


Ext GWT 2.0
Beginner's Guide

Take the user experience of your website to a new level  
with Ext GWT

Daniel Vaughan



Ext GWT 2.0
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly  
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals.  
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Production Reference: 1191110

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-84-1

www.packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail.com)



Credits

Author

Daniel Vaughan

Reviewers

Michal Kozik

Yiwen Ng (Tony)

Carl Pritchett

Acquisition Editor

Usha Iyer

Development Editor

Wilson D'souza

Technical Editors

Dayan Hyames

Pooja Pande

Copy Editors

Leonard D'Silva

Lakshmi Menon

Indexers

Hemangini Bari

Monica Ajmera Mehta 

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Ashwin Shetty

Project Coordinator

Zainab Bagasrawala

Proofreader

Mario Cecere

Graphics

Nilesh R. Mohite

Production Coordinator 

Melwyn D'sa

Cover Work

Melwyn D'sa



About the Author

Daniel Vaughan has worked with enterprise web applications for over 12 years. He is 
currently a software architect for a UK financial institution. An experienced Java developer, 
Daniel first started working with Google Web Toolkit soon after it was released in 2006 and 
loved the power and simplicity it bought to web application development. When Ext GWT 
came along, he was an early adopter and he has used it as a part of several large projects.

Daniel currently splits his time between the beautiful tranquility of the Cotswold, England  
and the fast-moving city state of Singapore. He enjoys traveling, scuba diving, and learning 
new ideas.

I would like to thank Jason Brown, Bob Twiddy, Wayne Harris, Kirsty 
Harper, and Gwendolyn Regina Tan for their advice and encouragement 
while writing this book. I would also especially like to thank Lindy Wai 
and my family for all their support. Finally, I would like to remember my 
grandmother, Mary Vaughan, who died during the writing of this book.  
She would not have understood a word but would have been very proud.



About the Reviewers

Michal Kozik is currently working in Inofonova GmbH as a Senior Technology Analyst, 
developing applications for Telco companies. His area of expertise includes Java Standard 
Edition, Java Enterprise Edition, and Web Services.

Michal has received a Master's degree in Teleinformatics Systems from Cracow University of 
Technology in Cracow. During his spare time, he enjoys playing basketball and snowboarding.

Yiwen Ng (Tony) is a Java software developer with over 7 years of commercial application 
development and consulting experience. Fringe passions involve agile methodology, mobile 
development, web enterprise development, configuration management, and security. If 
cornered, he may actually admit to knowing Java's latest technologies and pair programming.

He's easily amused by programming language design and collaborative applications. Yiwen 
has also developed a few android mobile applications and RIA GWT-based web applications. 
Occasionally, he works as a consultant on a contractor basis. Yiwen can be reached directly 
via e-mail at ttony@mjsoft.com.au.

Currently, he is employed at Tullett Prebon in Singapore as a Senior Software Developer.

Carl Pritchett is an avid software developer with over 11 years of industry experience. 
He has worked on integration and pure software development projects for many companies 
including Novell, Insurance Australia Group Limited, and currently develops a financial 
research platform for Calibre Financial Technology. With extensive experience in the  
financial and insurance sectors, Carl's primary focus is on Java, JEE, and GWT with a  
healthy knowledge of C# and other technologies and products that help get the job done.  
He enjoys working with motivated people in agile/lean environments.

I'd like to acknowledge my workplace and my wife for their support in 
providing the time to review this book.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om





Table of Contents
Preface 1

Chapter 1: Getting Started with Ext GWT 7
What is GWT missing? 7
What does Ext GWT offer? 8
How is Ext GWT licensed? 8
Alternatives to Ext GWT 8

GWT-Ext 9
Smart GWT 9
Vaadin 9

Ext GWT or GXT? 9
Working with GXT: A different type of web development 10
How GXT fits into GWT 10
Downloading what you need 10
Eclipse setup 11
GWT setup 11
Time for action – setting up GWT 11
GXT setup 14
Time for action – setting up GXT 14
GWT project creation 15
Time for action – creating a GWT project 15
GXT project configuration 17
Time for action – preparing the project to use GXT 18
Differences of GXT controls 21
Time for action – adapting the GWT app to use GXT controls 21
Summary 25

Chapter 2: The Building Blocks 27
The Ext GWT Explorer Demo 28
Essential knowledge 28

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Table of Contents

[ ii ]

GXT building block 1: Component  29
BoxComponent 29
Lazy Rendering 29

GXT building block 2: Container 30
LayoutContainer 30
FlowLayout 32
ContentPanel 32

GXT building block 3: Events 32
Sinking and swallowing events 33

Introducing the example application 33
The requirement  33
The solution 33

Blank project 34
Time for action – creating a blank project  34
Viewport 36
Time for action – adding a Viewport  36
Layout 37

BorderLayout 37
BorderLayoutData 38
Time for action – using BorderLayout 38
Loading message 40
Time for action – adding a loading message 40
Custom components 43

The onRender method 43
Time for action – creating custom components 44
First field components 46
Button 46

Size 46
Icons 46
Icon position 47
Adding a menu 47
ToggleButton 48
SplitButton 48

Creating a Link feed button 48
Time for action – adding a button 48
Tooltip 49
Time for action – adding a tooltip 50
Popup 50
Time for action – creating a popup 50
SelectionListener 51
Time for action – adding a SelectionListener 51



Table of Contents

[ iii ]

Field 52
TextField 53
Time for action – adding components to the Link feed popup 53
Popup positioning and alignment 56
Time for action – positioning the popup 57
Summary 59

Chapter 3: Forms and Windows 61
Change of requirements 61

The RSS 2.0 specification 62
FormPanel 62
Fields 63

TextFields 63
TriggerField components 63
ComboBox component 64
ListField component 64
CheckBox components 64
HtmlEditor component 65
Other field components 65

Expanding the example application 66
Creating a Create feed button 66
Time for action – adding a Create feed button 67
Creating a Feed class 68
Time for action – creating a feed data object 68
Window 70
FitLayout 71
Creating the FeedWindow component 71
Time for action – creating a Window 71
Creating FeedForm 73
Time for action – creating a feed form 73
Validating fields 75

Text validation 76
Numerical validation 76
Custom validator 76

Time for action – adding field validation 77
Using FieldMessages 78
Time for action – adding FieldMessages to the fields 78
Submitting a form using HTTP 79
Alternative to submitting a form using HTTP 80
Creating a Feed service 80
Time for action – creating service for feed objects 81

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Table of Contents

[ iv ]

The Registry 82
Storing the service in the Registry 82
Time for action – using the Feed object 83
Saving a Feed 84
Time for action – saving an object to the registry 84
Creating RSS XML 85
Time for action – saving a Feed 86
Time for action – adding to the LinkFeedPopup 88
Summary 90

Chapter 4: Data-backed Components 91
Working with data 92
ModelData interface 92

Method 1: Extending BaseModel 93
BeanModel class 94

BeanModelFactory class 94
Method 2: Implementing BeanModelTag 94
Method 3: Creating a BeanModelMarker  95

Time for action – creating a BeanModelMarker for Feed objects 96
Stores 96
Time for action – creating and populating a ListStore 97
Data-backed ComboBox 98
Data-backed ListField 99
Time for action – creating a ListField for feeds 99
Server-side persistence 101

Persisting an Existing Feed 101
Time for action – persisting a link to an existing feed 101
Time for action – persisting a feed as an XML document 104
Server-side retrieval 106
Time for action – loading feeds 106
Using remote data 107

DataProxy interface 108
DataReader interface 108
ModelType class 110
Loader interface 111

LoadConfig 111
How they fit together 112
Time for action – using remote data with a ListField 112
Grid 115
ColumnConfig 115
Grid Example 115



Table of Contents

[ v ]

Time for action – creating the ItemGrid 115
GridCellRenderer 118
Time for action – using a GridCellRenderer 119
Summary 120

Chapter 5: More Components 121
Trees 122

BaseTreeModel class 122
Time for action – creating a BaseTreeModel 123
Time for action – providing categorized items 124

TreeStore class 125
TreePanel class 125
ImageBundle class 126

Time for action – using an ImageBundle 126
TreeGrid class 127
TreeGridCellRenderer class 127

Time for action – replacing the Feed List with a Feed Tree 128
Advanced grid features 131

HeaderGroupConfig class 131
AggregationRowConfig class 132
Paging 134
PagingLoadResult interface 135
PagingLoadConfig class 135

Time for action – providing paged data 135
PagingModelMemoryProxy class 136
PagingLoader class 137
PagingToolBar class 137

Time for action – creating a paging grid 137
Menus and toolbars 139

Menu component 140
MenuBar component 141
MenuItem component 142
CheckMenuItem component 143
MenuEvent class 144
ToolBar component 146

Time for action – adding a toolbar 146
TabPanel class 149
TabItem class 149

Status component 149
Time for action – adding a Status component 149
Summary 151

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Table of Contents

[ vi ]

Chapter 6: Templates 153
Time for action – adding to the Feed and Item 154
Template class 157
Time for action – creating the ItemPanel 157

Using a Template with other components 161
Time for action – using a Template with a ListField 161
XTemplate class 163

The for function 163
The if function 165
Special built-in template variables 167
Basic math function support 167
Inline code execution 167
Using an XTemplate 168

The RowExpander class 168
Time for action – using a RowExpander 169
The ListView class 170
Time for action – creating a Feed overview ListView 171
The ModelProcessor class 173
Time for action – pre-processing model data 174
Item selectors 175
Time for action – making ListView items selectable 176
CheckBoxListView 178
Summary 179

Chapter 7: Model View Controller 181
The need for good application structure 181
The classic Model View Controller pattern 182
The GXT Model View Controller 182
The AppEvent class 183
The EventType class 183
Time for action – defining application events 184
Controller class 184
Time for action – creating a controller 184
Time for action – handling events 185
The View class 186
Time for action – creating a View 186
Dispatcher 187
Incorporating MVC 189
Time for action – registering a Controller with the Dispatcher 189
Time for action – refactoring UI setup 190
Time for action – creating the navigation Controller and View 193



Table of Contents

[ vii ]

Time for action – creating the FeedPanel Controller and View 197
Allowing viewing of multiple feeds 203
Time for action – adding tabs 203
Wiring it together 204
Time for action – responding to selections 205
Keeping things in sync  209
Time for action – responding to a Feed being added 209
Time for action – creating a status toolbar Controller and View 212
Summary 216

Chapter 8: Portal and Drag-and-Drop 217
Portlet class 218
The Portal class 218
ToolButton 220
Time for action – creating a Portal Controller and a Portlet View 221
Time for action – creating the Navigation Portlet  223
Time for action – creating more portlets 226
Drag-and-drop 229

The Draggable class 229
The DragSource class 229
DragSource implementations 230
The DropTarget class 230
DropTarget implementations 231
Grouping sources and targets 231

Using drag-and-drop 232
Time for action – dragging and dropping of feeds 232
Time for action – dragging and dropping items 235
Summary 240

Chapter 9: Charts 241
Time for action – including the chart module 242
Time for action – including the chart resources 242
Time for action – loading the chart JavaScript library 244
Chart class 244
Time for action – creating a chart Portlet 245
ChartModel class 248
ChartConfig class 248
BarChart class 249

CylinderBarChart class 252
FilledBarChart class 253
SketchBarChart class 253

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Table of Contents

[ viii ]

BarChart.Bar class 254
HorizontalBarChart class 254

PieChart class 255
PieChart.Slice class 256
LineChart class 257
AreaChart class 259
ScatterChart class 259
StackedBarChart class 260
Using a PieChart 261
Time for action – creating PieChart data 261
Summary 267

Chapter 10: Putting It All Together 269
Using Google App Engine 269
Time for action – registering a Google App Engine application 270
Time for action – getting the application ready for GAE 272
Time for action – using the Google App Engine data store 276
Time for action – publishing the example application 279
Google Chrome 281
Time for action – creating a Google Chrome application shortcut 282
Gears 284
Mobile applications 284

PhoneGap 284
Widgets 284

The future for GXT 285
Getting more information 285

GXT Explorer website 285
GXT sample code 285
GXT Java doc 285
GXT Help Eclipse plugin 286
GXT source code 286
GXT forums 286
Other programmer forums 287

Summary 288

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Table of Contents

[ ix ]

Pop Quiz Answers 289
Chapter 1 289
Chapter 2 290
Chapter 3 290
Chapter 4 290
Chapter 5 290
Chapter 6 291
Chapter 7 291
Chapter 8 291
Chapter 9 291
Chapter 10 292

Index 237

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om





Preface
Ext GWT 2.0: Beginner's Guide is a practical book that teaches you how to use the Ext GWT 
library to its full potential. It provides a thorough, no-nonsense explanation of the Ext GWT 
library, what it offers, and how to use it through practical examples. This book provides clear, 
step-by-step instructions for getting the most out of Ext GWT and offers practical examples 
and techniques that can be used for building your own applications in Ext GWT.

This book gets you up and running instantly to build powerful Rich Internet Applications (RIA) 
with Ext GWT. It then takes you through all the interface-building widgets and components 
of Ext GWT using practical examples to demonstrate when, where, and how to use each of 
them. Layouts, forms, panels, grids, trees, toolbars, menus, and many other components 
are covered in the many examples packed in this book. You will also learn to present your 
data in a better way with templates and use some of the most sought-after features of Ext 
GWT in your web applications such as drag-and-drop and charts. Throughout the book, a real 
application is built step-by-step using Ext GWT and deployed to Google App Engine.

Imagine how great you'll feel when you're able to create great-looking desktop-style user 
interfaces for your web applications with Ext GWT!

What this book covers
Chapter 1, Getting Started with Ext GWT, introduces Ext GWT and explains where it fits into 
GWT. It then moves on to show how to get up and running with Ext GWT by creating your 
first project.

Chapter 2, The Building Blocks, starts by looking at the explorer demo application. It then 
introduces the world of GXT components, beginning with some key concepts, and quickly 
moves on to practically working with an example application.

Chapter 3, Forms and Windows, explores GXT's form features. It looks at the form 
components that GXT provides and demonstrates how to put them to use. It also  
introduces the GXT Registry and shows how it can be used across the application.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Preface

[ 2 ]

Chapter 4, Data-backed Components, explains how GXT facilitates working with data. It looks 
at the components available for retrieving, manipulating, and processing data and then 
moves on to work with the built-in data-backed display components.

Chapter 5, More Components, introduces more advanced data-backed components and the 
extensions that build on the components covered in the previous chapter. It then moves on 
to cover additional advanced components—specifically menus, toolbars, and tabs.

Chapter 6, Templates, looks at templates and how they can be used to easily format and 
display data in a highly customizable way. It also introduces the more powerful features  
of XTemplates.

Chapter 7, Model View Controller, explains GXT's Model View Controller framework and 
demonstrates how it can allow components to communicate in larger applications.

Chapter 8, Portal and Drag-and-Drop, covers the portal and drag-and-drop features of GXT. 
It starts by showing how to turn out existing components into portlets and then moves on to 
practically make use of GXT's drag-and-drop features to move data between them.

Chapter 9, Charts, covers GXT's charting plugin. It explores the wide range of charts available, 
shows how to avoid the pitfalls of the plugin, and demonstrates how charts can be used with 
existing data.

Chapter 10, Putting it all together, shows how to publish the example application to the 
world using the Google App Engine. It then moves on to look at how to take development 
with GXT further and other resources that can be turned to after this book.

What you need for this book
1. Sun JDK version 6u21 available at http://java.sun.com/javase/downloads/

widget/jdk6.jsp

2. Eclipse IDE for Java EE Developers version 3.6 available at http://www.eclipse.
org/downloads/

3. Ext GWT SDK version 2.2.0 available at http://www.sencha.com/products/
gwt/download.php

4. Google Plugin for Eclipse version 3.6 available at http://code.google.com/
eclipse/

5. Google Web Toolkit version 2.1.0 available at http://code.google.com/
webtoolkit/download.html

6. Google App Engine Java SDK version 1.3.8 available at http://code.google.
com/appengine/downloads.html



Preface

[ 3 ]

Who this book is for
If you are a Java developer aspiring to build intuitive web applications with Ext GWT, then 
this book is for you. It assumes that you are familiar with HTML and CSS. Developers who 
wish to add an RIA look to their existing GWT applications with Ext GWT will find this book 
extremely useful.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are 
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you  
have learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The FirstGxtApp class modifies the default GWT 
application to use GXT controls instead of the GWT equivalents."

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Preface

[ 4 ]

A block of code is set as follows: 

LayoutContainer layoutContainer = new LayoutContainer();
Button button = new Button("Click me");
layoutContainer.add(button);
RootPanel.get().add(layoutContainer);

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

RootPanel.get().add(layoutContainer);
Button anotherButton = new Button("Click me too");
layoutContainer.add(anotherButton);
layoutContainer.layout();

New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: " We would like to take 
advantage of our example application to pop up a small form for entering an URL when the 
user clicks on the Link feed button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in  
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.



Preface

[ 5 ]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased 
from your account at http://www.PacktPub.com. If you purchased this 
book elsewhere, you can visit http://www.PacktPub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save  
other readers from frustration and help us improve subsequent versions of this book. If  
you find any errata, please report them by visiting http://www.packtpub.com/support, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata 
will be uploaded on our website, or added to any list of existing errata, under the Errata 
section of that title. Any existing errata can be viewed by selecting your title from  
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected 
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om





1
Getting Started with Ext GWT

In this chapter, we introduce Ext GWT and explain where it fits into GWT. We 
then move on to show you how to get up and running with Ext GWT by creating 
your first project.

In this chapter, we will cover:

 � Installing Ext GWT

 � Creating a new GWT project

 � Preparing the GWT project to use Ext GWT

 � Adapting the GWT example application to use Ext GWT components

What is GWT missing?
The Google Web Toolkit is a great way for Java developers to create AJAX-based rich 
Internet applications without requiring in-depth knowledge of JavaScript or having to 
deal with the quirks of different browsers. However, it is a toolkit as opposed to a full 
development framework, and for most projects, it forms the part of a solution rather  
than the whole solution.

Out-of-the-box GWT comes with only a basic set of widgets and lacks a framework to enable 
the developers to structure larger applications. Fortunately, GWT is both open and extensible 
and as a result, a range of complementary projects have grown up around it. Ext GWT is one 
of those projects.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Getting Started with Ext GWT

[ 8 ]

What does Ext GWT offer?
Ext GWT sets out to build upon the strengths of GWT by enabling the developers to give 
their users an experience more akin to that of a desktop application.

Ext GWT provides the GWT developer with a comprehensive component library similar to that 
used when developing for desktop environments. In addition to being a component library, 
powerful features for working with local and remote data are provided. It also features a model 
view controller framework, which can be used to structure larger applications.

How is Ext GWT licensed?
Licensing is always an important consideration when choosing technology to use in a project. 
At the time of writing, Ext GWT is offered with a dual license.

The first license is an open source license compatible with the GNU GPL license v3. If you 
wish to use this license, you do not have to pay a fee for using Ext GWT, but in return you 
have to make your source code available under an open source license. This means you have 
to contribute all the source code of your project to the open source community and give 
everyone the right to modify or redistribute it.

If you cannot meet the obligations of the open source license, for example, you are 
producing a commercial product or simply do not want to share your source code,  
you have to purchase a commercial license for Ext GWT.

It is a good idea to check the current licensing requirements on the Sencha website,  
http://www.sencha.com, and take that into account when planning your project.

Alternatives to Ext GWT
Ext GWT is one of the many products produced by the company Sencha. Sencha was 
previously named Ext JS and started off developing a JavaScript library by the same name. 
Ext GWT is closely related to the Ext JS product in terms of functionality. Both Ext GWT and 
Ext JS also share the same look and feel as well as a similar API structure. However, Ext GWT 
is a native GWT implementation, written almost entirely in Java rather than a wrapper, the 
JavaScript-based Ext JS.



Chapter 1

[ 9 ]

GWT-Ext
Before Ext GWT, there was GWT-Ext: http://code.google.com/p/gwt-ext/. This 
library was developed by Sanjiv Jeevan as a GWT wrapper around an earlier, 2.0.2 version of 
Ext JS. Being based on Ext JS, it has a very similar look and feel to Ext GWT. However, after 
the license of Ext JS changed from LGPL to GPL in 2008, active development came to an end.

Apart from no longer being developed or supported, developing with GWT-Ext is more 
difficult than with Ext GWT. This is because the library is a wrapper around JavaScript and 
the Java debugger cannot help when there is a problem in the JavaScript code. Manual 
debugging is required.

Smart GWT
When development of GWT-Ext came to an end, Sanjiv Jeevan started a new project named 
Smart GWT: http://www.smartclient.com/smartgwt/. This is a LGPL framework that 
wraps the Smart Client JavaScript library in a similar way that GWT-Ext wraps Ext JS. Smart 
GWT has the advantage that it is still being actively developed. Being LGPL-licensed, it also 
can be used commercially without the need to pay the license fee that is required for Ext 
GWT. Smart GWT still has the debugging problems of GWT-Ext and the components are often 
regarded not as visually pleasing as Ext GWT. This could be down to personal taste of course.

Vaadin
Vaadin, http://vaadin.com, is a third alternative to Ext GWT. Vaadin is a server-side 
framework that uses a set of precompiled GWT components. Although you can write your 
own components if required, Vaadin is really designed so that you can build applications by 
combining the ready-made components.

In Vaadin the browser client is just a dumb view of the server components and any user 
interaction is sent to the server for processing much like traditional Java web frameworks. 
This can be slow depending on the speed of the connection between the client and  
the server.

The main disadvantage of Vaadin is the dependency on the server. GWT or Ext GWT's 
JavaScript can run in a browser without needing to communicate with a server. This is  
not possible in Vaadin.

Ext GWT or GXT?
To avoid confusion with GWT-Ext and to make it easier to write, Ext GWT is commonly 
abbreviated to GXT. We will use GXT synonymously with Ext GWT throughout the rest 
of this book.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om

http://vaadin.com/


Getting Started with Ext GWT

[ 10 ]

Working with GXT: A different type of web development
If you are a web developer coming to GXT or GWT for the first time, it is very important to 
realize that working with this toolset is not like traditional web development. In traditional 
web development, most of the work is done on the server and the part the browser plays is 
little more than a view-making request and receiving responses.

When using GWT, especially GXT, at times it is easier if you suspend your web development 
thinking and think more like a desktop-rich client developer. Java Swing developers, for 
example, may find themselves at home.

How GXT fits into GWT
GXT is simply a library that plugs into any GWT project. If we have an existing GWT project 
setup, all we need to do to use it is:

 � Download the GXT SDK from the Sencha website

 � Add the library to the project and reference it in the GWT configuration

 � Copy a set of resource files to the project

If you haven't got a GWT project setup, don't worry. We will now work through getting GXT 
running from the beginning.

Downloading what you need
Before we can start working with GXT, we first need to download the toolkit and set up our 
development environment. Here is the list of what you need to download for running the 
examples in this book.

Recommended Notes Download from

Sun JDK 6 The Java development kit http://java.sun.com/javase/
downloads/widget/jdk6.jsp

Eclipse IDE for Java 
EE Developers 3.6

The Eclipse IDE for Java 
developers, which also 
includes some useful web 
development tools

http://www.eclipse.org/
downloads/

Ext GWT 2.2.0 SDK 
for GWT 2.0

The GXT SDK itself http://www.sencha.com/
products/gwt/download.php

Google supplies a useful plugin that integrates GWT into Eclipse; it makes sense for us to 
use Eclipse in this book. However, there is no reason that you cannot use an alternative 
development environment, if you prefer.



Chapter 1

[ 11 ]

Eclipse setup
There are different versions of Eclipse, and although Eclipse for Java EE developers is not 
strictly required, it contains some useful tools for editing web-specific files such as CSS. 
These tools will be useful for GXT development, so it is strongly recommended. We will not 
cover the details of installing Eclipse here, as this is covered more than adequately on the 
Eclipse website. For that reason, we make the assumption that you already have a fresh 
installation of Eclipse ready to go.

GWT setup
You may have noticed that GWT is not included in the list of downloads. This is because since 
version 2.0.0, GWT has been available within an Eclipse plugin, which we will now set up.

Time for action – setting up GWT
1. In Eclipse, select Help | Install New Software. The installation dialog will appear.

2. Click the Add button to add a new site.

3. Enter the name and location in the respective fields, as shown in the following 
screenshot, and click on the OK button.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Getting Started with Ext GWT

[ 12 ]

4. Select Google Plugin for Eclipse from the plugin section and Google Web Toolkit 
SDK from the SDKs section. Click on Next.

5. The following dialog will appear. Click on Next to proceed.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 1

[ 13 ]

6. Click the radio button to accept the license. Click on Finish.

 

7. Eclipse will now download the Google Web Toolkit and configure the plugin. Restart 
when prompted.

8. On restarting, if GWT and the Google Eclipse Plugin are installed successfully, you 
will notice the following three new icons in your toolbar.

What just happened?
You have now set up GWT in your Eclipse IDE. You are now ready to create GWT applications. 
However, before we can create GXT applications, there is a bit more work to do.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Getting Started with Ext GWT

[ 14 ]

GXT setup
Having downloaded the GXT SDK and extracted the zip file to a convenient location, we now 
need to configure Eclipse.

Time for action – setting up GXT
1. In Eclipse, select Window | Preferences.

2. From the tree, select Java | Build Path | User Libraries.

3. Create a new user library by selecting the new button and enter the name 
GXT_2_2_0.

4. Select the library you have just created and click on the Add JARs button.

5. Select the gxt.jar file from the location where you extracted the ZIP file.

What just happened?
We have now set up GXT in Eclipse. At this point, we have everything in place and we are 
ready to test our development environment by creating our first GXT application.



Chapter 1

[ 15 ]

GWT project creation
The development environment is ready to go. So let's create a GWT project to base our first 
GXT application on.

Time for action – creating a GWT project
1. First, create a GWT project by going to File | New | Project.

2. From the dialog, select Google and then Web Application Project from the Google 
folder. Click on the Next button.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Getting Started with Ext GWT

[ 16 ]

3. Enter the project name and package, as shown in the following screenshot and then 
click on Finish.

4. You will now have created a default GWT application. On running it as a web 
application, you will see the following in your browser:



Chapter 1

[ 17 ]

What just happened?
We have created a new project comprising the default GWT application. At this stage, it is a 
pure GWT app.

GXT project configuration
We now need to make changes to the GWT application to enable it to make use of GXT.

This consists of the following steps:

 � Include the GXT library

 � Add an entry for GXT to the GWT module file

 � Modify the HTML host file

 � Copy resources

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Getting Started with Ext GWT

[ 18 ]

Time for action – preparing the project to use GXT
1. Earlier we set up a GXT user library. We now need to include it to the build path of 

our newly created GWT project and the lib folder of the war folder.

Build path: Right-click on the FirstApp project and select Properties. Select Java 
Build Path and then select the Libraries tab. Click on the Add Library button, select 
User Library and click on the Next button. Now select the GXT_2_2_0 user library. 
Click on the Finish button and then on OK.

War: Copy the gxt.jar file to the war\WEB-INF\lib folder of your project.

Your project structure should now look like this:

2. The GWT module file contains the entry point for a GWT application together 
with references to any additional libraries it uses. The module file always ends in 
gwt.xml and is in the root package of the source folder. In this case, it is named 
FirstApp.gwt.xml. In order to use GXT, there needs to be an entry added to 
this file.



Chapter 1

[ 19 ]

The default GWT module file also contains a reference to the default GWT style 
sheet. This can be removed.

The line that we need to add should be put in the "Other module inherits" section 
as follows:

<inherits name='com.extjs.gxt.ui.GXT' />

The complete file should now look like this:

<?xml version="1.0" encoding="UTF-8"?>
  <module rename-to='firstapp'>
    <!-- Inherit the core Web Toolkit stuff. 
    -->
    <inherits name='com.google.gwt.user.User' />

    <!-- Other module inherits 
    -->

       <inherits name='com.extjs.gxt.ui.GXT' />

    <!-- Specify the app entry point class. 
    -->
    <entry-point  
      class='com.danielvaughan.firstapp.client.FirstApp'  
    />

    <!-- Specify the paths for translatable code 
    -->
    <source path='client' />

  </module>

3. We now need to modify the host HTML file. In this project, it is named FirstApp.
html and is located in the war folder. Edit this file, including the GXT stylesheets, by 
adding the following line into the head section beneath the existing stylesheet link:

<link type="text/css" rel="stylesheet" href="gxt/css/gxt-all.css">

4. Finally, we need to copy the GXT stylesheet and image resources into the project's 
war folder.

Create a folder named gxt in the war folder, go to the location where you originally 
unzipped your downloaded GXT package, and open the resources folder. Now copy 
both the css and images folders into the newly created gxt folder.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Getting Started with Ext GWT

[ 20 ]

Your war folder should now look like this:

What just happened?
We have configured our project so that it now has all the dependencies it needs for making 
use of GXT features.



Chapter 1

[ 21 ]

Differences of GXT controls
Our application now includes the GXT library, but as yet it is not making any use of the 
library. In the example code of this chapter, we have left in the original FirstApp class 
together with a FirstGxtApp class. The FirstGxtApp class modifies the default GWT 
application to use GXT controls instead of the GWT equivalents. By comparing these, you  
can see how, although similar, GXT controls do have some differences in how they can be 
used. We will now summarize the main differences.

Time for action – adapting the GWT app to use GXT controls
1. When we created the GWT application, a class named FirstApp will be created. 

We created a copy of that class named FirstGxtApp.

