties is given in the appendix.

8.4 Application of Wavelets
This section studies the application of wavelets in a two-tier pattern. Con-
sidering some of the problems associated with IDS, in the first part we
concentrate on the application of wavelets to dimension reduction, clus-
tering, and similarity search, whereas in the other part we review the
application of wavelets in NIDS.

8.4.1 Some Applications in Data Mining

In this subsection, we briefly talk about some applications of wavelets in
data mining, which, as we will see later on, are useful in IDS.

Application of Wavelets in Network Security � 213

The basic objective in dimensionality reduction is to retain the infor-
mation content of a larger dataset in a smaller dataset. As the wavelet
transform breaks up a function or a dataset into dif ferent frequency
components, wavelets can achieve [1,18] dimensionality reduction by
projecting the dataset into frequency spaces of lower dimension or by
retaining significant wavelet coefficients. The first case, involving the
projection of data into lower-resolution spaces, is equivalent to taking the
first few coefficients in the wavelet representation of a dataset. Although
this approach is useful for easy indexing, it works well when the infor-
mation content of the dataset is present in the first few levels and that in
higher-resolution levels is insignificant. The second case, which involves
retaining few larger coefficients in the wavelet domain, results in very
little loss of information in data (because of Equation 8.19). This process
involves arranging coefficients in decreasing order and then taking the
first few, as dictated by the preassigned error tolerance between the energy
of the dataset and that of the retained coefficients. One may use datasets
in the wavelet domain after reducing the dimension for similarity search.
An excellent overview of the application of wavelets to similarity search
has been given in Reference 15.

The aim of data clustering methods is to group objects in databases
into meaningful subclasses. Because of the huge amount of data in use,
an important challenge for clustering algorithms is to achieve good time
efficiency. Using the multiresolution property of wavelet transforms, Sheik-
holeslami et al. [22] proposed an algorithm called WaveCluster for clus-
tering very large databases. WaveCluster considers multidimensional data
as a multidimensional signal and applies wavelet transform to convert
data into the frequency domain. It then convolves the wavelet domain
data with an appropriate kernel function, which results in a transformed
space in which the natural clusters in the data become more distinguish-
able. Finally, it identifies the clusters by finding the dense regions in the
transformed domain. It has been experimentally observed that WaveCluster
[22] outperforms some of the standard clustering algorithms.

8.4.2 Some Applications in IDS

Wavelet-based network traffic data analysis has been drawing the attention
of many researchers. A detailed bibliography regarding the work in this
direction can be found in Reference 24.

The study by Gilbert [11] discusses the theoretical and implementation
issues of wavelet-based scaling analysis for network traffic. Network traffic
is characterized by packets per second and user-requested-page per ses-
sion for the demonstration of the presence of self-similarity in the traffic.

214 � Enhancing Computer Security with Smart Technology

Energy plots and partition functions are calculated using wavelet coeffi-
cients. The presence of self-similarity in data is inferred from the straight-
line behavior of energy plots.

In another work, Nash and Ragsdale [17] propose that self-similarity
be used to generate network traffic for IDS evaluation. They observe that
it is difficult both to produce traffic that includes a large number of
intrusions and to analyze such huge traffic for signs of intrusions. They
use self-similarity to reproduce real traffic and the wavelet coefficients to
decompose the data for analysis. Using the Hurst parameter that is esti-
mated through Mandelbrot’s method, they demonstrate the self-similarity
of network data.

Along similar lines, Huang et al [12] propose the use of energy plots
to analyze the network (FDDI ring ISP network and Internet traffic from
a research lab) in terms of round-trip time (RTT) and retransmission
timeout (RTO). A tool named WIND has been built to analyze the packets
collected from the tcpdump tool. TCP/IP packets can be analyzed across
different time periods and across the part of traffic destined for different
subnets by exploiting the built-in scale-localization ability of wavelets.

In Reference 6, the use of wavelet coefficients is proposed to analyze
various network-related anomalies. These anomalies are grouped into
three categories: network operation anomalies, which include network
device outages and change in traffic because of configurational changes;
flash crowd anomalies, which include traffic because of some software
release or external interest in some specific Web site; and network abuse
anomalies, which include DoS or scans. Recent work of William and
Marlin [4] shows that the DARPA 98 dataset shows self-similarity, but within
a certain interval of time, i.e., from 8 AM to 6 PM. The periodogram method
is used to estimate the Hurst parameter H. The methodology involves the
plotting of periodograms for each two-hr period of each attack-free day
in the DARPA data. The Hurst parameter is estimated from each plot by
performing a least-square fit to the lowest ten percent of the frequencies
to determine the behavior of the spectral energy as it approaches the
origin. The importance of their study is the observation that other methods
that use temporal distribution for their model should concentrate only on
the data between 8 AM and 6 PM of each day. The authors of Reference
5 use the loss of self-similarity (LoSS technique) to characterize many DoS
attacks whose effectiveness depends on a continuing stream of attack
traffic (termed as DoS-TE). In Reference 5, self-similarity is established by
calculating the Hurst parameter H, using the Whittle and periodogram
approaches [8], and using the following conditions to decide the loss of
self-similarity:

Application of Wavelets in Network Security � 215

A time series of packets’ arrival count per unit time is constructed to
calculate the periodogram and Whittle estimates of the Hurst parameter.
A sliding window, ranging from 10 to 30 min, is used to construct the
time series. Datasets from other sources are used as normal background
traffic, and DARPA data is used for attacks. To capture burstiness, peak
packets per second (pps) rate of each attack is calculated for each window.
This pps value is compared to the background traffic pps rate to detect
the attack. Out of 23 chosen attacks, 21 are detected using the LoSS
technique. It is important to note that such a technique is useful only if
there is a very high intensity of pps during the attack.

8.5 Wavelets for HIDS
In this section, we consider studying briefly the applicability of wavelets
in HIDS. There are many approaches proposed in the literature to build
an HIDS. The following is the methodology that is commonly used to
monitor processes in terms of the system calls invoked by them: Various
processes under the UNIX system are converted into vectors using the
frequencies of various system calls invoked by those processes under
normal conditions. Depending on the applications, the number of system
calls under normal conditions may vary from 30 to 70 and more, per
application. Therefore, each process is represented as a vector of dimen-
sion, say, 50. Then a similarity metric (e.g., cosine metric) is used to
calculate the similarity among processes for classification.

The time taken by an IDS to analyze the data and detect malicious
activity is as important as the IDS itself. Consequently, the data to be
analyzed by an IDS should be as small in amount as possible, containing
as much information of the attack traces as possible. With the reduced
vectors, the similarity calculation takes less time. In Reference 20, based
on the work of Liao and Vemuri [14], an attempt has been made in this
direction, using singular value decomposition (SVD) as a suitable candidate
for reducing the dimension. In Reference 20, the empirical results show
that the reduction in dimension by SVD does not degrade the performance
of an IDS. SVD, however, has several drawbacks as an indexing scheme.
The most important of these relates to its complexity. The classic algorithms
computing SVD require O(mn2) time and O(mn) space, with m and n
being the number of processes and the dimension, respectively.

MIN periodogram Whittle

MAX periodog

()

(

, ≤ .0 05

or

rram Whittle, ≥ .) 0 99

216 � Enhancing Computer Security with Smart Technology

In view of the applicability of wavelets to dimension reduction and
similarity measure, as discussed in Subsection 8.4.1, one may conclude
that such wavelet-based algorithms can be used for HIDSs. In contrast to
SVD’s O(mn2) computations, for the m, n defined earlier, the discrete
Haar wavelet transform [10] can be carried out in O(mn) computations,
thereby achieving faster dimension reduction.

In practical situations, we may not obtain labeled data to train IDSs.
For HIDS, the processes collected for training are either abnormal or
normal and, therefore, difficult to label manually. In such situations, it is
desirable to have some techniques to cluster data into different (normal
and abnormal) parts. As we have seen in Subsection 8.4.1, the wavelet-
based clustering algorithm, namely WaveCluster, is shown to be efficient.
One may use it, as and when required, to cluster the data for HIDS.

8.6 Wavelets for Network-Based IDS
In this section, using the properties of wavelet bases and self-similar
functions, we present the methodology described in Reference 2 and
Reference 11 for the detection of anomalies in the data.

The coefficients in the wavelet representation of a self-similar function
satisfy the following simple relation: For any integers such that

, we have

(8.1)

Taking m = 0 and computing the energy Ej at the jth scale of wavelet
coefficients, we get

(8.2)

j m n, ,
j m n= +

d f t t k dt

f t

j k
j

n

j

j

,
−∞

∞

−∞

∞
−

= −

=

∫
∫

2 2

2 2

2

2

() ()

() (

ψ

ψ 22 2

2 2 22

m n

nH n m H

t k dt

f t t k dt c
j

−

= −

−

− −

−∞

∞

∫

)

() ()ψ ∵ (() () ()

()

− =

=
− +

,

H f ct f t

d
n H

m k2
2 1
2

E
N

d

N
d

j

j k

j k

j H

j k

k
j

: = | |

= | | =

∑
∑

,

− +

,
−

1

2 2

2

2 1

0
2 2

()
(HH E+1

0
)

Application of Wavelets in Network Security � 217

In this equation, Nj represents the number of wavelet coefficients at
scale j. From Equation 8.1, it may be noted that Nj is the same at all levels.
Consequently, the Hurst parameter H can be computed using

(8.3)

In actual simulations, however, the plot of logarithm of energies at
various levels is considered [3,11] using the following log-scale formula:

(8.4)

The scales over which the plot is a straight line are determined first
to identify the scale interval over which the self-similarity possibly holds.
Then, from the slope of the line, i.e., −(2H + 1), H is computed. If the
Hurst parameter falls between 0.5 and 1, the data is a self-similar LRD
process. In the event of either H not lying between 0.5 and 1 or in the
absence of straight-line behavior in the log-scale plot, the data is said to
possess anomaly.

Note 1: It may be noted that the energy plots can be linear for some
functions and, in spite of it, the corresponding function f in question may
not satisfy the scaling property. For example, suppose f is a polynomial
of some degree N over the interval [−2J,2J] and 0 outside it, for some
positive integers J, N. When we use the wavelet basis possessing zero
moments up to order N−1 (i.e., in Equation 8.18), the energy
plot is a straight line between the levels 0 and J, and the slope of the
line, as dictated by the choice of N, can take arbitrary values. This is, of
course, a hypothetical function, chosen as an example to justify that the
straight-line behavior of the log-scale plot does not necessarily imply self-
similarity.

Note 2: Suppose f is a self-similar and LRD stationary process. The
explanation given in the foregoing paragraphs concludes that the energy
plot is a straight line, and the H determined from the slope of the energy
plot falls in . It may be noted that the converse is not necessarily
true, because of the following reason: Suppose the energy plot of a
function g is a straight line over scale interval with the corresponding
H falling in the desired interval. Then g need not be self-similar, as follows.
So for any noise function (for example, for or
for ; see the appendix for details), that is orthogonal to ,
and , we have

H
j
log

E

E j

=
⎛

⎝⎜
⎞

⎠⎟
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2

1
12

0

log E j H log Ej2 2 02 1= − + +()

m N≤ − 1

()0 5 1. ,

[]j j1 2,

η()x η ∈Vl l j< 1 η ∈Wl

l j> 2 ψ j k, ∀ k
j j j∈ ,[]1 2

218 � Enhancing Computer Security with Smart Technology

(8.5)

Hence, the energy plots of f and are exactly the same. But
the function f + η, because of the presence of the noise factor η, may
not be a self-similar process. This problem, however, can be overcome
by replacing f with In the case of no noise
factor, the projection factors become zero, and hence up to the additive
noise factor, we can conclude from the straight-line behavior that self-
similarity is present in the data. Here, stands for the projection of
f onto X.

8.7 Simulation Results
In this section, we demonstrate the applicability of the approach presented
in the earlier section. We use the self-similar data shown in Table 8.1 and
plotted in Figure 8.1(a), as well as its disturbed version, shown in Figure
8.1(b), and compute the energies at different scales.

The corresponding log-scale diagrams are shown in Figure 8.2 and
Figure 8.3. As an example, we have disturbed the data by replacing the
entries indexed from 10 to 20 with 0 and entries from 50 to 60 with 100
in the data. We observe that the loss of self-similarity in data changes the
Hurst parameter value from 0.8058 to 1.410. This justifies the applicability
of the method. In Figure 8.2 and Figure 8.3, the level parameter j is taken
along the x direction, whereas the logarithm of energy, i.e., log2Ej , is taken
along the y direction. Throughout our simulation work, we have used the
Daubechies orthonormal wavelet db2 as an example. It may be noted
that one can as well use other choices of wavelets. In the computation
of the Hurst parameter from energy plots, and the scale interval over
which self-similarity holds, we have adopted the strategy presented in
Reference 3.

Note 3: In view of the availability of different classes of wavelets, the
choice of wavelet may be a matter of concern when it comes to imple-
menting wavelet-based algorithms. Because the higher-order orthonormal
(Daubechies) wavelets, possessing a large number of zero moments, have
the capacity to provide energy compaction (because of faster convergence

Table 8.1 Self-Similar Test Data

1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16,2,4,4,8,4,8,8,16, 4,8 8, 16,8,16,16,32,
2,4,4,8,4,8,8, 16,4,8,8,16,8,16,16,32,4 8,8,16,8,16,16,32,8,16,16,32,
16,32, 32,64,2,4,4,8, 4,8,8 16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32

< + , > = < , > + < , > = < , >, , , ,f f fj k j k j k j kη ψ ψ η ψ ψ

g f= + η

f Proj f Proj fV j j Wj j
− − ∑ ≥1 2

.

