
EventPairHandle as Anti-Dbg Trick
Author: Giuseppe 'Evilcry' Bonfa'
E-Mail: evilcry {AT} gmail {DOT} com
Website: http://evilcry.netsons.org - http://evilcodecave.wordpress.com

EventPairHandle
An EventPair Object is an Event constructed by two _KEVENT structures which are
conventionally named High and Low. EventPairs are used for synchronization in
Quick LPC, they allow the called thread to continue the current quantum,
reducing scheduling overhead and latency. Now by looking to the basic operations
that a debugger need to accomplish, we can see that these tasks are conceptually
simple, when the target is normally running, the debugger is sleeping, but when
certain events occur Dbg Wakes Up. Became clear that there is a strict relation
between generic Event Objects and Debuggers cause they have to create a custom
Event called DebugEvent able to handle exceptions. Due to the presence of Events
owned by the Debugger, every information relative to the Events of a normal
process differs from a debugged process.

This is the struct that describes an EventPair:

typedef struct _KEVENT_PAIR {
 USHORT Type;
 USHORT Size;
 KEVENT Event1;
 KEVENT Event2;
} KEVENT_PAIR, *PKEVENT_PAIR;
Nothing more than a couple of _KEVENTS. NtCreateEventPair is the responsible of
EventPair creation, here the prototype:

NTSYSAPI
NTSTATUS
NTAPI
NtCreateEventPair(
 OUT PHANDLE EventPairHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL);
PARAMETERS
hEventPair: Pointer to the variable that receives handle to the event-pair
object.

AccessMask: Type of access requested to the event-pair object. This can be
a combination of any of the following flags:
EVENT_QUERY_STATE, EVENT_MODIFY_STATE, and
EVENT_ALL_ACCESS.

ObjectAttributes: Points to the OBJECTS_ATTRIBUTES structure containing the
information about the event-pair object to be created, such as name, parent
directory, objectflags, and so on.

EventPairs are used by the Win32 subsystem to provide notification when the
client thread has copied a message to the Win32 server, or vice versa. LPC
messages are passed in the section object, and synchronization is performed by
the event-pair object. The event-pair object eliminates the overhead of using
the port object to pass messages containing pointers and lengths.

LPC was used into (Kernel/User)-mode Debug Support before Windows XP for various

http://evilcry.netsons.org/
http://evilcodecave.wordpress.com/

notifications. The new Debugging Support makes use of _DEBUG_OBJECT. This struct
is a wrapper around the event used by WaitForDebugEvent, consequently we need to
see how _DEBUG_EVENT is structured, here the struct:
typedef struct _DEBUG_EVENT
{
 LIST_ENTRY EventList;
 KEVENT ContinueEvent;
 CLIENT_ID ClientId;
 PEPROCESS Process;
 PETHREAD Thread;
 NTSTATUS Status;
 ULONG Flags;
 PETHREAD BackoutThread;
 DBGKM_MSG ApiMsg;
} DEBUG_EVENT, *PDEBUG_EVENT;

As you can see between the members of this struct we have the last one that
sounds really intersting DBGKM_MSG that by the name we can understand is
referred to Debug Messaging (Messaging means implications with LPC mechanism),
so let's see DBGKM_MSG struct:
typedef struct _DBGKM_MSG
{
 PORT_MESSAGE h;
 DBGKM_APINUMBER ApiNumber;
 ULONG ReturnedStatus;
 union
 {
 DBGKM_EXCEPTION Exception;
 DBGKM_CREATE_THREAD CreateThread;
 DBGKM_CREATE_PROCESS CreateProcess;
 DBGKM_EXIT_THREAD ExitThread;
 DBGKM_EXIT_PROCESS ExitProcess;
 DBGKM_LOAD_DLL LoadDll;
 DBGKM_UNLOAD_DLL UnloadDll;
 };
} DBGKM_MSG, *PDBGKM_MSG;

PORT_MESSAGE defines the LPC Message Header that is used for every communication
between client and server. Became clear that, despite to the fact that LPC is
not used, the presence of PORT_MESSAGE reveals that LPC is supported and
consequently influences EventPair count, read as EventPair Handle. We have seen
that LPC is used into Debugging System, so a debugged process will present an
EventPair Handle different from a not debugged.

I've tested this fact into a Windows XP sp2 machine and this method works (on
OllyDbg, other debuggers are untested).

Here the Code:

#define WIN32_LEAN_AND_MEAN
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include "defs.h"
#pragma comment(lib,"ntdll.lib")
#pragma comment(lib,"psapi.lib")
void QueryProcessHeapMethod(void)
{

PDEBUG_BUFFER buffer;
buffer = RtlCreateQueryDebugBuffer(0,FALSE);
RtlQueryProcessHeapInformation(buffer);
if (buffer->RemoteSectionBase == (PVOID) 0x50000062)

MessageBoxA(NULL,"Debugged","Warning",MB_OK);
else

MessageBoxA(NULL,"Not Debugged","Warning",MB_OK);
if (buffer->EventPairHandle == (PVOID) 0x00002b98)

MessageBoxA(NULL,"Debugged","Warning",MB_OK);
else

MessageBoxA(NULL,"Not Debugged","Warning",MB_OK);
printf("EventPairHandle= %x",(int)buffer->EventPairHandle);

}

int main()
{

QueryProcessHeapMethod();
return (EXIT_SUCCESS);

}

References:
http://www.alex-ionescu.com/dbgk-3.pdf

Feel free to contact me, test this feature and make me know with a mail if you
can.

Regards,
Giuseppe 'Evilcry' Bonfa'

The rest of the world as IT suckers that tried to deceive me with their fake
work proposal can die.

http://www.alex-ionescu.com/dbgk-3.pdf