2. In the imports section of the FirstGxtApp class, we removed the following GWT 
specific imports:

import com.google.gwt.event.dom.client.ClickEvent;
import com.google.gwt.event.dom.client.ClickHandler;
import com.google.gwt.event.dom.client.KeyUpEvent;
import com.google.gwt.event.dom.client.KeyUpHandler;
import com.google.gwt.user.client.ui.Button;
import com.google.gwt.user.client.ui.DialogBox;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.TextBox;
import com.google.gwt.user.client.ui.VerticalPanel;

3. We then added imports to the equivalent GXT classes as follows:

import com.extjs.gxt.ui.client.event.ButtonEvent;
import com.extjs.gxt.ui.client.event.SelectionListener;
import com.extjs.gxt.ui.client.event.KeyListener;
import com.extjs.gxt.ui.client.event.ComponentEvent;
import com.extjs.gxt.ui.client.widget.Dialog;
import com.extjs.gxt.ui.client.widget.Label;
import com.extjs.gxt.ui.client.widget.VerticalPanel;
import com.extjs.gxt.ui.client.widget.button.Button;
import com.extjs.gxt.ui.client.widget.form.TextField;

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Getting Started with Ext GWT

[ 22 ]

You may notice that some of the GXT classes share a similar name to their  
GWT equivalents. The following table shows the GXT classes we used and  
the GWT equivalents:

GXT GWT

com.extjs.gxt.ui.client.widget.
Dialog

com.google.gwt.user.client.
ui.DialogBox

com.extjs.gxt.ui.client.widget.
Label

com.google.gwt.user.client.
ui.Label

com.extjs.gxt.ui.client.widget.
VerticalPanel

com.google.gwt.user.client.
ui.VerticalPanel

com.extjs.gxt.ui.client.widget.
button.Button

com.google.gwt.user.client.
ui.Button

com.extjs.gxt.ui.client.widget.
form.TextField

com.google.gwt.user.client.
ui.TextBox

com.extjs.gxt.ui.client.event.
ButtonEvent

com.google.gwt.event.dom.client.
ClickEvent

com.extjs.gxt.ui.client.event.
SelectionListener

com.google.gwt.event.dom.client.
ClickHandler

com.extjs.gxt.ui.client.event.
KeyListener

com.google.gwt.event.dom.client.
KeyUpEvent

com.extjs.gxt.ui.client.event.
ComponentEvent

com.google.gwt.event.dom.client.
KeyUpHandler

4. We then needed to redefine the controls. In the GWT example, all the code sits 
inside the onModuleLoad method and makes use of inner classes. However, due 
to the way listeners are implemented in GXT, we lose some of the flexibility that 
enables this. Instead, we had to define the controls as private members as follows:

private final Button sendButton = new Button("Send");
private final TextField<String> nameField = new  
              TextField<String>();
private final Dialog dialogBox = new Dialog();
private final Label textToServerLabel = new Label();
private final HTML serverResponseLabel = new HTML();

5. There are differences in syntax between the GXT and GWT methods. Although the 
GXT controls are similar to GWT controls, there are a number of differences. Firstly, 
there are many small differences on the methods of the controls between GWT and 
GXT. Here are the ones we see in this example:



Chapter 1

[ 23 ]

GXT GWT
TextField.setValue() TextBox.setText()

TextField.focus() TextBox.setFocus(true)

DialogBox.setHeading() DialogBox.setText()

DialogBox.setAnimCollapse(true) DialogBox.
setAnimationEnabled(true)

VerticalPanel .setHorizontalAlign(H
orizontalAlignment.RIGHT);

VerticalPanel.setHorizontalA
lignment(VerticalPanel.ALIGN_
RIGHT)

6. Another difference that is important is that while GWT now uses event handlers for 
events such as clicking on a button, GXT uses event listeners similar to the earlier 
version of GWT. However, in this case, the actual code is very similar.

Here is how you implement the close button click event in GWT using  
a click handler:

closeButton.addClickHandler(new ClickHandler() 
{
  public void onClick(ClickEvent event) 
    {
      dialogBox.hide();
      sendButton.setEnabled(true);
      sendButton.setFocus(true);
    }
});

Here is the same thing in GXT using a selection listener:

closeButton.addSelectionListener(new  
            SelectionListener<ButtonEvent>()
{
  public void componentSelected(ButtonEvent ce) 
    {
      dialogBox.hide();
      sendButton.setEnabled(true);
      sendButton.focus();
    }
});

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Getting Started with Ext GWT

[ 24 ]

7. We now have two classes: the original GWT FirstApp class and our new 
FirstGXTApp class. To use the FirstGXTApp, we need to change the application's 
gwt.xml module file to use the FirstGXTApp instead of FirstApp.

Open FirstApp.gxt.xml and change the entry point element from:

<entry-point class='com.danielvaughan.firstapp.client.FirstApp' />

to:

<entry-point class='com.danielvaughan.firstapp.client.FirstGXTApp' 
/>

Now when running the web application again, you will see a new version with  
GXT controls.



Chapter 1

[ 25 ]

What just happened?
Hopefully, you now can see that using GXT is not vastly different from using GWT. It is also 
important to realize that there are some subtle differences. Over the coming chapters, we 
will show that there are many great features in GXT that go far beyond the basics provided 
by GWT.

Pop quiz – introducing GXT
1. What JavaScript library is GXT closely related to?

2. Which GXT alternative wraps the Smart Client JavaScript library?

3. Which GXT alternative does most of the work on the server?

4. Which GXT alternative has a name and appearance that is easily confused  
with Ext GWT?

5. What is the name of the company that develops GXT?

6. What is the name of the GXT Java library file?

7. What is the license of GXT?

8. In what file must you inherit the GXT module?

9. Where must you include a reference to the GXT CSS?

10. Where must you copy the gxt.jar library file?

Summary
In this chapter, we have introduced GXT and set up the development environment. We then 
went on to modify the standard GWT sample application to use the GXT component. We 
used this to highlight the similarities and differences between GXT and GWT. In the next 
chapter, we will start delving into the GXT components in more depth. D

ow
nl

oa
de

d 
fro

m
 h

ttp
://

w
w

w
.p

oo
ke

bo
ok

.c
om





2
The Building Blocks

Now that we have set up our development environment, in this chapter, we  
are ready to take a proper look at GXT. We start by looking at the explorer 
demo application. We then introduce the world of GXT components, beginning 
with some key concepts, and quickly move on to practically working with an 
example application.

In this chapter, we shall learn about the following GXT features:

 � Component

 � Container

 � BoxComponent

 � ScrollContainer

 � LayoutContainer

 � FlowLayout

 � ContentPanel

 � Viewport

 � BorderLayout

 � Loading messages

 � Custom Components

 � Buttons

 � Tooltip

 � Popup

 � SelectionListener

 � TextField

 � KeyListener

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 28 ]

The following diagram shows how the components covered in this chapter fit together and it 
may be useful to refer back to it as the chapter goes on:

The Ext GWT Explorer Demo
The GXT package includes a sample called The Ext GWT Explorer. This demo showcases all 
the different components available in GXT. It also provides sample code that shows you how 
to use them. This is an invaluable tool for understanding what is available and for giving you 
an idea of the code required to make use of each component.

The explorer application is also hosted on the Sencha website and can be found here: 
http://www.sencha.com/examples/explorer.html. If you have not done so already, 
it is a really good idea to go and have a good look at the Explorer application before starting 
this chapter, as it shows you pretty much all the components available in GXT.

Essential knowledge
As you should have seen from looking at the Explorer applications, there are a wide range of 
components available to use in GXT. Some components are more complex than others, but 
they are all built on the same foundations. By understanding a few basic concepts, you can 
soon get to grips with them.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 2

[ 29 ]

GXT building block 1: Component 
In GWT, Widget (com.google.gwt.user.client.ui.Widget) is the base class of 
all visible elements we can see in a browser such as buttons, textboxes, and tree views,  
for example.

In GXT, the base class for all visual elements is Component, com.extjs.gxt.ui.client.
widget.Component. As GXT is built on top of GWT, it should not come as a surprise that 
all of GXT components are based on GWT Widget. More formally, the GXT Component class 
subclasses Widget and introduces a number of new features:

All GXT's components participate in GXT's life cycle of creation, attach and detach 
automatically and use lazy rendering. Components inherit basic hide and show, enable  
and disable functionality.

BoxComponent
All GXT's visual elements inherit from Component, either directly or indirectly 
using BoxComponent. Components that subclass BoxComponent inherit sizing 
and methods additionally. 

Components that subclass Component directly are those that don't exist outside of a 
containing component. For example, TreeItem subclasses Component, as it only exists  
inside a TreePanel. Any component that can be positioned or resized, such as a Button, 
TreePanel, or Grid is a subclass of BoxComponent. 

Lazy Rendering
GWT works by manipulating elements of the DOM, the Document Object Model 
representation of the HTML page in the browser. GWT widgets are pieces of HTML  
that are added to and removed from the DOM.

For example, a GWT button widget will have HTML that looks like this:

<button type="button" class="gwt-Button" style="position: absolute; 
left: 80px; top: 45px; ">Click Me!</button>

In GWT when the widget is initialised, the HTML is created at the same time. When a widget 
is added to a GWT panel, the HTML has already been created.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 30 ]

GXT components are different as they use lazy rendering. When a GXT Component is 
initialised, the HTML is not created straightaway. The HTML is only created when the render 
method is called on the component. That way the HTML is not created until it is needed to 
be added to the DOM. This approach is understandably more efficient, as it avoids unused 
HTML sitting in memory.

Although the HTML for a component is not created until the component is rendered, 
properties of components can be configured before they are rendered. For example,  
a TextField can be set up with a value before it is added to a Container and the HTML  
is generated.

If a GXT Component is added to a GWT panel, the render method will be called straightaway. 
If the same Component is added to a GXT equivalent, it is the Container that calls the render 
method of the Component.

GXT building block 2: Container
Containers are a type of BoxComponent that can contain other components. They subclass 
the com.extjs.gxt.ui.client.widget.Container<T> class, and have the ability to 
attach, detach, and manage their child components. Container itself does not deal with the 
laying out and rendering of components. This is left to subclasses.

LayoutContainer
The LayoutContainer inherits from Container indirectly by subclassing the ScrollContainer 
class. ScrollContainer adds support for the scrolling of content to Container. LayoutContainer 
itself adds the ability to lay out the child components using a Layout.

Let's see how this works with the idea of lazy rendering. First of all, we will create a 
LayoutContainer:

LayoutContainer layoutContainer = new LayoutContainer();

At this point, no HTML has been created because the LayoutContainer has not been added  
to either another GXT Container or a GWT Panel. Now we add a Button:

LayoutContainer layoutContainer = new LayoutContainer();
Button button = new Button("Click me");

Again, we have a LayoutContainer and a Button, but still no HTML has been created as 
nothing is rendered. We add the Button to the LayoutContainer:



Chapter 2

[ 31 ]

LayoutContainer layoutContainer = new LayoutContainer();
Button button = new Button("Click me");
layoutContainer.add(button);

Even though a Button has been added to a Container, still no HTML will be created. This 
is because the LayoutContainer itself has not been rendered. However, if we add the 
LayoutContainer to a GWT Panel, in this case the RootPanel, things start to happen:

LayoutContainer layoutContainer = new LayoutContainer();
Button button = new Button("Click me");
layoutContainer.add(button);
RootPanel.get().add(layoutContainer);

Adding the LayoutContainer to the RootPanel will cause the render method of the 
LayoutContainer to be called. Containers use a system of cascading layout, so when the 
LayoutContainer is rendered, it will call the render method of each of its children, in this case 
the single Button. HTML will only now be generated for both the LayoutContainer and the 
Button and be added to the DOM.

If we now wanted to add a second button to the LayoutContainer, we could do it like this:

LayoutContainer layoutContainer = new LayoutContainer();
Button button = new Button("Click me");
layoutContainer.add(button);
RootPanel.get().add(layoutContainer);
Button anotherButton = new Button("Click me too");

layoutContainer.add(anotherButton);

You may think that this would make a second button appear in the LayoutContainer,  
but you would be wrong. The HTML for the second button will not have been created,  
as the LayoutContainer has already been rendered. In this case, we need to call the  
layout method of the LayoutContainer. This will call the render method for both 
Button components. The HTML for the second Button will then be added to the DOM.

LayoutContainer layoutContainer = new LayoutContainer();
Button button = new Button("Click me");
layoutContainer.add(button);
RootPanel.get().add(layoutContainer);
Button anotherButton = new Button("Click me too");
layoutContainer.add(anotherButton);
layoutContainer.layout();

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 32 ]

FlowLayout
FlowLayout is the default layout for a LayoutContainer. FlowLayout adds components to 
the container, but does not do anything regarding the sizing and positioning of the child 
components. The first component is rendered in the top left corner of the container, and 
each subsequent component is added to the right of the previous component. Later in the 
book, we will look at alternative layouts more closely.

ContentPanel
ContentPanel subclasses LayoutContainer and is a very useful building block for user 
interfaces in general and the interface  that we will be developing later in this chapter. 
It features separate header, footer, and body sections, and can display top and bottom 
toolbars. ContentPanel also has the built-in ability to collapse and expand and have a 
number of predefined tool buttons that can be shown in the header to be used for custom 
functions. Here is what a ContentPanel can look like with the collapse and custom "gear" 
tool in the header:

GXT building block 3: Events
Events are the concepts used for informing the program that something has happened. This 
can be the user interacting in some way with the application such as clicking on a button or 
the state of a component changing. Each action causes an event to be fired and gives any 
component that is listening for the event the opportunity to respond.

More formally, this is known as the observer pattern. In GXT, listeners can be added to 
components so that when an event is fired, any listeners are notified and can handle  
the event.



Chapter 2

[ 33 ]

The base class for event is com.extjs.gxt.ui.client.event.BaseEvent and GXT 
provides a wide range of events. We will cover a few of these later in this chapter and many 
more in later chapters.

Sinking and swallowing events
As part of GWT's design, widgets respond to some, but not all browser events, and this also 
applies to GXT. The reason for this is to keep memory usage down and to avoid memory 
leaks. If a widget needs to respond to a browser event, it needs to register that event by 
calling the sinkEvents method. For example, by default a Component may respond to an 
onClick event, but not to an onDoubleClick. You can extend the component to respond to a 
double-click by sinking the onDoubleClick event. 

In a similar way, you can also swallow events to stop events being fired. For example,  
if you were to swallow the onClick event of a button, it would no longer fire an event  
when clicked on.

Introducing the example application
The example application that we will use in the book from this point onwards is an RSS reader. 
This application will give us a chance to exploit nearly all of the functions of GXT, including 
many of the more advanced ones. But first of all we need to put the basics in place.

The requirement 
Our customer has a requirement for an easy-to-use RSS news feed reader that can handle 
multiple RSS feeds specified by the user. The application should be available on the Web,  
but must look and feel as much as possible the same as a conventional desktop application.

We have no control over the browser our potential users may have installed and no control 
over their screen resolutions, so our application must be as flexible as possible.

The solution
As GWT produces optimised cross-browser JavaScript, it is in a good position to meet these 
requirements. By adding GXT, we can make the application behave much more like a desktop 
application than GWT on its own, without losing any of GWT's flexibility.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 34 ]

Blank project
We now need to create a new GXT project for our example application. This is done by 
following the steps we went through in Chapter 1 to create our first GWT project, and add 
GXT support, except that this time instead of FirstApp, we name the project RSSReader. 
This time, however, we don't want to make use of the default GWT code, so we need to  
trim down the default application.

Time for action – creating a blank project 
1. Delete the following files:

 � GreetingService.java

 � GreetingServiceAsync.java

 � GreetingServiceImpl.java

 � FieldVerifier.java

2. Remove the content of the RSSReader class leaving only the definition of 
onModuleLoad method.

3. Remove the greet servlet definition from the project's web.xml file in war\WEB-
INF so that the file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
  PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application  
    2.3//EN"
  "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

  <!-- Default page to serve -->
  <welcome-file-list>
    <welcome-file>RSSReader.html</welcome-file>
  </welcome-file-list>

</web-app>

4. Edit the RSSReader.html file in the war directory so that it only contains the 
minimum code we need for this project as shown below. Note that having a valid 
DOCTYPE is important in order for GXT to render correctly:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>



Chapter 2

[ 35 ]

  <head>
    <meta http-equiv="content-type" content="text/html;  
      charset=UTF-8">
    <link type="text/css" rel="stylesheet" href="RSSReader.css">
    <link type="text/css" rel="stylesheet" href="gxt/css/gxt- 
      all.css">
    <title>RSSReader</title>
    <script type="text/javascript" language="javascript"  
      src="rssreader/rssreader.nocache.js"></script>
  </head>
  <body>
  </body>
</html>

5. GWT will also create some default CSS code. As we don't need this, open 
RSSReader.css and delete the content, leaving it as a blank file.

6. If you compile and run the application now, all you should get is a blank page with 
the title RSSReader in your web browser.

7. The structure of your project should now look like this:

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 36 ]

What just happened?
We removed all the GWT example code from a new project leaving us with an empty project 
to begin with.

Viewport
Viewport is a subclass of LayoutContainer that fills the browser window and then monitors 
the window for resizing. It then triggers any child components to be resized to deal with 
the new window size. It is a useful component when building an application that the user 
expects to behave like a desktop application.

We will use a Viewport as the base panel for our application. As such, it will be added 
directly to GWT's root panel. The viewport lays itself out automatically when it is added  
to the root panel so that it is not necessary to call the layout() method.

Time for action – adding a Viewport 
1. In the RSSReader.java source file, add the following to the onModuleLoad 

method to create a new Viewport and add it to the application's RootPanel so 
that it looks like this:

public void onModuleLoad() {
  Viewport viewport = new Viewport();
  RootPanel.get().add(viewport);
}

2. If we started the application in the browser, it would still look blank. So to prove that 
the Viewport is there, open the RSSReader.css file in the war directory and add a 
css definition for the .x-viewport class:

.x-viewport
{
  background-color: #070;
}

3. The .x-viewport class is the default style for GXT Viewport components, and by 
adding this definition, we are making its background dark green. Now when we  
start the application, the browser window will initially be empty and white until  
the JavaScript code executes and the Viewport is rendered. When this happens,  
the browser window will turn dark green:



Chapter 2

[ 37 ]

What just happened?
We created a Viewport, added it to GWT's root panel, and highlighted it in green to prove 
that the Viewport had loaded and took up the full screen.

Layout
Layout classes define how components added to a LayoutContainer are positioned and 
displayed. The base class for layouts is com.extjs.gxt.ui.client.widget.Layout. 
We will cover more layouts as this book goes on, but for the time being, we will be working 
with the BorderLayout.

BorderLayout
The BorderLayout provides a very convenient way to lay out the components of a fullscreen 
application. It allows us to split a layout component into a number of layout regions: a center 
region and then other regions around it in a compass fashion—north, south, east, and west. 
It supports the resizing of regions by the user by means of split bars and allows regions to be 
expanded and collapsed or hidden:

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 38 ]

This type of layout is very common on websites, with the north being the header, the south 
the footer, the center the content, and the west and or the east being the navigation.

In our case, we are only going to make use of the north, west and center layout regions.

BorderLayoutData
Before adding a child component to a parent component that is laid out using a 
BorderLayout, we first need to define how that component will behave once it is added using 
a BorderLayoutData object.

When creating a BorderLayoutData object, we have to define which layout region it applies 
to, and optionally its initial size and a maximum and minimum size for the region.

Once created, there are also a number of other settings that can be defined such as if the 
region can be collapsed or split (resized) by the user.

When we have defined a BorderLayoutData object, we can use it to add a component to a 
Container that uses the BorderLayout. 

We will now make use of BorderLayout in our example application.

Time for action – using BorderLayout
1. In the onModuleLoad method of the example application class, create a new 

BorderLayout and set the Viewport to use it:

public void onModuleLoad() {
  Viewport viewport = new Viewport();

     final BorderLayout borderLayout = new BorderLayout();  

     viewport.setLayout(borderLayout);

  RootPanel.get().add(viewport);
}

2. Now create BorderLayoutData for the north layout region setting it to be 20px 
high and neither collapsible nor resizable:

BorderLayoutData northData = new BorderLayoutData(LayoutRegion.
NORTH,20); 
northData.setCollapsible(false);
northData.setSplit(false);



Chapter 2

[ 39 ]

3. We can then create an HTML widget to use as the header and add it to the 
viewport in the north position using the BorderLayoutData we defined in the 
last step:

HTML headerHtml = new HTML();
headerHtml.setHTML("<h1>RSS Reader</h1>");
viewport.add(headerHtml, northData);

4. Now we define the BorderLayoutData for the central and west layout regions, 
the west region being collapsible and resizable. We define it as being 200px wide 
initially, but also specify that it cannot be less than 150px or more than 300px wide:

BorderLayoutData centerData = new BorderLayoutData(LayoutRegion.
CENTER); 
centerData.setCollapsible(false);

BorderLayoutData westData = new BorderLayoutData(LayoutRegion.
WEST, 200, 150, 300); 
westData.setCollapsible(true);
westData.setSplit(true); 

5. Finally, create two new content panels and add them to the view's west and 
center panels respectively:

ContentPanel mainPanel = new ContentPanel();
ContentPanel navPanel = new ContentPanel();
viewport.add(mainPanel, centerData);
viewport.add(navPanel, westData);

6. Run the application and check that the screen now looks like this:

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 40 ]

What just happened?
We have now added Component to the Viewport using the BorderLayout. Now the 
application looks more like a desktop application, enabling users to collapse and expand  
the left panel.

Loading message
When building any GUI application, it is important to keep the user informed about what 
is going on. GWT and particularly GXT applications may take several seconds to load all the 
JavaScript and images on startup. Therefore, it is useful to display a loading message.

When our application first starts, the JavaScript has not yet loaded, so we have to place 
our loading message in the application's HTML page. GXT will then hide it when the main 
JavaScript has loaded and the UI has been rendered.

Time for action – adding a loading message
1. Open the application's HTML file, war\RSSReader.html, and add the following 

code to the body of the HTML:

<div id="loading"> 
  <div class="loading-indicator"> 
  <img src="gxt/images/default/shared/large-loading.gif"  
    width="32" height="32"/>RSS Reader<br />
<span id="loading-msg">Loading...</span></div>
</div>

This creates a new div with the ID loading. This name is important, as it makes 
hiding the loading message when the application has loaded straightforward. The 
div itself contains an animated gif from GXT's standard resources with a familiar 
AJAX loading animation together with the loading message itself.  

2. We now need to add the styling for the loading indicator, so open up the war\
RSSReader.css file, remove the previous styling, and add the following:

#loading {
  position: absolute;
  left: 45%;
  top: 40%;
  margin-left: -45px;
  padding: 2px;
  z-index: 20001;
  height: auto;
  border: 1px solid #ccc;



Chapter 2

[ 41 ]

}
 
#loading a {
  color: #225588;
}
 
#loading .loading-indicator {
  background: white;
  color: #444;
  font: bold 13px tahoma, arial, helvetica;
  padding: 10px;
  margin: 0;
  height: auto;
}
 
#loading .loading-indicator img {
  margin-right:8px;
  float:left;
  vertical-align:top;
}
 
#loading-msg {
  font: normal 10px arial, tahoma, sans-serif;
}

3. At this point, it is also a good idea to revisit the HTML and look at the area where the 
JavaScript is loaded. At the moment, the script tag that loads the GWT-generated 
rssreader/rssreader.nocache.js is in the head of the document, meaning 
that its loading is started before the body loads. We want to make sure our loading 
message is displayed before the JavaScript starts loading so that our user is not 
looking at an empty page for any noticeable time. So we need to move the script 
tag from the head of the document to the end of the body so that the HTML file 
looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF- 
  8">
<link type="text/css" rel="stylesheet" href="RSSReader.css">
<link type="text/css" rel="stylesheet" href="gxt/css/gxt-all.css">
<title>RSS Reader</title>
</head>
<body>
<div id="loading">

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 42 ]

<div class="loading-indicator"><img
  src="gxt/images/default/shared/large-loading.gif" width="32"
  height="32" />RSS Reader<br />
<span id="loading-msg">Loading...</span></div>
</div>
<script type="text/javascript" language="javascript"
  src="rssreader/rssreader.nocache.js"></script>
</body>
</html>

4. If we were using this technique in a conventional GWT application, we would now 
need to add code to our onModuleLoad method to hide or remove the loading div 
when the application is loaded. However, as we are using a GXT Viewport panel, 
this is taken care of for us. If there is a div with ID loading, it will automatically 
be hidden. In fact, it will nicely fade away once the viewport is attached. If we had 
wanted to call our loading div something different, we would call the Viewport's 
setLoadingPanelId(java.lang.String loadingPanelId) method where 
loadPanelId is the ID of our loading div.

5. Start the application. It will now have a loading indicator that will disappear when 
the UI has loaded:



Chapter 2

[ 43 ]

What just happened?
We added a loading message to our application in such a way that it is automatically hidden 
once the UI is ready.

Custom components
In GXT just as in GWT, it is possible to build on the existing components to make custom 
components. There are two reasons to make a custom component. The first is to modify the 
functionality of an existing component. The second is to encapsulate one or more existing 
components with additional functionality to make a new component. As in GWT, there is the 
concept of the Composite widget in GXT. This is a component that wraps another in order 
for you to be able to create a custom component. In GWT, a Composite behaves exactly the 
same way as the Widget it is wrapping. In GXT, you might encounter some problems if you 
wrap components in this way.

Take for example the ContentPanel we have added for navigation. It is being added to a 
layout region of a Viewport that is collapsible. However, if we were to use a Composite  
to make a custom component based on a ContentPanel, the collapse button would 
mysteriously disappear.

This is because when you wrap a component in a Composite, its public API methods are 
hidden. GXT is designed in such a way that it needs access to those public methods in order 
to query the capabilities of a component. Although a ContentPanel is collapsible, there is 
no way for GXT to work out that a Composite based on ContentPanel is collapsible. This is 
because the isCollapsible method is hidden and so the layout region would no longer 
show the collapse icon.

Therefore, to create a custom component in GXT, it is nearly always better to directly 
extend Component directly or indirectly using one of its subclasses such as BoxComponent, 
Container, or LayoutContainer. The decision of which component to extend depends on the 
features your custom component requires.

The onRender method
When extending any component, there is the option of overriding the onRender method. 
This goes back to the idea of lazy rendering. Any code that is in the constructor of a 
component will get executed as soon as the component is initialized. However, any code  
in the onRender method will only get executed when the component is rendered.

For this reason it is good practice when defining a component to consider if the code needs 
to execute before the component is rendered. If not, which is often the case, it is better 
to put the code in the onRender method, and the code will only run if and when the 
component is rendered. Steps like this can improve the efficiency of your GXT applications.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 44 ]

At the moment, in our example application, we have just used standard ContentPanel 
objects for our navigation and main panels. We could keep these as ContentPanel 
objects, but as the application develops, we are going to be adding more and more  
custom functionality to them. For this reason, we are now going to define them as  
custom components that extend ContentPanel.

Time for action – creating custom components
1. In your application, create a new class named RssNavigationPanel in a new 

components package under the application's client package. This class should 
subclass ContentPanel.

2. The code for RssNavigationPanel should look as follows:

public class RssNavigationPanel extends ContentPanel 
{
  public RssNavigationPanel() 
  {
    setHeading("Navigation");
  }
}

At this point, the only customizing we are doing in this custom widget is giving the 
panel a heading of Navigation.

3. Now we need to do the same for the main panel, this time naming the class 
RssMainPanel and setting the heading to Main:

public class RssMainPanel extends ContentPanel 
{
  public RssMainPanel() 
  {
    setHeading("Main");
  }
}

4. We now need to replace the two ContentPanels in our main code with our new 
custom components. In the onModuleLoad method of the RSSReader class, modify 
it as follows:

public void onModuleLoad() {
  Viewport viewport = new Viewport();    
  final BorderLayout borderLayout = new BorderLayout();  
  viewport.setLayout(borderLayout);



Chapter 2

[ 45 ]

  BorderLayoutData northData = new  
    BorderLayoutData(LayoutRegion.NORTH,20); 
  northData.setCollapsible(false);
  northData.setSplit(false);

  HTML headerHtml = new HTML();
  headerHtml.setHTML("<h1>RSS Reader</h1>");
  viewport.add(headerHtml, northData);

  BorderLayoutData centerData = new  
    BorderLayoutData(LayoutRegion.CENTER); 
  centerData.setCollapsible(false);

  BorderLayoutData westData = new  
    BorderLayoutData(LayoutRegion.WEST, 200, 150, 300); 
  westData.setCollapsible(true);
  westData.setSplit(true); 

  RssMainPanel mainPanel = new RssMainPanel();
  RssNavigationPanel navPanel = new RssNavigationPanel();
  viewport.add(mainPanel, centerData);
  viewport.add(navPanel, westData);

  RootPanel.get().add(viewport);
}

5. Now start the application. It should look pretty much the same as before, but now 
the navigation and main panels will have headings:

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 46 ]

What just happened?
The application looks pretty much as it did before except that the navigation and main panels 
now have headings. However, what we have done is use custom components. By doing this 
now, we will make code a lot more manageable as the application develops.

First field components
Two of the most basic components that are used for accepting user input as opposed to 
laying out other components are Buttons and TextFields. These are similar to Buttons and 
TextBoxes respectively in GWT.

Like most GXT controls that have a counterpart in GWT, the GXT ones are a little richer.

Button
Let us start with buttons. In GXT, buttons have several different attributes, which can be 
merged to make a large number of combinations:

Size
Buttons come in three sizes—small, medium, or large. They have a property named button 
scale, which is set using the setScale method with the parameters ButtonScale.SMALL, 
ButtonScale.MEDIUM, and ButtonScale.LARGE, respectively. The text of the Button is 
set using the setText() method.

Icons
Buttons can also have icons as well as just text. This is achieved by using the button's 
setIconStyle method and referencing a CSS style that specifies a background image. 
So if we wanted to reference an icon named "bell", we would need an entry in our  
CSS stylesheet like this:

.bell {
  background: url(gxt/images/icons/bell.png) no-repeat center left
    !important;
}



Chapter 2

[ 47 ]

Then we could call setIconStyle("bell") on the buttons and they would look like this:

Alternatively, you can have just icons without text by simply not using the setText method.

Icon position
You can control where the icon appears on the button relative to any text by using the 
setIconAlign method with the parameters IconAlign.LEFT, IconAlign.RIGHT, 
IconAlign.BOTTOM, and IconAlign.TOP, and get the following results:

Adding a menu
Normally a button performs one action when clicked on. However in GXT, you can add 
a menu to a button so that it displays a list of options instead. A small arrow is added to  
a button that has a menu. This can be added either to the bottom or the right of the  
button text.

The position of the menu arrow can be controlled by the setArrowAlign method using 
the parameters ButtonArrowAlign.BOTTOM or ButtonArrowAlign.RIGHT:

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 48 ]

ToggleButton
ToggleButton subclasses button to add toggle (on/off) functionality rather than just executing 
an action. It maintains a pressed and un-pressed state. You can also group toggle buttons 
using the toogleGroup method so that only one of the group can be pressed at a time as 
shown below:

SplitButton
SplitButton also subclasses Button and allows you to both click on them and display a menu. 
SplitButton can be clicked on in a main area to perform an action or the menu arrow can be 
clicked on to display a menu of further options as with a normal button with a menu button. 
To use this functionality, you need to create a SplitButton component instead of a standard 
Button component:

Creating a Link feed button
We now want to add a Link feed button to our RssNavigationPanel. The purpose of the 
button is to display a form that lets the user enter an URL of an existing RSS feed they would 
like to link to. A user may change their mind and not enter an URL after all. We could provide 
a cancel button for this, but as we have ToggleButton at our disposal, it would make more 
sense and save limited space to make the Link feed button show and hide the URL field.

As our RssNavigationPanel is based on ContentPanel, we inherit a built-in container for any 
buttons we add to the ContentPanel, making adding a button very simple.

Time for action – adding a button
1. In the constructor of RssNavigationPanel, create a new ToggleButton:

final ToggleButton btnLinkFeed = new ToggleButton("Link feed");



Chapter 2

[ 49 ]

2. Add a style to the stylesheet (war\RSSReader.css), which includes a suitable 
icon:

.link-feed {
  background: url(gxt/images/icons/feed_link.png) no-repeat  
    center left
    !important;
}

3. Back in RssNavigationPanel, set the icon for the button:

btnLinkFeed.setIconStyle("link-feed");

4. Set the horizontal alignment of the panel's default button container to be 
left-aligned:

setButtonAlign(HorizontalAlignment.LEFT);

5. Add the newly created ToggleButton to the panel's default button container:

addButton(btnLinkFeed);

6. Run the application and check that the Link feed button appears at the bottom left:

What just happened?
We added a ToggleButton with an icon to the RssNavigationPanel's built-in button container.