Proj fX

Application of Wavelets in Network Security � 219

in Equation 8.14; see the appendix for details) over a few scales when
the data is sufficiently smooth, in such situations, one has to deal with a
smaller number of levels. Because of this, as one may not be able to
figure out the appropriate scale interval, the lower-order wavelets, pos-
sessing a smaller number of zero moments, may be preferable to higher-
order wavelets in simulations.

8.8 An Observation for Future Work and Conclusion
As the energy computed is global in nature, in the sense that both the
location and strength of the anomaly are hidden by the averaging per-
formed in Equation 8.2, instead of computing H using energy plots one
may use Equation 8.1 differently for the determination of possible presence
of anomaly in the data as follows:

(8.6)

Figure 8.1 Plots of (a) data shown in Table 8.1 and (b) disturbed data.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80
0

20

40

60

80

100

H
n

log
d

d
m k

m n k

=
⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,

+ ,

1

2

2
12

220 � Enhancing Computer Security with Smart Technology

The Hurst parameter H, computed for different m,n, and k, reveals
not only the scale interval over which H falls in the desired range, but
also the time instances in which H goes out of range at different scales
of f, in the event of presence of anomalies in the data. We believe that
this observation helps us detect the possible presence of anomaly and
the corresponding time locations. The method is discussed in Reference
19 and is, nevertheless, yet to be justified experimentally.

This chapter presented a tutorial on wavelets and reviewed the appli-
cation of wavelets in IDS, highlighting some of the important points as
Notes.

Appendix
The key idea in wavelet technique is to start with a function φ that is
made up of a smaller version of itself, i.e.:

Figure 8.2 Log-scale plot of Figure 8.1(a). It can be seen that the plot is almost
a straight line.

1 1.5 2 2.5 3

4

5

6

7

8

9

10

11

j

L
o

g
E

j

Application of Wavelets in Network Security � 221

(8.7)

which is called the refinement (or two-scale) equation. The coefficients
hk are called filter coefficients or masks. The function φ is called the
scaling (or father wavelet) function.

To compute the wavelet transform of a function efficiently, the concept
of multiresolution analysis (MRA) was introduced [10]. Associated with
MRA, there is a family of algorithms that can be computed fast. The
motivation of MRA is to use a sequence of embedded subspaces to
approximate , the space of all finite energy functions defined over
the real line , so that one can choose a proper subspace for
a specific application task to get a balance between accuracy and efficiency
(bigger spaces can contribute better accuracy at the expense of computational

Figure 8.3 Log-scale plot of Figure 8.1(b). The line behavior is not straight as
compared to Figure 8.2. It is, however, less evident because of high variation
along the y direction.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

φ φ() ()x h x k
k

k= −
=−∞

∞

∑ 2

L IR2()
IR = −∞,∞()

222 � Enhancing Computer Security with Smart Technology

resources). Mathematically, MRA concerns the property of a sequence of
closed subspaces which approximate and satisfy

(8.8)

which confirms that the closure of union of all Vj is . The multires-
olution property is reflected by the property: ,
meaning that all the spaces are scaled versions of the central space V0.
First, the translates of φ, i.e., , generate an orthogonal basis
for V0, i.e.:

The nestedness property of Vj spaces ensures that the functions
 generate an orthogonal basis for Vj for each j. It may be

noted that the translation parameter k controls the observation location,
whereas the scaling parameter j controls the observation resolution.

Having an orthonormal basis of Vj is only half of the picture. To solve
problems such as noise filtering, we need to have a way of isolating the
“spikes” that belong to Vj but are not members of Vj–1. This is where the
wavelet ψ enters the picture. Let W0 be the complement of V0 in V1, i.e.,

 or . The symbols and have the following
meaning: If every function in V1 is uniquely written as a sum of the
orthogonal components of it in V0 and W0 (i.e., implies
for unique , , and), we write
or . The question as to how the information in W0 can be
studied is answered by the wavelet function ψ, called the mother wavelet,
which is defined [10] by

(8.9)

From the definition of W0, it can be concluded that , but .
Consequently, ψ is orthogonal to φ and, hence, it is easy to conclude that
an arbitrary translation of the father wavelet (or scaling function) φ is
orthogonal to an arbitrary translation of the mother wavelet ψ, i.e.:

V j Zj , ∈ , L IR2()

{ } ()0 1 0 1
2= ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ =−∞ − ∞V … V V V … V L IR

L IR2()
f V j(). ∈ ⇐⇒ f V j()2 1. ∈ +

{ ()}φ x k k Z− ∈

φ φ() ()x n x m dx
m n

m n
− − =

=
≠

⎧
⎨
⎩−∞

∞

∫ 1

0

when

when

{ ()}φ 2 j
k Zx k− ∈

W V V0 1 0= � V V W1 0 0= ⊕ � ⊕

h V∈ 1 h h h= +1 2

h V1 0∈ h W2 0∈ −∞
∞

∫ =h x h x dx1 2 0() () V V W1 0 0= ⊕
W V V0 1 0= �

ψ φ() () ()x h x k
k

k
k= − −

=−∞

∞

−∑ 1 21

ψ ∈V1 ψ ∉V0

φ ψ() () ,x n x m dx m n− − =
−∞

∞

∫ 0 for all

Application of Wavelets in Network Security � 223

If generates an orthonormal basis of W0, for any j,
translates of generate a basis of Wj, which is . Using the
definition of Vj and Wj spaces, for some , we have

(8.10)

Decomposing V0 further, we have

(8.11)

Letting , we get

(8.12)

In Equation 8.12, L2 space is partitioned into different subspaces that
are orthogonal to each other. Hence, a function can be divided
into different orthogonal pieces, gj’s, that capture the edges or singularities
of f of different strengths as follows:

(8.13)

In Equation 8.13, and
, the inner product of f and , where . The

factor in the definition of is taken to normalize its energy. In
actual computational work, using Equation 8.8, a function is approx-
imated by for a fair choice of J. Then, using Equation 8.10, we
take the wavelet representation of f as

(8.14)

Here, and, hence, , and . In Equa-
tion 8.13, captures the approximate information or “identity” of the
function, whereas the function gi captures the edges or spikes present in
f of different strengths, as depicted in Figure 8.4.

{ ()}ψ x k k Z− ∈
ψ()2 j V Vj j+1 �

J ≥ 0

V V W

V W W

V W W

J J J

J J J

J

= ⊕

= ⊕ ⊕

=

= ⊕ ⊕ ⊕

− −

− − −

−

1 1

2 2 1

0 0 1

…

…

V W …W … WJ J= ⊕ ⊕ ⊕−∞ −0 1

J → ∞

L V W …W … W WJ J j j
2

0 1← = ⊕ ⊕ ⊕ → ⊕−∞ − =−∞
∞

f L∈ 2

f g g Wj j j

j Z

= ∈
∈
∑ for

g f j kj k Z j k= ∑ , ,∈ ,ψ ψ f f xj k j k, = ∫, −∞
∞

,ψ ψ()
x dx() ψ j k, ψ ψj k

jt t k
j

, = −() ()2 22

22
j

ψ j k,
f L∈ 2

f VJ J∈

f f f g … gJ J≈ = + + + −0 0 1

f V0 0∈ f fk k k0 0 0= ∑ < , >, ,φ φ g Wi i∈
f0

224 � Enhancing Computer Security with Smart Technology

The following conditions on the sequence {hn} ensure [10] the properties
such as stability, convergence, and orthogonality of the wavelet basis.

(8.15)

The middle equation of Equation 8.15 holds for some suitable choice
of integer m [10]. The bar over represents the complex conjugate
operation of hk. The integer translates and dyadic scaling of ψ, i.e.,

, generate a representation of a finite energy function. In
particular, when the sequence is finite, the functions φ, ψ become
zero outside some finite interval [10]. Ingrid Daubechies [10] has given a
procedure for the construction of compactly supported, sufficiently regular,
and orthonormal wavelets. The construction procedure of Daubechies’
wavelets ensures that the length of the sequence determines the width
of support, zero moment property of ψ, and the smoothness of the wavelet
function.

A direct application of MRA is the fast discrete wavelet algorithm, called
the pyramid algorithm [16]. The basic idea in the pyramid algorithm is
the progressive reconstruction feature, which involves the successive
addition of details to coarser approximations for better representation.

Using Equation 8.7 and Equation 8.9, the approximation and the detail
coefficients at the jth level of resolution, denoted by and

 respectively, are computed via the following iterative
decomposition formulas:

Figure 8.4 Multiresolution decomposition.

a b b a

f
0

f g
0

c d

+
d c

+

h

k h

k

k

k m
k

=

− =

=−∞

∞

∑ 2

1 0

(stability)

(stabil() iity)

(orthogonality)

k

k k n n

k

h h

=−∞

∞

+

=

∑

=2 02δ ,

−−∞

∞

∑

kh

ψ()2 j x k−
{ }hn

{ }hn

c fj
j k= < , >,{ }φ

d fj
j k= < , >,{ },ψ

Application of Wavelets in Network Security � 225

(8.16)

Here, the following notations are used: , ,
with and , called the downsampling operation. The
star or * operation denotes the convolution operation. Conversely, the
approximation coefficients at the (j + 1)th level are obtained via the
reconstruction formula

(8.17)

The operation doubles the size of sequence h by inserting zeros
in alternate positions and is called the upsampling operation. The decom-
position and reconstruction processes are shown diagrammatically in
Figure 8.5. Because of the involvement of convolution, upsampling, and
downsampling operations, when we use finitely supported functions,
different levels have different numbers of coefficients. In the following
text, we summarize some of the properties of the wavelet transform:

Multiresolution framework: As in the decimal system of represen-
tation of numbers, in wavelet decomposition, details are added
successively to coarser-level information, as in Equation 8.14.
This progressive reconstruction feature is critical in many appli-
cations, including the ones in IDS.

Figure 8.5 Decomposition and reconstruction processes.

C
J

d
J−1

d
J−2

d
J−p+1

C
J−1

C
J−2

C
J−p+1

C
J−p

. . . .

Decomposition algorithm

d
J−1d

J−p
d

J−p+1

C
J−p

C
JC

J−1
C

J−p+1
C

J−p+2
. . . .

Reconstruction algorithm

c h c h c

d g c

l
j

k l k
j

k

j

l

l
j

k l k

= = ↓⎡⎣ ⎤⎦

=

−
+ +

−

∑ 2
1

2
1

2

()�

jj

k

j

l
g c+ +∑ = ↓⎡⎣ ⎤⎦

1
2

1()�

h hn= { } g g hn
n

n= = − −{ () }1 1

n nh h= − ↓ =2 2{ } { }h hn n

c h c g d c hk
j

l

k l l
j

k l l
j j+

− −= + = ↑ + ↑∑1
2 2 2() [() (� � �� 22 d gj

k)]� �

↑2 h

226 � Enhancing Computer Security with Smart Technology

Zero moments: The second condition on in Equation 8.15
[10] implies the following property of ψ:

(8.18)

This property reveals the oscillatory nature of ψ, which is an
important factor [10] determining the speed of convergence of
the wavelet series in Equation 8.13, and the sparsity in the
wavelet domain of a function, etc. Higher-order zero moments
ensure that data in wavelet domain (under appropriate smooth-
ness conditions on data) can become sparse, i.e., many wavelet
coefficients are negligibly small. This feature is useful in data
reduction problems.

Stability: When the wavelet basis used is orthonormal, we have

(8.19)

i.e., the energy of a function is the same as the energy of its
wavelet coefficients. Thus, any small error in the input function
results in a small error in wavelet coefficients and vice versa,
justifying the stability of (orthonormal) wavelet bases.

Decorrelation of data: Another important property of wavelets is
their ability to reduce temporal correlations in the wavelet
domain. Hence, wavelets can be used to reduce the complex
process in the time domain into a much simpler process in the
wavelet domain. For example, the wavelet coefficients of a self-
similar and LRD process form an SRD process [11].

Computational complexity: A vector matrix multiplication is an
 procedure. Hence, the discrete Fourier transform is an
 procedure that is achieved in computations

by fast Fourier transform. However, the fast wavelet algorithm
[16] based on the pyramidal algorithm achieves the same in

 computations [8]. Consequently, the complexity involved
in wavelet computations varies linearly with the size of data (N).

Note 4: Brani Vidakovic [23] suggests that if the autocorrelation sequence
of (shown in the third line of Equation 8.15 at 2n) at 1 becomes
0, i.e., , the corresponding scaling function φ is orthogonal
not only to its integer shifts, but also to its immediate ½ shifts, i.e.:

{ }hn n Z∈

−∞

∞

∫ = .x x dxmψ() 0

f d
j k Z

j k2

2 2= | |
, ∈

,∑

O N()2

O N()2 O N N(log)2

O N()

{ }hn n Z∈

k k kh h=−∞
∞

+∑ =1 0

Application of Wavelets in Network Security � 227

Besides being self-similar, it looks comparably “bad” at any resolution.
The corresponding wavelet turns out to be good for estimating the Hurst
exponent of monofractals with low regularity (H being close to zero) [23].

Acknowledgment
The authors are thankful to Arun K. Pujari, University of Hyderabad,
Hyderabad, India, and Rao Vemuri, University of California, Davis, for
their help and suggestions. The first author thanks the National Board for
Higher Mathematics (NBHM), India, for its financial support (Grant No.
FNO: 40/7/2002-R & D II/1124). The second author is also thankful to
V.P. Gulati, Director IDRBT, India, for his constant encouragement, and
to IDRBT for the research scholarship to pursue his research work. The
author is associated with IDRBT as a research fellow.

References
1. Abramovich, F., Bailey, T., and Sapatinas, T. (2000), Wavelet analysis and

its statistical applications, JRSSD, 48: 1–30.
2. Abry, P. and Veitch, D. (1998), Wavelet analysis of long-range dependent

traffic, IEEE Trans. Inform. Theory 44: 2–15.
3. Abry, P., Flandrin, P., Taqqu, M.S., and Veitch, D. (2003), Self-similarity

and long-range dependence through the wavelet lens, Theory and Appli-
cations of Long-Range Dependence, Doukhan, P., Oppenheim, G., and
Taqqu, M.S. (Eds.), Birkhauser, pp. 526–556.