Tooltip
The labels on buttons are concise by nature. For users who are familiar with your application 
or other applications that are similar, the label and icon may be enough for them to 
understand what the button does. Other users, however, will appreciate a more detailed 
explanation and that is where tooltips come in.

Tooltips can be added to buttons or other components to give the user further information 
when they hover their mouse over them.

We are now going to add a tooltip to our Link feed button so that a message displays when 
the user hovers their mouse over the button:

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 50 ]

Time for action – adding a tooltip
1. In the constructor of RssNavigationPanel, add the following code to define a new 

ToolTipConfig object. Notice how the tooltip can have a title and text:

ToolTipConfig linkFeedToolTipConfig = new ToolTipConfig();
  linkFeedToolTipConfig.setTitle("Link to existing RSS  
    feed");
  linkFeedToolTipConfig.setText("Allows you to enter the URL  
    of an existing RSS feed you would like to link to");

2. Then to associate the tooltip with the button, use the setToolTip method:

btnLinkFeed.setToolTip(linkFeedToolTipConfig);

3. Run the application and hover your mouse over the Link feed button to display the 
tooltip like this:

What just happened?
We created a new tooltip and associated it with the Link feed button so that when a user 
hovers over the button, the tooltip is displayed.

Popup
Popup subclasses LayoutContainer, adding the ability for the component to be displayed over 
other components. We would like to take advantage of our example application to pop up a 
small form for entering an URL when the user clicks on the Link feed button. We will point 
out some of the features of Popup as we go along.

Time for action – creating a popup
1. Create a new class in the client.components package named LinkFeedPopup 

that extends Popup.

2. Add a constructor as follows:

public LinkFeedPopup() {
  setSize(300, 55);



Chapter 2

[ 51 ]

  setBorders(true);
  setShadow(true);
  setAutoHide(false);
}

3. This will set the popup to be 300px wide and 55px high with borders and a shadow. 
If auto hide was not set to false, the popup would disappear if we clicked outside 
of that. As our popup's visibility is controlled by a toggle button, we need to disable 
this, or the button and the popup will become out of sync.

What just happened?
We defined a new component based on a popup, which we will use for displaying a TextField 
for the user to type in an URL.

SelectionListener
In order for our Link feed button to do anything, it needs a Listener. A Listener registers with 
a component and is informed when an event occurs. It can then execute code as a result to 
respond to the event. Listeners in GXT are similar to Listeners in earlier versions of GWT and 
Handlers in current versions. In this case, our listener needs to be registered for the Link feed 
button to listen for selection events being selected, so we use a SelectionListener. We 
will now add a SelectionListener to our Link feed button.

Time for action – adding a SelectionListener
1. In the RssNavigationPanel class, create a new instance of our LinkFeedPopup 

component:

final LinkFeedPopup linkFeedPopup = new LinkFeedPopup();

2. We always want the popup to stay within the Viewport. That is, we always want all 
of it to be visible. To do this we use the setContrainViewport method:

linkFeedPopup.setConstrainViewport(true);

3. Now add a selection listener to the btnLinkFeed button:

btnLinkFeed.addSelectionListener(new SelectionListener< 
ButtonEvent>() {
  @Override
  public void componentSelected(ButtonEvent ce) {
    if (btnLinkFeed.isPressed()) {
      linkFeedPopup.show();

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 52 ]

    } else {
      linkFeedPopup.hide();
    }
  }
});

As the listener is for a ToggleButton, we check the button's state using isPressed. 
If the button is pressed, we need to show our popup by calling the show method, 
otherwise we should hide it using the hide method.

4. Run the application and check that the Link feed button now displays the Link Feed 
Popup when toggled on and makes it disappear again when toggled off:

What just happened?
We have now added a SelectionListener to our Link feed ToggleButton to enable us to hide 
and show a popup.

Field
Field subclasses BoxComponent and provides the base class for all form fields. There is a GXT 
field corresponding to all the standard HTML form controls such as textboxes, checkboxes 
and list boxes. The Field base class provides default event handling, value handling, as well as 
some other functionality. Fields are an important feature in GXT and again offer significantly 
more functionality than their GWT equivalents. We will come back to fields in subsequent 
chapters, but for the time being we are just going to look at the TextField.



Chapter 2

[ 53 ]

TextField
TextField subclasses Field and is the equivalent of GWT's TextBox widget. There are a few 
differences, one being that when defining a text field, you define the data type that the  
field will store using generics. For example, a TextField that stores strings will be defined 
as follows:

TextField<String> text = new TextField<String>();

GXT text fields also have a number of built-in functions that allow for setting validation 
criteria such as making the fields required, setting a minimum and maximum length, and 
validating against standard regular expressions.

In our example application, we need to use a TextField to allow the user to enter the URL  
of the news feed they want to add in our link feed popup.

Time for action – adding components to the Link feed popup
1. In the LinkFeedPopup class, create a text field for the user to enter the URL into:

private final TextField<String> tfUrl = new TextField<String>();

2. Override the onRender class of LinkFeedPopup:

@Override
protected void onRender(Element parent, int pos) {
  super.onRender(parent, pos);
}

3. In the method, add a Text component to tell the user to enter an URL in the 
text field:

final Text txtExplaination = new Text("Enter a feed url");

4. Create a Button to submit the value of the URL field and a SelectionListener 
to respond to the user clicking on the button:

final Button btnAdd = new Button("add");
  btnAdd.addSelectionListener(new  
    SelectionListener<ButtonEvent>() {
      public void componentSelected(ButtonEvent ce) {
        addFeed(tfUrl.getValue());
      }
  });

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 54 ]

5. You may have noticed that SelectionListener is calling a method called 
addFeed to deal with the value the user enters. We are not going to process the 
value yet, but for the time being we should just create a placeholder method so that 
it does something. In this case, displaying an alert box:

public void addFeed(String url) {
  Window.alert("We would now attempt to add " + url + " at  
    this point");
  }

6. We now need to create a new BorderLayout like the one we used for the 
Viewport earlier in this chapter, but this time we are going to use it for laying  
out the popup, so we add it using setLayout:

final BorderLayout layout = new BorderLayout();
setLayout(layout);

7. With the layout set, we can use layout data to position the components. 
First the text:

final BorderLayoutData northData = new 
BorderLayoutData(LayoutRegion.NORTH, 20);
northData.setMargins(new Margins(2));
add(txtExplaination, northData);

8. Then the textbox:

final BorderLayoutData centerData = new 
BorderLayoutData(LayoutRegion.CENTER);
centerData.setMargins(new Margins(2));
add(tfUrl, centerData);

9. And finally, the button:

final BorderLayoutData eastData = new 
BorderLayoutData(LayoutRegion.EAST, 50);
eastData.setMargins(new Margins(2));
add(btnAdd, eastData);



Chapter 2

[ 55 ]

10. Now start the application, click on the Link feed button and check that the popup 
now contains fields as shown:

11. Now complete the URL field, click on the add button and check that a message like 
this is shown:

What just happened?
We added fields to our Link feed popup and created a SelectionListener to respond to the 
add button being pressed.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 56 ]

Pop quiz – matching the component with the description
In the chapter so far, we have covered a lot of components. Try to match the following 
components with the descriptions:

1. Tooltip

2. Popup

3. Viewport

4. ContentPanel

5. Button

6. Composite

7. TextField

8. BoxComponent

9. Component

10. LayoutContainer

a. has versions with icons and menus

b. fills the browser window and monitors for resizing

c. can appear over other components

d. subclasses component, adding sizing and positioning methods

e. accepts text input

f. base class for all GXT components

g. provides additional information when hovering over another element

h. has collapse and expand abilities and built-in toolbars

i. wraps another component hiding its public methods

j. component that can contain other components and control lays them out  
using a layout

Popup positioning and alignment
While our popup displays properly, it appears in the middle of the screen away from the 
button that made it appear. Although we are using a ToggleButton, it is not obvious that the 
button would also make it disappear again. It would be a lot more user friendly if the popup 
appeared directly above the Link feed button.



Chapter 2

[ 57 ]

At the moment we are simply using the show() method to display the popup. What we 
want to do is display our popup in relation to the Link feed button. To do this, we pass the 
show() method the following information:

1. The underlying element of the button using the getElement method.

2. A string representing how the element should align with the target element  
(in this case the button's element). The string is made up of the anchor point of  
the element to align followed by a dash, and then the anchor point of the element 
we want to align the element to. If the string ends with a question mark, the 
element will attempt to align as defined, but it means that it will reposition the 
popup so that it remains in the viewport.

3. The different codes for alignment points are as follows:

Code Meaning

tl     The top left corner (default)

t The center of the top edge

tr The top right corner

l The center of the left edge

c In the center of the element

r The center of the right edge

bl The bottom left corner

b The center of the bottom edge

br The bottom right corner

An alignment string containing "tl-bl?", the default, will align the top left of the element with 
the bottom left of the target element unless that would cause it to be outside the viewport. 
This means the element would appear directly below the target.

Time for action – positioning the popup
1. In the RssNavigationPanel, modify the action performed by the 

SelectionListener so that the bottom-left corner of the linkFeedPopup will 
align to the top-left corner of the Link feed Button:

btnLinkFeed.addSelectionListener(new SelectionListener<ButtonEve
nt>() {
  @Override
  public void componentSelected(ButtonEvent ce) {
    if (btnLinkFeed.isPressed()) {
      linkFeedPopup.show(btnLinkFeed.getElement(), "bl- 
        tl?");

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



The Building Blocks

[ 58 ]

    } else {
      linkFeedPopup.hide();
    }
  }
});

2. Start the application and check that the popup now appears directly above the Link 
feed Button:

What just happened?
We specified that the bottom-left of our popup should be aligned with the top-left of our 
Link feed button, unless it would mean that it will appear outside of the viewport.

Have a go hero – adding a KeyListener
At the moment the user has to type the URL of the feed they want to add into the TextField, 
and then press the add button. It would be quicker if pressing the Enter key could perform 
the same function.

TextField controls can take a KeyListener that responds to key presses. The key code for 
the Enter key can be obtained by using the GWT static method KeyCodes.KEY_ENTER. Try 
to add a KeyListener to the tfUrl field in the LinkFeedPopup class that responds to the 
Enter key being pressed in the same way that the SelectionListener responds to the 
add button being pressed.

Solution:

tfUrl.addKeyListener(new KeyListener() {
  public void componentKeyDown(ComponentEvent event) {
    if (event.getKeyCode() == KeyCodes.KEY_ENTER)
    {
      addFeed(tfUrl.getValue());
    }
  }
});



Chapter 2

[ 59 ]

Summary
In this chapter, we have rapidly run through most of the basic interface building blocks of 
GXT. We have used them to start building a sample application. This is starting to look and 
feel more like a desktop application than a traditional web application.

In the next chapter, we will build upon this by introducing some more components.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om





3
Forms and Windows

In this chapter, we explore GXT's form features. We look at the form 
components that GXT provides and learn how to put them to use. We also 
introduce the GXT Registry and see how it can be used across the application.

Specifically in this chapter, we will learn about the following:

 � The full range of fields available in GXT

 � FormPanel

 � FormLayout

 � Window

 � FitLayout

 � FieldMessages

 � Form submission

 � Working with GWT RPC

 � Using the registry

Change of requirements
So far, as our example application, we have been building an RSS reader. However, as it often 
happens, our customer has changed her mind and added to the requirements.

She now requires that the application should not only consume RSS feeds from the Internet, 
but also be able to create them.

This means that we need to create forms to enter data into our application. Fortunately, GXT 
has comprehensive form support.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 62 ]

The RSS 2.0 specification
Our RSS reader should consume RSS feeds that conform to the RSS (Really Simple 
Syndication) 2.0 specifications. An RSS feed is an XML document containing specific content. 
Now we also have to be able to support being able to create documents in this format in our 
example application.

RSS 2.0 is quite a simple specification. It can be found at http://cyber.law.harvard.
edu/rss/rss.html and an example file can be found at http://cyber.law.harvard.
edu/rss/examples/rss2sample.xml.

Put simply, an RSS file contains a channel element that first provides a name and description 
of a feed and then a number of item elements containing individual news items.

Some of the elements in the file are compulsory and some are optional, but for the sake of 
this example, we shall make use of the following channel elements:

 � title

 � link

 � description

For each item, we will also create a similar set of elements:

 � title

 � link

 � description

So we need to make two forms, one that will take channel information and another that will 
take item information. Let's look at what GXT provides to assist us with this.

FormPanel
FormPanel subclasses ContentPanel and provides features for managing form 
components. By default, it uses a layout called FormLayout. The only types of component 
that we can add to a FormLayout are Field components such as TextField and 
LabelField. If we try to add any other component, it will be ignored and not rendered.

The main benefit FormPanel gives is the ability to act on all the fields contained within it. 
This includes features such as marking all fields as read-only, checking that all fields are valid, 
changing how labels are displayed, and ultimately submitting the form using HTTP post or 
GWT RPC.



Chapter 3

[ 63 ]

Fields
In the last chapter, we introduced TextField. This is just one of the many fields available 
in GXT. 

TextFields
The following components subclass TextField to provide more specialist features:

Component Screenshot Description

NumberField A TextField that only allows numbers 
to be entered. It also provides additional 
methods for validating the numbers input, 
such as max and min values.

TextArea A multiline text field similar to an HTML text 
area field.

FileUploadField An HTML-style file upload field with a browse 
button to allow the user to locate a file.

TriggerField components
The fourth field that subclasses TextField is called TriggerField. This looks like a 
TextField, but also adds a trigger button to the right of it. This too has several subclasses. 
These are the important ones:

Component Screenshot Description

TriggerField Basic trigger field.

TwinTriggerField A trigger field with two trigger buttons.

DateField A trigger field that enables the user to 
enter a date by clicking on the trigger 
button and picking a date from a date 
picker.

ComboBox A combobox that uses a ModelData 
object to provide the options. We cover 
ModelData in the next chapter.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 64 ]

ComboBox component
There are also a number of subclasses of ComboBox, which makes it more convenient to use:

Component Screenshot Description

SimpleComboBox SimpleComboBox lets us enter a 
hardcoded list of options for the ComboBox 
and handles the ModelData object 
automatically.

TimeField TimeField populates the ComboBox 
with a list of times. The interval between the 
times can be varied. For example, every 15 
minutes, every 30 minutes, and so on.

ThemeSelector ThemeSelector populates the 
ComboBox with all registered GXT themes. 
Selecting one causes the application to 
reload with the new theme applied.

ListField component
ListField has similarities to ComboBox, as it uses ModelData to provide a list of options. 
However, unlike a ComboBox, a user can select multiple values rather than the single 
selection that a ComboBox allows.

CheckBox components
CheckBox fields are tickboxes that can be either off or on: 

Component Screenshot Description

CheckBox A single checkbox.

Radio A subclass of CheckBox, but with a round radio button.

CheckBox and Radio fields can be used alone or in a group using CheckBoxGroup or 
RadioGroup fields respectively. Both group fields subclass MultiField, a field that 
displays multiple fields in a single row or column.

CheckBoxGroup allows for all the CheckBoxes within it to be aligned together either 
horizontally or vertically. A RadioGroup also makes sure that only one of the radio fields 
within it are selected at a time.



Chapter 3

[ 65 ]

HtmlEditor component
The HtmlEditor field allows the user to enter rich text, which is stored as HTML. This 
provides a very user friendly way of entering text with a powerful range of formatting 
options. Users can also add their own HTML links, although this and other functionality  
can be restricted:

Other field components
There are some more fields that don't really fall into any other categories:

Component Screenshot Description

SliderField SliderField is a wrapper for a slider component 
that allows it to be used in a form.

LabelField LabelField simply displays static text.

AdapterField An AdaptorField lets us wrap a custom 
component as a field for use in a form.

FieldSet A FieldSet is a container for another field, which 
allows for a border, title, and expand/collapse 
functionality.

HiddenField HiddenField is used for submitting a hidden value 
with the form. It is invisible.

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 66 ]

Pop quiz – match the form components with their definitions
Match the following definitions with the form component it best matches:

1. Lets you wrap a custom component to use on a form.

2. Allows for the entry of rich text.

3. Allows the user to pick a date from a calendar.

4. Only allows numbers to be entered.

5. Uses ModelData objects to build a list from which only one item can be selected.

6. Allows multiline plain text to be entered.

7. Automatically changes the applications theme when an item is selected.

8. Allows for Radio components to be aligned together.

9. Used for submitting hidden values.

10. Displays static text.

a. ThemeSelector

b. RadioGroup

c. HtmlEditor

d. LabelField

e. NumberField

f. TextArea

g. ComboBox

h. Adapter Field

i. DateField

j. HiddenField

Expanding the example application
We are now going to use GXT form components to create a form for creating a new feed in 
our example application. First of all though, we need to create a new button that the user 
can click on to cause the form to be displayed.

Creating a Create feed button
We need to add a new button to the RssNavigationPanel that allows the user to create 
a new feed. This will be very similar to what we did in the last chapter to show the Add Feed 
pop up, but this time we will use a standard Button and not a ToggleButton. 



Chapter 3

[ 67 ]

Time for action – adding a Create feed button
1. In the RSSReader.css stylesheet, add a new element for a create button icon in 

the same way as we did for link-feed in the last chapter:

.create-feed {
  background: url(gxt/images/icons/feed_create.png) no-repeat  
    center left
    !important;
}

2. In the constructor of the RssNavigationPanel class, define a new Button  
labeled Create feed in the same way as we did with the Link feed Button, 
remembering also to define a ToolTipConfig and an icon:

final Button btnCreateFeed = new Button("Create feed");
btnCreateFeed.setIconStyle("create-feed");

ToolTipConfig createNewToolTipConfig = new ToolTipConfig();
createNewToolTipConfig.setTitle("Create a new RSS feed");
createNewToolTipConfig.setText("Creates a new RSS feed");
btnCreateFeed.setToolTip(createNewToolTipConfig);

addButton(btnCreateFeed);

3. Start the application and check that there are now two buttons—Create feed and 
Link Feed:

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 68 ]

What just happened?
We have added a Create feed button. We will now go on to create a Window that will display 
on clicking the button, but first we need to define an object to hold feed data.

Creating a Feed class
The first thing we will do is to build a Java object to represent feed data. This is a simple 
POJO (Plain Old Java Object).

As we plan to send this object over Google RPC, we need to make sure that it implements 
the Serializable interface and has a null argument constructor. As this class will be 
compiled in JavaScript and be used by the server, it is useful to put it in the shared package 
rather than client or server. This way, the class is shared between the client and server.

It is also important to tell GWT to include this new common package as JavaScript when 
compiling classes, and this is done in the RSSReader.gwt.xml module file.

Time for action – creating a feed data object
1. In your example application, create a new package named shared.model at the 

same level as your existing server and client packages.

2. Modify the RSSReader.gwt.xml file so that it includes the source code in the 
shared package by adding an entry for the shared package:

  <!-- Specify the paths for translatable code -->
  <source path='client'/>

     <source path='shared'/>

3. Create a new class named Feed in the shared.model package and implement it, 
as shown here:

package com.danielvaughan.rssreader.shared.model;

import java.io.Serializable;

@SuppressWarnings("serial")
public class Feed implements Serializable {

  private String description;
  private String link;
  private String title;
  private String uuid;



Chapter 3

[ 69 ]

  public Feed()
  {
      
  }
  
  public Feed(String uuid)
  {
    this.uuid = uuid;
  }

  public String getDescription() {
    return description;
  }

  public String getLink() {
    return link;
  }

  public String getTitle() {
    return title;
  }

  public String getUuid() {
    return uuid;
  }

  public void setDescription(String description) {
    this.description = description;
  }

  public void setLink(String link) {
    this.link = link;
  }

  public void setTitle(String title) {
    this.title = title;
  }
}

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 70 ]

4. The structure of our project should now look like this:

What just happened?
We created a feed data class to hold feed data in a shared package. We then included the 
package as a source package in the RSSReader.gwt.xml module file.

Window
Window is a specialized subclass of ContentPanel intended to be used as a window within 
an application. In some ways, it is like the Popup covered in the last chapter, in that it can be 
displayed in front of other components. However, it also can be dragged around the screen, 
closed by clicking on a close button, and optionally resized by the user.

As with a Popup, a Window does not need to be held in another container. It just needs to be 
created and the show() method called. An empty window looks like this:



Chapter 3

[ 71 ]

FitLayout
When we add our form to a Window, we would like it to fill the window completely. To 
achieve this, there is a useful layout called FitLayout. This can be used with any container 
that contains a single item and will automatically expand the item so that it fills the container. 
We will use the FitLayout to let us add our FormPanel to a Window and get it to fill 
that Window.

Creating the FeedWindow component
We are now going to create a new Window that we will use as a container for the FeedForm 
that we will create next. It will be displayed in response to the user clicking on  the Create 
feed button we created earlier.

Time for action – creating a Window
1. Create a new class called FeedWindow, which extends Window in a new package 

client.windows:

public class FeedWindow extends Window {}

2. Create a constructor for the class that takes a Feed object as an argument. In it, set 
the heading of the window to "Feed":

public FeedWindow(final Feed feed) {
  setHeading("Feed");
}

3. Now set the width and height of the window:

public FeedWindow(final Feed feed) {
  setHeading("Feed");
  setWidth(350);
  setHeight(200);
}

4. In this case, we don't want the window to be resizable, so set resizable to false:

public FeedWindow(final Feed feed) {
  setHeading("Feed");
  setWidth(350);
  setHeight(200);
  setResizable(false);
}

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 72 ]

5. To make sure that the FormPanel we are going to add fills to the Window, create a 
new FitLayout, and use it to set the layout of the Window:

public FeedWindow(final Feed feed) {
  setHeading("Feed");
  setWidth(350);
  setHeight(200);
  setResizable(false);
  setLayout(new FitLayout());
}

6. Now go back to the RssNavigationPanel and define a new method named 
createNewFeedWindow:

private void createNewFeedWindow()
  {
    final Window newFeedWindow = new FeedWindow(new Feed());
    newFeedWindow.show();
  }

7. In the constructor of RssNavigationPanel, add a SelectionListener 
to the Create feed Button. Implement the SelectionListener to call the 
newFeedWindow method, defined in the last step:

btnCreateFeed  .addSelectionListener(new  
  SelectionListener<ButtonEvent>() {
  @Override
  public void componentSelected(ButtonEvent ce) {
    createNewFeedWindow();
  }
});

8. Finally, start the application and click on the Create feed button. Check that a new 
empty window is displayed like this:



Chapter 3

[ 73 ]

What just happened?
We created a new Window called FeedWindow and created a SelectionListener for our 
Create feed button that causes the FeedWindow to be displayed. We now need to create the 
FeedForm to put in it.

Creating FeedForm
We now need to create a FormPanel to enable the user to enter information required to 
define a new feed. For now, we will just set up the compulsory fields—title, a text field, 
description, a multi-line text field, and link a text field that must be a URL.

Time for action – creating a feed form
1. Create a new class called FeedForm, which extends FormPanel. Place this in a 

package named client.forms.

2. As our form is displayed in a window, we will not make use of the header of the 
FormPanel, so add a constructor to FeedForm as follows:

public FeedForm()
{
  setHeaderVisible(false);
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 74 ]

3. Now we need to define our fields. Define a TextField for the title and the link and 
a TextArea for the description:

private final TextField<String> tfTitle = new TextField<String>();
private final TextArea taDescription = new TextArea();
private final TextField<String> tfLink = new TextField<String>();

4. Override the onRender method, and in it, set the labels of the fields we just 
defined:

@Override
protected void onRender(Element parent, int pos) {
  super.onRender(parent, pos);

  tfTitle.setFieldLabel("Title");
  taDescription.setFieldLabel("Description");
  tfLink.setFieldLabel("Link");
}

5. Now add the three fields to the underlying FormPanel:

@Override
protected void onRender(Element parent, int pos) {
  super.onRender(parent, pos);

  tfTitle.setFieldLabel("Title");
  taDescription.setFieldLabel("Description");
  tfLink.setFieldLabel("Link");
  add(tfTitle);
  add(taDescription);
  add(tfLink);
}

6. Go back to the FeedWindow class and define a field to hold a new instance of the 
FeedForm:

private final FeedForm feedForm = new FeedForm();

7. Override the onRender method to add the FeedForm to the underlying Window:

@Override
protected void onRender(Element parent, int pos) {
  super.onRender(parent, pos);
  add(feedForm);
}



Chapter 3

[ 75 ]

8. Finally, run the application and check that the new FeedForm is now displayed 
in the FeedWindow when the Create feed button is pressed, as shown in the 
next screenshot:

What just happened?
We created a new FormPanel called FeedForm and added it to our FeedWindow. Now 
when the Create feed button is pressed, the FeedForm will be displayed in a FeedWindow.

Validating fields
GXT fields provide built-in support for field validation. We can check if any field contains 
valid data using the isValid() method. If fields are contained within a FormPanel, we 
can check that all child fields within it are valid by calling isValid() on the FormPanel.

By default, fields validate when the user exits them (on blur). However, we can 
get the field to validate as the user enters a value (after each key press) by calling 
setAutoValidate(true).

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 76 ]

The criteria that we can define for field validation varies between fields, as some may not be 
suitable for the data type. The tables shown next describe the types of validation available:

Text validation

Validation Set Using Description

Allow blank setAllowBlank If field with length of 0 is valid. 
Defaults to true. 

Minimum field length setMaxLength The minimum length for a field 
to be valid. Defaults to 0.

Maximum field length setMinLength The maximum length for a field 
to be valid.

Regular expression setRegex A regular expression that the 
content of the field must match.

Numerical validation

Validation Set Using Description

Allow decimals setAllowDecimals If decimals are allowed. Defaults 
to true.

Allow negative setAllowNegative If negative values are allowed.

Minimum value setMinValue The minimum numerical value

Maximum value setMaxValue The maximum value

Custom validator
You can also set a custom validator using the setValidator method. A validator is a 
custom class that implements the Validator interface to provide a validate method, 
which takes a field and a string value. It should return null if validation passes, or return  
an error message if validation fails.

Now let's add field validation to our FeedForm. As the RSS specification requires a name, 
a description, and a link, we are going to disallow blank values. We are also going to add a 
regular expression to check that the link field is in the correct format.



Chapter 3

[ 77 ]

Time for action – adding field validation
1. In the onRender method of the FeedForm class, add the following code to allow 

for validation of the fields. In this case, we are requiring a value in all fields and 
making sure that the link field contains a valid URL:

@Override
protected void onRender(Element parent, int pos) {
  super.onRender(parent, pos);

  tfTitle.setFieldLabel("Title");
  tfTitle.setAllowBlank(false);

  taDescription.setFieldLabel("Description");
  taDescription.setAllowBlank(false);

  tfLink.setFieldLabel("Link");
  tfLink.setAllowBlank(false);
  tfLink.setRegex("^http\\://[a-zA-Z0-9\\-\\.]+\\.[a-zA- 
    Z]{2,3}(/\\S*)?$");

}

2. Now start your application and click on the Create feed button. Check that if you 
do not enter anything in a field or enter a non-URL in the link field, it is marked as 
invalid. The screenshot shows how the link field is marked as invalid:

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 78 ]

What just happened?
We added validation to our form making all the fields required and making sure that the link 
field accepts only a valid URL.

Using FieldMessages
As well as specifying how fields should be validated, you can also specify the messages that 
are displayed when validations fail using FieldMessages.

FieldMessages are implemented as inner classes of the fields they apply to. For 
example, the FieldMessages implementation for TextField is TextField<D>.
TextFieldMessages. Although you can create a new instance of the appropriate 
FieldMessages class, set the messages and then use the setMessages method of 
the field to attach the FieldMessages to the field. This is convoluted. The best way for 
setting FieldMessages is to use the getMessages method of the field and then set the 
appropriate message.

Time for action – adding FieldMessages to the fields
1. In the onRender method of the FeedForm class, retrieve the title field's 

Fieldmessages and set the text to display if the field is left blank:

tfTitle.setFieldLabel("Title");
tfTitle.setAllowBlank(false);

   tfTitle.getMessages().setBlankText("Title is required");

2. Do the same with the description field:

taDescription.setFieldLabel("Description");
taDescription.setAllowBlank(false);

   taDescription.getMessages().setBlankText("Description is  
     required");

3. Repeat again for the link field, but also add a message when the URL does not match 
the regular expression:

tfLink.setFieldLabel("Link");
tfLink.setAllowBlank(false);
tfLink.setRegex("^http\\://[a-zA-Z0-9\\-\\.]+\\.[a-zA- 
    Z]{2,3}(/\\S*)?$");

   tfLink.getMessages().setBlankText("Link is required");
   tfLink.getMessages().setRegexText("The link field must be a URL  
     e.g. http://www.example.com/rss.xml");



Chapter 3

[ 79 ]

4. Now start the application again, and this time you will see that if you hover over the 
invalid icon, you will see the following message:

What just happened?
We added field messages to our fields so that the user is given feedback when a field  
fails validation.

Submitting a form using HTTP
There are two ways of submitting data collected on a form. The first is the traditional way, 
namely, by submitting the form data to the server using an HTTP POST method.

This is straightforward:

 � Use the setAction method of the FormPanel to define the URL to submit the 
form to

 � Use the isValid method of the FormPanel to check that all the fields are valid

 � If the form is valid, use the submit method of the FormPanel to submit the form

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 80 ]

The example code where the submission is triggered by a button would look like this:

  setAction("http://www.example.com/submit.php");

  final Button btnSave = new Button("Save");
  btnSave.setIconStyle("save");
  btnSave.addSelectionListener(new SelectionListener<ButtonEvent>() 
  {
    public void componentSelected(ButtonEvent ce) {
      if (isValid())
      {
        submit();
      }            }
  });
  addButton(btnSave);

Alternative to submitting a form using HTTP
With GWT and GXT, unlike traditional web applications, we have the option of storing and 
manipulating data as Java objects on the client. We can continue to work with these objects 
in the frontend or submit it to the backend using GWT RPC or other methods such as JSON. 
In the example application, we shall be using the GWT RPC and so we will need to build a 
GWT RPC service.

Creating a Feed service
In order to be able to retrieve a Feed object, it will need to have a unique ID. In Java, there 
is a built-in UUID generator, which is ideal for creating such an ID. However, this is part of the 
JDK that is not available in GWT, and so we cannot generate a UUID in the client.

We can, however, generate a UUID on the server and make it available through an RPC call. 
In fact, as our Feed objects are available to both the client and the server, we can generate 
Feed objects on the server with their UUID set and return these to the client for use.

This means that we need to create a GWT RPC service to handle Feed objects.



Chapter 3

[ 81 ]

Time for action – creating service for feed objects
1. Create a client interface named FeedService that extends the GWT 

RemoteService in a new package called client.services. At the moment, the 
interface just needs to specify one method; createNewFeed:

@RemoteServiceRelativePath("feed-service")
public interface FeedService extends RemoteService {
  Feed createNewFeed();
}

2. Now we need to create the matching asynchronous interface. Name this 
FeedServiceAsync and again put it in the client.services package. Add the 
asynchronous version of the createNewFeed method:

public interface FeedServiceAsync {
  void createNewFeed(AsyncCallback<Feed> callback);
}

3. Next, create an implementation of the service on the server side. Create 
a new package called server.services, and in it, create a class 
called FeedServiceImpl that implements FeedService and extends 
RemoteServiceServlet. Implement the createNewFeed method so that it 
generates a new UUID, creates a new Feed object with that UUID, and returns it:

public class FeedServiceImpl extends RemoteServiceServlet  
  implements FeedService {

  @Override
  public Feed createNewFeed() {
    UUID uuid = UUID.randomUUID();
    return new Feed(uuid.toString());
  }
}

4. Finally, we also need to specify the servlet for our service in the war\WEB-INF\
web.xml by adding the following lines:

<servlet>
  <servlet-name>feedServlet</servlet-name>
  <servlet-class> 
    com.danielvaughan.rssreader.server.services.FeedServiceImpl 
</servlet-class>
</servlet>

<servlet-mapping>
  <servlet-name>feedServlet</servlet-name>
  <url-pattern>/rssreader/feed-service</url-pattern>
</servlet-mapping>

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 82 ]

5. The project structure should now look like this:

 

What just happened?
We created a GWT RPC service to deal with creating new Feed objects with a unique ID.

The Registry
GXT contains a class named the Registry. The registry is a HashMap of data that is 
available globally throughout the client of the application. The registry can be used for 
storing data and state in the client. However, there are better ways of doing this that  
we will be covering in later chapters. 

Storing the service in the Registry
The registry is useful for storing items other than data. As items placed in the registry 
are available throughout the client code, it is also a good place to store services so that they 
can be created once, stored in the Registry, and retrieved when needed. We will create 
an instance of our asynchronous FeedServiceAsync and put it in the Registry using a 
constant named FEED_SERVICE as a key. We will then retrieve this service in another part 
of the code and make use of it.



Chapter 3

[ 83 ]

Time for action – using the Feed object
1. First of all, we need to create a class to contain the constants we will use as 

keys for the objects that we will use to add to the registry. Name this class 
RSSReaderConstants in the client package and add a FEED_SERVICE constant:

public class RSSReaderConstants {
  public static final String FEED_SERVICE = "feedService";
}

2. Now at the beginning of the onModuleLoad method of the main RSSReader class, 
add a new instance of the FeedService to the registry:

Registry.register(RSSReaderConstants.FEED_SERVICE,  
  GWT.create(FeedService.class));

3. In the RssNavigationPanel, modify the createNewFeedWindow method so that 
it retrieves the FeedService from the registry:

private void createNewFeedWindow()
{
  final FeedServiceAsync feedService =  
    Registry.get(RSSReaderConstants.FEED_SERVICE);
}

4. Now call the createNewFeed method of the FeedService and then if the GWT 
RPC call is successful, create and display a new FeedWindow using the Feed object 
retrieved as a parameter:

private void createNewFeedWindow()
{
  final FeedServiceAsync feedService =  
    Registry.get(RSSReaderConstants.FEED_SERVICE);
  feedService.createNewFeed(new AsyncCallback<Feed>() {
    @Override
    public void onFailure(Throwable caught) {
      Info.display("RSSReader", "Unable to create a new  
        feed");
    }

    @Override
    public void onSuccess(Feed feed) {
      final Window newFeedWindow = new FeedWindow(feed);
      newFeedWindow.show();
    }
  });
}

D
ow

nl
oa

de
d 

fro
m

 h
ttp

://
w

w
w

.p
oo

ke
bo

ok
.c

om



Forms and Windows

[ 84 ]

What just happened?
We have now used our FeedService to create a new Feed object, which we passed to the 
FeedWindow so that the user can complete the details.

Saving a Feed
We now need to create a save method in our FeedForm to move the data from the controls 
into the Feed object, and a button for the FeedWindow to call the feed form's save method.

Time for action – saving an object to the registry
1. In the FeedForm, create a save method, which checks that the form is valid, and if 

so, sets the properties of a Feed object to the values inputted by the user:
public void save(final Feed feed) {
  feed.setTitle(tfTitle.getValue());
  feed.setDescription(taDescription.getValue());
  feed.setLink(tfLink.getValue());
}

2. In the constructor of FeedWindow, add a Save Button that, when clicked, calls the 
save method of the FeedForm with the Feed as a parameter:

public FeedWindow(final Feed feed) {
  setHeading("Feed");
  setWidth(350);
  setHeight(200);
  setResizable(false);
  setLayout(new FitLayout());

  final Button btnSave = new Button("Save");
  btnSave.setIconStyle("save");
  btnSave.addSelectionListener(new  
    SelectionListener<ButtonEvent>()
  {
    public void componentSelected(ButtonEvent ce) {
      btnSave.setEnabled(false);
      if (feedForm.isValid()) {
        hide(btnSave);
      feedForm.save(feed);
      } else {
        btnSave.setEnabled(true);
      }
    }
  });
  addButton(btnSave);
}



Chapter 3

[ 85 ]

3. Finally, add a CSS style to war\RSSReader.css for the Save button:

.save {
  background: url(gxt/images/icons/disk.png) no-repeat center  
    left
    !important;
}

4. Start the application and check that the FeedForm window now has a Save button:

What just happened?
We added a save method to the FeedForm, which stores the values entered to a Feed 
object. We then added a Save button to the FeedWindow, which calls the save method of 
the FeedForm it contains.

Creating RSS XML
Later on, we are going to have to save our feeds on the server so that we can load them 
again. To do this, we are going to save them as an RSS XML document. We are now going 
to add a new saveFeed method to our FeedService that takes a feed and sends it to the 
server for processing.

We shall process the Feed object and turn it into XML using the JDOM 1.1 library. This can 
be downloaded from http://www.jdom.org/downloads/index.html. Download the 
version suitable for your platform and unzip the archive to a suitable location.



Forms and Windows

[ 86 ]

Time for action – saving a Feed
1. In the FeedService interface, add a new saveFeed method, which takes a Feed 

object as its only argument:

void saveFeed(Feed feed);

2. Add the corresponding method in the FeedServiceAsync interface:

void saveFeed(Feed feed, AsyncCallback<Void> callback);

3. Locate jdom.jar, which is in the build folder of the extracted JDOM archive. Copy 
the jdom.jar to the project's war\WEB-INF\lib folder and add jdom.jar to the 
project's class path.

4. In FeedServiceImpl, implement the saveFeed method so that it creates a new 
JDOM XML document and populates the elements with data from the Feed object:

public void saveFeed(Feed feed) {
  Element eleRoot = new Element("rss");
  eleRoot.setAttribute(new Attribute("version", "2.0"));
  
  //Create a document from the feed object
  Document document = new Document(eleRoot);
  
  Element eleChannel = new Element("channel");
  Element eleTitle = new Element("title");
  Element eleDescription = new Element("description");
  Element eleLink = new Element("link");
  
  eleTitle.setText(feed.getTitle());
  eleDescription.setText(feed.getDescription());
  eleLink.setText(feed.getLink());
  
  eleChannel.addContent(eleTitle);
  eleChannel.addContent(eleDescription);
  eleChannel.addContent(eleLink);
  
  eleRoot.addContent(eleChannel);
}



Chapter 3

[ 87 ]

5. Now add code to take the document and serialize it to the console:

  public void saveFeed(Feed feed) {
  …
      
    try {
      XMLOutputter serializer = new XMLOutputter();
      Format prettyFormat = Format.getPrettyFormat();
      serializer.setFormat(prettyFormat);
      System.out.println("At this point we would serialize  
        the feed " + feed.getTitle() + " to a file. For  
        now we are just going to write it to the  
        console.");
      serializer.output(document, System.out);
    } catch (IOException e) {
      System.out.println("Error saving feed");
    } 
}

6. In the save method of the FeedForm class, retrieve the FeedService from the 
registry and call the save method with the Feed as a parameter: 

  public void save(final Feed feed) {
    feed.setTitle(tfTitle.getValue());
    feed.setDescription(taDescription.getValue());
    feed.setLink(tfLink.getValue());

    final FeedServiceAsync feedService = Registry
        .get(RSSReaderConstants.FEED_SERVICE);
    feedService.saveFeed(feed, new AsyncCallback<Void>() {
      @Override
      public void onFailure(Throwable caught) {
        Info.display("RSS Reader", "Failed to save feed: "
            + feed.getTitle());
      }

      @Override
      public void onSuccess(Void result) {
        Info.display("RSS Reader", "Feed " +  
          feed.getTitle()
          + " saved sucessfully");
      }
    });
  } 



Forms and Windows

[ 88 ]

7. Finally, start the application, click on the Create feed button, complete the form, 
and click on the Save button. Check that the RSS XML document appears on your 
console like this:

<rss version="2.0">
  <channel>
    <title>Example Feed</title>
    <description>This is an example feed</description>
    <link>http://www.example.com/</link>
  </channel>
</rss>

What just happened?
We created a mechanism for creating an RSS XML document when we saved a Feed object 
and made that available as part of the GWT RPC FeedService.

Now that we have a service for dealing with feeds, we can also perform validation on the 
URL entered in the LinkFeedPopup we created in the last chapter and use the service to 
process the URL.

Time for action – adding to the LinkFeedPopup
1. In the onRender method of the LinkFeedPopup, set the validation of the tfUrl 

to require an URL and to display to appropriate field messages if the validation fails. 
Also, use the setAutoValidate method to cause the validation to happen each 
time a character is entered:

tfUrl.setAllowBlank(false);
tfUrl.setRegex("^http\\://[a-zA-Z0-9\\-\\.]+\\.[a-zA- 
  Z]{2,3}(/\\S*)?$");
tfUrl.setAllowBlank(false);
tfUrl.getMessages().setBlankText("Please enter the URL of an  
  existing feed");
tfUrl.setAutoValidate(true);
tfUrl.getMessages()
  .setRegexText(
    "The link field must be a URL e.g.  
      http://www.example.com/rss.xml");

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 3

[ 89 ]

2. When validation fails, an icon will be displayed to the right of the URL field. To 
accommodate this icon, we need to increase the right margin specified in the 
eastData to 20 pixels:

final BorderLayoutData eastData = new 
BorderLayoutData(LayoutRegion.EAST, 50);
eastData.setMargins(new Margins(2,2,2,20));
add(btnAdd, eastData);

3. Start the application and try to enter a string that is not a URL and check that you 
get an error message like this:

What just happened?
We added validation to the LinkFeedPopup.



Forms and Windows

[ 90 ]

Have a go hero – create a new item form
In the next chapter, we shall be adding the ability to add items to feeds. To do this, we will 
need another form named ItemForm. For now, the form should take the similar input as 
the FeedForm. This time, however, all the fields are optional, but either the title or the 
description must be completed.

Have a go at creating the following:

 � An ItemForm class

 � An ItemWindow class

 � An Item class

 � ItemService, ItemServiceAsync, and ItemServiceImpl classes that allow 
you to create a new Item with its own UUID.

Summary
In this chapter, we have looked at forms and the components we can use to build them.  
We then moved on to display a form using windows and how to store data retrieved from 
them in the registry. Finally, we sent a completed Feed object to the server via GWT RPC 
and transformed it into an RSS XML file.

In the next chapter, we will look at how we can start working with data using GXT's  
built-in data handling features.



4
Data-backed Components

In this chapter, we introduce how GXT allows us to work with data. We look at 
the components available for retrieving, manipulating, and processing data, 
and then move on to work with the built-in data-backed display components.

We shall cover the following components:

Data

 � ModelData

 � BeanModel

 � BeanModelTag

 � BeanModelMarker

 � BeanModelFactory

 � Stores

Remote Data

 � DataProxies

 � DataReaders

 � ListLoadResults

 � ModelType

 � Loaders

 � LoadConfigs



Data-backed Components

[ 92 ]

Data-backed components

 � ListField

 � ComboBox

 � Grid

o ColumnModel

o ColumnConfig

 � GridCellRenderer

Working with data
One of the advantages of AJAX applications, including those built with GXT, is the ability to 
manipulate data in the browser. GXT provides useful data-backed visual components that 
allow us to work with local data such as lists, combos, and grids. With them we can perform 
sorting, filtering, and editing operations on data quickly and efficiently.

There is also another set of components that work in the background allowing us to retrieve 
remote data, cache it on the client, and deliver it to the visual components. It is these two 
sets of components that we are going to focus on in this chapter.

First of all, we are going to look at how to produce the data that we need for display in the 
visual components.

ModelData interface
GXT provides us an interface named ModelData. Any data objects we wish to use with GXT 
data-backed components must implement this interface. The ModelData interface provides 
the ability for property names and values to be retrieved at runtime. As GWT does not 
support reflection, GXT does this using a form of introspection.

In our example application, at present we are using a JavaBean named Feed to store feed 
data. However, at the moment, it does not implement the ModelData interface, so we 
cannot use it with GXT's data-backed components.

We have three methods that will allow us to achieve this:

1. Modify the Feed JavaBean so that it extends BaseModel.

2. Modify the Feed JavaBean so that it implements BeanModelTag.

3. Create a BeanModelMarker interface to accompany the Feed JavaBean. 
This method allows us to avoid having to modify the Feed JavaBean.



Chapter 4

[ 93 ]

Method 1: Extending BaseModel
BaseModel is the default implementation of the ModelData interface. Classes that extend 
BaseModel make use of a HashMap to store data rather than local fields. Data is added and 
retrieved using the set and get methods of the BaseModel respectively.  The downside 
of this method is that we need to use strings as attribute names and as such it is easier for 
errors to creep in.

The Feed object implemented as a subclass of BaseModel would look like this:

public class Feed extends BaseModel {

  public Feed () {

  }

  public Feed (String uuid) {
    set("uuid", uuid);
  }

  public String getDescription() {
    return get("description");
  }

  public String getLink() {
    return get("link");
  }

  public String getTitle() {
    return get("title");
  }

  public String getUuid() {
    return get("uuid");
  }

  public void setDescription(String description) {
    set("description", description);
  }

  public void setLink(String link) {
    set("link", link);
  }

  public void setTitle(String title) {
    set("title", title);
  }
}



Data-backed Components

[ 94 ]

BeanModel class
If we already have a JavaBean we wish to use instead of creating a new BaseModel, GXT 
provides the BeanModel, a class which acts as a wrapper for JavaBeans. BeanModel objects 
cannot be created directly; instead they are generated by a BeanModelFactory. 

BeanModelFactory class
BeanModelFactory is a useful class that allows us to take a JavaBean with a 
corresponding BeanModelMarker interface such as a Feed object, and get back 
a BeanModel representation.

The remaining two methods of providing a ModelData object involve wrapping a JavaBean 
as a BeanModel.

Method 2: Implementing BeanModelTag
BeanModelTag is an interface that allows us to tag existing Java objects that meet the 
JavaBean specification. This allows BeanModel instances to be generated from the JavaBean 
using a BeanModelFactory.

In order to make our existing Feed JavaBean usable as a GXT BeanModel, we simply need to 
implement the BeanModelTag interface like this:

public class Feed implements Serializable, BeanModelTag {

  private String description;
  private String link;
  private String title;
  private String uuid;

  public Feed() {

  }

  public Feed(String uuid) {
    this.uuid = uuid;
  }

  public String getDescription() {
    return description;
  }

  public String getLink() {



Chapter 4

[ 95 ]

    return link;
  }

  public String getTitle() {
    return title;
  }

  public String getUuid() {
    return uuid;
  }

  public void setDescription(String description) {
    this.description = description;
  }

  public void setLink(String link) {
    this.link = link;
  }

  public void setTitle(String title) {
    this.title = title;
  }
}

This still requires a change to the JavaBean, however. There are situations where making 
any change to a JavaBean would be unacceptable or at least undesirable. In this case, GXT 
provides the BeanModelMarker.

Method 3: Creating a BeanModelMarker 
BeanModelMarker is an interface, which, as its name suggests, allows us to mark an 
existing JavaBean as a BeanModel. This is achieved by creating an interface that extends 
BeanModelMarker. It makes use of annotations to define the JavaBean to wrap.

In our example application, we already have a Feed JavaBean, and we will now create a 
BeanModelMarker for it so that we can use it with the GXT data-backed controls.

Notice the use of the @BEAN annotation to make a reference to the Feed class. We do not 
need to make any changes to the Feed JavaBean itself.



Data-backed Components

[ 96 ]

Time for action – creating a BeanModelMarker for Feed objects
1. Create a new class named FeedBeanModel that implements the 

BeanModelMarker interface in a new package named client.model:

public class FeedBeanModel implements BeanModelMarker {}

2. Add an @BEAN annotation to tell GXT to use the Feed JavaBean class as follows:

@BEAN(com.danielvaughan.rssreader.shared.model.Feed.class)
public class FeedBeanModel implements BeanModelMarker {} 

What just happened?
We created a BeanModelMarker for our existing Feed JavaBean. We can now use our Feed 
JavaBean with GXT's data-backed controls without having to modify the Feed JavaBean class 
in any way.

Stores
In GXT, a Store is an abstract class used to provide a client-side cache of ModelData objects 
of a specified class. Stores are where the data-backed GXT components keep data. There are 
two concrete Store classes. The first is TreeStore, which is used with Tree components, 
and we will look at these in the next chapter. The second is ListStore, which is used for 
storing the lists of data. These are typically used with ListField, ComboBox, and 
Grid components.

To create a ListStore to contain Feed objects, we would define it like this:

ListStore<BeanModel> feedStore = new ListStore<BeanModel>();

Note that the ListStore is set to contain BeanModel instances. This is because a Store 
can only contain objects that inherit from the ModelData class. If we wanted to add a Feed 
JavaBean object, we cannot do it directly. We need to use a BeanModelFactory to convert 
the Feed JavaBean object into a BeanModel representation.

We will now modify the example application so that when creating a new Feed 
JavaBean object, a BeanModel representation of the Feed object is added into 
a client-side ListStore.



Chapter 4

[ 97 ]

Time for action – creating and populating a ListStore
1. In the RSSReaderConstants class, add a new constant named FEED_STORE for 

the feed store:

public static final String FEED_STORE = "feedStore";

2. In the onModuleLoad method of the RSSReader class, create a new ListStore 
and add it to the Registry using the FEED_STORE constant as the key:

public void onModuleLoad() {
  Registry.register(RSSReaderConstants.FEED_SERVICE,  
    GWT.create(FeedService.class));
  Registry.register(RSSReaderConstants.FEED_STORE,  new  
    ListStore<BeanModel>());
  …
}

3. In the save method of the FeedForm, modify the onSuccess method of the 
callback function to retrieve the feed store from the Registry:

public void save(final Feed feed) {
      
  @Override
  public void onSuccess(Void result) {
    Info.display("RSS Reader", "Feed " + feed.getTitle() 
      + " saved successfully");
    final ListStore<BeanModel> feedStore = Registry 
      .get(RSSReaderConstants.FEED_STORE);
  }
…
}

4. Retrieve a BeanModelFactory for the Feed class:

  public void onSuccess(Void result) {
    Info.display("RSS Reader", "Feed " + feed.getTitle() + " saved  
      successfully");
    final ListStore<BeanModel> feedStore =  
      Registry.get(RSSReaderConstants.FEED_STORE);
    BeanModelFactory beanModelFactory =  
      BeanModelLookup.get().getFactory(feed.getClass());
}



Data-backed Components

[ 98 ]

5. Finally, use the BeanModelFactory to create a BeanModel representation of the 
Feed object and then add it to the feed store:

  public void onSuccess(Void result) {
    Info.display("RSS Reader", "Feed " + feed.getTitle() + " saved  
      successfully");
    final ListStore<BeanModel> feedStore =  
      Registry.get(RSSReaderConstants.FEED_STORE);
    BeanModelFactory beanModelFactory =  
      BeanModelLookup.get().getFactory(feed.getClass());
    feedStore.add(beanModelFactory.createModel(feed));
}  

What just happened?
Feed objects are now stored in a GXT ListStore. The advantage of this is that we can now 
simply link the data-backed components to the Store, and the values in the components 
will refresh automatically.

Data-backed ComboBox
Once we have a ListStore populated with data, we can use it to provide the options in a 
ComboBox by binding the ComboBox to the Store. We would take the feed store and create 
a ComboBox that uses the title field of each Feed to populate the values of the ComboBox 
like this:

ComboBox<Feed> combo = new ComboBox<Feed>();  
combo.setDisplayField("title");  
combo.setStore(feeds); 

Here we use the setDisplayField of the ComboBox to set the title field as the field to use 
as the display value.

Once a data-backed component is linked with a Store, it then observes the Store for 
changes. If a change to the data in the Store occurs, such as an object being added to the 
Store, the content of the data-backed control will be updated automatically. The specific 
Store events that can be observed are listed as follows:

 � Add

 � Clear

 � Data Changed

 � Filter

 � Remove

 � Sort

 � Update



Chapter 4

[ 99 ]

Data-backed ListField
Associating a ListField with a Store is very similar to associating a ComboBox with a 
Store. In our example application, we will now add a ListField containing all current 
feeds to the left navigation panel.

Time for action – creating a ListField for feeds
1. Create a new package named client.lists, and in it create a new class named 

FeedList that extends LayoutContainer:

public class FeedList extends LayoutContainer {}

2. In the constructor of the FeedList class, set the layout of the LayoutContainer 
to FitLayout:

public FeedList() {
  setLayout(new FitLayout());
}

3. Override the onRender method, and in it create a new ListField:

@Override
protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  final ListField<BeanModel> feedList = new  
    ListField<BeanModel>();
}

4. Again in the onRender method, retrieve the feed store from the Registry:

final ListStore<BeanModel> feedStore =  
  Registry.get(RSSReaderConstants.FEED_STORE);

5. Set the feed store as the Store for the feed list ListField:

feedList.setStore(feedStore);

6. Tell the ListField to use the title field of the Feed object as the value to display in 
the ListField:

feedList.setDisplayField("title");

7. Add the ListField to the underlying container:

add(feedList);



Data-backed Components

[ 100 ]

8. At the end of the constructor of the RssNavigationPanel, set the layout to a new 
instance of FitLayout and add a new instance of the FeedList component to 
the underlying ContentPanel:

setLayout(new FitLayout());
add(new FeedList());

9. Start the application, click on the Create feed button, and complete the form as 
shown in the screenshot below:

 

10. On clicking the Save button, the new feed's title, Test Feed, will appear in the list 
of feeds on the left:

 

What just happened?
We added a list of feeds to the RSS Reader application. When we created a new feed, it 
automatically appeared in the feed list on the left.



Chapter 4

[ 101 ]

Server-side persistence
So far we do not have any persistence in our example application.

To make the example more realistic, we will now add persistence. As this is a GXT book 
rather than a GWT book, we will only implement basic server-side persistence so that we 
can concentrate on the client-side. However, we will put the actual persistence logic behind 
an interface so that we can replace it with another implementation later if required. For the 
initial implementation:

 � When creating new feeds, we will simply save an XML file on the server-side.

 � We will keep a list of the URLs of the feeds that we have created and any imported 
feeds in a simple text file.

The persistence code implementation is not GXT-specific, so it can be treated as a black box. 
The Persistence interface and a FilePersistence implementation of that interface can 
be found in the example code. It is this that we are going to make use of to store and retrieve 
RSS feeds.

Persisting an Existing Feed
In the second chapter, we created the Link feed button, the purpose of which was to 
let our RSS reader import an existing RSS feed from the Internet. We will now create an 
addExistingFeed method in the FeedService that with the help of the persistence layer 
stores the URL of the feed for later retrieval. We will then connect this method to the add 
button on the LinkFeedPopup.

Time for action – persisting a link to an existing feed
1. Add an addExistingFeed method to the FeedService interface that takes the 

URL of a feed as an argument:

void addExistingFeed(String feedUrl);

2. Add a corresponding asynchronous version of the addExistingFeed method to 
the FeedServiceAsync interface:

void addExistingFeed(String feedUrl, AsyncCallback<Void>  
  callback); 

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Data-backed Components

[ 102 ]

3. Modify the addFeed method of the LinkFeedPopup class so that it retrieves the 
FeedService and calls the addExistingFeed method with the URL that the user 
has entered. If successful, the method should clear the URL TextField and hide 
the Popup:

public void addFeed(final String feedUrl) {
  final FeedServiceAsync feedService = Registry 
    .get(RSSReaderConstants.FEED_SERVICE);
  feedService.addExistingFeed(feedUrl, new AsyncCallback<Void>()   
{
    @Override
    public void onFailure(Throwable caught) {
      Info.display("RSS Reader", "Failed to add feed at: " +  
        feedUrl);
  }

    @Override
    public void onSuccess(Void result) {
      tfUrl.clear();
      Info.display("RSS Reader", "Feed at " + feedUrl 
        + " added successfully");
      hide();
    }
  });
} 

4. In the FeedServiceImpl class, create a new Java Logging logger for the class:

private final static Logger LOGGER = 
  Logger.getLogger(FeedServiceImpl.class 
  .getName());

5. Again in the FeedServiceImpl class, create a new private method named 
loadFeed. The method takes an URL string and uses JDOM to retrieve the XML 
of an RSS from the Internet. It then parses the XML into a Feed object. This is 
implemented as follows:

  private Feed loadFeed(String feedUrl) {
    Feed feed = new Feed(feedUrl);
    try {
      SAXBuilder parser = new SAXBuilder();
      Document document = parser.build(new URL(feedUrl));
      Element eleRoot = document.getRootElement();
      Element eleChannel = eleRoot.getChild("channel");
      feed.setTitle(eleChannel.getChildText("title"));
      feed.setDescription(eleChannel.getChildText("description"));
      feed.setLink(eleChannel.getChildText("link"));
      return feed;



Chapter 4

[ 103 ]

    } catch (IOException e) {
      LOGGER.log(Level.SEVERE, "IO Error loading feed", e);
      return feed;

    } catch (JDOMException e) {
      LOGGER.log(Level.SEVERE, "Error parsing feed", e);
      return feed;
    }
  }

6. Create a new instance of a HashMap to store Feed objects with their URL as a key:

private Map<String, Feed> feeds = new HashMap<String, Feed>(); 

7. Create a new instance of the FilePersistence class:

private final Persistence persistence = new FilePersistence();

8. Implement the addExistingFeed method so that it uses the loadFeed method 
to retrieve the Feed object corresponding to the provided URL String. Check that 
the Feed has a title and add it to the HashMap of Feed objects and then use the 
saveFeedList method of the FilePersistence class to persist the updated list:

  @Override
  public void addExistingFeed(String feedUrl) {
    Feed loadResult = loadFeed(feedUrl);
    if (loadResult.getTitle() != null) {
      feeds.put(feedUrl, loadFeed(feedUrl));
      persistence.saveFeedList(feeds.keySet());
    }
  }

9. Start the application and add an existing feed by clicking on the Link feed button, 
entering an URL in the link feed popup, and clicking on the add button:



Data-backed Components

[ 104 ]

10. In the war\data folder, check that there is now a text file named feed.txt 
containing the URL that you entered in the user interface.

What just happened?
We used the server to retrieve the RSS XML from a specified URL and persist the URL on the 
server for later use in the application.

At the moment, if we create a new feed and click on the Save button, a feed object is added 
to the feed ListStore on the client, but this is just a cache and not a persistent data store.

In the last chapter, we created a GWT RPC service with a saveFeed method. This sent a 
Feed object to the backend, but so far all it does is convert the feed object to XML and print 
the result to the console. The XML is not saved, and any Feed objects created will be lost 
when the application is restarted. We will now add to our implementation of the saveFeed 
method so that it makes use of file persistence.

Time for action – persisting a feed as an XML document
1. In the FeedServiceImpl class, remove the existing XML serialization code at 

the end of the saveFeed method and in its place add a call to the saveFeedXml 
method of the Persistence interface. The call should include the UUID of the 
Feed object and the JDOM document generated from it. This will write a file 
containing an XML representation of the Feed:

persistence.saveFeedXml(feed.getUuid(),document);

2. Also append a call to the addExistingFeed method. The parameter for this call 
should include the URL to the XML file created on the file system. This is retrieved 
from the getUrl method of the Persistence interface:

addExistingFeed(persistence.getUrl(feed.getUuid()));

3. Start the application and create a new feed using the Create feed button, complete 
the form as follows, and click on the Save button:



Chapter 4

[ 105 ]

4. Check that Example Feed appears in the feeds ListField:

5. Finally, check that a new file has appeared in the war\data folder. It will have a 
filename in the format of <uuid>.xml: for example, 4a529f45-31af-4375-
9da4-4b03280a4784.xml. Check that the file contains the following content:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
  <channel>
    <title>Example feed</title>
    <description>This is an example feed</description>
    <link>http://www.example.com/example-feed.xml</link>
  </channel>
</rss>



Data-backed Components

[ 106 ]

What just happened?
We created a mechanism to persist the XML representation of a Feed object as an XML file.

Server-side retrieval
Once feeds have been saved on the server, we need to be able to load them when we start 
the application again. For this we will add a loadFeedList method to the feed service. This 
will return Feed objects by loading RSS feeds from the URLs stored in the feeds.txt file. 
We will then add any Feed objects we retrieve into the client's feed store.

Time for action – loading feeds
1. Add a loadFeedList method to the FeedService interface:

List<Feed> loadFeedList();

2. Add an asynchronous version of the loadFeedList method to the 
FeedServiceAsync interface:

void loadFeedList(AsyncCallback<List<Feed>> callback);

3. In the FeedServiceImpl class, implement the loadFeedList method so 
that it populates the feeds HashMap using the loadFeedList method of the 
Persistence interface, and then returns a list of the Feed objects now contained 
within it:

@Override
public List<Feed> loadFeedList() {
  feeds.clear();
  Set<String> feedUrls = persistence.loadFeedList();
  for (String feedUrl : feedUrls) {
    feeds.put(feedUrl, loadFeed(feedUrl));
  }
  return new ArrayList<Feed>(feeds.values());
}

What just happened?
We added the ability to retrieve Feed objects from previously persisted XML files via a call 
to a GWT RPC service. We now have a service that persists Feed objects and allows us to 
retrieve them again.



Chapter 4

[ 107 ]

Using remote data
As well as populating stores with data on the client-side, we can also populate stores by 
retrieving remote data. GXT provides facilities for loading and working with remote data, be 
it XML or JSON retrieved via HTTP, or objects retrieved through GWT RPC. For each source, 
GXT provides mechanisms to retrieve and read data. If necessary, it can also convert the raw 
data into ModelData and then automatically add it into a Store.

There are several components involved in this process. They all perform a function in their 
own right but come together to retrieve and process data:

 � DataProxy—retrieves the raw data from the source

 � DataReader—takes the raw data and converts it into ModelData

 � Loader—loads the processed data into the store automatically

The interaction between the various components is summarized in this diagram:



Data-backed Components

[ 108 ]

DataProxy interface
A DataProxy is used to retrieve raw data. All data proxies implement GXT's DataProxy 
interface. There are a number of DataProxy implementations, that retrieve different types 
of data in different ways:

DataProxy Description

HttpProxy Retrieves data using a GWT RequestBuilder instance to 
retrieve XML or JSON from the same server.

MemoryProxy Simply passes on the data specified in its constructor.

PagingModelMemoryProxy Like a MemoryProxy, but supports paging where all the data 
is in memory.

RpcProxy Retrieves data using GWT RPC, but allows the conversion of 
JavaBeans for use with a loader.