4. Allen, W.H. and Marin, G.A. (2003), On the self-similarity of synthetic traffic
for the evaluation of intrusion detection systems, Proc. of the IEEE/IPSJ
International Symposium on Applications and the Internet (SAINT),
Orlando, FL, pp. 242–248.

5. Allen, W.H. and Marin, G.A. (2004), The loss technique for detecting new
denial of service attacks, Proc IEEE South East Conference, Greensboro, NC.

6. Barford, P. and Plonka, D. (2001), Characteristics of network traffic flow
anomalies, Proceedings of ACM SIGCOMM Internet Measurement Workshop
IMW.

7. Beran, J. (1994), Statistics for Long-Memory Processes, Chapman and Hall,
New York.

 8. Beylkin, G., Coifman, R., and Rokhlin, V. (1991), Fast wavelet transforms
and numerical algorithms, Comm. Pure and Appl. Math, 44: 141–183.

φ φx
m

x
n m n

−⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

=
=

−∞

∞

∫ 2 2

1

0

when

whhen m n≠
⎧
⎨
⎩

228 � Enhancing Computer Security with Smart Technology

 9. Crovella, M. and Bestavros, A. (1997), Self-similarity in World Wide Web
traffic: Evidence and possible causes, IEEE-ACM Transactions on Network-
ing, 5: 835–846.

10. Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF Series in Appl.
Math., 61, SIAM Philadelphia.

11. Gilbert, A.C. (2001), Multiscale analysis and data networks, Applied and
Computational Harmonic Analysis, 10: 185–202.

12. Huang, P., Feldmann, A., and Willinger, W. (2001), A non-intrusive, wavelet-
based approach to detect network performance problems, Proc of the First
ACM SIGCOMM Workshop on Internet Measurement IMW’01, San Francisco,
California, pp. 213–227.

13. Lee, W. and Stolfo, S.J. (1998), Data mining approaches for intrusion
detection, Proc of the 7th USENIX Security Symposium (SECURITY-98),
Usenix Association, January 26–29, pp. 79–94.

14. Liao, Y. and Vemuri, V.R. (2002a), Use of K-nearest neighbor classifier for
intrusion detection, Computers and Security, 21(5): 439–448.

15. Li, T., Li, Q., Zhu, S., and Ogihara, M. (2002), A survey of wavelet
applications in data mining, SIGKDD Explorations, 4(2): 49.

16. Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, 1998.
17. Nash, D.A. and Ragsdale, D.J. (2001), Simulation of self-similarity in net-

work utilization patterns, Transactions of the IEEE Systems, Man, and
Cybernetics, part A, 31(4): 327–331.

18. Pong Chan, K. and Fu, A.W.C. (1999), Efficient time series matching by
wavelets, Proc ICDE, pp. 126–133.

19. Rawat, S. and Sastry, Ch.S. (2004), Network intrusion detection using
wavelet analysis, Proc. of CIT, Hyderabad, India, 2004, LNCS 3356,
Springer-Verlag, pp. 224–232.

20. Rawat, S., Pujari, A.K., and Gulati, V.P. (2004), On the use of singular value
decomposition for a fast intrusion detection system, Proc. of the First
International Workshop on Views on Designing Complex Architectures
(VODCA 2004), ENTCS, Elsevier, pp. 59–71.

21. Sastry, Ch.S., Pujari, A.K., Deekshatulu, B.L., and Bhagvati, C. (2004), A
wavelet based multiresolution algorithm for rotation invariant feature
extraction, Pattern Recognition Letters, 25: 1845–1855.

22. Sheikholeslami, G., Chatterjee, S., and Zhang, A. (1998), WaveCluster: A
multiresolution clustering approach for very large spatial databases, Proc.
24th Int. Conf. Very Large Data Bases, VLDB, pp. 428–439.

23. Vidakovic, B. (2004), An Open Problem or Easy Exercise, http://www.isye.
gatech.edu/brani/wavelet.html.

24. Willinger, W., Taqqu, M., and Erramilli, A. (1996), A bibliographical guide
to self-similar traffic and performance modeling for modern high-speed
networks, Stochastic Networks, Kelly, F.P., Zachary, S., and Ziedins, I. (Eds.),
Oxford University Press, Oxford, pp. 339–366.

25. Xia, X., Lazarou, G.Y., and Butler, T. (2004), Automatic scaling range
selection for long-range dependent network traffic, Submitted to the IEEE
Communications Letters.

229

Chapter 9

Application of Exploratory
Multivariate Analysis
for Network Security

Khaled Labib and V Rao Vemuri

Abstract
There are many ways to study, analyze, visualize, and detect network
traffic anomalies. Some of these are quite successful. However, it is difficult
to compare the results obtained from these studies and to define the
merits and demerits of each method. This difficulty is exacerbated while
comparing visualization methods. A primary reason for this difficulty is
the heterogeneous nature of the development process of these methods;
they do not use a common framework for development and testing. This
study uses the S language for statistical computing and graphics as a
unified framework for evaluating the applicability of seven exploratory
multivariate analysis methods for anomaly detection and visualization. The
methods are used to study, visualize, and possibly detect computer net-
work attacks. The methods, namely, k-means, hierarchical clustering, self-
organizing maps, principal component analysis (PCA), independent com-
ponent analysis (ICA), stars plots, and mosaic plots, are used to analyze
and visualize selected network attacks from the DARPA 1998 dataset.
Visualization techniques associated with each method provide more in-depth

230 � Enhancing Computer Security with Smart Technology

representation of the nature of the network traffic, with each method
having its unique view of the data. Some of the results obtained may be
used in identifying trends in the behavioral change in the traffic charac-
teristics. Using this unified framework, a comparison of the performance,
feature, graphical representation, and applicability of each method is
possible.

9.1 Introduction
Several successful implementations of intrusion detection systems (IDSs)
have resulted from recent research. Each of these implementations gen-
erally uses its own set of home-grown software tools, scripts, and programs
to construct and validate every new IDS concept and method. The steps
involved in developing and testing a new IDS method include data
collection, preprocessing, algorithm development, data storage, and visu-
alization. In addition, the research and development process typically
spans multiple disciplines, including statistics, artificial intelligence (AI),
mathematics, and visualization. However, there is a lack of a unified
framework for developing and testing these systems. This results in diffi-
culties in comparing the results. Moreover, the software components
developed for one system are not reusable by another system that is under
development, because of the lack of a common framework for reusability.

Another issue arises when trying to evaluate and compare visualization
methods that are created through different computer programs. To be able
to do a meaningful comparison, several tools must be set up, each having
its own flavor of graphical representation. In addition, these tools may be
designed to run on different platforms, making it even harder to compare
these graphical representations.

It is also desired to graphically characterize the development of network
traffic in general and the development of attack patterns in particular. This
is an area in which little research has been done. Tracking behavioral
changes in the characteristics of the network traffic across time can enable
earlier detection of attacks. This approach of characterizing the develop-
ment of network attacks is inspired by the work of Herman and Montroll
[1] in characterizing the development of countries.

To address these issues, we propose in this chapter the use of the S
language to provide a unified framework for studying, developing, testing,
and comparing the results of various methods for the implementation of
anomaly detection systems, with emphasis on visualization. As discussed
earlier, seven exploratory multivariate analysis algorithms are studied,
namely: the k-means, hierarchical clustering, self-organizing maps, PCA,
ICA, stars plots, and mosaic plots. Using a single program, datasets can

Application of Exploratory Multivariate Analysis � 231

be loaded and postprocessed. Then, each method is applied to the
datasets. The generated statistics are displayed, and graphical views of
the data provide an intuitive visual approach for finding relationships
amongst the different data elements.

A comparison of the results obtained from running different algorithms
reveals that some methods are suitable for detecting certain anomalies,
whereas the others provide for a more powerful visualization of the data.

The rest of the chapter is organized as follows: Section 9.2 provides
a brisk summary of the problem of intrusion detection, to the extent
relevant to the methods presented in this chapter. Section 9.3 introduces
the S language and its environment. Section 9.4 provides an introduction
to the multivariate analysis methods used in this study. Section 9.5
describes denial-of-service (DoS) and network probe attacks. Section 9.6
details the process of data collection and preprocessing and the creation
of feature vectors. Section 9.7 discusses the results obtained and suggests
a method of detecting intrusions using these results.

9.2 The Intrusion Detection Problem
Currently, three approaches to intrusion detection have gained some
degree of popularity. The first, a signature-based method [2], creates a
database of known intrusion signatures and compares all user signatures
with this database. The disadvantage of this model is its inherent inability
to detect new attacks or known attacks that have significantly changed
their behavior, that is, the signature.

The second approach, referred to as anomaly detection, attempts to
establish what the normal traffic patterns look like for a given network,
and flags out any variations in traffic from this norm. Unlike signature-
based detectors, anomaly detectors do not compare the traffic against any
signature database; they rather attempt to identify anomalies in the traffic
that suggest a possibility of an attack or intrusion that is taking place. The
disadvantages of this model are high false-alarm rates and the lack of the
ability to easily cope with normal changes in network activity. In addition,
anomaly detectors can flag out abnormal behavior, but may not be able
to specify the exact type of attack or its nature.

The third approach, referred to as specification-based intrusion detec-
tion, relies on manually specifying program behavioral specification that
is used as a basis to detect attacks. It has been proposed as a promising
alternative that combines the strengths of signature-based and anomaly-
based detection [3].

The focus of this chapter is on evaluating the use of exploratory multi-
variate analysis methods as applied to anomaly detection with emphasis on

232 � Enhancing Computer Security with Smart Technology

visualization. Anomaly detection is a widely used method in the field of
computer security, and there are many approaches that utilize it for
detecting intrusions [4]. Various techniques for modeling normal and
anomalous data have been developed for anomaly detection. A survey of
these methods can be found in Reference 5.

Clustering methods have been used in many fields, including statistics
[6], machine learning [7], and visualization. Some studies, summarized
next, attempted to use clustering methods for anomaly detection.

Portony et al. [8] presents a method for clustering similar data instances
together and uses distance metrics on clusters to determine an anomaly.
The author makes two basic assumptions: First, data instances having the
same classification should be close to each other in feature space under
some reasonable metric, whereas instances with different classifications
should be far apart. Second, the number of instances in the training set
that represent normal traffic is overwhelmingly larger than the number of
intrusion instances. Clusters were labeled automatically, and were later
used to classify unseen network data instances. Both training and testing
were done using subsets of KDD CUP 99 data [9]. On average, the detection
rate was around 40 to 55 percent with a 1.3 to 2.3 percent false-positive rate.

There are a number of research projects that focus on using statistical
approaches for anomaly detection.

Staniford-Chen et al. [10] address the problem of tracing intruders who
obscure their identity by logging through a chain of multiple machines.
They use PCA to infer the best choice of thumbprinting parameters from
data. They introduce thumbprints, which are short summaries of the
content of a connection.

Shah et al. [11] study how fuzzy data–mining concepts can cooperate
in synergy to perform distributed intrusion detection. They describe attacks
using a semantically rich language, reason over them, and subsequently
classify them as instances of an attack of a specific type. They use PCA
to reduce the dimensionality of the collected data.

There are some studies that attempt to apply self-organizing maps as
a tool to address network intrusion detection in general and DoS attack
detection in particular.

A system developed by Rhodes et al. [12] uses multiple self-organizing
maps for intrusion detection. They use a collection of more specialized
maps to process network traffic for each layered protocol separately. They
suggest that each neural network becomes a kind of specialist, trained to
recognize the normal activity of a single protocol.

Another approach that differs from anomaly detection and misuse detec-
tion considers human factors to support the exploration of network traffic
[13]. The authors use self-organizing maps to project the network events on
a space appropriate for visualization, and achieve their exploration using

Application of Exploratory Multivariate Analysis � 233

a map metaphor. The use of self-organizing maps, combined with stars
plots as a visualization tool in this study, is motivated by the work of
Herman and Montroll [1]. These authors attempted to characterize the
temporal evolution of countries by the use of labor force distribution data
on a multidimensional phase plot so that the development of a country
is represented by an evolutionary track of a phase point.

In the works cited in the preceding text, a heterogeneous set of tools
and software packages were used to develop and test each method,
leading to difficulties in comparing the results obtained and in accurately
assessing the method’s performance. This issue is also common in other
similar works in the field. Different tools generate different output formats,
reports, and graphics, making it hard to compare their results. In addition,
the preprocessing phase of data using different programs and techniques
can lead to variable performance numbers among the different implemen-
tations, which makes the process of evaluating comparative performance
difficult. Using the S language creates a unified framework for evaluating
the results and associated performance of each method. In addition, the
reusability of software components can become a much easier task when
using a single framework.

Common to the implementation of these anomaly detection approaches
is a set of tasks that are performed to achieve the desired goal of detecting
intrusions. These tasks can be summarized as follows:

� Data collection and processing: For example, sniffing data off the
network and processing it to extract the desired portions of packet
data.

� Application of detection algorithm: The desired detection algorithm
or method is applied to the data previously collected.

� Evaluation of results: This is done by generating reports and using
advanced visualization to assess the results obtained.

In practice, each of these tasks may be implemented using one or
more software segments. Many of the current projects evaluating new IDS
concepts use a variety of different programs, ranging from scripts and
compiled executables to third-party tools and perhaps certain portions of
code from an older project. All these tasks can be achieved within a single
framework by using S.

9.3 The S Language and Its Environment
The S environment is an integrated suite of software facilities for data
analysis and graphical display. “The term environment is intended to

234 � Enhancing Computer Security with Smart Technology

characterize it as a planned and coherent system built around a language
and a collection of low-level facilities, rather than the ‘package’ model of
an incremental accretion of very specific, high-level, and sometimes inflex-
ible tools” [14]. One of the strengths of S is that functions implementing
new statistical methods can be developed on top of the low-level facilities.

For example, to create a single function to perform the three basic
tasks of an IDS, as described in Section 9.2, the S code would look like:

evalIDS ← function(indata) {

pd ← procData(indata);

intrusion ← detectIntrusion(pd);

evalResult ← evalResult(intrusion);

}

The top-level function evalIDS accepts one argument, indata, and
calls three functions, namely, procData, detectIntrusion, and
evalResult, representing the three basic tasks. Each of the three
functions in turn calls other lower-level functions to implement their
details. Specific examples of these functions will be discussed in detail in
Section 9.7.

Using S, it is quite easy to play around with the design decisions made
by the original implementers to explore new ideas. For example, an
existing library function uses linear interpolation. This behavior can be
changed to reflect a nonlinear model by rewriting the function. In the
previous example, the function detectIntrusion could be made a
library function with some default algorithm to detect intrusions. This
default behavior could easily be modified, by modifying the library func-
tion source, to implement variations of the default algorithm or a com-
pletely new algorithm while maintaining the same structure of the rest of
the program.

This flexibility is even more evident in the open-source R implemen-
tation, in which all the details of implementation are open for exploration.
Indeed, R is used in this study to generate all results and graphics.

The commercial implementation of S, called S-Plus, has an extensive
graphical user interface (GUI) that provides menus and dialogues for many
simple statistical and graphical operations. A full-featured student edition
is available at no cost for students at accredited universities. The open-
source R package can be downloaded directly from the project Web site
and is installable on many platforms including Windows and Linux. Almost
all S scripts developed for S-Plus will run on R and vice versa. The main
difference between S-Plus and R is that S-Plus, including the student edition,
has a sophisticated GUI that is especially helpful for new users.

Application of Exploratory Multivariate Analysis � 235

Both S-Plus (including the student edition) and open-source R imple-
mentations provide a command-line interface for entering S commands.
Once the program is started, this command line allows the user to enter
S commands, create variables, call functions, draw graphs, create and
manipulate data tables, and save and print results. Because S is also a full
programming language in its own right, it provides for assignment state-
ments, control structures, arithmetical expressions, array and matrix oper-
ations, and calling conventions for functions, among other capabilities.

Some of the language features found in S are also found in other
scientific analysis languages such as Matlab and Mathematica, but S pro-
vides for some key features that make it more applicable for use in
intrusion detection research. First, S is designed to be a statistical analysis
tool and, thus, many of the specialized statistical functions are already
available in its libraries and need not be written from scratch. These
functions are typically the core functions that are used to develop intrusion
detection engines. On the other hand, Matlab is essentially a numerical
simulation tool that is designed to do linear algebra computations and
simulation. For example, implementing statistical models from Becker et
al. [15] (commonly known as the blue book models) in Matlab is a chore,
whereas, it is essentially a built-in feature in S-Plus and R.

Also, S’s ability to run on many platforms makes it ideal for use in
intrusion detection research, in which the hosts under study are running
a variety of operating systems and hardware. For example, R is available
for over 14 different processor architectures and operating systems, includ-
ing the most common ones such as Linux, Windows, Mac OS, and many
UNIX flavors. This is a key feature for distributed IDSs, in which detection
sensor devices need to be installed on a network of hosts with different
processor architectures that run different operating systems. In this case,
each sensor binary executable (an R installation) can be built from sources
according to the processor architecture used at each host. On the other
hand, Matlab is available for five different platforms, and only in binary
executables form.

Furthermore, S has a powerful object-oriented language structure that
can implement quite complex algorithms and their variants. Finally, S-Plus
student edition is free for use by students and the open-source R is free
to everyone. Open-source software packages have proved to be very
useful to research institutions that cannot afford costly software licenses.

Several speed and feature comparisons are available that compare
S-Plus and R to other data analysis packages, including Matlab, which is
one of the most common ones. A speed comparison between these three
packages and several others can be found in Reference 16. A detailed
comparison of the features available in these packages, including a

236 � Enhancing Computer Security with Smart Technology

comparison of the mathematical functionality, graphical functionality, pro-
gramming environment functionality, data handling, available operating
systems, and speed comparison, can be found in Reference 17.

Using S for intrusion detection enables a researcher to study and
compare the results of several detection methods by using a single tool.
Because S runs from a command-line interface, the processes of data
collection, preprocessing, conversion to S objects (such as arrays and
matrices), manipulation of data using a method of choice, generating the
required statistics, and plotting the results can all be done using a single
tool.

S comes with many preimplemented routines that can be used without
being changed. These routines cover methods from exploratory multivari-
ate analysis, including cluster analysis, factor analysis, and discrete mul-
tivariate analysis to classification methods, including discriminant analysis,
neural networks, and support vector machines, to name a few. All the
methods can be replaced or changed to explore newer ideas.

9.4 Introduction to Multivariate Analysis Methods

9.4.1 Exploratory Multivariate Analysis

Multivariate analysis is concerned with datasets that have more than one
response variable for each observational unit. The datasets can be sum-
marized by data matrices X with n rows and p columns, the rows
representing the observations, and the columns, the variables. The main
division in multivariate methods is between those that assume a given
structure, for example, dividing the cases into groups, and those that seek
to discover the structure from the evidence of the data matrix alone, also
called data mining. In pattern recognition terminology, the distinction is
between supervised and unsupervised methods. Most of the emphasis of
this chapter is on unsupervised methods, with the assumption of no a
priori knowledge of the structure of data.

9.4.2 Visualization Methods

A simple way to examine multivariate data is via a pairs plot or a scatterplot
matrix. Pairs plots are sets of two-dimensional projections of a high-
dimensional point cloud. However, a pairs plot can easily miss interesting
structures in the data that depend on three or more variables, and
genuinely multivariate methods explore the data in a less coordinate-
dependent way. Many of the visualization methods can be viewed as

Application of Exploratory Multivariate Analysis � 237

projection methods for particular definitions of “interestingness.” Feature
vectors dimensions used in this study have p = 12 columns, therefore,
several visualization techniques are applied that attempt to reduce the
dimensionality of these vectors.

In the following subsections, a brief description of each of the methods
used in this study is provided.

9.4.3 Clustering Methods

Cluster analysis is concerned with discovering groupings among the cases
of an n by p matrix, where n is the number of observations, and p is the
number of variables in each observation. A comprehensive general refer-
ence can be found in Reference 18.

Cluster analysis searches for groups (clusters) in data in such a way
that objects belonging to the same cluster resemble each other, whereas
objects in different clusters are dissimilar. In two or three dimensions,
clusters can be visualized; with more than three dimensions, some kind
of analytical assistance and simplified visualization are necessary.

Generally speaking, clustering algorithms fall into two categories [19]:

� Partitioning algorithms: A partitioning algorithm describes a
method that divides the dataset into k clusters, in which the integer
k needs to be specified. Typically, the algorithm is run for a range
of k-values. For each k, the algorithm carries out the clustering
and also yields a quality index, which allows the selection of the
best value of k afterward. The S functions kmeans, pam, clara,
and fanny implement algorithms of this type.

� Hierarchical algorithms: A hierarchical algorithm describes a
method yielding an entire hierarchy of clustering for the given
dataset. Divisive methods start by considering the whole dataset
as one cluster, and then split up the clusters until each object is
separate. Algorithms of this type are used in the S functions diana
and mona. The seven functions daisy, pam, clara, fanny,
agnes, diana, and mona make up the cluster library. Algorithms
to implement these functions are described in Reference 20.

9.4.3.1 Partitioning Methods

Partitioning methods are based on specifying an initial number of groups
and iteratively reallocating observations among groups until some equi-
librium is attained.

238 � Enhancing Computer Security with Smart Technology

9.4.3.1.1 k-means Clustering

One of the best-known partitioning methods is the k-means. In the k-
means algorithm, the observations are classified as belonging to one of
k groups. Group membership is determined by calculating the centroid
for each group (the multidimensional version of the mean) and assigning
each observation to the group with the closest centroid.

The k-means clustering algorithm chooses a prespecified number of
cluster centers to minimize the within-class sum of squares of the vectors
for those centers. Because the algorithm needs a starting point, it chooses
the mean of the clusters identified by group-average clustering. The k-
means needs access to the data matrix and uses Euclidean distance.

The k-means algorithm alternates between calculating the centroids
based on the current group memberships and reassigning observations to
groups based on the new centroids. Centroids are calculated using least-
squares, and observations are assigned to the closest centroid based on
least-squares. This use of a least-squares criterion makes k-means less
resistant to outliers.

The S function kmeans performs k-means clustering. It is an older
function that does not have a special plot or summary methods. The main
arguments to kmeans are dissimilarities as produced by daisy or dist
and the number of clusters. Alternatively, a matrix of starting centroids
may be specified in place of the number of centroids. If starting values
are not specified, the initial centroids are obtained using the hierarchical
clustering algorithm in hclust.

9.4.3.2 Hierarchical Methods

The partitioning algorithms discussed in the previous subsection are based
on specifying an initial number of groups and iteratively reallocating
observations between groups until some equilibrium is attained. In con-
trast, hierarchical algorithms proceed by combining or dividing existing
groups, producing a hierarchical structure displaying the order in which
groups are merged or divided.

9.4.3.2.1 Divisive Clustering

Divisive analysis starts with one group and repeatedly divides the group
to form many groups. The function diana implementation, of a divisive
hierarchical method, is probably unique in computing a divisive hierarchy,
because most other software for hierarchical clustering is agglomerative.
Moreover, diana provides (a) the divisive coefficient, which measures
the amount of “clustering structure,” and (b) the banner plot.

Application of Exploratory Multivariate Analysis � 239

In diana, the initial clustering (at step 0) consists of one large cluster
containing all n objects. In each subsequent step, the largest available
cluster is split into two smaller clusters, until finally all clusters contain
but a single object.

9.4.4 Self-Organizing Maps

The self-organizing map (SOM) [21] is a neural network model for ana-
lyzing and visualizing high-dimensional data. It belongs to the category
of competitive learning networks. The SOM is based on unsupervised
learning to map nonlinear statistical relationships between high-dimen-
sional input data into a two-dimensional lattice. This mapping is called
topology preserving. This property means that points near each other in
the input space are mapped to nearby map units in the SOM.

SOM is a family of algorithms with no well-defined objective to be
optimized, and the results can be critically dependent on the initialization
and the values of the tuning constants used. Despite this high degree of
arbitrariness, the method scales well and often produces useful insights
in datasets whose size is way beyond, for example, multidimensional
scaling (MDS) methods.

If all the data is available at once, the preferred method is batch SOM.
For a single iteration, assign all the data points to representatives, and
then update all the representatives by replacing each by the mean of all
data points assigned to that representative or one of its neighbors, possibly
using a distance-weighted mean. The algorithm proceeds iteratively,
shrinking the neighborhood radius to zero over a small number of iterations.

9.4.5 PCA

PCA [22] is a well-established technique for dimensionality reduction and
multivariate analysis. Examples of its many applications include data
compression, image processing, visualization, exploratory data analysis,
pattern recognition, and time series prediction. A complete discussion of
PCA can be found in textbooks mentioned as Reference 23 and Reference
24. The popularity of PCA comes from three important properties. First,
it is the optimum (in terms of mean squared error) linear scheme for
compressing a set of high-dimensional vectors into a set of lower-dimen-
sional vectors and then reconstructing the original set. Second, the model
parameters can be computed directly from the data — for example, by
diagonalizing the sample covariance matrix. Third, compression and
decompression are easy operations to perform, given the model param-
eters; they require only matrix multiplication.

240 � Enhancing Computer Security with Smart Technology

A multidimensional hyperspace is often difficult to visualize. Summa-
rizing multivariate attributes by two or three variables that can be displayed
graphically with minimum loss of information is useful in knowledge
discovery. Because it is hard to visualize multidimensional space, PCA is
mainly used to reduce the dimensionality of p multivariate attributes into
two or three dimensions.

PCA summarizes the variation in correlated multivariate attributes to a
set of noncorrelated components, each of which is a particular linear
combination of the original variables. The extracted noncorrelated com-
ponents are called principal components (PCs) and are estimated from
the eigenvectors of the covariance matrix of the original variables. There-
fore, the objective of PCA is to achieve parsimony and reduce dimension-
ality by extracting the smallest number components that account for most
of the variation in the original multivariate data and to summarize the
data with little loss of information. The S function princomp calculates
the PCs of a given data matrix.

9.4.6 ICA

ICA has become a hot topic in data visualization. It is a method for
finding the underlying factors or components from multivariate (multi-
dimensional) statistical data. What distinguishes ICA from other methods
is that it looks for components that are both statistically independent
and nongaussian.

ICA looks for rotations of sphered data that have approximately inde-
pendent components. This will be true (in theory) for all rotations of
samples from multivariate normal distributions; hence, so ICA is of most
interest for distributions that are far from normal. The function fastICA
performs ICA on a given data matrix.

9.4.7 Stars Plots

There is a wide range of ways to trigger multiple perceptions of a figure,
and these can be used to represent each of a moderately large number
of rows of a data matrix by an individual figure. Perhaps the best known
of these is the stars plots as implemented in the function stars. This
glyph plot does depend on the ordering of the variables and perhaps also
their scaling, and it does rely on properties of human visual perception.
So it has rightly been criticized as subject to manipulation, and one should
be aware of the possibility that the effect may differ by viewer. Never-
theless, it can be a very effective tool for private exploration.

Application of Exploratory Multivariate Analysis � 241

9.4.8 Mosaic Plots

Most works on visualization implicitly assume continuous measurements.
However, large-scale categorical datasets are becoming more prevalent.
There are some useful tools available for exploring categorical data, but
it is often essential to use models to understand the data. Mosaic plots
divide the plotting surface recursively according to the proportion of each
factor in turn (so the order of the factors matters). For mosaic plots, the
feature vectors created from the network traffic are viewed as categorical
data to explore additional information in the data.