ScriptTagProxy Retrieves data from an URL, which may be in a domain other 
than the originating domain of the running page—that is, gets 
around cross-site scripting. Only works with JSON data.

Once we have retrieved data using a DataProxy, if it is not represented as ModelData 
objects already, we will need to convert it using a DataReader before it can be loaded 
into a Store.

DataReader interface
Data readers translate raw data into ModelData objects. All data readers implement GXT's 
DataReader interface. There are several different implementations of DataReader that 
deal with different raw data. A DataReader returns the results as one of the following:

 � A set of ModelData objects.

 � An object that implements the ListLoadResult interface. ListLoadResult 
contains one method, getData() that returns the data as ModelData objects.

 � A PagingLoadResult object, which extends ListLoadResult to provide 
support for paging—that is, the ability to return a subset of the data.

Paging is when the data is not displayed all at once, but instead presented 
in pages. For example, if you had 100 results and wanted to display them 
10 per page in a grid, you may have a control at the bottom that displays 
1-10 of 100, and a button to move to the next page. We will cover paging in 
later chapters.



Chapter 4

[ 109 ]

There are a number of different implementations of DataReader summarized in this table:

DataReader Data in Converted using Data out Use when

ModelReader Model 
Data

Not applicable as 
the ModelData is 
just packaged into a 
ListLoadResult 
object

ListLoadResult Loading 
objects that 
already 
extend 
BeanModel

BeanModelReader A list of 
JavaBeans

BeanModel 
Factory

ListLoadResult Loading 
JavaBean 
objects that 
need to be 
converted to 
BeanModel 
objects

JsonReader JSON data ModelType 
definition

Set of ModelData 
instances

Loading 
JSON data as 
ModelData

JsonLoadResult 
Reader

JSON data ModelType 
definition

ListLoadResult Loading 
JSON data as 
ModelData

JsonPagingLoadResult 
Reader

JSON data ModelType 
definition

PagingLoadResult Loading JSON 
data as paged 
ModelData 

XmlReader XML data ModelType 
definition

Set of ModelData 
instances

Loading 
XML data as 
ModelData

XmlLoadResultReader XML data ModelType 
definition

ListLoadResult Loading 
XML data as 
ModelData

XmlPagingLoadResult 
Reader

XML data ModelType 
definition

PagingLoadResult Loading 
XML data as 
ModelData 
in pages

There is also a TreeModel-specific DataReader that we will cover in later chapters.

You may notice that an object called ModelType is used by many of the data readers to 
perform conversion of the data.



Data-backed Components

[ 110 ]

ModelType class
ModelType defines the structure of the raw data to enable the DataReader that deals 
with XML or JSON data to map the raw data from XML or JSON ModelData objects.

For example, if we had source data that was an XML document with this structure:

<books>
  <book>
    <title>The best book in the world</title>
  </book>
  <book>
    <title>The worst book in the world</title>
  </book>  
</books>

the ModelType definition would look like this:

final ModelType modelType = new ModelType();
modelType.setRoot("books");
modelType.setRecordName("book");
modelType.addField("title");

The root of the XML document is books, so we indicate this using the setRoot method. The 
record is book, so we use setRecord name to indicate this. Finally, a field of book is title, 
so we add this to the model using addField.

ModelType can also be used with JSON data. In fact, the ModelType definition we just used 
to represent the XML could be used with the following JSON without modification:

{
  "books": [
    {
      "book": {
        "title": "The best book in the world" 
      },
      "book": {
        "title": "The worst book in the world" 
      } 
    } 
  ]
}



Chapter 4

[ 111 ]

Loader interface
Loaders are used for loading ModelData into a store, given a DataProxy and a 
DataReader. The base interface for all loaders is Loader, the abstract implementation of 
which is BaseLoader:

Interfaces Default Implementations

There are two types of loaders: one for lists that implement the ListLoader interface and one 
for trees that implement the TreeLoader interface. We will leave the tree loaders until later 
chapters and at the moment just look at the list loaders.

The default implementation of the ListLoader interface is BaseListLoader. There is also 
BasePagingLoader, which extends the functionality of BaseListLoader to add paging support 
and implements the PagingLoader interface.

Loaders can also sort data when loading it. This can be defined either by using the 
setSortField and setSortDir methods, or by specifying a LoadConfig object.

LoadConfig
LoadConfigs define how data is loaded. The LoadConfig interface has a number of 
implementations, including one only used for tree data. For now we will just look at  
the list implementations.

The first is BaseListLoadConfig, which allows you to specify how the data is sorted 
when loading.

BaseListLoadConfig also has two subclasses that refine loading further:

 � BaseGroupingLoadConfig—that allows you to group data by a specified field 
using the setGroupBy method

 � BasePagingLoadConfig—that provides paging support



Data-backed Components

[ 112 ]

How they fit together
Here is a summary of how the various backend components fit together:

 � GXT uses classes that implement the ModelData interface to store information

 � Stores provide a cache of ModelData on the client and provide this to 
data-backed components

 � DataProxies retrieve the raw data from a remote source

 � ModelType describes the structure of the raw data

 � Certain DataReaders use the ModelType to define how to take raw data and 
produce ModelData

 � Loaders load the data into the store using a DataProxy and a DataReader

 � LoadConfigs optionally tell the loader how to sort, group, or page the ModelData

We will now return to our FeedList class and modify it to use an RpcProxy, 
BeanModelReader, and a ListLoader to populate the ListStore of the ListField 
using remote data.

Time for action – using remote data with a ListField
1. In the onRender method of the FeedList class, remove the line that retrieves 

the feed store from the Registry, and instead retrieve the feed service from 
the Registry:

@Override

protected void onRender(Element parent, int index) {

  super.onRender(parent, index);

  final ListField<BeanModel> feedList = new  
  ListField<BeanModel>();

  final FeedServiceAsync feedService = (FeedServiceAsync)

  Registry.get(RSSReaderConstants.FEED_SERVICE);

  feedList.setStore(feedStore);

  feedList.setDisplayField("title");

  add(feedList);
}

2. Create a new RpcProxy to retrieve a list of Feed objects using the loadFeedList 
method of the FeedService GWT RPC service:

  RpcProxy<List<Feed>> proxy = new RpcProxy<List<Feed>>() {

    @Override

    protected void load(Object loadConfig,



Chapter 4

[ 113 ]

      AsyncCallback<List<Feed>> callback) {

        feedService.loadFeedList(callback);

    }

  };

3. Create a new instance of BeanModelReader to use to convert the Feed objects 
into BeanModel objects:

BeanModelReader reader = new BeanModelReader();

4. Now create a ListLoader that takes the RpcProxy and the BeanModelReader 
and uses them to load a list of BeanModel representations of the Feed objects:

ListLoader<ListLoadResult<BeanModel>> loader = new  
  BaseListLoader<ListLoadResult<BeanModel>>( 
    proxy, reader);

5. Define the feed store again, but this time define the Store so that it takes the 
ListLoader as a parameter in order to use the loader to populate the store:

ListStore<BeanModel> feedStore = new ListStore<BeanModel>(loader);

6. Finally, add a call to the load method of the ListLoader to trigger the loading of 
the Store.

loader.load();

7. Start the application, and now the feeds that were previously saved will be loaded 
into the feed list:

What just happened?
We modified the FeedList ListField so that it now retrieves the required data from the 
server using a call to a GWT RPC service.



Data-backed Components

[ 114 ]

Pop quiz – right tool for the job
Match the following requirements with the most suitable DataProxy, DataReader, and 
Loader to achieve the goal:

1. You have XML data on the same server as your application and you want to display it 
in one list.

2. You have a set of JavaBeans on your server and you want to be able to display them 
in a paged list.

3. You have a list of Model data and you want to display it in one list.

4. You have JSON data on the same server as your application and you want to display 
it in a paged list.

5. You have JSON data on a server with a different domain from your application and 
you want to display it in one list.

DataProxy DataReader Loader

1

2

3

4

5

Have a go hero – loading items
In a moment, we are going to load the items of a feed. To do this, we need to first implement 
the following:

1. A class named Item in the shared.model package. This class should extend 
BaseModel and needs to provide setters and getters for properties named: 
category, description, link, and title.

2. A method in the FeedService named loadItems that takes an URL String of a 
feed and returns a List of Item objects.

3. A corresponding asynchronous loadItems method in the 
FeedServiceAsync class.

4. An implementation of the loadItems method in the FeedServiceImpl class that 
makes use of JDOM.



Chapter 4

[ 115 ]

Attempt to implement this functionality using the work we have done with the Feed 
object as a guide. Note that as the Item class will extend BaseModel, a corresponding 
BeanModelMarker is not required.

Solution:

See the Item, FeedServiceAsync, and FeedServiceImpl classes in the example code.

Grid
GXT contains Grid components with many different features. However, at the moment we 
are just going to look at a basic grid and how to get data into it. When constructing a Grid 
object, it requires both a ListStore and a ColumnModel to be specified.

ColumnConfig
A ColumnConfig object defines a column that a Grid will display. It specifies the data 
that the columns will use and how it should be rendered. These are then collected into  
a list and used in the constructor of a ColumnModel object, which acts as a container for 
the ColumnConfigs and can in turn be used in the constructor of a Grid.

Grid Example
We are now going to return to our example application and add a Grid that will display RSS 
items from an RSS feed. 

Time for action – creating the ItemGrid
1. Create a new class named ItemGrid in a new package named client.grids.

2. The new class should extend the LayoutContainer class and override the 
onRender method:

public class ItemGrid extends LayoutContainer {

  @Override
  protected void onRender(Element parent, int index) {
    super.onRender(parent, index);
    ..
  }
}



Data-backed Components

[ 116 ]

3. Create a constructor for the class that sets the layout of the underlying 
LayoutContainer to be a FitLayout:

public ItemGrid() {
  setLayout(new FitLayout());
}

4. In the onRender method, define the ColumnConfigs for the Grid and add them 
to a list. One column should use the title field of the Feed object and the other 
the description field:

final List<ColumnConfig> columns = new ArrayList<ColumnConfig>();
columns.add(new ColumnConfig("title", "Title", 200));
columns.add(new ColumnConfig("description", "Description", 200));

5. Create a ColumnModel passing the list of ColumnConfig objects to the 
constructor:

final ColumnModel columnModel = new ColumnModel(columns);

6. We now need to define test data to load. Fortunately, there is an example RSS file 
available with the specification. Create a constant to store the String for the URL:

final String TEST_DATA_FILE =  
  "http://cyber.law.harvard.edu/rss/examples/rss2sample.xml";

7.  Retrieve the feed service from the Registry:

final FeedServiceAsync feedService = Registry 
  .get(RSSReaderConstants.FEED_SERVICE);

8. Create an RpcProxy that uses the loadItems method of the FeedService to 
retrieve the Item objects for the feed at the URL defined in the TEST_DATA_FILE 
constant:

RpcProxy<List<Item>> proxy = new RpcProxy<List<Item>>() {
  @Override
  protected void load(Object loadConfig,
    AsyncCallback<List<Item>> callback) {
    feedService.loadItems(TEST_DATA_FILE, callback);
  }
};

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 4

[ 117 ]

9. Create a BaseListLoader that uses the RpcProxy. Note that as Item extends 
BaseModel, a DataReader is not needed:

ListLoader<ListLoadResult<Item>> loader = new  
  BaseListLoader<ListLoadResult<Item>>( 
    proxy);

10. Now create a ListStore for the Item objects:

ListStore<ModelData> itemStore = new ListStore<ModelData>(loader);

11. We can now create a grid using the Store and the ColumnModel. Also, set the auto 
expand column to description so that the description column expands to fill the 
available space:

Grid<ModelData> grid = new Grid<ModelData>(itemStore,  
  columnModel);
grid.setBorders(true);
grid.setAutoExpandColumn("description"); 

12. Call the load method of the ListLoader to load the Item objects into the 
Store of the Grid:

loader.load();

13. Add the Grid to the underlying LayoutContainer:

add(grid);

14. Finally, we can set the layout of RssMainPanel to FitLayout and add a new 
instance of ItemGrid in the constructor.

  public RssMainPanel() 
  {
    setHeading("Main");
    setLayout(new FitLayout());
    add(new ItemGrid());
  }



Data-backed Components

[ 118 ]

15. Now start the application and it will have a grid populated with the sample 
RSS file's data:

What just happened?
We created a Grid, which makes use of a Store that is populated using Item objects 
retrieved from the server. We saw how to use a DataProxy, DataReader, and Loader 
to retrieve the Item objects, and load them into the ListStore.

GridCellRenderer
At the moment, in our sample application's item grid, we are displaying a single field in 
a column. However, if we want to combine fields or make them more than just plain text,  
we can use the GridCellRenderer. This enables us to specify the generation of HTML 
to render in a cell rather than the plain text value of a field.

Once defined, we can apply a GridCellRenderer to an entire column by using the  
setRenderer method of ColumnConfig.

We are now going to use a GridCellRenderer in our application's ItemGrid. Instead 
of the title and description appearing in different columns, we are going to use the 
GridCellRenderer to display the title above the description in the same column.

GridCellRenderer objects must include a render method, which returns an HTML string.



Chapter 4

[ 119 ]

Time for action – using a GridCellRenderer
1. In the onRender method of the ItemGrid class, create a new GridCellRenderer 

named itemsRenderer with a render method:

GridCellRenderer<ModelData> itemsRenderer = new  
  GridCellRenderer<ModelData>() {
  public String render(ModelData model, String property, 
    ColumnData config, int rowIndex, int colIndex, 
      ListStore<ModelData> store, Grid<ModelData> grid)     
  {
  }

};

2. Implement the render method so that it retrieves the title and description fields 
from the model and combines them in an HTML string, which is returned from  
the method:

GridCellRenderer<ModelData> itemsRenderer = new  
   GridCellRenderer<ModelData>() {
   public String render(ModelData model, String property,
     ColumnData config, int rowIndex, int colIndex,
     ListStore<ModelData> store, Grid<ModelData> grid)            
   {
    String title = model.get("title");
    String description = model.get("description");
    return "<b>" + title + "</b><br/>" + description;
   }

  };

3. Create a new ColumnConfig with the ID of items, the header of Items, and set 
the renderer to be the itemsRenderer we created in the previous step:

ColumnConfig column = new ColumnConfig();
column.setId("items");
column.setRenderer(itemsRenderer);
column.setHeader("Items");

4. Add the items column to the list of columns in place of the previous title and 
description columns:

columns.add(column);
final ColumnModel columnModel = new ColumnModel(columns);



Data-backed Components

[ 120 ]

5. Change the grid to auto expand the items column instead of the now non-existent 
description column:

grid.setAutoExpandColumn("items");

6. Start the application and notice how the GridCellRenderer has rendered the 
fields in a single column:

 

What just happened?
We used a GridCellRenderer to create an HTML string to display two fields in the same 
column with formatting instead of just plain text.

Summary
In this chapter, we have introduced GXT's data-backed components. We have made use 
of a Store to cache data locally. We linked a ListField to a Store to show how the 
components' values could automatically be updated when data in a Store changed.

We then added to the server-side of our example application by providing a service that  
can persist and retrieve remote data.

We went on to use the service to retrieve remote ModelData and used that data to 
populate a Grid. We then formatted the Grid using a GridCellRenderer.

In the next chapter, we will look at some more advanced grids and also look at the useful 
tree-based components.



5
More Components

This chapter builds on the previous chapter by taking data-based controls 
further. We will look at Tree controls and show how they can improve on a 
ListField for organizing data and how the same tree concept can be applied to a 
Grid. We will then cover some of the more advanced functions available in grid. 
Finally, we will explore menus and toolbars.

In this chapter, we will specifically cover the following topics:

 � Trees

 � BaseTreeModel

 � TreeStore

 � TreePanel

 � TreeGrid

 � TreeGridCellRenderer

 � Advanced grid features

 � Column grouping

 � HeaderGroupConfig

 � Aggregation rows

 � AggregationRowConfig

 � SummaryType



More Components

[ 122 ]

 � Paging

 � PagingListResult

 � PagingLoadConfig

 � PagingModelMemoryProxy

 � PagingLoader

 � PagingToolBar

 � ImageBundle

 � Toolbars and menus

 � Menu

 � MenuItem

 � CheckMenuItem

 � MenuBar

 � MenuBarItem

 � MenuEvent

 � ToolBar

 � Status

Trees
In the previous chapter, we worked with components that made use of lists of data. 
Now we are going to look at the components that work with trees of data instead.

Working with trees in GXT is similar to working with lists. The difference is that there are 
special tree versions of the ModelData—Store, DataReader, and Loader we used in 
the previous chapter.

BaseTreeModel class
BaseTreeModel extends the BaseModel we used in the previous chapter by implementing 
the TreeModel interface to add tree features. Essentially, this involves adding methods for 
managing parent and child relationships.

In order to be able to use ModelData in a TreePanel or TreeGrid, the objects must 
extend BaseTreeModel rather than just BaseModel.

In our example application, we are going to show the items from a feed in a categorized tree. 
To be able to do this, we need to create a Category class that extends BaseTreeModel.



Chapter 5

[ 123 ]

Time for action – creating a BaseTreeModel
1. Create a new class in shared.model named Category. This will hold a category 

structure in a tree, so it needs to extend BaseTreeModel.

public class Category extends BaseTreeModel {}

2. Create a constructor that takes a title and assigns a sequential ID.

public class Category extends BaseTreeModel {

  private static int ID = 0;
  
  public Category(String title) {
    set("id", ID++);
    set("title", title);
  }
}

3. Add a zero-arguments constructor, as we will be passing these objects over GWT 
RPC.

  public Category() {
    set("id", ID++);

  }

4. Add getters for ID and the title properties.

public class Category extends BaseTreeModel {

  private static int ID = 0;

  public Category() {
    set("id", ID++);
  }
  
  public Category(String title) {
    set("id", ID++);
    set("title", title);
  }

  public Integer getId() {
    return (Integer) get("id");
  }

  public String getTitle() {
    return (String) get("title");
  }
}



More Components

[ 124 ]

What just happened?
We created a BaseTreeModel to store a category structure for organizing our feed items.

We now need to change our FeedService so that it delivers only the Item objects in 
a given category.

Time for action – providing categorized items
1. In the FeedService interface, define a loadCategorisedItems method. This 

should take a feed URL String and a Category as arguments and return a List of 
Item objects.

List<ModelData> loadCategorisedItems(String feedUrl, Category 
category);

2. Create the corresponding asynchronous method in the FeedServiceAsync 
interface.

void loadCategorisedItems(String feedUrl, Category category,
      AsyncCallback<List<ModelData>> callback);

3. In the FeedServiceImpl class, implement the loadCategorisedItems method 
as follows. This method will return a List of Item objects in a category if a 
Category object is provided, otherwise it will return a List of Category objects.

@Override
public List<ModelData> loadCategorisedItems(String feedUrl,
    Category category) {
  List<Item> items = loadItems(feedUrl);
  Map<String, List<Item>> categorisedItems = new HashMap<String, 
List<Item>>();
  for (Item item : items) {
    String itemCategoryStr = item.getCategory();
    if (itemCategoryStr==null) {
      itemCategoryStr = "Uncategorised";
    }
    List<Item> categoryItems = categorisedItems.
get(itemCategoryStr);
    if (categoryItems == null) {
      categoryItems = new ArrayList<Item>();
    }
    categoryItems.add(item);
    categorisedItems.put(itemCategoryStr, categoryItems);
  }
  if (category == null) {



Chapter 5

[ 125 ]

    List<ModelData> categoryList = new ArrayList<ModelData>();
    for (String key: categorisedItems.keySet())
    {
      categoryList.add(new Category(key));
    }
    return categoryList;
  }
  else
  {
    return new ArrayList<ModelData>(categorisedItems.get(category.
getTitle()));
  }
}

What just happened?
We created a method in the feed service that returns either a list of Category objects 
or a List of Item objects contained within a specified Category.

TreeStore class
TreeStore is another implementation of the Store class we covered in the previous 
chapter. The difference is instead of storing the data as a list, as with a ListStore, the 
TreeStore stores data in a hierarchy.

Although we can add TreeModel objects to a TreeStore, it does not use the parent and 
child relationships of the TreeModel, but instead manages the relationships internally. 
When we add a TreeModel to a tree store using the add method, there is a second Boolean 
parameter that allows you to specify whether the child object of the TreeModel should also 
be added.

TreePanel class
TreePanel is the actual visual tree component. Using it is not that different 
from a ListField, as the tree parts are mostly handled for you.



More Components

[ 126 ]

When we create a new TreePanel, a TreeStore must be provided as a parameter to the 
constructor. We then need to define the name of the store's property to use as the label for 
nodes using the setDisplayProperty method.

By default a folder icon is used for nodes that have children. If we would like the leaf nodes 
(the nodes without children) to have an icon too, we can set this using the setLeafIcon 
method, which takes a GWT AbstractImagePrototype as an argument.

ImageBundle class
Tree components make use of GWT's ImageBundle features to preload the icons that are 
used for nodes in the tree. We will want to use icons in the tree components for our example 
application, so we need to define an ImageBundle. Although ImageBundle is a part of 
GWT as opposed to GXT, it is deprecated in current versions of GWT where it has been 
replaced by ClientBundle.

Time for action – using an ImageBundle
1. Create a new package in the client named resources and in that package create a 

new interface named Icons that extends ImageBundle. You will get a depreciation 
warning for ImageBundle that you will probably want to suppress.

@SuppressWarnings("deprecation")
public interface Icons extends ImageBundle {

2. Each image that is added to an ImageBundle should have a method that returns an 
AbstractImagePrototype and no parameter. The actual image file to be loaded 
is defined in a @Resource annotation.

@SuppressWarnings("deprecation")
public interface Icons extends ImageBundle {

    @Resource("rss.png")
    AbstractImagePrototype rss();

}

3. Now create a class named Resources that will be used to instantiate the Icons 
interface and make it available as a static field.

public class Resources {

  public static final Icons ICONS = GWT.create(Icons.class);
}



Chapter 5

[ 127 ]

4. Finally, place the actual image file to be loaded in the package along with the classes 
so that the package looks like this:

What just happened?
We created an ImageBundle that will allow us to use an icon within tree components.

TreeGrid class
TreeGrid is where trees and grids come together. Entries can have multiple columns like 
other grids, but a tree is also used to categorize the entries refer to the following screenshot.

As with the TreePanel, the Store used with a TreeGrid is a TreeStore and the model 
objects that are contained in the store need to extend BaseTreeModel.

In our example application, we are going to use this to group RSS items by their categories.

TreeGridCellRenderer class
The TreeGridCellRenderer is an implementation of the GridCellRenderer that we 
encountered in the previous chapter. Its function is to render a tree into a column.

We are now going to use a TreeGridCellRenderer of the first column of the grid, but it 
can be used in any column just like any other GridCellRenderer.



More Components

[ 128 ]

Time for action – replacing the Feed List with a Feed Tree
1. Create a new class named ItemCategoryGrid in the client.grids package. The 

class should extend LayoutContainer and in the constructor set the layout to be 
FitLayout.

public class ItemCategoryGrid extends LayoutContainer {

  public ItemCategoryGrid() {
    setLayout(new FitLayout());

  }
}

2. Override the onRender method and retrieve the FeedService from the 
Registry.

@Override
  protected void onRender(Element parent, int index) {
    super.onRender(parent, index);

    final FeedServiceAsync feedService = (FeedServiceAsync) 
Registry
        .get(RSSReaderConstants.FEED_SERVICE);
}

3. Create an RpcProxy that uses the loadCategorisedItems method of the 
FeedService. The loadConfig should be cast to be a Category object for 
sending to the method.

final String TEST_DATA_FILE = http://feeds.feedburner.com/
extblog

RpcProxy<List<ModelData>> proxy = new RpcProxy<List<ModelData>>() 
{
  @Override
  protected void load(Object loadConfig,
          AsyncCallback<List<ModelData>> callback) {
    feedService.loadCategorisedItems(TEST_DATA_FILE, (Category)
loadConfig, callback);
  }
};



Chapter 5

[ 129 ]

4. Create a BaseTreeLoader and override the hasChildren method so that 
it returns true if the ModelData passed to it is an instance of the Category 
BaseModel.

final TreeLoader<ModelData> loader = new BaseTreeLoader<ModelData>
(proxy)
{
  @Override
  public boolean hasChildren(ModelData parent){
    if (parent instanceof Category)
    {
      return true;
    }
    else
    {
      return false;
    }
  }
};

5. Create a TreeStore that uses the TreeLoader.

final TreeStore<ModelData> feedStore = new 

TreeStore<ModelData>(loader);

6. Create a ColumnConfig for the title that uses the TreeGridCellRenderer to 
render the column as a tree.

ColumnConfig title = new ColumnConfig("title", "Title", 200);
    title.setRenderer(new TreeGridCellRenderer<ModelData>());  

7. Define a description ColumnConfig and add it together with the title 
ColumnConfig to a new instance of ColumnModel.

ColumnConfig description = new ColumnConfig("description",
        "Description", 200);

    ColumnModel columnModel = new ColumnModel(Arrays. 
      asList(title));

8. Define a TreeGrid that uses the feed store and ColumnModel, auto expand the 
description model, and set the icon to use as the leaf node to the RSS icon we 
defined earlier.

TreeGrid<ModelData> treeGrid = new TreeGrid<ModelData>(feedStore,
        columnModel);
treeGrid.setBorders(true);
treeGrid.setAutoExpandColumn("title");
treeGrid.getStyle().setLeafIcon(Resources.ICONS.rss());



More Components

[ 130 ]

9. Call the load method of the TreeLoader and add TreeGrid to the underlying 
LayoutContainer.

loader.load();
add(treeGrid);

10. In the RssMainPanel class change the Grid that is added from ItemGrid to 
ItemCategoryGrid.

public RssMainPanel() {
 setHeading("Main");
 setLayout(new FitLayout());
 add(new ItemCategoryGrid());
}

11. Now start the application and you will see the TreeGrid with the items organized 
by category.

 

What just happened?
We replaced the Grid with a TreeGrid, which allows us to categorize feeds using a  
TreeGridCellRenderer.



Chapter 5

[ 131 ]

Advanced grid features
In the previous chapter, we introduced grid controls. However, we only looked at the most 
basic of Grid features. Grids are very powerful and there are many options for expanding 
and customizing them. Let's look at some of the requirements that we may come across and 
how grid features can help.

HeaderGroupConfig class
Suppose we wanted to compare the population of Eastern European countries in the year 
2000 with the population in 1950 in a grid, we could display them like this:

Country 1950 Population (000's) 2000 Population (000's)

Belarus 7745 10054

Bulgaria 7251 8006

Czech Republic 8925 10224

Hungry 9338 10215

Or we could group the columns like this:

Country Population (000's)

1950 2000

Belarus 7745 10054

Bulgaria 7251 8006

Czech Republic 8925 10224

Hungry 9338 10215

We can do the same in a GXT Grid.

To create the columns, we need to perform the following steps:

1. Create ColumnConfig for each column.

2. Add each one to a list.

3. Use that list to create a ColumnModel.

final List<ColumnConfig> columns = new ArrayList<ColumnConfig>();
ColumnConfig column = new ColumnConfig("countryName", 
"Country",100);
columns.add(column);
column = new ColumnConfig("population1950", "1950 Population 
(000's)",130);



More Components

[ 132 ]

columns.add(column);
column = new ColumnConfig("population2000", "2000 Population 
(000's)",130);
columns.add(column);
final ColumnModel columnModel = new ColumnModel(columns); 

4. This will produce columns like these:

To group the columns, we need to simply add a new object called a HeaderGroupConfig.

HeaderGroupConfig headerGroupConfig = new HeaderGroupConfig(
        "Population (000's)", 1, 2);

The arguments in creating the HeaderGroupConfig are the title of the grouped column 
followed by the number of rows to merge and the number of columns to merge respectively.

Now we can use the addHeaderGroup method of the ColumnModel to use this 
HeaderGroupConfig, specifying the row and column to apply it to.

columnModel.addHeaderGroup(0, 1, headerGroupConfig););

The columns will now be grouped like this:

AggregationRowConfig class
Another thing we may want to do is add summary rows to a grid. We can create aggregation 
rows using an AggregationRowConfig to create summary data.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 5

[ 133 ]

Aggregation rows can summarize data in the following ways, defined by  
SummaryType constants.

SummaryType Constant Description

SummaryType.SUM Total of the values in the column

SummaryType.AVG Average of the values in the column

SummaryType.MIN Minimum value in a column

SummaryType.MAX Maximum value in a column

SummaryType.COUNT Number of values

Here is an example of an aggregation row that is being used to provide totals for the 
population columns:

To produce this, we would need to do the following:

 � Create a new AggregationRowConfig:

AggregationRowConfig<Statistic>> totals = new AggregationRowConfig
<Statistic>();

 � Create a label for the row using the setHtml method:

totals.setHtml("countryName", "Total");



More Components

[ 134 ]

 � For each column, if we want to display the total population,we need to set a 
SummaryType.

totals.setSummaryType("population1950", SummaryType.SUM);
totals.setSummaryType("population2000", SummaryType.SUM);

 � For each column we also need to define a NumberFormat in order for the total to 
be displayed. Alternatively, we could also use an AggregationRenderer. We must 
use one of these or else the total will be blank:

totals.setSummaryFormat("population1950", NumberFormat.
getDecimalFormat());  
totals.setSummaryFormat("population2000", NumberFormat.
getDecimalFormat());

 � Then add the AggregationRowConfig to the column model.

columnModel.addAggregationRow(totals);

Paging
Paging is another useful feature of GXT. This allows us to present grid data in multiple pages 
rather than a single long list. This allows for quicker load times and a more responsive 
application. GXT supports remote and local paging. Remote paging is when the client makes 
multiple requests to a custom backend to retrieve a subset of data items rather than all 
items. It is beyond the scope of this book. However, we can introduce the feature by looking 
at local paging, which is where we load all the data into a store but display in multiple pages 
in the grid.

For example, we could decide that we would like to display our data in pages of four items 
like this:



Chapter 5

[ 135 ]

PagingLoadResult interface
To use paging, the data supplied must be in the form of a PagingLoadResult. This is an 
extension to the ListLoadResult interface that provides additional functions for getting 
and setting both the total number of available items and the offset from which the page of 
items is being returned.

PagingLoadConfig class
The PagingLoadConfig class is used to encapsulate the parameters required for retrieving 
a page of information, specifically the offset, to start returning data from and the limit, the 
number of items to return.

We will now create a new method in the feed service of the example application that returns 
a PagingLoadResult of Item objects.

Time for action – providing paged data
1. In the FeedService interface, define a second loadItems method. This one 

should take a PagingLoadConfig object as well as the feed URL String as 
arguments and return a PagingLoadResult of Item objects.

PagingLoadResult<Item> loadItems(String feedUrl, final 
PagingLoadConfig config);

2. Create the corresponding asynchronous method in the FeedServiceAsync 
interface.

void loadItems(String feedUrl, PagingLoadConfig config,
      AsyncCallback<PagingLoadResult<Item>> callback);

3. In the FeedServiceImpl class, create a new private method named 
getPagingLoadResult that take a List of Item objects and a 
PagingLoadConfig as parameters. The purpose of this function is to take the full 
list of Item objects and return the page requested in the PagingLoadConfig.

private PagingLoadResult<Item> getPagingLoadResult(List<Item> 
items, PagingLoadConfig config) {}

4. Create a new List of Item objects to use to return, retrieve the offset from the 
PagingLoadConfig and the limit from the size of the full list of items.