9.5 DoS and Network Probe Attacks
In a DoS attack, the attacker makes some computing or memory resource
too busy or too full to handle legitimate users’ requests. But before an
attack is launched on a given site, the attacker typically probes the victim’s
network or host by searching these networks and hosts for open ports.
This is done using a sweeping process across the different hosts on a
network and within a single host for services that are up by probing the
open ports. This process is referred to as probe attacks.

Table 9.1 summarizes the types of attacks used in this study. The
attacks are described in more detail in the following text.

Smurf attacks, also known as directed broadcast attacks, are a popular
form of DoS packet floods. Smurf attacks rely on directed broadcast to
create a flood of traffic for a victim. The attacker sends a ping packet to
the broadcast address for some network on the Internet that will accept
and respond to directed broadcast messages, known as the Smurf ampli-
fier. These are typically misconfigured hosts that allow the translation of
broadcast IP addresses to broadcast medium access control (MAC)
addresses. The attacker uses a spoofed source address of the victim. For

Table 9.1 Description of DoS and Probe Attacks

Attack Name Attack Description

Smurf (DoS) DoS ICMP echo reply flood

Neptune (DoS) SYN flood DoS on one or more ports

IPsweep (Probe) Surveillance sweep performing either a port sweep or
ping on multiple host addresses

Portsweep (Probe) Surveillance sweep through many ports to determine
which services are supported on a single host

242 � Enhancing Computer Security with Smart Technology

example, if there are 30 hosts connected to the Smurf amplifier, the attacker
can cause 30 packets to be sent to the victim by sending a single packet
to the Smurf amplifier [25].

Neptune attacks can make memory resources too full for a victim by
sending a TCP packet requesting to initiate a TCP session. This packet is
part of a three-way handshake that is needed to establish a TCP connection
between two hosts. The SYN flag on this packet is set to indicate that a
new connection is to be established. This packet includes a spoofed source
address, such that the victim is not able to finish the handshake but has
to allocate an amount of system memory for this connection. After sending
many of these packets, the victim eventually runs out of memory resources.

IPsweep and Portsweep, as their names suggest, sweep through IP
addresses and port numbers for a victim network and host, respectively,
looking for open ports that could potentially be used later in an attack.

9.6 Data Collection and Preprocessing

9.6.1 Data Collection

The 1998 DARPA intrusion detection datasets were used as the source of
all traffic patterns in this study. The training dataset includes traffic
collected over a period of seven weeks and contains traces of many types
of network attacks as well as normal network traffic.

This dataset has been widely used in intrusion detection research and
has been used in the comparative evaluation of many IDSs. McHugh [26]
presents a critical review of the design and execution of this dataset.
Attack traces were identified using the time stamps published on the
DARPA project Web site.

9.6.2 Data Preprocessing

Datasets were preprocessed by extracting the IP packet header information
to create feature vectors. The resulting feature vectors were used to
calculate the PCs and other statistics. The feature vector chosen has the
format shown in Table 9.2.

This format represents the IP packet header information. Each feature
vector has 12 components corresponding to the p columns in Section 9.4.1.
The IP source and destination addresses are broken down to their network
and host addresses to enable the analysis of all types of network addresses.

Seven datasets were created, each containing 300 feature vectors as
described earlier. Four datasets represented the four different attack types,
one for each shown in Table 9.1. The three remaining datasets represent

Application of Exploratory Multivariate Analysis � 243

different portions of normal network traffic across different weeks of the
DARPA datasets. This allows for variations of normal traffic to be accounted
for in the experiment.

One of the motives in creating small datasets (i.e., 300 feature vectors
each) for representing the feature vectors is to study the effectiveness of
this method for real-time applications. Real-time processing of network
traffic mandates the creation of small-sized databases that are dynamically
created from real-time traffic presented at the network interface. Because
DARPA data is only available statically, seven small datasets were created
to mimic the case of dynamic real-time operation.

With each packet header being represented by a 12-dimensional feature
vector, it is difficult to view this high-dimensional vector graphically and
be able to extract the relationships between its various features. It is
equally difficult to extract the relationship between the many vectors in
a set. Therefore, the goal of using several methods in this study is to
reduce the dimensionality of the feature vector by using various tech-
niques. It is also important to be able to graphically show the distinctions
between normal and attack traffic for each dataset.

9.7 Results
The seven multivariate analysis methods described in Section 9.4 were
applied to the datasets also described in Section 9.5. The objective is to
evaluate the ability of each method to separate the first 300 feature vectors
(containing normal traffic) from the next 300 feature vectors (containing
attack traffic) into a different cluster. If the method can isolate all attack
feature vectors into one or more clusters consistently, then its graphical
representation is compared to other methods in terms of overall visual
detection ability and computational performance. The goal is to do all
these steps within S.

Table 9.2 Feature Vector Format

SIPx Sport DIPx Dport Prot Plen

where
SIPx = Source IP address nibble, where x = [1–4]. Four nibbles constitute

the full source IP address.
Sport = Source port number.
DIPx = Destination IP address nibble, where x = [1–4]. Four nibbles

constitute the full destination IP address.
Dport = Destination port number.
Prot = Protocol type: TCP, UDP, or ICMP.

244 � Enhancing Computer Security with Smart Technology

Using S, the three common tasks discussed in Section 9.2 are performed
as follows:

9.7.1 Data Collection and Processing

The following code snippet shows how the feature vector datasets are
loaded into R, and how the different calls to the methods are made:

Library(cluster)

library(MASS)

library(class)

library(fastICA)

Load Regular data frames

regular1 <- read.table(“regular300.txt”, row.names=NULL)

Load Attack data frames

smurf <- read.table(“smurf300.txt”, row.names=NULL)

ipsweep <- read.table(“ipsweep300.txt”, row.names=NULL)

portsweep <- read.table(“portsweep300.txt”, row.names=NULL)

neptune <- read.table(“neptune300.txt”, row.names=NULL)

The first four lines load preinstalled R libraries, namely: cluster library,
MASS library (which contains many datasets and a number of S functions),
classification library, and a fast ICA library.

Next, data frames are created by reading their corresponding files from
disk. The data frames are named by their type. A data frame is an S object
normally used to store a data matrix.

9.7.2 Application of Multivariate Analysis Algorithms

9.7.2.1 k-means Clustering

k-means clustering is applied to each dataset of the different attack types
after binding (combining) each of their data frames with the normal traffic
data in regular1 to form a new data frame called “master” with 600
rows and 12 columns. This binding process is used for the remaining
datasets as well:

for (dataset in masterlist){

 master <- rbind (regular1, dataset)

 kmeansout <- kmeans(master[1:12], 2)

Application of Exploratory Multivariate Analysis � 245

 plot(kmeansout$cluster, type = “b”,
 main=masterlistnames[counter] ,
 xlab=”Packet Number”, ylab=”Cluster Number”)

}

The function kmeans performs k-means clustering on the combined
data frame. Two arguments are given to kmeans. First is the “master”
data frame, which is the result of binding the attack dataset to the regular
dataset. Second is the number of clusters required. In this case, kmeans
will attempt to cluster the 600 feature vectors, given as its input, into two
clusters without any other prior knowledge of the nature of the data.

The results of kmeans are then plotted using the “plot” function. The
resulting four plots are shown in Figure 9.1. The function plots the
assignment of each input vector to an output cluster. This information is
stored in the kmeansout$cluster variable. Because the number of desired
output clusters is two, each input feature vector is assigned to either

Figure 9.1 k-means clustering plot.

1
.0

1
.0

100 300

Packet number

portsweep

smurf ipsweep

Packet number

neptune

5000

100 300

Packet number

5000

1
.4

1
.8

C
lu

st
er

 n
u

m
b

er

1
.0

1
.4

1
.8

C
lu

st
er

 n
u

m
b

er

100 300 5000

Packet number

100 300 5000

1
.4

1
.8

C
lu

st
er

 n
u

m
b

er

1
.0

1
.4

1
.8

C
lu

st
er

 n
u

m
b

er

246 � Enhancing Computer Security with Smart Technology

cluster one or two as shown in the figure. A line connects the output
points on the graph to provide visual continuity. In the case of Smurf, all
the attack feature vectors (301 to 600) were assigned to cluster two,
whereas all normal feature vectors (0 to 300) were assigned to clusters
one and two. Similar results can be seen for IPsweep, Portsweep, and
Neptune datasets. For these sets, some of the attack vectors were clustered
in a different cluster than the majority of the packets. Careful study of
these packets shows that few normal instances of traffic existed in the
midst of the attack.

By increasing the number of output clusters to four, some attacks were
exclusively clustered in one cluster in which no normal instances were
assigned, thereby giving better clustering results than using two clusters.

9.7.2.2 Hierarchical Clustering

Hierarchical clustering is applied to the datasets as follows:

for (dataset in masterlist){

 master <- rbind (regular1, dataset)

 hclustout <- hclust(dist(master[1:12]))

 plot(hclustout, main=masterlistnames[counter],
 xlab=”PacketNumber”)

}

The hclust function performs hierarchical clustering on the com-
bined datasets. Prior to starting the hierarchical clustering process, the
function dist is called to compute the distance matrix for the “master”
dataset. The distance matrix is computed by using a specified distance
measure, in this case Euclidean, to compute the distances between the
rows of the data matrix.

The output “hclustout” is plotted using the plot function and is shown
in Figure 9.2.

Figure 9.2 shows the dendrograms created by the hclust function.
A dendrogram is a convenient method used to visualize the clustering
results. It is a tree graph that is used to examine how clusters are formed
in hierarchical cluster analysis. The vertical axis indicates a distance or
dissimilarity measure. The height of a node represents the distance of the
two clusters that the node joins. The greater the height, the more dissimilar
the two clusters are. The horizontal axis lists all the 600 observations and
their cluster assignments. Dendrograms have two limitations: First, because
each observation must be displayed as a leaf, they can only be used for
a small number of observations. This is clear in this figure, in which the

Application of Exploratory Multivariate Analysis � 247

text of the observations on the horizontal axis is not readable. Second,
the vertical axis represents the level of the criterion at which any two
clusters can be joined. Successive joining of clusters implies a hierarchical
structure, meaning that dendrograms are only suitable for hierarchical
cluster analysis [27].

9.7.2.3 SOM Clustering

SOM algorithm is applied to the combined datasets as follows:

for (dataset in masterlist){

 master <- rbind (regular1, dataset)

 gr <- somgrid(topo = “hexagonal”)

 som.out <- SOM(master[1:12], gr)

 plot(som.out, main=masterlistnames[counter])

 }

Figure 9.2 Hierarchical clustering plot.

248 � Enhancing Computer Security with Smart Technology

The function somgrid records the coordinates of the grid to be used
for SOM, and it has a plot method. The plot method for class SOM plots
a stars plot of the representative at each grid point, thereby combining
the output of SOM and stars plots together in a single diagram. A hexagonal
topology is selected. The function SOM implements Kohonen’s SOM algo-
rithm and takes the “master” dataset as its input argument along with the
grid output from the somgrid function. The stars plot output is plotted
and shown in Figure 9.3. Stars plots may be used directly on the data as
discussed in Section 9.7.2.6 or superimposed on the output of other
functions as in the case of somgrid.

The results of Figure 9.3 reveal interesting features of the data. First,
the distinction between normal and attack traffic is quite clear from the
graphs in which the stars with longer and irregular segments are clustered
in one area, whereas the remaining stars with shorter and more regular
segments are clustered in another. The SOM algorithm plots stars from
the bottom-left corner of the graph to the top and then goes back to the
bottom, drawing the next star while maintaining the hexagonal structure.
This reveals the fact that normal feature vectors are clustered first using
stars with shorter and more regular segments, while attack feature vectors
result in stars with longer and irregular spans. Second, this distinction can
be used to study the evolution of network traffic. Using this combination
of SOM and stars plots can provide an intuitive graphical approach to

Figure 9.3 SOM plot.

Application of Exploratory Multivariate Analysis � 249

studying and identifying trends in the behavioral change in the traffic
characteristics.

9.7.2.4 PCA

PCA is applied to the dataset as follows:

for (dataset in masterlist){

 master <- rbind (regular1, dataset)

 master.pca <- princomp(master[1:12], cor = T)

 master.pc <- predict(master.pca)

 eqscplot(master.pc[, 1:2], type = “p”, main=
 masterlistnames[counter], xlab = “First principal
 component”,ylab = “Second principal component”)

 text(master.pc[,1:2], labels = as.character(master$V13),
 col = c(“SkyBlue”, “Orange”))

}

The function princomp performs PCA on the input numeric data
matrix and returns the results as an object of class “princomp.” The
argument “cor” is a logical value indicating whether the calculation should
use the correlation matrix or the covariance matrix. The function predict
is a generic function for predictions from the results of various model-
fitting functions. The function invokes particular methods, which depend
on the “class” of the first argument. The function eqscplot is a version
of the function scatterplot with scales chosen to be equal on both
axes. This function is available in the MASS library. The resulting plot for
PCA is shown in Figure 9.4.

In Figure 9.4 the distinction between normal and attack traffic is not
clear. Perhaps there is a better way of marking the data on the graph, an
issue that needs further experimentation. The PCA algorithm mapped each
of the observations with p = 12 dimensions onto two components. For
each observation, the value of each component is plotted on the x and
y axes, respectively.

9.7.2.5 ICA

ICA is applied to the datasets as follows:

for (dataset in masterlist){

 master <- rbind (regular1, dataset)

 nICA <- 2

250 � Enhancing Computer Security with Smart Technology

 master.ica <- fastICA(master[1:12], nICA)

 plot(master.ica$S, main=masterlistnames[counter],
 xlab = “First ICA Component”, ylab = “Second ICA
 Component”, col = c(“Black”, “Red”))

 text(master.ica$S, labels = as.character(master$V13),
 col = c(“Black”, “Red”))

}

The function fastICA is available from the FastICA library. It is an
implementation of the fastICA algorithm of Hyvarinen et al. [28] to perform
ICA and projection pursuit. The value nICA = 2 is the number of com-
ponents to be extracted. The resulting plot for ICA is shown in Figure 9.5.

Figure 9.5 shows (similar to the results from PCA) that there is no clear
distinction between normal and attack traffic. This may be due to the high
dependency that exists among the columns of the dataset.

There are dependencies between the different nibbles of SIPx and
DIPx. There are also dependencies between Sport, Dport, Plen, and Prot.

Figure 9.4 PCA plots.

Application of Exploratory Multivariate Analysis � 251

9.7.2.6 Stars Plots

Stars plots are applied to the datasets as follows:

for (dataset in masterlist){

 master <- rbind (regular1, dataset)

 stars(master[1:12], full = FALSE, labels = NULL,
 main=masterlistnames[counter])

}

The function stars draws star plots or segment diagrams of multi-
variate datasets. Also, with a single location, it draws spider (or radar)
plots. The argument “full” is a logical flag: if TRUE, the segment plots will
occupy a full circle. Otherwise, they occupy the (upper) semicircle only.
Missing values are treated as zeros. Each star plot or segment diagram
represents one row of the input x. Variables (columns) start on the right
and wind counterclockwise around the circle. The size of the (scaled)
column is shown by the distance from the center to the point on the star

Figure 9.5 ICA plots.

0

0

regular

regular

regular

1

First ICA component

S
ec

o
n

d
 I

C
A

 c
o

m
p

o
n

en
t

2 3

−2
0

2
4

6
8

First ICA component

S
ec

o
n

d
 I

C
A

 c
o

m
p

o
n

en
t

−6−8 −4 −2 0 2

1
2

3

regular

regular

First ICA component

S
ec

o
n

d
 I

C
A

 c
o

m
p

o
n

en
t

−1.0 −5.0 0.0 0.5 1.5

−1
.0

0.
0

1.
0

neptune

neptune

neptune

neptune

neptune

neptune

neptune

neptune

Regular

First ICA component

−3 −2 −1 0 1

−3
S

ec
o

n
d

 I
C

A
 c

o
m

p
o

n
en

t

−2
−1

0
1 portsweep

portsweep

portsweep

portsweep

regular

regular

smurf

ipsweep

ipsweep

ipsweep

ipsweepipsweep

ipsweep

252 � Enhancing Computer Security with Smart Technology

or the radius of the segment representing the variable. The resulting stars
plot is shown in Figure 9.6.

As shown in Figure 9.6, the graph of each attack type contains 25
rows and 24 columns, totaling 600 stars for each dataset. That is, each of
the 600 observations is represented by one star. Each star has 12 segments
corresponding to the p = 12 columns of the dataset.

A sample star is shown in Figure 9.7. Each of the 12 feature vector
elements described in Section 9.6.2 is drawn as a segment of the semicircle.
Comparing this sample star with the results obtained in Figure 9.6, a close
look at the stars reveal that there is a relatively clear distinction between
the normal traffic in the upper half of the graph and the attack traffic in
the lower half. This method of analyzing multivariate data is clearly simple
and effective.

Figure 9.6 Stars plots.

smurf ipsweep

portsweep neptune

Application of Exploratory Multivariate Analysis � 253

9.7.2.7 Mosaic Plots

Mosaic plots are applied to the datasets as follows:

for (dataset in masterlist){

 master <- rbind (regular1, dataset)

 names(master) <- c(“Src1”, “Src2”, “Src3”, “Src4”,
 “Sport”, “Dst1”, “Dst2”, “Dst3”, “Dst4”, “Dport”,
 “Prot”, “Plen”, “TrafType”)

 mosaicplot(master[1:12], color = T,
 main=masterlistnames[counter],
 xlab = “Packet Number”, ylab = “Packet Fields”)

}

The function mosaicplot plots a mosaic. Extended mosaic displays
show the standardized residuals of a log-linear model of the counts by
the color and outline of the mosaic’s tiles. Standardized residuals are often
referred to as standard normal distribution. Negative residuals are drawn
in shades of red with broken outlines; positive ones are drawn in blue
with solid outlines.

Mosaic plots can be seen as an extension of grouped bar charts in
which the width and height of the bars show the relative frequencies of
two variables; a mosaic plot simply consists of a collection of tiles whose
sizes are proportional to the observed cell frequencies [29].

Sequential horizontal and vertical recursive splits are used to visualize
the frequencies of more than two variables, each new variable conditional
to the previously entered variables. A first extension uses a color coding
of the tiles to visualize deviations (residuals) from a given log-linear model
fitted to the table, that is, from the expected frequencies under independence.
This approach works not only in two-way tables but also in log-linear
models fitted to multiway tables.

Figure 9.7 A sample star from the stars plot.

SIP1

SIP2

SIP3

Plen

254 � Enhancing Computer Security with Smart Technology

In this extension, positive and negative signs of the residuals are coded
by rectangles with solid and dashed borders, respectively. Furthermore,
residuals exceeding an absolute value of 2 are shaded light blue and red,
respectively; those that even exceed an absolute value of 4 are shaded
with full saturation. The heuristic behind this shading is that the Pearson
residuals are approximately standard normal, which implies that the high-
lighted cells are those with residuals individually significant at approxi-
mately the 5-percent and 0.01-percent levels. But the main purpose of
the shading is not to visualize significance but the pattern of deviation
from independence.

The input data should be a data frame or matrix containing the variables
to be cross-tabulated. In this case, after possibly selecting a subset of the
data as specified by the “subset” argument, a contingency table is com-
puted from the variables given in “formula,” and a mosaic is produced
from this. Missing values are not supported unless “data” contains variables
to be cross-tabulated when rows containing missing values are omitted.
The resulting mosaic plots are shown in Figure 9.8.

The results shown in Figure 9.8 are not intuitively obvious. Further
elaboration is necessary. First, a large number of observations are shown

Figure 9.8 Mosaic plots.

Application of Exploratory Multivariate Analysis � 255

in one graph. Second, four graphs are combined into one figure, resulting
in loss of resolution needed for such graphs. To better illustrate the graph,
a zoomed-in version of the Smurf results is shown in Figure 9.9. In this
figure, only feature vectors at the border between normal and attack traffic
are considered. More specifically, only feature vectors 295 through 305
are considered while adding a legend to the graph. This would capture
six feature vectors of the normal traffic and five feature vectors of Smurf
attack traffic. The legend shows the color coding used to mark both
negative and positive residuals. It is easily seen that the normal traffic
represented by the first six bars in the chart has very similar residual
values. The facts that these residuals represent deviations from the standard
distribution and that they look very much alike reflect some common
properties of this data. On the other hand, the five remaining bars to the
right that represent the attack traffic also have residual values that are
quite different from those of the normal traffic.

In the light of these results, an analogous explanation can be given
to the graphs of Figure 9.8. For the Smurf attack, the height and width

Figure 9.9 Mosaic plot for feature vectors 295 through 305 of the Smurf
attack.k-means clustering plot.

256 � Enhancing Computer Security with Smart Technology

of each bar in the graph show the relative frequencies of the variables.
The attack packets, which are the last 300 feature vectors in the dataset,
had a smaller width of the bars and, thus, were shown as compacted
(black) blocks at the right side of the graph. So the distinction between
normal and attack data is easily visualized. Similar explanations are given
for the remaining three graphs.

9.7.3 Evaluation of Results

From the results obtained using the different methods as applied to the
datasets, it is evident that each method gives an interestingly different
view of the nature of the data. To be able to effectively compare the
results, several factors should be considered.

First is the ability of each method to distinguish between normal and
attack traffic in the context of explanatory multivariate analysis. It should
be emphasized that these methods do not have any a priori knowledge
of the data and that they are trained to know what the structure of the
data is. These methods are comparable to unsupervised learning methods
in the field of AI and soft computing. To this end, k-means, hierarchical
clustering, and SOM provided a clear distinction between normal and
attack traffic, whereas the remaining methods did not provide such a clear
view.

Second is the effectiveness of each method in its visual presentation
by conveying the underlying structure in the data. Several methods per-
formed really well here, most notably, k-means, SOM, and mosaic plots.
One of the compelling features of the graphical output of these methods
is that the relationship between the original data and its final transformation
is relatively clear. In the case of k-means, there is a direct relationship
between the packet number and its cluster assignment. In the case of
SOM and mosaic plots, the relationship between the packet number and
its final representation is somewhat preserved. On the contrary, using the
output from PCA and ICA, the relationship between the packet numbers
and the final transformations is not clear.

The final factor is the time that each method takes to execute the
algorithm. Table 9.3 shows the execution time of each algorithm. Three
times are shown: user time indicates the time (in seconds) consumed for
the user process, system time indicates the time consumed by the operating
system, and the elapsed time indicates the total time consumed by the
overall operation. The difference between user time and system time is
that user time is the CPU time used while executing instructions in the
user space of the calling process, whereas system time is the CPU time
used by the system on behalf of the calling process. It should be noted
that the times given include the time for applying the algorithms for all

Application of Exploratory Multivariate Analysis � 257

four datasets, the time to generate the graphics related to the method,
and finally, the time to write this information to the disk. From this
perspective, k-means performed best. FastICA, PCA, and SOM were next.
Star plots and hierarchical clustering used relatively high user time. Finally,
mosaic plots performed very poorly in terms of user time.

It is clear from these results that the best overall performance and
visualization are achieved using k-means and SOM. The remaining meth-
ods provide interesting insights into the data and may be used to supple-
ment the results obtained through k-means and SOM. However, they have
several performance and visual limitations, making them inappropriate for
use as a primary method for analyzing network traffic anomalies.

Acknowledgment
Work reported in this paper is supported in part by AFOSR’s grant, FA9550-
04-1-0159.

References
1. Herman, R., Montroll, E., A manner of characterizing the development of

countries. Proceedings of the National Academy of Sciences U.S.A., No. 10,
pp. 3019–3023, October 1972.

2. Han, H., Lu, X.L., Lu, J., Chen, B., and Yong, R.L., Data mining aided
signature discovery in network-based intrusion detection systems. ACM
SIGOPS Operating System Review. Vol. 36, Issue 4, October 2002.

3. Uppuluri, P. and Sekar, R., Experiences with specification-based intrusion
detection. Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection, pp. 172–189, 2001.

Table 9.3 Algorithm Execution Times

Algorithm/Time User (s) System (s) Elapsed (s)

k-means 0.31 0.04 0.42

Hierarchical 37.02 0.49 38.76

SOM 1.94 0.03 2.2

PCA 1.28 0.03 1.59

Fast ICA 1.07 0.02 1.36

Stars 9.56 0.4 12.18

Mosaic 224.32 2.73 243.46

258 � Enhancing Computer Security with Smart Technology

4. Denning, D.E., An intrusion detection model. IEEE Transactions on Soft-
ware Engineering, SE-13: 222–232, 1987.

5. Warrender, C, Forest, S., and Pearlmutter, B., Detecting intrusions using
system calls. Alternate Data Models, 1999.

6. Schnell, P., A method for discovering data-groups. Biometrica 6: 47–48,
1964.

7. Rojas, R., Neural Network: A Systematic Introduction. Springer-Verlag, Ber-
lin, 1996.

8. Portony, L., Eskin, E., and Stolfo, J. Intrusion detection with unlabeled data
using clustering, Proceedings of ACM CSS Workshop on Data Mining Applied
to Security (DMSA-2001). Philadelphia, PA: November 5–8, 2001.

9. Knowledge Discovery and Data Mining competition, KDD99 CUP Data Set,
1999. http://kdd.ics.uci.edu.

10. Staniford-Chen, S., and Heberlein, L.T., Holding intruders accountable on
the Internet. Proceedings of the 1995 IEEE Symposium on Security and
Privacy.

11. Shah, H., Undercoffer, J., and Joshi, A., Fuzzy clustering for intrusion
detection. FUZZ-IEEE, 2003.

12. Rhodes, B., Mahaffey, J., and Cannady, J., Multiple self-organizing maps
for intrusion detection. Proceedings of the NISSC 2000 conference, Balti-
more, MD, 2000.

13. Girardin, L., An eye on network intruder-administrator shootouts. Proceed-
ings of the Workshop on Intrusion Detection and Network Monitoring, Santa
Clara, CA, April 9–12, 1999.

14. Venables, W.N. and Ripley, B.D., Modern Applied Statistics with S, 4th ed.,
Springer-Verlag, New York, 2002.

15. Becker, R., Chambers, J., and Wilks, A., The New S Language, Chapman &
Hall, London, 1988.

16. http://www.sciviews.org/other/benchmark1.htm.
17. http://www.scientificweb.com/ncrunch/ncrunch4.pdf.
18. Gordon, A.D., Classification, 2nd ed., Chapman & Hall, London, 1999.
19. S-Plus: Guide to Statistics, Vol. 2. Insightful Corporation, 2001.
20. Kaufman, L. and Rousseeuw, P.J., Finding Groups in Data: An Introduction

to Cluster Analysis, John Wiley & Sons, New York, 1990.
21. Kohonen, T., Self-Organizing Maps. Springer-Verlag, New York, 1995.
22. Hotelling, H., Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology, 24: 417–441, 1933.
23. Duda, R., Hart, P., and Stork, D., Pattern Classification. 2nd ed., John

Wiley & Sons, New York, 2001.
24. Haykin, S., Neural Networks: A Comprehensive Foundation. 2nd ed. Pren-

tice Hall, Englewood Cliffs, NJ, 1999.
25. Skoudis, E., Counter Hack: A Step-by-Step Guide to Computer Attacks and

Effective Defenses. Prentice Hall, Englewood Cliffs, NJ, 2002.
26. McHugh, J., Testing intrusion detection systems: Critique of the 1998 DARPA

intrusion detection system evaluations as performed by Lincoln laboratory.
ACM Transactions on Information and System Security, Vol. 3, No. 4,
November 2000, pp. 262–294.