List<Item> pageItems = new ArrayList<Item>();
int offset = config.getOffset();
int limit = items.size();



More Components

[ 136 ]

5. Check that the end point for the page specified in the PagingLoadConfig is not 
greater than the number of Item objects available and if so set the limit to the 
lower number.

if (config.getLimit() > 0) {
  limit = Math.min(offset + config.getLimit(), limit);
}

6. Add the subset of the Item objects required to the list of Item objects in order 
to build the page.

for (int i = config.getOffset(); i < limit; i++) {
      pageItems.add(items.get(i));
}

7. Create a new BasePagingLoadResult of Item object to return, specifying the 
List of Item objects for the page and the offset and the total number of Item 
objects available.

return new BasePagingLoadResult<Item>(pageItems, offset,
        items.size());

8. Finally, implement the new loadItems method such that it loads all the Item 
objects and then retrieves and the correct PagingLoadResult form from the 
getPagingLoadResult method.

@Override
public PagingLoadResult<Item> loadItems(String feedUrl,
    PagingLoadConfig config) {
  List<Item> items = loadItems(feedUrl);
  return getPagingLoadResult(items, config);
}

What just happened?
We implement a method in the FeedService that retrieves a PagingLoadResult of Item 
objects for use with paging components.

When using paging, a paging implementation of both a DataProxy and a Loader must be 
used to move the correct subset of the data into the store.

PagingModelMemoryProxy class
PagingModelMemoryProxy is a special DataProxy that takes a set of data, specified in 
the constructor and is used to hold the data ready to be loaded with a PagingLoader.



Chapter 5

[ 137 ]

PagingLoader class
PagingLoader takes the data provided by PagingModelMemoryProxy specified in the 
constructor and loads the correct subset into the store. It is created like this:

PagingLoader<PagingLoadResult<ModelData>> loader = new BasePagingLoade
r<PagingLoadResult<ModelData>>(proxy);

To kick things off, we need to load the initial data (in this case 4) items starting from item 0.

loader.load(0, 4);   

A normal ListStore can then be used with the loader to store the cache of the data for 
the current page of the Grid.

PagingToolBar class
PagingToolBar is a predefined ToolBar that provides the controls for moving forward 
and backward through the pages of a Grid. It also shows the current range of items that 
are being displayed and also the total number of items.

As the PagingToolBar controls the data that a PagingLoader loads, it needs to be bound 
to the PagingLoader and added to the underlying panel.

toolBar.bind(loader);
add(toolBar);

To allow for paging, the FeedService needs to return a subset of the available Item 
objects based on a PagingLoadConfig.

We will now create a paging grid for the example application.

Time for action – creating a paging grid
1. Take a copy of the ItemGrid class and rename the copied class to 

ItemPagingGrid.

2. Currently, there is an RpcProxy that calls the non-paging loadItems method to 
retrieve a List of Item objects. Replace this with a call to the paging loadItems 
method that returns a PagingListResult of Item objects.

RpcProxy<PagingLoadResult<Item>> proxy = new RpcProxy<PagingLoadRe
sult<Item>>() {
  @Override



More Components

[ 138 ]

  protected void load(Object loadConfig,
      AsyncCallback<PagingLoadResult<Item>> callback) {
    feedService.loadItems(TEST_DATA_FILE, (PagingLoadConfig) 
loadConfig, callback);
  }
};

3. Replace the ListLoader and the ListLoadResult with the paging equivalents.

PagingLoader<PagingLoadResult<Item>> loader = new BasePagingLoader
<PagingLoadResult<Item>>(
        proxy);

4. Define a constant for the page size of 10.

private static final int PAGE_SIZE = 10;

5. Create a new PagingToolBar using the PAGE_SIZE constant as the page size and 
bind the toolbar to the loader.

final PagingToolBar toolBar = new PagingToolBar(PAGE_SIZE);
    toolBar.bind(loader);

6. Instead of adding the Grid directly to the underlying LayoutContainer, create 
a new ContentPanel and add the Grid and the PagingToolBar to it. Then add 
this ContentPanel to the underlying LayoutContainer.

ContentPanel panel = new ContentPanel();
panel.setLayout(new FitLayout());
panel.add(grid);
panel.setHeaderVisible(false);
panel.setBottomComponent(toolBar);
add(panel);

7. In the RssMainPanel class, change to ItemCategoryGrid to the new 
ItemPagingGrid.

add(new ItemPagingGrid());

8. Start the application and the item grid will now be paged.



Chapter 5

[ 139 ]

What just happened?
We created a version of our ItemGrid that supports paging. This allows us to deal with 
a larger list of Item objects in pages. This reduces the initial load time for feed items and 
reduces the memory requirements of the application in the web browser.

Menus and toolbars
GXT provides the types of toolbars and menus that users have come to expect  
in desktop applications.



More Components

[ 140 ]

Menu component
Menu is a very flexible component that can be displayed as a context menu in relation to 
other widgets, using the show method.

Menu contextMenu = new Menu();
contextMenu.add(new MenuItem("Option 1"));
contextMenu.add(new MenuItem("Option 2"));
contextMenu.add(new MenuItem("Option 3"));
Label label = new Label("Menu appears here");
contextMenu.show(label);

A Menu can be added to a Button to provide an additional option:

Menu contextMenu = new Menu();
contextMenu.add(new MenuItem("Option 1"));
contextMenu.add(new MenuItem("Option 2"));
contextMenu.add(new MenuItem("Option 3"));
Button button = new Button("Menu");
button.setMenu(contextMenu);

.

When a menu has many items, a maximum height can be specified using the setMaxHeight 
method and the menu becomes scrollable.

Menu contextMenu = new Menu();
for (int i = 1; i < 100; i++) {
  contextMenu.add(new MenuItem("Option " + i));
}
contextMenu.setMaxHeight(200);

Button button = new Button("Menu");
button.setMenu(contextMenu);



Chapter 5

[ 141 ]

MenuBar component
Menu components can be collected together in a MenuBar, which again is very familiar to 
the users of desktop applications. Here we need to wrap a Menu in a MenuBarItem before 
adding it to a MenuBar.

Menu menu1 = new Menu();
menu1.add(new MenuItem("Option 1"));
menu1.add(new MenuItem("Option 2"));
menu1.add(new MenuItem("Option 3"));
    
Menu menu2 = new Menu();
menu2.add(new MenuItem("Option 4"));
menu2.add(new MenuItem("Option 5"));
menu2.add(new MenuItem("Option 6"));

MenuBar menuBar = new MenuBar();
menuBar.add(new MenuBarItem("Menu 1", menu1));
menuBar.add(new MenuBarItem("Menu 2", menu2));
  
viewport.add(menuBar);



More Components

[ 142 ]

MenuItem component
Menus act as a container for MenuItem objects that perform the actual functions of the 
Menu. They can have text, an icon, or both. The icon can either be set from a CSS style or 
from an ImageBundle.

Menu menu1 = new Menu();
menu1.add(new MenuItem("Option 1",Resources.ICONS.page()));
menu1.add(new MenuItem("Option 2",Resources.ICONS.page()));
menu1.add(new MenuItem("Option 3",Resources.ICONS.page()));

A Menu can be set as a submenu of a MenuItem using the setSubMenu method to produce 
nested menus.

Menu menu1 = new Menu();
menu1.add(new MenuItem("Option 1",Resources.ICONS.page()));
menu1.add(new MenuItem("Option 2",Resources.ICONS.page()));
        
Menu menu2 = new Menu();
menu2.add(new MenuItem("Option 4"));
menu2.add(new MenuItem("Option 5"));
menu2.add(new MenuItem("Option 6"));

MenuItem miOption3 = new MenuItem("Option 3");
miOption3.setSubMenu(menu2);
menu1.add(miOption3);



Chapter 5

[ 143 ]

CheckMenuItem component
CheckMenuItem components extend MenuItem components to provide checkable 
menu items.

Menu menu = new Menu();
menu.add(new CheckMenuItem("Option 1"));
menu.add(new CheckMenuItem("Option 2"));
menu.add(new CheckMenuItem("Option 3"));
    
MenuBar menuBar = new MenuBar();
menuBar.add(new MenuBarItem("Menu", menu));

CheckMenuItem components also can be grouped together to provide a radio button style 
group, where only one of the items in the group can be selected at one time. This is achieved 
by defining a group for each CheckMenuItem.

Menu menu = new Menu();
CheckMenuItem checkMenuItem1 = new CheckMenuItem("Option 1");
CheckMenuItem checkMenuItem2 = new CheckMenuItem("Option 2");
CheckMenuItem checkMenuItem3 = new CheckMenuItem("Option 3");
checkMenuItem1.setGroup("options");
checkMenuItem2.setGroup("options");
checkMenuItem3.setGroup("options");
menu.add(checkMenuItem1);
menu.add(checkMenuItem2);
menu.add(checkMenuItem3);
    
MenuBar menuBar = new MenuBar();
menuBar.add(new MenuBarItem("Menu", menu));



More Components

[ 144 ]

MenuEvent class
MenuEvent is the event that is created when a MenuItem is selected. It is the equivalent of 
the ButtonEvent, which is triggered when a Button is pressed.

MenuItem objects can have SelectionListener objects assigned to respond to a 
MenuEvent again in the same way as Button components.

Here is what a SelectionListener looks like when it is added to a MenuItem:

MenuItem menuItem = new MenuItem("Option1");
menuItem.addSelectionListener(new SelectionListener<MenuEvent>(){
  @Override
  public void componentSelected(MenuEvent ce) {
    //Action goes here
  }
});

Have a go hero – add a menu
Currently, we have two buttons in the RssNavigationPanel—Create feed and Link feed. 
Replace these buttons with a MenuBar that could perform the same functions and add the 
MenuBar to the RssNavigationPanel so that it looks like the next screenshot:

 



Chapter 5

[ 145 ]

Solution:

  public RssNavigationPanel() {
    setHeading("Navigation");
    setLayout(new FitLayout());
    
    Menu menu = new Menu();

    final MenuItem miCreateFeed = new MenuItem("Create feed");
    miCreateFeed.setIconStyle("create-feed");
    
    ToolTipConfig createNewToolTipConfig = new ToolTipConfig();
    createNewToolTipConfig.setTitle("Create a new RSS feed");
    createNewToolTipConfig
        .setText("Creates a new RSS feed");
    miCreateFeed.setToolTip(createNewToolTipConfig);
    miCreateFeed.addSelectionListener(new 
SelectionListener<MenuEvent>() {
      @Override
      public void componentSelected(MenuEvent me) {
        createNewFeedWindow();
      }
    });
    menu.add(miCreateFeed);
      
    final MenuItem miLinkFeed = new MenuItem("Link feed");
    miLinkFeed.setIconStyle("link-feed");
    menu.add(miLinkFeed);
    
    ToolTipConfig linkFeedToolTipConfig = new ToolTipConfig();
    linkFeedToolTipConfig.setTitle("Link to existing RSS feed");
    linkFeedToolTipConfig
        .setText("Allows you to enter the URL of an existing RSS feed 
you would like to link to");
    miLinkFeed.setToolTip(linkFeedToolTipConfig);
        
    final LinkFeedPopup addFeedPopup = new LinkFeedPopup();
    addFeedPopup.setConstrainViewport(true);
    miLinkFeed.addSelectionListener(new SelectionListener<MenuEvent>() 
{
      @Override
      public void componentSelected(MenuEvent me) {
          addFeedPopup.show(miLinkFeed.getElement(), "tl-bl?");
      }
    });



More Components

[ 146 ]

    
    MenuBar menuBar = new MenuBar();
    MenuBarItem menuBarItem = new MenuBarItem("Add feed", menu);
    menuBar.add(menuBarItem);
        
    setTopComponent(menuBar);
    
    add(new FeedList());
}

ToolBar component
ToolBar is a component that goes beyond what you can do with simple buttons or menus. 
At present, in our example application, we are adding buttons to the RssNavigationPanel 
and ContentPanel using the addButton method and they are being placed in the default 
button location.

However, we can use a ToolBar to provide richer functions. With a ToolBar we are not 
just limited to buttons but can add other components such as a ComboBox or Label. In fact, 
most control components can be used in a ToolBar.

A ContentPanel provides a placeholder in which toolbars can be added at the top as well 
as the bottom of the panel.

To tidy up our Create Feed and Import Feed buttons, we are going to add a ToolBar with 
an Add Feed Button and create a submenu, which will perform the functions previously 
performed by the individual buttons.

Time for action – adding a toolbar
1. In the RssNavigatorPanel, create a new method named initToolbar

private void initToolbar() {

2. In the initToolbar method, create a new ToolBar component.

final ToolBar toolbar = new ToolBar();

3. Create an Add feed button, and assign an icon and a tooltip.

final Button btnAddFeed = new Button("Add feed");
btnAddFeed.setIconStyle("create-feed");

ToolTipConfig addFeedToolTipConfig = new ToolTipConfig();
addFeedToolTipConfig.setTitle("Add a new RSS feed");
addFeedToolTipConfig.setText("Adds a new RSS feed");
btnAddFeed.setToolTip(addFeedToolTipConfig);



Chapter 5

[ 147 ]

4. Create a new Menu component.

Menu menu = new Menu();

5. Create a new menu item for Create feed and assign the SelectionListener to 
perform the same function as the Create feed button and add to the Menu.

final MenuItem miCreateFeed = new MenuItem("Create feed");
miCreateFeed.setIconStyle("create-feed");
    
ToolTipConfig createNewToolTipConfig = new ToolTipConfig();
createNewToolTipConfig.setTitle("Create a new RSS feed");
createNewToolTipConfig
        .setText("Creates a new RSS feed");
miCreateFeed.setToolTip(createNewToolTipConfig);
miCreateFeed.addSelectionListener(new 
SelectionListener<MenuEvent>() {
  @Override
  public void componentSelected(MenuEvent me) {
    createNewFeedWindow();
  }
});
menu.add(miCreateFeed)add;

6. Do the same for Link feed:

final MenuItem miLinkFeed = new MenuItem("Link feed");
miLinkFeed.setIconStyle("link-feed");

ToolTipConfig linkFeedToolTipConfig = new ToolTipConfig();
linkFeedToolTipConfig.setTitle("Link to existing RSS feed");
linkFeedToolTipConfig
        .setText("Allows you to enter the URL of an existing RSS 
feed you would like to link to");
miLinkFeed.setToolTip(linkFeedToolTipConfig);
        
final LinkFeedPopup addFeedPopup = new LinkFeedPopup();
addFeedPopup.setConstrainViewport(true);
miLinkFeed.addSelectionListener(new SelectionListener<MenuEvent>() 
{
  @Override
  public void componentSelected(MenuEvent me) {
    addFeedPopup.show(miLinkFeed.getElement(), "tl-bl?");
    }
});
menu.add(miLinkFeed);



More Components

[ 148 ]

7. Now add the menu to the Add feed button using the setMenu method.

btnAddFeed.setMenu(menu);  

8. Add the Add feed button to the toolbar.

toolbar.add(btnAddFeed);

9. Use setTopComponent to add the ToolBar to the underlying Container's top 
placeholder.

setTopComponent(toolbar);

10. Finally, modify the constructor of RssNavigationPanel to remove the existing 
buttons, and to add a button call the initToolBar method so that it looks like this:

public RssNavigationPanel() {
  setHeading("Navigation");
  setLayout(new FitLayout());
  initToolbar();
  add(new FeedList());
}

11. Now start the application and it will now have a ToolBar with an Add feed button 
and a Menu with Create new feed and Link feed options.



Chapter 5

[ 149 ]

What just happened?
We created a ToolBar with a single button that in turn had a menu, which replaced the 
functions of our Create feed and Import feed buttons.

TabPanel class
The TabPanel class extends Container and acts as a container for displaying and managing 
TabItem objects. TabItem objects can be added and removed using the add and remove 
methods respectively.  TabItem objects have an id what can be used with the findItem 
method to retrieve a TabItem. An existing TabItem can be selected and the selected TabItem 
retrieved by using the setSelectedItem and getSelectedItem methods respectively. 

TabItem class
The TabItem class extends LayoutContainer and add the ability to be closed, disabled and 
to have an icon displayed in their heading when used in conjunction with a TabPanel. A closable 
TabItem with and icon set looks like this:

We shall be making use of tabs in Chapter 7.

Status component
Status is a component usually used with a ToolBar for creating a status bar similar to 
those seen in desktop applications.

The best way to demonstrate it is to add one to our example applications. It will not do much 
at the moment, but we will use it in later chapters.

Time for action – adding a Status component
1. In RssMainPanel, change the Grid added in the constructor back to ItemGrid.

2. Create a new ToolBar at the end of the current constructor.

ToolBar toolBar = new ToolBar();



More Components

[ 150 ]

3. Create a new Status component and set its width to 150 px.

Status status = new Status();
status.setWidth(150);

4. Use the setBox method of the Status component to display the status with an 
indented border and set the text of the Status to OK.

status.setBox(true);
status.setText("OK");

5. Add the status to the ToolBar and then set the ToolBar to be the bottom 
component of the underlying ContentPanel.

toolBar.add(status);
setBottomComponent(toolBar);

6. Start the application and the ToolBar with its status will be below the Grid.

What just happened?
We added a ToolBar to our application that included a Status component. 
At the moment, it just displays OK, but in the future we will make more use of it.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 5

[ 151 ]

Pop quiz – matching the component with the definition
In this chapter, we have again covered a lot of components. Match the feature with the 
component that best matches in the following two lists:

1. Menu

2. Status

3. ToolBar

4. MenuEvent

5. CheckMenuItem

6. PagingLoader

7. HeaderGroupConfig

8. TreeGridCellRenderer

9. BaseTreeModel

10. ImageBundle

a. Extends BaseModel to add parent-child relationship management

b. Can appear on its own or in a MenuBar

c.  A menu item with CheckBox or RadioBox functionality

d. Used to display a Grid column as a tree

e. Loads subsets of a dataset into a store.

f. Used to merge header columns or rows.

g. Interface that allows a set of images to be preloaded

h. Can contain Button, ComboBox, and other components

i. Is the Menu equivalent of ButtonEvent

j. Can display text in an indented box in a ToolBar

Summary
In this chapter, we have covered some of the more advanced data display and navigation 
components in GXT. We first looked at the TreePanel and saw how TreeGrid provided 
similar tree functions in a grid. We then went on to look at some of the more advanced  
grid features. Finally, we looked at toolbars and menus and how they can better organize 
user interaction.

In the next chapter, we will be looking at how to present data more creatively using GXT's 
template features.





6
Templates

In this chapter, we look at templates and how they can be used to easily format 
and display data in a highly customizable way. We also introduce the more 
powerful features of XTemplates.

Specifically, we will cover the following:

 � Template

 � XTemplate

 � RowExpander

 � ListView

 � ModelProcessor

 � CheckBoxListView

In previous chapters, we looked at automatically populating data-backed components using 
ModelData objects. This involved using a specific field from the ModelData object as a 
selectable value or as the value of a column.

What if we wanted to display more than one field? For example, what if we had a 
ModelData object with the first name and last name fields, but wanted to display 
the full name.

GXT has thought of this and provided two solutions. The first is a ModelProcessor that 
pre-processes ModelData to define additional fields. We will look at ModelProcessor 
later in this chapter. The other option is to use a Template.

First, however, we need to make some additions to the backend services to add more  
fields to the Feed and Item classes. These new fields will be used in this chapter.



Templates

[ 154 ]

Time for action – adding to the Feed and Item
1. In the Feed class, define two new fields, namely, a String to hold an image URL 

and a List of Item objects to hold the items for the feed:

private String imageUrl;
private List<Item> items = new ArrayList<Item>();

2. Add getters and setters for the newly created fields:

public String getImageUrl() {
  return imageUrl;
}

public List<Item> getItems() {
  return items;
}

public void setImageUrl(String imageUrl) {
  this.imageUrl = imageUrl;
}

public void setItems(List<Item> items) {
  this.items = items;
}

3. In the Item class, add getters and setters for new fields to hold publication data and 
the URL for a thumbnail:

public Date getPubDate() {
  return get("pubDate");
}

public String getThumbnailUrl()
{
  return get("thumbnailUrl");
}

public void setPubDate(Date pubDate) {
  set("pubDate", pubDate);
}
  
public void setThumbnailUrl(String thumbnailUrl) {
  set("thumbnailUrl", thumbnailUrl);
}



Chapter 6

[ 155 ]

4. In the FeedService class, modify the definition of the loadFeedList method, so 
that there is a parameter to specify if the items should also be loaded:

List<Feed> loadFeedList(boolean loadItems);

5. Modify the loadFeedList method in the FeedServiceAsync method to match:

void loadFeedList(boolean loadItems, AsyncCallback<List<Feed>>  
  callback);

6. Modify the loadFeedList method to include the loadItems parameter as 
defined in the interface and pass that parameter to the call to the loadFeed 
method:

@Override
public List<Feed> loadFeedList(boolean loadItems) {
  feeds.clear();
  Set<String> feedUrls = persistence.loadFeedList();
  for (String feedUrl : feedUrls) {
    feeds.put(feedUrl, loadFeed(feedUrl, loadItems));
  }
  return new ArrayList<Feed>(feeds.values());
}

7. In the FeedServiceImpl class, modify the loadFeed method to include the 
new loadItems parameter. If the loadItems is true, load the feed’s items into 
the items field of the Feed object:

private Feed loadFeed(String feedUrl, boolean loadItems) {
  Feed feed = new Feed(feedUrl);
    …
    feed.setLink(eleChannel.getChildText("link"));
    if (loadItems) {
      feed.setItems(loadItems(feedUrl));
    }
  …
}}

8. Also retrieve any image available in the RSS feed XML, and if it exists, extract the 
URL of the image and use it to set the imageUrl field of the Feed object:

Element eleImage = eleChannel.getChild("image");
  feed.setImageUrl("");
  if (eleImage != null) {
    Element eleUrl = eleImage.getChild("url");
    if (eleUrl != null) {
      feed.setImageUrl(eleUrl.getText());
    }
  }



Templates

[ 156 ]

9. Similarly, in the loadItems method, extract any thumbnail from the item in 
the RSS feed XML. Also extract any publication date and use this data to set the 
thumbnailUrl and the pubDate fields of the Item object respectively:

Namespace ns =  
  Namespace.getNamespace("media","http://search.yahoo.com/mrss/");
Element eleThumbnail = eleItem.getChild("thumbnail", ns);
if (eleThumbnail != null) {     
  item.setThumbnailUrl(eleThumbnail.getAttributeValue("url"));
}
String pubDateStr = eleItem.getChildText("pubDate");
if (pubDateStr != null) {
try {
  DateFormat df = new SimpleDateFormat("EEE', 'dd' 'MMM' 'yyyy'  
  'HH:mm:ss' 'Z");
  item.setPubDate(df.parse(pubDateStr));
} catch (ParseException e) {
  item.setPubDate(null);
}        }

10. Modify the addExistingFeed method so that the loadFeed method returns 
the feeds without the items loaded:

@Override
public void addExistingFeed(String feedUrl) {
  Feed loadResult = loadFeed(feedUrl, false);
  if (loadResult.getTitle() != null) {
    feeds.put(feedUrl, loadResult);
    persistence.saveFeedList(feeds.keySet());
  }
}

11. In the FeedList class, modify the call to the loadFeedList method of the 
FeedService to include a false parameter as we don’t want to load the items 
in this case:

protected void load(Object loadConfig, AsyncCallback<List<Feed>> 
  callback) {
  feedService.loadFeedList(false, callback);
}

What just happened?
We modified the Feed class, Item class, and FeedService. We can now retrieve a Feed 
object with the Item objects loaded. The Feed object now contains an URL to an image, if 
available. The Item object also contains an URL to a thumbnail and a publication date 
is available.



Chapter 6

[ 157 ]

Template class
A Template is a class for generating HTML fragments that define how to render a 
ModelData or Params item as an HTML string. Templates are strings with placeholders 
for fields to be added.

To define a placeholder to insert a field into a string, we simply insert the field name 
surrounded by curly brackets. Creating a Template that uses fields named firstName 
and lastName would look like this:

Template template = new Template("My full name is {firstName}  
  {lastName}.");

We can then define data with firstName and lastName fields like this:

Params data = new Params();
data.set("firstName", "Daniel");
data.set("lastName", "Vaughan");

We can apply the template to the data using the applyTemplate method of the 
Template object:

template.applyTemplate(data);

The applyTemplate method will then return a string that incorporates this data. 
In this case, that would be:

My full name is Daniel Vaughan.

Templates also can be pre-compiled, which reduces the overhead from using regular 
expressions. This is achieved by calling the compile method of the Template object.

In our example application, we have an Item ModelData object. It would be useful to 
create a new component named ItemPanel that takes an object and renders it to HTML. 
A Template is the ideal tool for achieving this. In this case, we are going to use the output 
of the Template to populate the value of a GWT HTML widget.

We are now going to create the ItemPanel.

Time for action – creating the ItemPanel
1. Create a new class in the client.components package named ItemPanel that 

extends ContentPanel:

public class ItemPanel extends ContentPanel {

2. Create a new instance of the GWT HTML widget:

private final HTML html = new HTML();



Templates

[ 158 ]

3. Override the onRender method, setting the title to Item and adding the HTML 
widget to the underlying ContentPanel:

@Override
protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  setHeading("Item");
  add(html);
}

4. We want the ContentPanel to be filled with the HTML widget, so set the layout 
of the underlying ContentPanel to FitLayout. We also want the HTML widget 
to inherit  a CSS style, so set the style of the html to item:

@Override
protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  setHeading("Item");
  setLayout(new FitLayout());
  html.setStylePrimaryName("item");
  add(html);
}

5. We now need to construct our template string. Remember that a Template takes 
a standard String, so we can build it using a standard Java StringBuilder. Note 
that we are inserting fields into the template string by surrounding field names with 
curly brackets. For convenience, we put this in a method named getTemplate:

private String getTemplate() {
    StringBuilder sb = new StringBuilder();
    sb.append("<h1>{title}</h1>");
    sb.append("<p><i>{pubDate}</i></p>");
    sb.append("<hr/>");
    sb.append("<img src=\"{thumbnailUrl}\"/>");
    sb.append("<p>{description}</p>");
    return sb.toString();
  }

6. We can now create a public method named displayItem. This will take an Item 
object as a parameter. The underlying JavaScript object of the Item retrieved 
using the Util.getJsObject method will then be used as an argument to the 
applyTemplate method of the Template used to generate the relevant HTML 
string. This in turn will be used as the HTML for the HTML widget:

public void displayItem(Item item)
{



Chapter 6

[ 159 ]

  setHeading(item.getTitle());
  Template template = new Template(getTemplate());
  html.setHTML(template.applyTemplate(Util.getJsObject(item, 1)));
}

7. Now we need to add style definitions for rendering the Item objects. Create a new 
style sheet in the war\css folder named item.css. In RSSReader.html, add a 
reference to this new stylesheet in the head section of the HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF- 
  8">
<link type="text/css" rel="stylesheet" href="RSSReader.css">
<link type="text/css" rel="stylesheet" href="css/item.css">
<link type="text/css" rel="stylesheet" href="gxt/css/gxt-all.css">
<title>RSSReader</title>
</head>

8. In the item.css stylesheet, define styles for the h1, img, and hr elements. As the 
HTML widget is defined to inherit the item style, this will enable us to define styles 
just for rendering Item objects. Add the styles to the stylesheet as follows:

.item h1 {
  font-size: 1.5em;
}

.item img {
  border: 1px solid #000;
  float: left;
  margin-right: 10px;
}

.item hr {
  border-bottom: 1px solid #000;
}

9. We now need to create a test Item object to try out the ItemPanel. In the client 
package, create a new class named TestObjects and implement it as follows: 

public class TestObjects {

  public static Item getTestItem()
  {



Templates

[ 160 ]

    Item testItem = new Item();
    testItem.setTitle("Computers get more powerful");
    testItem
      .setDescription("New computers are more powerful than the  
        computers that were around a year ago. They are also much  
        more powerful than the computers from five years ago. If  
        you were to compare current computers with the computers  
        of twenty years ago you would fine they are far more  
        powerful.");
    testItem.setLink("http://www.example.com/item573.html");
    testItem.setPubDate(new Date());
    testItem.setCategory("Category");
    testItem
      .setThumbnailUrl("http://www.danielvaughan.com/gxt- 
        book/examples/images/computers.jpg");
    return testItem;
  }
  
}

10. In the main RSSReader class, comment out the following line and add the new 
lines to put the ItemPanel in place of the RssMainPanel and call the displayItem 
method of the ItemPanel with the Item retrieved from the TestObjects class:

//RssMainPanel mainPanel = new RssMainPanel();
ItemPanel mainPanel = new ItemPanel();
mainPanel.displayItem(TestObjects.getTestItem());

11. Start the application and you will see the Item object rendered as follows:



Chapter 6

[ 161 ]

What just happened?
We created an ItemPanel in the example application. This uses a Template to render 
the data in a given Item object into HTML.

Using a Template with other components
As well as producing standalone HTML, a Template can be used with other components 
to define HTML with embedded fields. Specifically, a Template can be used with a 
ListField, a ComboBox, or ToolTipConfig.

When used with a ListField or ComboBox, the Template defines the appearance of each 
list item. For example, instead of a single field being displayed in a ListField as we have 
seen before, we can use a Template to combine both multiple fields and HTML.

As a ListField and ComboBox have multiple ModelData items to display, the Template 
needs to be applied to each one. 

Templates have a special <tpl> tag, and this provides a for function to iterate through each 
item in a list and apply a template to it. We will cover <tpl> functions in more detail when 
we move onto XTemplate. 

For the time being, we will modify the FeedList class in our example application to 
display both the name and part of the description fields of a Feed object, instead of 
just the name field. Although we are using a ListField, the same principle also applies 
to ComboBox components.

Time for action – using a Template with a ListField
1. First, we need to create a getTemplate method that returns the Template 

content as a string in our FeedList class: 

private String getTemplate()
{

}

2. In the template string, we need to use the <tpl> to process each of the data 
objects in the store:

  private String getTemplate() {
    StringBuilder sb = new StringBuilder();  
    sb.append("<tpl for=\".\">"); 
    sb.append("</tpl>");
    return sb.toString();
  } 



Templates

[ 162 ]

3. We can now define the actual template to display. Both ListField and ComboBox 
items require a div with the CSS class x-combo-list-item to function. In this 
case, we are defining the entry in the list to be made up of the title of the feed in 
bold, followed by the value of the description field:

  private String getTemplate() {
    StringBuilder sb = new StringBuilder();  
    sb.append("<tpl for=\".\">"); 
    sb.append("<div class='x-combo-list-item'><b>{title}</b> - 
      {description}</div>"); 
    sb.append("</tpl>");
    return sb.toString();
  } 

4. Now we add a call to the setTemplate method of the ListField in place of the 
call to setDisplayField in the onRender method of the FeedList class:

protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  ...
  feedList.setStore(feedStore);
  feedList.setTemplate(getTemplate());
  loader.load();
  ...
}

5. On starting the application, you will notice that the formatting of the ListField 
now has the title in bold and a part of the description for each feed:



Chapter 6

[ 163 ]

What just happened?
We modified the FeedList class to use a Template, so that it now shows the title of the 
Feed in bold and part of the description, instead of the title alone.

XTemplate class
A Template is useful, but the XTemplate class is even more useful. An XTemplate is like 
a Template on steroids. An XTemplate performs the same functions as a Template, but 
adds a number of other useful capabilities.

As well as creating HTML templates that can contain field values like a normal Template, 
an XTemplate allows for basic programmatic functions to be defined using more custom 
template <tpl> tags.

For the following examples, let's first define a ModelData class named Person as follows:

public class Person extends BaseModel {
  
  public Person(String firstName,String lastName) {
    set("firstName", firstName);
    set("lastName", lastName);
  }
}

The for function
First of all, let's look at the for function we used in the previous example in more detail.

First, we will define a list of two people named friends:

List<Person> friends = Arrays.asList(new Person("Fred", "Bloggs"),  
  new Person("John", "Smith"));

The tpl tag and the for operator can be used to move through the array of friends and 
apply a template block to each one. The "." specifies that the template should process each 
element of the provided list of Person objects:

<tpl for=".">
  <p>{firstName} {lastName}</p>
</tpl>



Templates

[ 164 ]

When applied, the template can produce a list of names of the two people in the  
friends list:

Fred Bloggs

John Smith

Let's create a new Person object and define a friends field that contains the friends 
list we previously defined:

Person person = new Person("Daniel", "Vaughan");
person.set("friends", friends);

Now we can process the person and then process the friends using a template like this to 
apply a template to the person object and a template block to each person object in the 
friends field:

<p>{firstName} {lastName}'s friends:</p>
<ul>
<tpl for="friends">
  <li>{firstName} {lastName}</li>
</tpl>
</ul>

To produce the following:

Daniel Vaughan's friends:

 � Fred Bloggs

 � John Smith

When using templates in the Java code, it makes sense to define the HTML in its own 
method, as the templates get more complex like this:

private String getTemplate() {
  StringBuilder sb = new StringBuilder();
  sb.append("<p>{firstName} {lastName}'s friends</p>");
  sb.append("<ul>");
  sb.append("<tpl for=\"friends\">");
  sb.append("<li>{firstName} {lastName}</li>");
  sb.append("</tpl>");
  sb.append("</ul>");
  return sb.toString();
}



Chapter 6

[ 165 ]

The template can then be created and applied like this:

XTemplate xTemplate = XTemplate.create(getTemplate());
String html = template.applyTemplate(Util.getJsObject(person, 2));

Note that the Util.getJsObject returned the underlying JavaScript object of the 
person ModelData object. The second parameter is the number of levels of child 
objects to incorporate. 

The if function
The tpl tag also has an if function for conditional processing.

Let's add an age field to the Person class:

public class Person extends BaseModel {
  
  public Person(String firstName,String lastName, int age) {
    set("firstName", firstName);
    set("lastName", lastName);
    set("age", age);
  }
}

Now let's define a person with friends again and include ages this time:

List<Person> friends = Arrays.asList(new Person("Fred", "Bloggs",  
  20), new Person("John", "Smith", 40));
Person person = new Person("Daniel", "Vaughan", 30);
person.set("friends", friends);

We can use a tpl tag if function to restrict the list of friends to those over 30:

<p>{firstName} {lastName}'s friends over 30:</p>
<ul>
<tpl for="friends">
  <tpl if="age &gt; 30">
    <li>{firstName} {lastName}</li>
  </tpl>
</tpl>
</ul>

Note that we must encode the greater than > operator as &gt; in order for it to work.



Templates

[ 166 ]

The following operators are available:

Comparison Operator Note

Equals == If testing a string 

Greater than > Encode > as &gt;

Less than < Encode < as &lt;

Not Equals !=

When applied as before, the result will be a list containing only the friend over 30;  
John Smith:

Daniel Vaughan's friends over 30:

 � John Smith

There is no else function available in tpl tags. If that functionality is needed, we can use 
the inverse of the if statement.

We can use fields in if comparison statements. For example, instead of saying friends over 
30 to produce the above, we can say friends older than the person's age. We use the parent 
variable to refer to a ModelData object's parent, which will produce the same result as the 
previous example:

<p>{firstName} {lastName}'s friends over {age}:</p>
<ul>
<tpl for="friends">
  <tpl if="age &gt; parent.age">
    <li>{firstName} {lastName}</li>
  </tpl>
</tpl>
</ul>

Warning: When creating your model elements, avoid using hyphens in the field 
names. This is because when used with a tpl function such as if, the hyphen 
will be interpreted as a minus sign between two fields and evaluation will fail. 
Therefore, use camel case when your fields consist of two names, for example, 
firstName instead of first-name.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 6

[ 167 ]

Special built-in template variables
There are also a number of build template variables that can be used:

Template variable Description

{#} Special field which will auto number each item.

parent The parent of the value in scope

values The values in the current scope

{[ … ]} Anything enclosed in this way will be treated as executable code

xindex The current index of an array being looked at in a for statement 
(1-based)

xcount The length of the array that is being looped in a for statement

fm An alias for the format function

Basic math function support
It is also possible to perform basic math functions on fields in templates.

For example, if we wanted to add 1 to a field named age, we would simply add it to the 
template as {age+1}.

If we wanted to use a template to display friends older than the person and show how many 
years older they were, we could do this:

<p>{firstName} {lastName}'s friends over {age}:</p>
<ul>
<tpl for="friends">
  <tpl if="age &gt; parent.age">
    <li>{firstName} {lastName} ({age}-{parent.age} years older)</li>
  </tpl>
</tpl>

Inline code execution
We can go even further by creating member functions within templates for more complex 
functions, but that is out of the scope of this beginner's guide.



Templates

[ 168 ]

Using an XTemplate
An XTemplate can be used to process the values displayed in several components. 
In addition to being able to be used in ComboBox and ListField like a Template, 
an XTemplate can be used with the following components, some of which will be 
explained below:

 � RowExpander

 � ListView

 � CheckBoxListView

 � ColorPalette

The RowExpander class
An XTemplate can be used to style a column of a Grid. The RowExpander class extends the 
ColumnConfig class we covered in Chapter 5. As a result, it is defined in a similar way to a 
ColumnConfig and can be added to a ColumnModel in the same way.

When a RowExpander is added to a Grid, it appears as a column containing a small + 
button like the one shown on the far right in the screenshot:

When the button is clicked on, the row expands to show more information, as defined by an 
XTemplate like this:



Chapter 6

[ 169 ]

In order for a RowExpander to take effect, however, we must remember to add it to the 
Grid, specifically using the addPlugin method.

When used, the content defined in the XTemplate associated with the RowExpander is 
applied to all the rows of the column automatically. We do not have to use the tpl for tag 
as with a ListField.

We will now create a new version of our example application's ItemGrid that makes use of 
a RowExpander to display data.

Time for action – using a RowExpander
1. In the onRender method of the ItemGrid, create a new XTemplate after the 

last column definition. The actual template is an image with the src being the 
value of the thumbnailUrl field of the Item object followed by the value of the 
description field. Since the actual template string is only one line, it makes sense 
to enter it directly as a parameter to the create method of the XTemplate:

XTemplate xTemplate = XTemplate
  .create("<img class=\"left\" src=\"{thumbnailUrl}\"  
    height=\"49px\"/><p>{description}</p>");

2. Next, create a new RowExpander instance and set the Template to be the 
XTemplate that we have just defined:

RowExpander rowExpander = new RowExpander();
rowExpander.setTemplate(xTemplate);

3. Now add the RowExpander to the grid's columns in the same way that you would 
add a normal ColumnConfig:

columns.add(rowExpander);

4. Also add the RowExpander to the Grid as a plugin to allow it to work:

grid.addPlugin(rowExpander);

5. In the RSSReader class, remove the ItemPanel code we added earlier and 
uncomment the commented code to reinstate RssMainPanel as mainPanel:

RssMainPanel mainPanel = new RssMainPanel();



Templates

[ 170 ]

6. When you now start the application, you will notice that all the item rows in the 
ItemGrid can be expanded to show further details:

What just happened?
We added a RowExpander to the ItemGrid to allow rows to be expanded to give 
more details.

The ListView class
ListView allows for the custom display of a list of data using an XTemplate object. This is 
a very flexible component as it lets us control exactly how the data is displayed, whether as 
icons, a grid, a list, or whatever else we can construct with a combination of XTemplates 
and CSS.

To demonstrate how a ListView can work, we are going to create a ListView that renders 
a list of Feed objects as a list of boxes.



Chapter 6

[ 171 ]

Time for action – creating a Feed overview ListView
1. Create a new class in the client.lists package named FeedOverviewView that 

extends LayoutContainer:

public class FeedOverviewView extends LayoutContainer {

2. Define a ListView field:

private ListView<BeanModel> listView = new ListView<BeanModel>();

3. Override the onRender method of the LayoutContainer and add a DataProxy, 
DataReader, and Loader to populate a feedStore in the same way as we did in 
the FeedList class:

  @Override
  protected void onRender(Element parent, int index) {
    super.onRender(parent, index);

    final FeedServiceAsync feedService = (FeedServiceAsync)  
      Registry
        .get(RSSReaderConstants.FEED_SERVICE);

    RpcProxy<List<Feed>> proxy = new RpcProxy<List<Feed>>() {
      @Override
      protected void load(Object loadConfig,
        AsyncCallback<List<Feed>> callback) {
          feedService.loadFeedList(false, callback);
      }
    };
    BeanModelReader reader = new BeanModelReader();

    ListLoader<ListLoadResult<BeanModel>> loader = new  
      BaseListLoader<ListLoadResult<BeanModel>>(
        proxy, reader);

    ListStore<BeanModel> feedStore = new  
      ListStore<BeanModel>(loader);
    loader.load();
}



Templates

[ 172 ]

4. Now define a getTemplate method that returns the string to use to generate an 
XTemplate. In this case, we are applying it to all feed objects in the list and only 
adding an image if the imageUrl is not blank, using a tpl if function:

private String getTemplate() {
  StringBuilder sb = new StringBuilder();
  sb.append("<tpl for=\".\">"); 
  sb.append("<div class=\"feed-box\">");
  sb.append("<h1>{title}</h1>");
  sb.append("<tpl if=\"imageUrl!=''\">");
  sb.append("<img class=\"feed-thumbnail\" src=\"{imageUrl}\"  
    title=\"{title}\">");
  sb.append("</tpl>");
  sb.append("<p>{description}</p>");
  sb.append("</div>");
  sb.append("</tpl>");
  return sb.toString();
}

5. Returning to the onRender method, set the store of the ListView and then set the 
template using the string obtained from the getTemplate method:

listView.setStore(feedStore);
listView.setTemplate(getTemplate());

6. Then add the ListView to the underlying LayoutContainer:

add(listView);

7. We now need to add a few styles to the war\items.css stylesheet to control 
how the template is rendered. The style div.feed-box defines a box that acts as 
a container for a feed and img.feed-thumbnail defines the size of the image to 
display, if any:

div.feed-box {
  float: left;
  margin: 5px;
  padding: 5px;
  border: 1px solid black;
  width: 200px;
  height: 120px;
  text-align: center;
}

img.feed-thumbnail {



Chapter 6

[ 173 ]

  width: 100px;
  height: 100px;
}

8. In the RssMainPanel class, add a new instance of FeedOverviewView in the 
place of the existing ItemGrid:

add(new FeedOverviewView());

9. The result is a ListView of feeds that looks like this:

What just happened?
We used a ListView to create a custom rendering of our feed list using XTemplates and 
CSS. However, it is not perfect, because one of the descriptions is too long, and we will 
address that next.

The ModelProcessor class
The ModelProcessor class provides a way to pre-process model data using templates 
before it is passed to a data component. It does not change the actual values of fields in 
the model data object. Rather, it allows us to create new fields containing the result of 
formatting the data, which can be processed in the same way as normal fields.



Templates

[ 174 ]

For example, one of the descriptions of a feed in the ListView we just built for our example 
application is too long and spills out of the box. What we can do is abbreviate the description 
using GXT's Format.ellipse method. This abbreviates a string to a defined number of 
letters and then adds three dots at the end to show that this has happened.

As a ModelProcessor is built into the ListView, pre-processing model data involves 
overriding the prepareData function of the ListView, and that is what we will do now. 
We are going to create shorter versions of both the title and the description fields.

Time for action – pre-processing model data
1. In the onRender method of the FeedOverviewView, override the prepareData 

method of the ListView:

listView = new ListView<BeanModel>() {
  @Override
  protected BeanModel prepareData(BeanModel feed) {
    return feed;
  }
}; 

2. This will return just the feed without modifications. We now need to add a new field 
to the feed object named shortTitle containing the content of the title field, 
abbreviated to 50 characters:

listView = new ListView<BeanModel>() {
  @Override
  protected BeanModel prepareData(BeanModel feed) {
    feed.set("shortTitle", Format.ellipse((String)  
      feed.get("title"), 50));
    return feed;
  }
}; 

3. We then need to create a shortDescription field from the description field, 
but this time abbreviated to 100 characters:

listView = new ListView<BeanModel>() {
  @Override
  protected BeanModel prepareData(BeanModel feed) {
    feed.set("shortTitle", Format.ellipse((String)  
      feed.get("title"), 50));
    feed.set("shortDescription", Format.ellipse((String)  
      feed.get("description"), 100));
    return feed;
  }
}; 



Chapter 6

[ 175 ]

4. Now we can modify the template defined in the getTemplate method to use the 
shortTitle and shortDescription fields instead of title and description:

private String getTemplate() {
  StringBuilder sb = new StringBuilder();
  sb.append("<tpl for=\".\">"); 
  sb.append("<div class=\"feed-box\">");
  sb.append("<h1>{title}</h1>");
  sb.append("<tpl if=\"imageUrl!=''\">");
  sb.append("<img class=\"feed-thumbnail\" src=\"{imageUrl}\" 
    title=\"{shortTitle}\">");
  sb.append("</tpl>");
  sb.append("<p>{shortDescription}</p>");
  sb.append("</div>");
  sb.append("</tpl>");
  return sb.toString();
}

5. The offending long description field has now been abbreviated so that it neatly 
fits into the box:

What just happened?
We used the ModelProcessor built into ListView to create two new abbreviated fields 
for use in the ListView.

Item selectors
You may notice that the items in the FeedOverviewView are not selectable. This is 
because when we use a custom template with a component, like ListView, we must 
set an item selector. This is a block that can be selected. In this case, we will want to use  
the feed-box div. The FeedOverviewView will then make the block selectable and 
respond to selection events.



Templates

[ 176 ]

Time for action – making ListView items selectable
1. First, in the onRender method of the FeedOverviewView, we need to define the 

item selector of the ListView to be the feed-box div:

listView.setItemSelector("div.feed-box");

2. We can then add a Listener for the SelectionChange event to the ListView 
that will display the name of the feed selected in an Info box:

listView.getSelectionModel().addListener(Events.SelectionChange,  
  new Listener<SelectionChangedEvent<BeanModel>>() {
  public void handleEvent(SelectionChangedEvent<BeanModel> be) {
    BeanModel feed = (BeanModel) be.getSelection().get(0);
    Info.display("Feed selected", (String)feed.get("title"));
  }
});

3. Now start the application and select a feed from the FeedOverviewView. The 
name of the feed will be displayed in the Info box:

What just happened?
We used the setItemSelector method of the ListView to define a selectable block in 
the FeedOverviewView and added a selection listener.



Chapter 6

[ 177 ]

Have a go hero – showing item titles in the feed overview
Now we have a ListView that previews all the feeds. Modify the XTemplate of the 
FeedOverviewView so that it lists the title of the first two items in each feed as bullets 
like this:

Remember that the loadFeedList method of the FeedService now has the ability to 
load Feed objects that contain the child Item objects.

Solution:

Modified load method of the RpcProxy in the FeedOverviewView class:

RpcProxy<List<Feed>> proxy = new RpcProxy<List<Feed>>() {
  @Override
  protected void load(Object loadConfig,
      AsyncCallback<List<Feed>> callback) {
    feedService.loadFeedList(true, callback);

  }
};

Modified getTemplate method:

  private String getTemplate() {
    StringBuilder sb = new StringBuilder();
    sb.append("<tpl for=\".\">");
    sb.append("<div class=\"feed-box\">");
    sb.append("<h1>{title}</h1>");
    sb.append("<tpl if=\"imageUrl!=''\">");
    sb.append("<img class=\"feed-thumbnail\" src=\"{imageUrl}\"  
      title=\"{shortTitle}\">");
    sb.append("</tpl>");



Templates

[ 178 ]

    sb.append("<p>{shortDescription}</p>");
    sb.append("<ul>");
    sb.append("<tpl for=\"items\">");
    sb.append("<tpl if=\"xindex &lt; 3\">");
    sb.append("<li>{title}</li>");
    sb.append("</tpl>");
    sb.append("</tpl>");
    sb.append("</ul>");
    sb.append("</div>");
    sb.append("</tpl>");
    return sb.toString();
  } 

Additional CSS:

.feed-box li {
  text-align: left;
  list-style: circle inside;  
}

.feed-box ul {
  clear: both;
}

CheckBoxListView
CheckBoxListView extends ListView by adding CheckBox functionality that allows 
the selection of multiple items by checking them. It works in exactly the same way as a 
ListView, but just puts a CheckBox alongside each item in the list to allow users to 
select items.

Pop quiz – what does what?
We have covered quite a few concepts in this chapter, but can you remember what does 
what? Match the component or function with the definition:

1. Template

2. <tpl>

3. <tpl for=".">

4. <tpl if>

5. xindex

6. RowExpander

7. ListView



Chapter 6

[ 179 ]

a. Template function for conditional processing

b. The current index in a for statement

c. Basic way of generating an HTML fragment containing fields.

d. Template function that iterates through the values in scope.

e. A templated component that can be used in place of a ColumnConfig

f. Special HTML tag for enclosing template functions

g. A flexible list that uses XTemplates and CSS to display options

Summary
We have looked at templates and seen how they can be used both on their own and to 
provide more power to components we have come across before. We covered both the  
basic Template and the more powerful XTemplate. We also looked at the ListView 
that gives us a very versatile way of displaying data.

We have now built several components for our application. In the next chapter, we will  
start joining them together using GXT's model view controller functionality.





7
Model View Controller

In the previous chapters, we have mainly been dealing with individual 
components in isolation.In this chapter, we will look at GXT's Model View 
Controller framework and how it can allow components to communicate  
in larger applications 

Specifically, we will cover the following classes:

 � AppEvent

 � EventType

 � Controller

 � View

 � Dispatcher

The need for good application structure
When building an application with GXT, it is important to think carefully about how it is 
constructed. Once an application starts growing, it is easy to run into problems very quickly. 
As components get more and more inter-dependent or coupled, it becomes very difficult to 
keep track of what is going on. This leads to a potent maintenance nightmare.

A standard solution to the problem of structuring GUI applications both on the desktop and 
the Web has been to use a framework that implements a Model View Controller (MVC) 
pattern. Fortunately, GXT includes an MVC implementation, and using this can save a lot  
of headaches.



Model View Controller

[ 182 ]

The classic Model View Controller pattern

Model View Controller is a popular design pattern. It has several variations, but ultimately it 
is concerned with dividing up responsibilities into three parts:

 � Model: It holds state, data, and application logic. It provides an interface that 
allows its state to be retrieved and changed. Observers can register so that they are 
notified when the model's state changes.

 � View: This is the user interface. It responds to state changes from the model by 
requesting data and presenting it to the user. When the user interacts with the user 
interface, the view fires events that can be observed by the controller. The view 
does not normally have any knowledge of the controller.

 � Controller: The controller observes events from the view and either makes a change 
to the model or the view as a result.

The strength of this pattern is that the model does not need to know anything about the 
controller or the view, and so is not dependent on either.

The GXT Model View Controller
The GXT Model View Controller is a bit different from the class MVC pattern, but it is still 
very useful.

 � Model: It takes the form of the ModelData objects in a Store, as covered in 
previous chapters. Individual ModelData objects can be retrieved from stores 
and manipulated through their get and set methods.



Chapter 7

[ 183 ]

 � View: It organizes the UI components. As with the classic MVC pattern, data-backed 
components observe a model and respond to changes. Unlike the classic MVC 
model, components in a view can make changes to the model by loading the data 
into it. The view uses the dispatcher to fire the events that can be observed by 
the controller. GXT is designed in such a way that the view has knowledge of the 
controller as a Controller object is passed to the constructor of the View class. 
However, it is good practice for the view to not communicate with the controller 
directly, as this would break the MVC pattern.

 � Controller: The classic MVC pattern responds to events received from the view via 
the dispatcher. It can then either perform an operation on the model or forward an 
event onto a view.

 � Dispatcher: Instead of the controller observing the view directly, the view fires the 
events using the dispatcher. Dispatcher is a class with static methods that can 
be called to forward events to controllers. The controller then registers with the 
dispatcher to receive specific event types.

The AppEvent class
The messages that pass between controllers and views are instances of the AppEvent class. 
Each AppEvent object has a specific type defined by an EventType object.

Optionally, an AppEvent can contain a payload of one or more items of data by using the 
setData methods. This is useful for passing the state information. If we want to include 
more than one data object in an AppEvent, we need to pass a key as a String to allow us 
to retrieve that object later.

Another option is to use the setHistoryEvent method to set the AppEvent as a history 
event. This means that when the event is passed to the dispatcher, a history item is created 
for it. The consequence of this is that the dispatcher can be queried for a history of the 
events fired.

The EventType class
An EventType defines a custom type of Event that can be used to set the type of 
an AppEvent.

Typically, we will define each EventType a static field in an AppEvents class. 
We will now define two EventType objects for the example application.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Model View Controller

[ 184 ]

Time for action – defining application events
1. Create a new class named AppEvents in a new package named client.mvc.

events.

2. In the newly created class, define two event type fields—one named Init and the 
other Error.

public class AppEvents {
  public static final EventType Init = new EventType();
  public static final EventType Error = new EventType();
}

What just happened?
We created a class to hold our application's events and defined an Init and an Error event 
type in it.

Controller class
A Controller processes and responds to events in the application.

A Controller must register the event types it wishes to observe in its constructor. 
The registerEventTypes method is used for this and takes EventType objects 
as parameters.

Time for action – creating a controller
1. Create a new class named AppController that extends Controller in a new 

package named client.mvc.controllers.

2. In the constructor of the Controller, register to respond to both event types we 
defined in the AppEvents class.

  public AppController() {
    registerEventTypes(AppEvents.Init);
    registerEventTypes(AppEvents.Error);
  }

What just happened?
We created a Controller and registered the Init and Error EventType objects for the 
Controller to respond to.



Chapter 7

[ 185 ]

When creating a Controller, it is necessary to implement the handleEvent method. This 
method defines how the Controller will handle each EventType.

If we want to make a query about whether a Controller can handle a particular 
AppEvent, we can use the canHandle method.

There are a number of different actions that we can take as a response to an event.

 � Handle it in the controller

 � Delegate it to a child controller

 � Forward it onto a view for further action

 � A combination of all three

We will now implement handleEvent in our AppController.

Time for action – handling events
1. In the AppController class, override the handleEvent method.

@Override
public void handleEvent(AppEvent event) {

2. At the moment, we do not need to handle any events in the Controller. We just 
want to pass all events onto the View. However, we have yet to create a View. So 
let's just define the View for now.

private View appView;

3. With the View defined, we can forward all events to the View in the handleEvent 
method.

@Override
public void handleEvent(AppEvent event) {

 forwardToView(appView, event);

}

What just happened?
We implemented the handleEvent method of the AppController so that it forwards all 
the events to the associated View. However, while running, this code will cause an error as 
we have not created a View class.



Model View Controller

[ 186 ]

The View class
The View class is the part of the GXT MVC framework that provides the user interface. 
It is responsible for displaying components and reacting to events forwarded from  
the Controller. It also responds to user actions by forwarding the AppEvents to 
the Dispatcher.

Like controllers, views are required to implement the handleEvent method. To keep the 
code tidy, it is helpful to create an on<EventType> method for each EventType.

For example, if we wanted to handle the Init EventType, we would check for the 
EventType and create and call a method named onInit.

protected void handleEvent(AppEvent event) {
  EventType eventType = event.getType();
  if (eventType.equals(AppEvents.Init)) {
    onInit(event);
  }
}

We will now create a View for our example application.

Time for action – creating a View
1. Create a new class named AppView that extends View in a new package named 

client.mvc.views

2. Create a constructor for the class which takes an AppController as an argument, 
and with this, calls the constructor of the super class.

public AppView(AppController appController) {
  super(appController);
}

3. As we are interested in both the Init and Error event types, we created two 
methods named onInit and onError.

private void onInit(AppEvent event) {}

private void onError(AppEvent event) {}

4. Now implement the handleEvent method to call the correct method based on the 
EventType of the AppEvent.

@Override
protected void handleEvent(AppEvent event) {
 EventType eventType = event.getType();



Chapter 7

[ 187 ]

 if (eventType.equals(AppEvents.Init)) {
  onInit(event);
 } else if (eventType.equals(AppEvents.Error)) {
  onError(event);
 }
}

5. Finally, we can tell the AppController and AppView about each other. We do this 
by implementing the initialize method in AppController.

@Override
public void initialize() {
  super.initialize();
  appView = new AppView(this);
}

What just happened?
We created a View and created a framework to allow it to handle events.

As we had both a View and a Controller, we used the initialize method of the 
AppController to relate AppController and AppView to each other.

Note that the Controller has a reference to the View and the View has a 
reference to the Controller. It is unusual for a View in an MVC pattern to 
have a reference to the Controller. However, this is the way GXT works.

Even though the View does have a reference to the Controller, do not 
be tempted to call the methods in the Controller directly from the View. 
Forward an AppEvent to the Dispatcher from the View and have the 
Controller observe them instead. This avoids making the View dependent 
on the Controller, or in other words, makes them loosely coupled. This 
means that it is easier to make changes to the Controller without having 
knock-on effects for the View.

Dispatcher
Dispatcher is a singleton class, a class that is limited to a single instance that is available 
across the application. It has static methods that can be used to forward AppEvent objects. 
A Controller registers with the Dispatcher to observe AppEvent objects of a specific 
EventType. When an AppEvent is dispatched all Controller objects that have registered 
to observe the EventType will be notified with the AppEvent.



Model View Controller

[ 188 ]

An event can be fired from anywhere in the application using one of the static 
forwardEvent methods of the Dispatcher. There are four convenient methods to the 
forwardEvent method that take different arguments.

forwardEvent Method Description

forwardEvent(AppEvent event)  Takes an existing AppEvent and 
forwards it to the Dispatcher.

forwardEvent(EventType eventType)  Creates a new AppEvent of 
the specified EventType and 
forwards it.

forwardEvent(EventType eventType, java.
lang.Object data) 

Creates a new AppEvent of the 
specified EventType with the 
specified data object as the payload 
and forwards it.

forwardEvent(EventType eventType, java.
lang.Object data, boolean historyEvent) 

Creates a new AppEvent of 
the specified EventType with 
the specified data object as the 
payload and allows us to create the 
AppEvent as a history event and 
forwards it.

As well as having static forwardEvent methods, the Dispatcher also has non-static 
dispatch methods that perform the same function. In fact, the static forwardEvent 
methods call the dispatch methods. The only difference is that there is not a version 
of the dispatch method that allows a history event to be created.

If the Dispatcher has multiple controllers registered, it will service them 
in the order in which they were added to the Dispatcher. When using 
multiple controllers, it may be important to be aware of this to manage 
which Controller gets to handle an AppEvent first.

Pop quiz: MVC fundamentals
In GXT's MVC implementation, which component or components do the following?

1. Dispatches AppEvents

2. Observes the Dispatcher

3. Handles events

4. Defines a type of AppEvent

5. Can forward AppEvents to the dispatcher



Chapter 7

[ 189 ]

6. Can Dispatch events

7. Can add Controllers

8. Can register to receive AppEvents of a specified EventType

a. Dispatcher

b. Controller

c. View

d. EventType

Incorporating MVC
As we are now using the GXT MVC framework, this gives us an opportunity to re-factor 
the code to make the individual components more self-contained.

In order for a Controller to start receiving events, it needs to be registered with the 
Dispatcher. This is normally done in the EntryPoint class and that is what we are 
now going to do in our example application.

Time for action – registering a Controller with the Dispatcher
1. In the onModuleLoad method of the RSSReader remove all the existing code 

apparent from the line that registers the FeedService.

public void onModuleLoad() {
Registry.register(RSSReaderConstants.FEED_SERVICE, GWT.
create(FeedService.class));

}

2. In its place, retrieve the Dispatcher instance.

public void onModuleLoad() {
 Registry.register(RSSReaderConstants.FEED_SERVICE, GWT.
    create(FeedService.class));
 Dispatcher dispatcher = Dispatcher.get();
}



Model View Controller

[ 190 ]

3. Now register the AppController with the Dispatcher

public void onModuleLoad() {
 Registry.register(RSSReaderConstants.FEED_SERVICE, GWT.
   create(FeedService.class));
 Dispatcher dispatcher = Dispatcher.get();
 dispatcher.addController(new AppController());
}

What just happened?
We registered the AppController with the Dispatcher. When the Dispatcher receives 
an AppEvent, it will check each Controller registered with it. If the AppEvent is of 
an EventType that the Controller is registered to observe, the dispatcher will call the 
handleEvent method of the Controller.

We also just removed the code that laid out the UI from the onModuleLoad method. 
Now to replace this, we are going to lay out the UI in our AppView class in response to 
an AppEvent of the Init EventType, initiated from the onModuleLoad method.

Time for action – refactoring UI setup
1. In the onModuleLoad method of the RSSReader class, use the Dispatcher to 

dispatch an event with the Init EventType.

public void onModuleLoad() {
 Registry.register(RSSReaderConstants.FEED_SERVICE, GWT.
    create(FeedService.class));
 Dispatcher dispatcher = Dispatcher.get();
 dispatcher.addController(new AppController());
 dispatcher.dispatch(AppEvents.Init);
}

2. In the AppView class, create two new instances—ContentPanel and Viewport.

private final ContentPanel mainPanel = new ContentPanel();
private final Viewport viewport = new Viewport();

3. In the onInit method of the AppView class, insert the following UI creation code, 
which is similar to the code that we removed from the onModuleLoad method.

private void onInit(AppEvent event) {
  final BorderLayout borderLayout = new BorderLayout();
  viewport.setLayout(borderLayout);

  HTML headerHtml = new HTML();



Chapter 7

[ 191 ]

  headerHtml.setHTML("<h1>RSS Reader</h1>");
  BorderLayoutData northData = new     
BorderLayoutData(LayoutRegion.NORTH,20);
  northData.setCollapsible(false);
  northData.setSplit(false);
  viewport.add(headerHtml, northData);

  BorderLayoutData centerData = new BorderLayoutData(LayoutRegion.
CENTER);
  centerData.setCollapsible(false);

  RowLayout rowLayout = new RowLayout(Orientation.VERTICAL);
  mainPanel.setHeaderVisible(false);
  mainPanel.setLayout(rowLayout);
  viewport.add(mainPanel, centerData);
}

4. Start the application now and you will only see the loading message, as we are not 
adding the Viewport. We will do this in response to a separate AppEvent.