Application of Exploratory Multivariate Analysis � 259

27. Schonlau, M., The clustergram: a graph for visualizing hierarchical and
non-hierarchical cluster analyses. The Stata Journal, 2002, 3, pp. 316–327.

28. http://www.cis.hut.fi/aapo.
29. Meyer, D., Zeileis, A., and Hornik, K., Visualizing independence using

extended association plots. Proceedings of the 3rd International Workshop
on Distributed Statistical Computing, Vienna, 2003.

261

Index

A

Abduction, 96
Achilles, 62, 64, 65, 68
ACK scan, 135, 148
Activity monitoring, 93. See also Anomaly

detection
Adaboost, 87
Adaptive firewalling, 17
Adaptive learning

connectionist system-based, 114
online, 109
static learning vs., 119

AIMster, 33
Anomaly(ies)

flash crowd, 214
network abuse, 214
network operation, 214

Anomaly detection, 93, 129–130, 231–233
adaptive, 94, 109–121

clustering method for, 114, 232
framework, 110–114
parameters for, 113

with AIS, 176–177
EFuNN-based, 114, 119, 120
fuzzy ART-based, 114, 119, 120
goal of, 93
issues, 102–107, 130

distance metric, 104
feature selection, 103
skewed class distribution, 103–104
window size for sequential data,

104–105

learning methods for, 97–99
discriminative approach, 97
generative, 97
profiling, 97

machine learning approaches, 96–99
statistical approaches, 232
tunable parameters, 113, 114

Antivirus tools, attacks on, 152–160
Apache2, 137
Application scrubbing, 29
Artificial immune systems, 170–205

idiotypic network theory, 171
negative selection algorithm, 171–173

detection rules, 173–176, 186–197
extension to fuzzy rules, 198–204

for intrusion detection, 176–177
classification, 177
detector, 177
negative characterization,

176–177, 186, 188, 189, 191,
192, 194

positive characterization, 176,
179–186, 189, 191, 192, 194

set of self patterns, 177
use of DARPA in, 178–179

limitations
inability to integrate with other

immune systems, 173
low-level detector representation,

172
scalability, 172
sharp distinction between normal

and abnormal, 173

262 � Enhancing Computer Security with Smart Technology

real-valued, 173–176
theoretical basis, 171–172

Attack(s)
on antivirus tools, 152–160
computer, 130–138

denial-of-service, 136–138, 241
Apache2, 137
back, 137
land, 137
mail bomb, 137
neptune, 137
ping of death, 137
process table, 138
Smurf, 138
SYN flood, 137
Syslogd, 138
teardrop, 138
Udpstorm, 138

probe, 131–136
ACK scan, 135, 148
FIN stealth scan, 134, 148
idle scan, 148
IPscan, 135, 148
Ipsweep, 132
list scan, 148
Mscan, 132–133
Nmap, 133
Null scan, 135, 148
ping sweep, 134–135, 148
RCP scan, 136, 148
SAINT, 133–134
Satan, 134
SYN stealth scan, 134, 148
UDP scan, 135, 148
Window scan, 135, 148
xmas tree, 148

techniques, 46–66
cross-site scripting, 55–61

to steal credit card information,
59–61

to steal session cookie, 58–59
SQ injection, 46–55

consequences of, 46–47
getting unauthorized access to

data using, 50–55
by pass authentication with, 47–49

steal passwords with browser refresh,
61–65

variable manipulation, 65–66
Auditing, 14, 99–102

trails, 14

B

Back, denial-of-service attack, 137
Bagging, 86
Biological immune systems, 166–170

clonal selection, 169
layers, 166–167

adaptive immunity, 167–169
B-cells in, 167
cellular, 168
characteristics of, 167–169
humoral, 167–168
immune memory in, 168–169
negative selection in, 168
self/nonself discrimination in, 168
T-cells in, 167

anatomic barrier, 166
innate immunity, 166

inflammatory response in, 166
phagocytic barriers in, 166
physiological barriers in, 166

Boosting, 86
Bootstrap aggregation, 86

C

C2-level audit, 99
Change detection, 93. See also Anomaly

detection
Children’s Internet Protection Act, 13
Chroot, 21
Clustering, 80
CodeRed, 3, 14
COLT, 82. See Computational learning theory

(COLT)
Common Open Policy Service, 17
Computational learning theory (COLT), 80,

82, 108
Computer(s)

prevalence, 2
security (See also Security)

prospects, 8
Computer attack(s), 130–138

denial-of-service, 136–138
Apache2, 137
back, 137
land, 137
mail bomb, 137
Neptune, 137
ping of death, 137
process table, 138
Smurf, 138

Index � 263

SYN flood, 137
Syslogd, 138
teardrop, 138
Udpstorm, 138

probe, 131–136
ACK scan, 135
FIN stealth scan, 134, 148
idle scan, 148
IPscan, 135, 148
Ipsweep, 132
list scan, 148
Mscan, 132–133
Nmap, 133
Null scan, 135, 148
ping sweep, 134–135, 148
RCP scan, 136, 148
SAINT, 133–134
Satan, 134
SYN stealth scan, 134, 148
UDP scan, 135, 148
Window scan, 135, 148
xmas tree, 148

taxonomy
acceptability of, 130
characteristics of, 130
exclusiveness of, 130
exhaustiveness of, 130
repeatability of, 130

Concept drift, 109
Connectionist system-based adaptive

learning, 114
Cookie, cross-site scripting to steal, 58–59
CORBAgate, 26
Cost function, 115
Cross-site scripting, 55–61

to steal credit card information, 59–61
to steal session cookie, 58–59

Cross validation, 86, 146
leave-one-out method, 86

Cyber-security, 2–5
Cyber-Trust, 5–8

designing challenges of, 5–8
burgeoning purposes, 8
distribution of expertise, 6–7
proliferating devices and

functionality, 7

D

DARPA dataset, 84, 100–101, 139, 148, 178,
214, 229, 242

Data collection, 242

Data mining, 236
Data processing, 242
DEC SEAL, 32
Defense-in-depth, 76
Demilitarized zone (DMZ), 14, 15

servers, 32
Dendrogram, 246
Denial-of-service attacks, 136–137, 241

Apache2, 137
back, 137
land, 137
mail bomb, 137
Neptune, 137
ping of death, 137
process table, 138
Smurf, 138
SYN flood, 137
Syslogd, 138
teardrop, 138
Udpstorm, 138

Department of Defense Advanced Research
Projects Agency (DARPA), 100

Destination address, 16
Distance metrics, 104
DoS-TE, 214
Dynamic Host Control Protocol, 151

E

Elk cloner, 2
Enforcing policy, 14
Ensemble(s)

classifiers, 85
combining results of, 88–89

by gating, 88–89
by majority vote, 88
by stacking, 89

construction, 86–88
by injecting randomness, 87–88
by manipulating input features, 87
by manipulating training data,

86–87
by using different learning algorithms,

88
for intrusion detection, 89
learning, 108

Euclidean distance, 104

F

False negatives, 94, 126, 127
avoidance of, 129

264 � Enhancing Computer Security with Smart Technology

defined, 130
rate of, 184

False positives, 32, 85, 90, 95, 127
avoidance of, 129
defined, 130
rate of, 95, 104, 105, 106, 117, 184

Fang, 19
FIN stealth scan, 134, 148
Fingerprint scrubber, 29
Firewall(s)

adaptive, 17
architectures, 14–22
bridging, 23
criteria, 11
data that passes through, 31–32
defined, 9, 11
distributed, 27–28
with DMZ, 14
dynamic, 28
filtering rules, 9
future challenges, 33–34

peer-to-peer networking as, 33
Universal Transport Protocol, 33
VPNs as, 33

insider attacks, 32
national, 13
need for, 12–14
as part of overall security policy, 14
policy, 9
predecessors, 10
signature-based, 27, 29, 32
stateful, 17
testing, 30
at various ISO network layers, 22–27

application, 26–27
data link, 22–23
network, 23–26
physical, 22
presentation, 26
transport, 26

Firewall ANalysis enGine. See Fang
Fuzzy neural systems, 83

G

Generalized cross validation, 146
Gnutella, 33
Graphical user interface, 17

H

Hamming distance, 104

Hogwash, 29
Host-based filtering, 23–24
Host-based intrusion detection systems

(HIDS), 77, 78, 209, 215–216
HTTP, as Universal Transport Protocol,

33–34
Hurst parameter, 211, 214, 215, 217, 218

I

Idiotypic network theory, 171
Idle scan, 148
IDS. See Intrusion detection systems (IDS)
Immune systems, 165–205

artificial, 170–205 (See also Artificial
immune systems)

biological, 166–170
adaptive immunity, 167–169

B-cells in, 167
cellular, 168
characteristics of, 167–169
humoral, 167–168
immune memory in, 168–169
negative selection in, 168
self/nonself discrimination in, 168
T-cells in, 167

anatomic barrier, 166
innate immunity, 166

inflammatory response in, 166
phagocytic barriers in, 166
physiological barriers in, 166

layers, 166–167
adaptive immunity, 167–169
anatomic barrier, 166
innate immunity, 166

computational aspects, 169
distributed processing, 170
diversity, 170
feature matching, 169
learning and memory, 169
pattern matching, 169
self-regulation, 170

Independent component analysis, 229, 240,
251, 256

Information leaks, 13
Insider attacks, 32, 77
Internet, standards, 18
Internet Group Management Protocol, 24
Internet protocols, 12, 24
Intrusion(s)

defined, 127
detection, 77

Index � 265

anomaly-based (See Anomaly
detection)

application of detection algorithm for,
233

approaches to, 95
artificial immune systems in, 170–205

classification, 177
detector, 177
negative characterization,

176–177, 186, 188, 189, 191,
192, 194

positive characterization, 176,
179–186, 189, 191, 192, 194

set of self patterns, 177
use of DARPA in, 178–179

data collection and processing for,
233

evaluation of results for, 233
machine learning beyond, 79
machine learning techniques for, 77,

98
clustering and outlier detection, 98
immunological-based, 98
instance-based, 98
neural nets, 98
probabilistic learning, 98
rule-based, 98

misuse-based, 94, 127, 129, 209, 232
models of, 128–130
ranking algorithm using linear genetic

programming, 146
ranking algorithm using multivariate

adaptive regression splines,
146–147

self-organizing maps in, 233
signature-based, 29, 127, 129, 160,

231
significant feature selection for,

138–147
specification-based, 94, 95, 231
SVM-specific feature-ranking method,

139–145
systems (See Intrusion detection

systems)
tasks for achieving, 233

false negatives, 94, 126, 127
avoidance of, 129
defined, 130
rate of, 184

false positives, 32, 85, 90, 95, 127
avoidance of, 129

defined, 130
rate of, 95, 104, 105, 106, 117, 184

response systems, 78
Intrusion detection systems (IDS)

anomaly-based, 209
attacks on, 149–152

evasion, 10–151
insertion, 150–151

bad header fields, 151
cost-effective of, 107
design, 209
evaluation of, 100, 105
future directions for, 107–109
goals of, 94
host-based, 77, 78, 209, 215–216
introduction to, 126–127
IP options, 151
MAC address spoofing, 151
misuse-based, 94, 127, 129, 209, 232
network-based, 99, 209, 216–218
review of, 127–130
theoretical analysis, 107–108
vulnerabilities, 150
wavelets in, 210, 213–215

IPscan, 135, 148
Ipsweep, 132, 242

K

k-nearest neighbor, 104
KD tree, 180
KDD cup 1999, 100, 110, 115, 232
Kerberos cryptography, 4

L

Land, denial-of-service attack, 137
Learning rate, effectiveness of varying,

117–118
List scan, 148
LoSS technique, 215
LoveBug, 3
Lumeta Firewall Analyzer, 19

M

MAC address, 22, 241
Machine learning, 80–90

behavior-based, 80
beyond intrusion detection, 79
broad formulations, 96

for acting and planning, 96

266 � Enhancing Computer Security with Smart Technology

for classification and regression, 96
for interpretation and understanding,

96
challenges, 107–109
connectionist-based, 80
defined, 80
ensembles and, 85 (See also Ensemble(s))
fundamental task, 93
immune system-based, 81
increasing usefulness of, use of classifiers

for, 85
manipulating training data

methods of
adaboost, 87
bagging, 86
boosting, 86
bootstrap aggregation, 86
cross validation, 86

methods, 82–84
Bayesian networks, 84
clustering, 83
decision trees, 83–84
multilayer networks with back

propagation, 82–83
probabilistic models, 83
support vector machines, 83

symbol-based, 80
theoretical underpinning, 81
for understanding and planning, 96, 108

Mail bomb, 137
Malware, 76

metamorphic, 127
polymorphic, 127
signature-based, 160
used for analysis, 152–153
variants, 127

Manhattan distance, 104
Media access control (MAC)-layer address,

22, 241
Melissa, 3
Misuse detection, 94, 95, 127, 129, 209, 232
Morris worm, 2, 10
Mscan, 132–133
Multicast, 24–25
Multicast Backbone, 25
Multicast Routing Protocol, 24
Multivariate analysis

application, 244–256
hierarchical clustering, 246–247
ICA in, 249–250

k-means clustering, 244–246
PCA in, 249
SOM clustering, 247–249

clustering methods, 237–239
hierarchical, 238–239
partitioning, 237–238

data mining in, 236
exploratory, 236
ICA in, 240
mosaic plots in, 241
pairs plots in, 236
PCA in, 239–240
self-organizing maps in, 239
star plots in, 240–241
time for each algorithm

elapsed time, 256
system time, 256
user time, 256

visualization method, 236–237
MyDoom, 3, 158

N

National Computer Security Association, 30
Neptune, 137, 242
Net Meeting, 29
Network, screened, 15
Network address translation, 23, 25–26
Network-based detection, 77, 78, 99,

115–120, 209, 216–218
Network News Transport Protocol, 21
Network operation anomalies, 214
Network Time Protocol, 21
Nimda worm, 14, 15, 32
Nmap, 133
Normalization, 29
Novelty detection, 93. See also Anomaly

detection
Null scan, 135, 148

O

Operating systems, 23, 99
C2-level audit, 99
security problems, 13
utilities, 21
weaknesses, 41

Options in network header, 16
Outlier detection, 93. See also Anomaly

detection

Index � 267

P

Packet filtering, 15–19
drawbacks, 16
improving specifications, 17–19
information for, 15–19
protocols, 16
with state, 16–17

Packet inspection, 17
Pairs plot, 236
Password-base authentication, 2
Peer-to-peer networking, 9, 33
Perceptron, 83
Perimeter security, 11
Ping of death, 137
Ping sweep, 134–135, 148
Policy enforcement point, 17
Portsweep, 242
Preventing access to information, 13
Preventing information leaks, 13
Primary decision diagrams, 17
Principal component analysis, 229, 239–240,

256
Privacy, 5
Probabilistic learning, 83, 98
Probe(s), 131–136

ACK scan, 135, 148
detection, 147–149
FIN stealth scan, 134, 148
idle scan, 148
IPscan, 135, 148
Ipsweep, 132
list scan, 148
Mscan, 132–133
Nmap, 133
Null scan, 135, 148
ping sweep, 134–135, 148
RCP scan, 136, 148
SAINT, 133–134
Satan, 134
SYN stealth scan, 134, 148
UDP scan, 135, 148
Window scan, 135, 148
xmas tree, 148

Process table, denial-of-service attack, 138
Proxy(ies), 19–22

application, 20
limitations, 21
splicing, 21
transparent, 21
transport-level, 26

R

Random walk time series, 177
RCP scan, 136, 148
Receiving operating characteristic analysis,

105
Reverse engineering, 43
Round-trip, 214

S

S-language, 233–236
SAINT, 133–134
SATAN. See Security Administration Tool for

Analyzing Network
Satan, 134
Screend, 15
Screened network, 14
Scripts, 55
Security

overall policy, 14
problems, 13
testing, 43

Security Administration Integrated Network
Tool (SAINT), 133–134

Security Administration Tool for Analyzing
Network, 30

Self-similarity, 209, 210
defined, 211
Hurst parameter, 211, 214, 215, 217, 218,

220
scaling property, 211

Signature-based detection, 27, 29, 127, 129,
160, 231

SMTP, 21
Smurf, 138, 241
SoBig.F, 3
SOCKS, 21, 24
Source address, 16
Spam, 31
Specification-based detection, 94, 95, 231
Standard normal distribution, 253
Star plots, 233
Stateful firewalls, 17
Static learning

adaptive learning vs., 119
SVM-based, 110, 114–115

Stealing passwords with browser refresh,
61–65

Stide, 105
Structural risk minimization principle, 11
Support vector machines, 83, 96, 98, 104

268 � Enhancing Computer Security with Smart Technology

classifier, 103
static learning based on, 110, 114–115

SVM. See Support vector machines
SYN flood, 137
SYN stealth scan, 134, 148
Syslogd, 138

T

tcpdump tool, 214
Teardrop, denial-of-service attack, 138
Thumbprints, 232
TIS FWTK, 21
Transient addressing, 29–30
Transport-level protocols, 16
Transport scrubbing, 29
Trust, 5

U

UDP Multicast Tunneling Protocol, 25
UDP scan, 135, 148
Udpstorm, 138
“Union” operator, 52–55
Universal Transport Protocol, 33–34
UNM system call data, 101–102, 103

V

Vector cosine measure, 104
VeriSign certification, 6
Vigilance

effectiveness of varying, 117–118
Virtual private networks, 9

as challenge to firewalls, 33
Virtual private networks (VPN)

remote-access problems, 33
Viruses, 2, 3, 13, 76, 125
VPN. See Virtual private networks (VPN)

W

WaveCluster, 213
Wavelet(s)

applications
in data mining, 212–213
in IDS, 213–215

bases, 212
defined, 211
downsampling operation, 225
fast discrete, 224
father, 222

for host-based IDS, 215–216
in IDS, 210, 213–215

simulation results of, 218–219
localization feature, 212
mother, 222
multiresolution feature, 212
for net-based IDS, 216–218
orthonormal Daubechies, 212
properties, 212
pyramid algorithm, 224
technique, 220
transform properties, 225–227

computational complexity, 226
decorrelation of data, 226
multiresolution framework, 225
stability, 226
zero moments, 226

upsampling operation, 225
Web application(s)

causes for insecurity, 43
ease of reverse engineering, 43
immature testing methods, 43
lack of awareness, 43

security, 42–72
threats to, 42–43

vulnerabilities, 43–46
browser, 45–46
improper use of page caching, 44
inadequate input validation, 43–44
inadequate sanitization of output, 45
insecure configuration of application

on Web server, 45
insecure server hosting application,

46
insecure use of cryptography, 44
insecurely designed authentication

mechanism, 45
prevention of, 66–72

design for, 68–70
developments in, 70–71
requirements for, 67–68
testing for, 71–72

undue faith in client-supplied
information, 44

weak “forgot-password” schemes, 45
wrong choice of HTTP actions and

variable types, 44
Web site, trustworthiness of, 6
WebGoat

to illustrate cross-site scripting, 59, 60, 61

Index � 269

to illustrate SQL injection attack, 52, 53,
54

Wi-Fi Protected Access, 22
WIND, 214
Window scan, 135, 148
Wired Equivalency Privacy, 18, 22
Worms, 2, 3, 31, 32

mass-mailing, 152

propagation of new, 77

X

Xmas tree, 148

	Contributors List
	Contents
	Preface
	About the Editor
	Chapter 1: Cyber-Security and Cyber-Trust
	1.1 Introduction
	1.2 Cyber-Security
	1.3 Cyber-Trust
	1.3.1 Challenge 1: The Distribution of Expertise
	1.3.2 Challenge 2: Proliferating Devices and Functionality
	1.3.3 Challenge 3: Burgeoning Purposes

	1.4 What the Future Holds

	Chapter 2: Network Firewalls
	Abstract
	2.1 Introduction
	2.2 The Need for Firewalls
	2.3 Firewall Architectures
	2.3.1 Packet Filtering
	2.3.2 Proxies

	2.4 Firewalls at Various ISO Network Layers
	2.4.1 Physical Layer
	2.4.2 Data-Link Layer
	2.4.3 Network
	2.4.4 Transport
	2.4.5 Presentation
	2.4.6 Application

	2.5 Other Approaches
	2.5.1 Distributed Firewalls
	2.5.2 Dynamic Firewalls
	2.5.3 Normalization
	2.5.4 Signature-Based Firewalls
	2.5.5 Transient Addressing

	2.6 Firewall Testing
	2.7 What Firewalls Do Not Protect Against
	2.7.1 Data That Passes through the Firewall
	2.7.2 Servers on the DMZ
	2.7.3 Insider Attacks

	2.8 Future Challenges for Firewalls
	2.8.1 VPNs
	2.8.2 Peer-to-Peer Networking
	2.8.3 HTTP as a "Universal Transport Protocol"

	2.9 Conclusion
	References

	Chapter 3: Web Application Security: The Next Battleground
	3.1 Threats to Web Applications
	3.1.1 Origin of the Risks

	3.2 Vulnerabilities in Web Applications
	3.3 Attack Techniques
	3.3.1 SQL Injection
	3.3.2 Cross-Site Scripting
	3.3.3 Stealing Passwords with Browser Refresh
	3.3.4 Variable Manipulation Attacks

	3.4 Preventing Vulnerabilities in Web Applications
	3.4.1 Requirements
	3.4.2 Design
	3.4.3 Development
	3.4.4 Testing

	3.5 Conclusion
	Notes
	References

	Chapter 4: Relevance of Machine Learning
	4.1 Introduction
	4.2 Place of Intrusion Detection in the Security Landscape
	4.3 Machine Learning beyond Intrusion Detection
	4.4 Machine Learning and Computational Learning Theory
	4.5 Some Popular Machine Learning Methods
	4.5.1 Multilayer Networks with Back Propagation
	4.5.2 Support Vector Machines
	4.5.3 Probabilistic Models
	4.5.4 Clustering
	4.5.5 Decision Trees
	4.5.6 Bayesian Networks

	4.6 Making Machine Learning More Useful
	4.6.1 Ensemble of Classifiers
	4.6.2 Constructing an Ensemble by Manipulating Training Data
	4.6.3 Constructing an Ensemble by Manipulating Input Features
	4.6.4 Constructing an Ensemble by Injecting Randomness
	4.6.5 Constructing an Ensemble Using Different Learning Algorithms
	4.6.6 Combining the Results from an Ensemble of Classifiers
	4.6.7 Why the Ensemble Idea Works

	4.7 Summary
	References

	Chapter 5: Machine Learning in Intrusion Detection
	5.1 Introduction
	5.2 Intrusion Detection
	5.3 Machine Learning Approaches to Anomaly Detection
	5.3.1 Machine Learning and Its Problem Formulations
	5.3.2 Learning Methods for Anomaly Detection

	5.4 Audit Data
	5.4.1 DARPA/KDD Datasets
	5.4.2 UNM System Call Data
	5.4.3 UNIX Command Data

	5.5 Issues in Anomaly Detection
	5.5.1 Feature Selection
	5.5.2 Skewed Class Distribution
	5.5.3 Distance Metrics
	5.5.4 Window Size for Sequential Data
	5.5.5 IDS Performance Evaluation
	5.5.6 Cost-Effectiveness of IDS

	5.6 Open Questions and Future Directions
	5.6.1 Theoretical Analysis
	5.6.2 Learning for Understanding and Planning
	5.6.3 Ensemble Learning
	5.6.4 Online, Adaptive Learning

	5.7 Illustrative Example: Adaptive Anomaly Detection
	5.7.1 Adaptive Anomaly Detection Framework
	5.7.2 Experiments

	5.8 Summary
	References

	Chapter 6: Cyber-Security Challenges: Designing Efficient Intrusion Detection Systems and Anti-Virus Tools
	6.1 Introduction to IDSs
	6.2 A Review of IDSs
	6.2.1 Intrusion Detection Models

	6.3 Computer Attack Taxonomy
	6.3.1 Probing
	6.3.2 DoS Attacks

	6.4 Significant Feature Selection for Intrusion Detection
	6.4.1 SVM-Specific Feature-Ranking Method
	6.4.2 Ranking Algorithm Using Linear Genetic Programming
	6.4.3 Ranking Algorithm Using Multivariate Adaptive Regression Splines

	6.5 Detection of Probes and DoS Attacks
	6.5.1 Real-Time Data Collection and Feature Extraction
	6.5.2 Performance Evaluation

	6.6 Attacks on IDSs
	6.6.1 Vulnerabilities in IDSs
	6.6.2 Insertion and Evasion Attacks
	6.6.3 Availability Attacks

	6.7 Attacks on Anti-Virus Tools
	6.7.1 Malware Used for Analysis
	6.7.2 Obfuscation
	6.7.3 Obfuscation Used for Defeating Commercial Scanners

	6.8 Conclusions
	Acknowledgments
	References

	Chapter 7: Artificial Immune Systems in Intrusion Detection
	7.1 Introduction
	7.1.1 Multilayered Protection
	7.1.2 Adaptive Immunity
	7.1.3 Computational Aspects of the Immune System

	7.2 Artificial Immune Systems
	7.2.1 NSA

	7.3 Real-Valued Negative Selection (RNS)
	7.3.1 Negative Selection with Detection Rules (NSDR)

	7.4 Intrusion Detection Problem
	7.4.1 Positive or Negative Characterization?

	7.5 Experimentation
	7.5.1 Dataset
	7.5.2 PC Approach
	7.5.3 Evolving Negative-Selection Detection Rules (NSDR)
	7.5.4 Extending NSDR to Use Fuzzy Rules

	7.6 Summary
	Bibliography

	Chapter 8: Application of Wavelets in Network Security
	8.1 Introduction
	8.2 A Brief Introduction to Self-Similarity
	8.3 A Brief Introduction to Wavelet Analysis
	8.4 Application of Wavelets
	8.4.1 Some Applications in Data Mining
	8.4.2 Some Applications in IDS

	8.5 Wavelets for HIDS
	8.6 Wavelets for Network-Based IDS
	8.7 Simulation Results
	8.8 An Observation for Future Work and Conclusion
	Appendix
	Acknowledgment
	References

	Chapter 9: Application of Exploratory Multivariate Analysis for Network Security
	Abstract
	9.1 Introduction
	9.2 The Intrusion Detection Problem
	9.3 The S Language and Its Environment
	9.4 Introduction to Multivariate Analysis Methods
	9.4.1 Exploratory Multivariate Analysis
	9.4.2 Visualization Methods
	9.4.3 Clustering Methods
	9.4.4 Self-Organizing Maps
	9.4.5 PCA
	9.4.6 ICA
	9.4.7 Stars Plots
	9.4.8 Mosaic Plots

	9.5 DoS and Network Probe Attacks
	9.6 Data Collection and Preprocessing
	9.6.1 Data Collection
	9.6.2 Data Preprocessing

	9.7 Results
	9.7.1 Data Collection and Processing
	9.7.2 Application of Multivariate Analysis Algorithms
	9.7.3 Evaluation of Results

	Acknowledgment
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