5. In the AppEvents class, add a new event named UIReady.

public static final EventType UIReady = new EventType();

6. In the constructor of the AppController class, register the UIReady event type.

public AppController() {
  registerEventTypes(AppEvents.Init);
  registerEventTypes(AppEvents.Error);

     registerEventTypes(AppEvents.UIReady);

}



Model View Controller

[ 192 ]

7. In the AppView class, create a new method named onUIReady that adds the 
Viewport to the RootPanel.

private void onUIReady(AppEvent event) {
  RootPanel.get().add(viewport);
}

8. In the handleEvent method of AppView, respond to the UIReady EventType 
by calling the onUIReady method.

@Override
protected void handleEvent(AppEvent event) {
  EventType eventType = event.getType();
  if (eventType.equals(AppEvents.Init)) {
    onInit(event);
  } else if (eventType.equals(AppEvents.Error)) {
    onError(event);
  } else if (eventType.equals(AppEvents.UIReady)) {
    onUIReady(event);
  }
}

9. In the onModuleLoad method of the RSSReader class, dispatch a UIReady 
AppEvent.

public void onModuleLoad() {
 Registry.register(RSSReaderConstants.FEED_SERVICE, GWT.
    create(FeedService.class));
 Dispatcher dispatcher = Dispatcher.get();
 dispatcher.addController(new AppController());  
 dispatcher.dispatch(AppEvents.Init);
 dispatcher.dispatch(AppEvents.UIReady);
}

10. Start the application again. This time the Viewport will be added, but there will be 
no components on the screen.



Chapter 7

[ 193 ]

What just happened?
We moved the UI setup code from the onModuleLoad method of the EntryPoint into the 
onInit method of the AppView class. We also added the Viewport to the RootPanel in 
response to the UIReady event.

In the EntryPoint class, we dispatched an AppEvent with the Init EventType. The 
AppController handled this event by forwarding it to the AppView. AppView, in turn, 
handled the event by calling the onInit method and the basics of the UI were set up. 
What it didn't do, however, was that it did not add components to the UI.

What we can do now is that we can create a separate Controller and View to 
manage each of the main components of the application independently, starting  
with the navigation component.

 � The Controller for the navigation component will handle an Init EventType 
by forwarding the event onto the View.

 � The View for the navigation component will handle events of the Init EventType 
by forwarding an AppEvent of the type NavPanelReady to the Dispatcher. The 
data payload of the event will contain an instance of NavPanel.

 � The AppController will observe this EventType, and when one is received, 
will forward it on the AppView.

 � The AppView will handle the NavPanelReady EventType by adding the 
NavPanel contained in the events' data payload to the Viewport.

By the time that the UIReady event is dispatched by the onModuleLoad method of the 
EntryPoint class, the NavPanel will have been added to the Viewport and will display.

Time for action – creating the navigation Controller and View
1. In the AppEvents class, define a new EventType named NavPanelReady.

public static final EventType NavPanelReady = new EventType();

2. Create a new class named NavController that extends Controller in the 
package client.mvc.controllers.

public class NavController extends Controller {}



Model View Controller

[ 194 ]

3. Create a new class named NavView that extends View in the package client.
mvc.views. This view should have a constructor that takes a NavController 
object as a parameter.

public class NavView extends View {

  public NavView(NavController navController) {
    super(navController);
  }
}

4. In the constructor of NavController, register the Init EventType.

public NavController() {
  registerEventTypes(AppEvents.Init);
}

5. Define a field for a NavView instance and implement the initialize method to create 
a new instance of NavView with the NavController as the Controller.

private NavView navView;

@Override
public void initialize() {
  super.initialize();
  navView = new NavView(this);
}

6. Implement the handleEvent method so that all events are forwarded to 
the NavView.

@Override
public void handleEvent(AppEvent event) {
  forwardToView(navView, event);
}

7. Rename the existing  RssNavigationPanel class to NavPanel. Then create a new 
instance of the NavPanel in the NavView class.

private final NavPanel navPanel = new NavPanel();

8. Implement the handleEvent method so that if an event of the EventType Init is 
received, an AppEvent of the EventType NavPanelReady is dispatched with the 
NavPanel instance as the event's data.

@Override
protected void handleEvent(AppEvent event) {
  EventType eventType = event.getType();



Chapter 7

[ 195 ]

  if (eventType.equals(AppEvents.Init)) {
    Dispatcher.forwardEvent(new AppEvent(AppEvents.NavPanelReady,  
    navPanel));
  }
}

9. In the constructor of the AppController class, register the NavPanelReady 
EventType.

public AppController() {
  registerEventTypes(AppEvents.Init);
  registerEventTypes(AppEvents.Error);
  registerEventTypes(AppEvents.UIReady);
  registerEventTypes(AppEvents.NavPanelReady);
}

10. In the AppView class, create a new method named onNavPanelReady. This will 
retrieve the Component, in this case, the NavPanel from the data payload of the 
event and add it to the Viewport.

private void onNavPanelReady(AppEvent event) {
  BorderLayoutData westData = new BorderLayoutData(LayoutRegion.
WEST,
        200, 150, 300);
  westData.setCollapsible(true);
  westData.setSplit(true);
  Component component = event.getData();
  viewport.add(component, westData);
}

11. In the handleEvent method of the AppView, add a condition to call the 
onNavPanelReady method if an AppEvent of the NavPanelReady EventType 
is received.

@Override
protected void handleEvent(AppEvent event) {
  EventType eventType = event.getType();
  if (eventType.equals(AppEvents.Init)) {
    onInit(event);
  } else if (eventType.equals(AppEvents.Error)) {
    onError(event);
  } else if (eventType.equals(AppEvents.UIReady)) {
    onUIReady(event);
  } else if (eventType.equals(AppEvents.NavPanelReady)) {
    onNavPanelReady(event);
  }
}



Model View Controller

[ 196 ]

12. Finally, in the onModuleLoad method of the RSSReader EntryPoint class, 
add a new instance of the NavController to the dispatcher, taking care to 
add it after the AppController, as we want AppController to receive the 
Init AppEvent first.

public void onModuleLoad() {
  final FeedServiceAsync feedService =  
    GWT.create(FeedService.class);
  Registry.register(RSSReaderConstants.FEED_SERVICE, feedService);
  Dispatcher dispatcher = Dispatcher.get();
  dispatcher.addController(new AppController());
  dispatcher.addController(new NavController());
  dispatcher.dispatch(AppEvents.Init);
  dispatcher.dispatch(AppEvents.UIReady);
}

13. Start the application and the NavPanel will now be visible.

 

What just happened?
We created a Controller and a View for the NavPanel component, making it completely 
decoupled from the rest of the application. When the NavPanel had been created, this was 
announced using an AppEvent of an EventType the AppController had registered to 
observe. This AppEvent was forwarded to the AppView, which was able to handle the event 
by adding the NavPanel to the Viewport.

We will now do almost exactly the same for the FeedPanel component.



Chapter 7

[ 197 ]

Time for action – creating the FeedPanel Controller and View
1. In the AppEvents class, define a new EventType named FeedPanelReady.

public static final EventType FeedPanelReady = new EventType();

2. Create a new class named FeedController that extends Controller in the 
package client.mvc.controllers.

public class FeedController extends Controller {} 

3. Create a new class named FeedView that extends View in the package client.
mvc.views. This view should have a constructor that takes a FeedController 
instance as a parameter.

public FeedView(FeedController feedController) {
 super(feedController);
}

4. In the FeedController constructor, register the Init EventType.

public FeedController() {
 registerEventTypes(AppEvents.Init);
}

5. Define a field for a FeedView instance and implement the initialize method 
to create a new instance of FeedView with the FeedController as the 
Controller.

private FeedView feedView;

@Override
public void initialize() {
 super.initialize();
 feedView = new FeedView (this);
}

6. Implement the handleEvent method so that all events are forwarded to the 
FeedView.

@Override
public void handleEvent(AppEvent event) {
 forwardToView(feedView, event);
}



Model View Controller

[ 198 ]

7. Rename the existing  RssMainPanel class to FeedPanel. Then create a new 
instance of the FeedPanel in the FeedView class.

private final FeedPanel feedPanel = new FeedPanel(); 

8. In the FeedView, create a method named onInit that dispatches an AppEvent 
of the type FeedPanelReady with the FeedPanel instance as the event's data.

private void onInit(AppEvent event) {
 Dispatcher.forwardEvent(new AppEvent(AppEvents.
FeedPanelReady, feedPanel));
}

9. Implement the handleEvent method so that if an event of the Init EventType 
is received, the onInit method is called.

@Override
protected void handleEvent(AppEvent event) {
 EventType eventType = event.getType();
 if (eventType.equals(AppEvents.Init)) {

  onInit(event);
 }
}

10. In the constructor of the AppController class, register the FeedPanelReady 
EventType.

public AppController() {
 registerEventTypes(AppEvents.Init);
 registerEventTypes(AppEvents.Error);
 registerEventTypes(AppEvents.UIReady);
 registerEventTypes(AppEvents.NavPanelReady);
 registerEventTypes(AppEvents.FeedPanelReady);
}

11. In the AppView class, create a new method named onFeedPanelReady. This will 
retrieve the Component, in this case, the FeedPanel from the data payload of the 
event and add it to the Viewport.

private void onFeedPanelReady(AppEvent event) {
 RowData rowData = new RowData();
 rowData.setHeight(.5);
 Component component = event.getData();
 mainPanel.add(component, rowData);
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 7

[ 199 ]

12. In the handleEvent method of the AppView, add a condition to call the 
onFeedPanelReady method if an AppEvent of the NavPanelReady EventType 
is received.

@Override
protected void handleEvent(AppEvent event) {
 EventType eventType = event.getType();
 if (eventType.equals(AppEvents.Init)) {
  onInit(event);
 } else if (eventType.equals(AppEvents.Error)) {
  onError(event);
 } else if (eventType.equals(AppEvents.UIReady)) {
  onUIReady(event);
 } else if (eventType.equals(AppEvents.NavPanelReady)) {
  onNavPanelReady(event);
 } else if (eventType.equals(AppEvents.FeedPanelReady)) {
  onFeedPanelReady(event);
 }
}

13. Finally, in the onModuleLoad method of the RSSReader EntryPoint class, add a 
new instance of the FeedController to the Dispatcher.

public void onModuleLoad() {
 final FeedServiceAsync feedService = GWT.create(FeedService.
                                            class);
 Registry.register(RSSReaderConstants.FEED_SERVICE, 
                        feedService);
 Dispatcher dispatcher = Dispatcher.get();
 dispatcher.addController(new AppController());
 dispatcher.addController(new NavController());
 dispatcher.addController(new FeedController());
 dispatcher.dispatch(AppEvents.Init);
 dispatcher.dispatch(AppEvents.UIReady);
}

14. Start the application and the FeedPanel will now be visible.



Model View Controller

[ 200 ]

What just happened?
As with the NavPanel, we created a Controller and View for the FeedPanel 
component, and using the MVC mechanisms, allowed it to be added to the UI.

Have a go hero – creating the item Controller and View
We have just created two very similar Controller and View pairs for the NavPanel and 
FeedPanel components. Now we need the same thing for the ItemPanel component. 
Create an ItemPanelReady EventType, an ItemController, and an ItemView. Then 
register the AppController to handle the ItemPanelReady method and the AppView 
to add the ItemPanel to the Viewport as a second row of the main panel.

The objective is to have the example application showing all the three components  
as follows:

Solution:

AppEvents class:

public class AppEvents {
  public static final EventType Init = new EventType();
  public static final EventType Error = new EventType();
  
  public static final EventType UIReady = new EventType();
  
  public static final EventType NavPanelReady = new EventType();
  public static final EventType FeedPanelReady = new EventType();
  public static final EventType ItemPanelReady = new EventType();
}



Chapter 7

[ 201 ]

AppController class:

public class AppController extends Controller {

  private AppView appView;

  public AppController() {
    registerEventTypes(AppEvents.Init);
    registerEventTypes(AppEvents.Error);
    registerEventTypes(AppEvents.UIReady);
    registerEventTypes(AppEvents.NavPanelReady);
    registerEventTypes(AppEvents.FeedPanelReady);
    registerEventTypes(AppEvents.ItemPanelReady);

  }
}

RSSReader class:

public class RSSReader implements EntryPoint {

  public void onModuleLoad() {
    final FeedServiceAsync feedService = GWT.create(FeedService. 
                                         class);
    Registry.register(RSSReaderConstants.FEED_SERVICE, feedService);
    Dispatcher dispatcher = Dispatcher.get();
    dispatcher.addController(new AppController());
    dispatcher.addController(new NavController());
    dispatcher.addController(new FeedController());
    dispatcher.addController(new ItemController());

    dispatcher.dispatch(AppEvents.Init);
    dispatcher.dispatch(AppEvents.UIReady);
  }
}

ItemController class:

public class ItemController extends Controller {

  private ItemView itemView;

  public ItemController() {
    registerEventTypes(AppEvents.Init);
  }

  @Override
  public void handleEvent(AppEvent event) {



Model View Controller

[ 202 ]

    forwardToView(itemView, event);
  }

  @Override
  public void initialize() {
    super.initialize();
    itemView = new ItemView(this);
  }
}

ItemView class:

public class ItemView extends View {

  private final ItemPanel itemPanel = new ItemPanel();
  
  public ItemView(ItemController itemController) {
    super(itemController);
  }

  @Override
  protected void handleEvent(AppEvent event) {
    EventType eventType = event.getType();
    if (eventType.equals(AppEvents.Init)) {
      Dispatcher.forwardEvent(new AppEvent(AppEvents.ItemPanelReady, 
itemPanel));
    } 
  }
}

AppView class:

public class AppView extends View {

  @Override
  protected void handleEvent(AppEvent event) {
    EventType eventType = event.getType();
    if (eventType.equals(AppEvents.Init)) {
      onInit(event);
    } else if (eventType.equals(AppEvents.Error)) {
      onError(event);
    } else if (eventType.equals(AppEvents.UIReady)) {
      onUIReady(event);
    } else if (eventType.equals(AppEvents.NavPanelReady)) {
      onNavPanelReady(event);
    } else if (eventType.equals(AppEvents.FeedPanelReady)) {



Chapter 7

[ 203 ]

      onFeedPanelReady(event);
    } else if (eventType.equals(AppEvents.ItemPanelReady)) {

      onItemPanelReady(event);

  }

  private void onItemPanelReady(AppEvent event) {
    RowData rowData = new RowData();
    rowData.setHeight(.5);
    Component component = event.getData();
    mainPanel.add(component, rowData);
  }

Allowing viewing of multiple feeds
Previously, we had only displayed one feed by displaying a single ItemGrid in the 
RssMainPanel. Now we are going to use a TabPanel to manage multiple TabItem 
objects, each using an ItemGrid to display the items of a feed.

Time for action – adding tabs
1. In the FeedPanel class, create a new TabPanel field.

private final TabPanel tabPanel = new TabPanel();

2. Create a new public method named addTab that takes a TabItem as an argument. 
Set the Layout to FitLayout, the icon to the RSS icon we defined previously and 
the scroll mode to auto so that scroll bars appear if necessary.

public void addTab(TabItem tabItem) {
  tabItem.setLayout(new FitLayout());
  tabItem.setIcon(Resources.ICONS.rss());
  tabItem.setScrollMode(Scroll.AUTO);
}

3. We only want one TabItem for each feed, so if a feed already had a TabItem on 
the TabPanel, we want to switch to that; otherwise switch to the existing one.

public void addTab(TabItem tabItem) {
 tabItem.setLayout(new FitLayout());
 tabItem.setIcon(Resources.ICONS.rss());
 tabItem.setScrollMode(Scroll.AUTO);
 String tabId = tabItem.getId();
 TabItem existingTab = tabPanel.findItem(tabId, false);
 if (existingTab == null) {
  tabPanel.add(tabItem);



Model View Controller

[ 204 ]

  tabPanel.setSelection(tabItem);
 } else {
  tabPanel.setSelection(existingTab);
 }
}

4. Remove everything from the constructor apart from the setHeading and 
setLayout calls and then add the TabPanel to the underlying ContentPanel.

public FeedPanel() {
 setHeading("Main");
 setLayout(new FitLayout());
add(tabPanel);
}

What just happened?
We added a TabPanel to the FeedPanel. This means that we can now display multiple 
feeds on each of the TabItem objects in the TabPanel.

Wiring it together
We have all the components on the UI. Now we need to get them to respond to selections 
of feeds and items appropriately.

We can pass the ModelData items that are selected in the different components in the 
same way that we passed the components in the data payload of events.

 � When a user selects a Feed in the FeedList, a FeedSelected AppEvent is 
dispatched with the selected Feed as the data.

 � When the FeedSelected AppEvent is dispatched, the FeedView creates or 
switches to a tab displaying the items of the feed in an ItemGrid.

 � When a user selects an Item in the ItemGrid, an ItemSelected AppEvent is 
dispatched with the selected Item as the data.

 � When the ItemSelected AppEvent is dispatched, the ItemView renders the item 
in the ItemPanel.

 � When a tab is selected by the user, the TabSelected AppEvent is dispatched with 
the Feed the tab is displaying as data.

 � When the TabSelected AppEvent is dispatched, the FeedList will select the 
appropriate Feed.



Chapter 7

[ 205 ]

Time for action – responding to selections
1. In the AppEvents class, define the three new events.

public static final EventType FeedSelected = new EventType();
public static final EventType ItemSelected = new EventType();

2. In the onRender method of the FeedList class, create a SelectionChange 
Listener so that it forwards a FeedSelected AppEvent with the selected 
Feed attached using the Dispatcher.

feedList.addSelectionChangedListener(new SelectionChangedListener<
BeanModel>() {
  @Override
  public void selectionChanged(SelectionChangedEvent<BeanModel> 
se)   {
    Feed feed = se.getSelectedItem().getBean();
    if (feed != null) {
      Dispatcher.forwardEvent(AppEvents.FeedSelected, feed);
    }
  }
}); 

3. Register the FeedSelected EventType in the FeedController.

public FeedController() {
  registerEventTypes(AppEvents.Init);
  registerEventTypes(AppEvents.FeedSelected);
}

4. In the ItemGrid class define a new Feed field and modify the constructor so that 
it takes a Feed as a parameter and uses that to set the Feed field.

private final Feed feed;

public ItemGrid(Feed feed) {
 setLayout(new FitLayout());
 this.feed = feed;
}

5. Create a new field for the Grid and use this in place of the Grid in the 
onRender method.

private Grid<ModelData> grid;
@Override
protected void onRender(Element parent, int index) {
…

grid = new Grid<ModelData>(itemStore, columnModel);
}



Model View Controller

[ 206 ]

6. In the onRender method remove the TEST_DATA_FILE constant and in 
the call to the loadItems method of the FeedService replace the reference  
to TEST_DATA_FILE with the UUID of the Feed object.

RpcProxy<List<Item>> proxy = new RpcProxy<List<Item>>() {
 @Override
 protected void load(Object loadConfig,
   AsyncCallback<List<Item>> callback) {
  feedService.loadItems(feed.getUuid(), callback);
 }
};

7. Again in the ItemGrid class define a new resetSelection method that resets 
the selection of the underlying Grid.

public void resetSelection() {

 grid.getSelectionModel().deselectAll();

}

8. In the FeedView class, create an onFeedSelected event that creates a new 
ItemGrid using the Feed object extracted from the event and wrap it in a 
TabItem and add the TabItem to the FeedPanel.

private void onFeedSelected(AppEvent event) {
  Feed feed = event.getData();
  final ItemGrid itemGrid = new ItemGrid(feed);
  TabItem tabItem = new TabItem(feed.getTitle());
  tabItem.setId(feed.getUuid());
  tabItem.setData("feed", feed);
  tabItem.add(itemGrid);
  tabItem.addListener(Events.Select, new Listener<TabPanelEvent>() 
{
    @Override
    public void handleEvent(TabPanelEvent be) {
      itemExpanderGrid.resetSelection();
    }
  });
  tabItem.setClosable(true);
  feedPanel.addTab(tabItem);
} 



Chapter 7

[ 207 ]

9. Modify the handleEvent method so that when a FeedSelected AppEvent is 
received, the onFeedSelected method is called.

@Override
protected void handleEvent(AppEvent event) {
  EventType eventType = event.getType();
  if (eventType.equals(AppEvents.Init)) {
    onInit(event);
  } else if (eventType.equals(AppEvents.FeedSelected)) {
    onFeedSelected(event);
  }
}

10. In the onRender method of the ItemGrid class, create a SelectionChange 
Listener so that it forwards a ItemSelected AppEvent with the selected 
Item attached using the Dispatcher.

grid.getSelectionModel().addListener(Events.SelectionChange,
  new Listener<SelectionChangedEvent<Item>>() {
    public void handleEvent(SelectionChangedEvent<Item> be) {
      Item item = (Item) be.getSelection().get(0);
      Dispatcher.forwardEvent(AppEvents.ItemSelected, item);
      }
    });

11. Register the ItemSelected EventType in the ItemController.

public ItemController() {
  registerEventTypes(AppEvents.Init);
  registerEventTypes(AppEvents.ItemSelected);
}

12. In the ItemView class, create a method named onItemSelected that displays the 
Item from the ItemSelected AppEvent in the ItemPanel.

private void onItemSelected(AppEvent event) {
  Item item = (Item) event.getData();
  itemPanel.displayItem(item);
}

13. Modify the handleEvent method so that when an ItemSelected AppEvent is 
received, the onItemSelected method is called.

@Override
protected void handleEvent(AppEvent event) {
  EventType eventType = event.getType();
  if (eventType.equals(AppEvents.In it)) {



Model View Controller

[ 208 ]

    Dispatcher.forwardEvent(new AppEvent(AppEvents.ItemPanelReady, 
itemPanel));
  } else if (eventType.equals(AppEvents.ItemSelected)) {
    onItemSelected(event);
  }
}

14. Start the application, select a feed, then an item, and see how the 
FeedPanel and ItemPanel components update respectively. Please 
refer to the following screenshot:



Chapter 7

[ 209 ]

What just happened?
We have created events to pass selections between the NavPanel, FeedPanel, and 
ItemPanel components. We can now select feeds and items and have the components 
updated automatically.

Keeping things in sync 
We now need to make sure the list of feeds updates correctly when a user adds a new feed. 
We also need to make sure that the correct feed is shown as selected in the list when a user 
selects a feed tab. 

To do this we will create events that will fire when a feed is added and a tab is selected and 
make the feed list respond appropriately. 

Time for action – responding to a Feed being added
1.  In the AppEvents class, define two new EventType object named FeedAdded and 

TabSelected respectively

public static final EventType TabSelected = new EventType();
public static final EventType FeedAdded = new EventType();

2.  In the constructor of the NavController class, register the TabSelected 
EventType and 

public NavController() {
 registerEventTypes(AppEvents.Init);
 registerEventTypes(AppEvents.FeedAdded);
 registerEventTypes(AppEvents.TabSelected);
}

3.  In the FeedList class take the ListField and the ListLoader from the 
onRender method and redefine them as fields.

private final ListField<BeanModel> feedList = new 
ListField<BeanModel>();
private ListLoader<ListLoadResult<BeanModel>> loader;

4.  Define a new method named reloadFeeds that calls the load method of the 
Loader. This will reload the Feed objects into the Store.

public void reloadFeeds() {
 loader.load();
}



Model View Controller

[ 210 ]

5.  Define a second new method named selectFeed that takes a Feed object and 
uses it to select the appropriate entry in the ListField.

public void selectFeed(Feed feed)
{
 BeanModelFactory beanModelFactory = BeanModelLookup.get().
getFactory(feed.getClass());
 feedList.setSelection(Arrays.asList(beanModelFactory.
createModel(feed)));
}

6.  In the NavPanel make the FeedList defined in the constructor into a feed.  

private FeedList feedList = new FeedList();
 
 public NavPanel() {
  setHeading("Navigation");
  setLayout(new FitLayout());
  initToolbar();
  add(feedList);
 }

7.  Define selectFeed and reloadFeeds methods that expose the methods of the 
same name in the FeedList.

public void reloadFeeds()
{
 feedList.reloadFeeds();
}

public void selectFeed(Feed feed)
{
 feedList.selectFeed(feed);
}

8.  In the NavView class create an onTabSelected method that extracts the Feed 
from an AppEvent and uses it to call the selectFeed event or the NavPanel.

private void onTabSelected(AppEvent event) {
 Feed feed = (Feed) event.getData();
 navPanel.selectFeed(feed);
}

9.  Again in the NavView class create an onFeedAdded method that calls the 
reloadFeeds method of the NavPanel.

private void onFeedAdded(AppEvent event) {
 navPanel.reloadFeeds();
}



Chapter 7

[ 211 ]

10.  Now modify the handleEvent method call the onTabSelected and 
onFeedAdded methods in response to the TabSelected and FeedAdded 
EventType respectively.

@Override
protected void handleEvent(AppEvent event) {
 EventType eventType = event.getType();
 if (eventType.equals(AppEvents.Init)) {
  Dispatcher.forwardEvent(new AppEvent(AppEvents.
NavPanelReady,
    navPanel));
 } else if (eventType.equals(AppEvents.TabSelected)) {
  onTabSelected(event);
 } else if (eventType.equals(AppEvents.FeedAdded)) {
  onFeedAdded(event);
 }
}

11. In the addFeed method of LinkFeedPopup class there is a called to the 
addExistingFeed method of the FeedService. In the onSuccess method 
use the Dispatcher to forward a FeedAdded AppEvent.

@Override
public void onSuccess(Void result) {
 tfUrl.clear();
 Info.display("RSS Reader", "Feed at " + FeedUrl + " added 
successfully");
 Dispatcher.forwardEvent(AppEvents.FeedAdded);
 hide();
}

12.  Similarly in the save method of the FeedForm class, in the onSuccess method 
of the call to the saveFeed method of the FeedService, again forward  a 
FeedAdded AppEvent.  

@Override
public void onSuccess(Void result) {
 Info.display("RSS Reader", "Feed " + feed.getTitle() + " 
saved sucessfully");
 Dispatcher.forwardEvent(AppEvents.FeedAdded);
}

13.  Finally in the onFeedSelected method of the FeedView class forward a 
TabSelected AppEvent in the existing Listener.

tabItem.addListener(Events.Select, new Listener<TabPanelEvent>() {
 @Override



Model View Controller

[ 212 ]

 public void handleEvent(TabPanelEvent be) {
  itemGrid.resetSelection();
  Dispatcher.forwardEvent(new AppEvent(AppEvents. 
                TabSelected, feed));
 }
});

What just happened
We have made the FeedList automatically respond to a new feed being added by  
refreshing the list. The selected item of the list will also update in response to an  
open tab being selected.

An AppEvent does not just have to be consumed by one Controller, it can be consumed 
by multiple controllers.

For example, we want to add in a StatusToolbar component to provide the user with 
feedback on what is happening in the application. We can use a Controller and View to 
make that happen.

We want our StatusController to report when:

 � A Feed is selected

 � An Item is selected

Time for action – creating a status toolbar Controller and View
1. In the AppEvents class, define a new EventType named StatusToolbarReady.

public static final EventType StatusToolbarReady = new 
EventType();

2. Create a new class named StatusController that extends Controller in the 
package client.mvc.controllers and register it to observe the Init, Error, 
UIReady, FeedSelected, and ItemSelected events.

public class StatusController extends Controller {
{
 public StatusController() {
  registerEventTypes(AppEvents.Init);
  registerEventTypes(AppEvents.Error);
  registerEventTypes(AppEvents.UIReady);
  registerEventTypes(AppEvents.FeedSelected);
  registerEventTypes(AppEvents.ItemSelected);
 }
}



Chapter 7

[ 213 ]

3. Create a new class named StatusView that extends View in the package client.
mvc.views. This View should have a constructor that takes a StatusController 
instance as a parameter.

public class StatusView extends View {

 public StatusView(StatusController statusController) {
  super(statusController);
 }
}

4. Define two new fields one for a Status object, a second for a ToolBar and 
define a setStatus method that takes a String and uses it to set the text of 
the Status object.

private final Status status = new Status();
private final ToolBar toolBar = new ToolBar();

public void setStatus(String message) {
 status.setText(message);
}

5. Create a new onInit method that sets up the Status object, adds it to the 
ToolBar and then forwards a StatusToolbarReady AppEvent with the 
ToolBar attached.

private void onInit() {

 status.setWidth("100%");
 status.setBox(true);
 toolBar.add(status);
 Dispatcher.forwardEvent(new AppEvent(AppEvents. 
        StatusToolbarReady,toolBar));
}

6. Implement the handleEvent method to call the onInit method in response to an 
Init AppEvent and then call setStatus method to display "Init" in the ToolBar

@Override
protected void handleEvent(AppEvent event) {
 EventType eventType = event.getType();
 if (eventType.equals(AppEvents.Init)) {
  onInit();
  setStatus("Init");
 }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Model View Controller

[ 214 ]

7. In the constructor of the AppController class, register the StatusPanelReady 
EventType.

public AppController() {
 registerEventTypes(AppEvents.Init);
 registerEventTypes(AppEvents.Error);
 registerEventTypes(AppEvents.UIReady);
 registerEventTypes(AppEvents.NavPanelReady);
 registerEventTypes(AppEvents.FeedPanelReady);
 registerEventTypes(AppEvents.ItemPanelReady);
 registerEventTypes(AppEvents.StatusToolbarReady);
}

8. In the AppView class, create a new method named onStatusToolbarReady that 
adds the StatusToolbar contained in the AppEvent as the bottom component to 
the main ContentPanel.

private void onStatusToolbarReady(AppEvent event) {
 Component component = event.getData();
 mainPanel.setBottomComponent(component);
}

9. Modify the handleEvent method so that when an AppEvent of the 
StatusToolbarReady EventType is received, the onStatusToolbarReady 
method is called.

@Override
protected void handleEvent(AppEvent event) {
 EventType eventType = event.getType();
 if (eventType.equals(AppEvents.Init)) {
  onInit(event);
 } else if (eventType.equals(AppEvents.ItemPanelReady)) {
  onItemPanelReady(event);
 } else if (eventType.equals(AppEvents.StatusToolbarReady)) {
  onStatusToolbarReady(event);
 }
}

10. In the onModuleLoad method of the RSSReader EntryPoint class, add a new 
instance of the StatusController.

public void onModuleLoad() {
 Registry.register(RSSReaderConstants.FEED_SERVICE, GWT.
   create(FeedService.class));
 Dispatcher dispatcher = Dispatcher.get();
 dispatcher.addController(new AppController());
 dispatcher.addController(new NavController());



Chapter 7

[ 215 ]

 dispatcher.addController(new FeedController());
 dispatcher.addController(new ItemController());
 dispatcher.addController(new StatusController());
 dispatcher.dispatch(AppEvents.Init);
 dispatcher.dispatch(AppEvents.UIReady);
}

11. Returning to the handleEvent method of the StatusView, handle a 
FeedSelected AppEvent by extracting the Feed object from the AppEvent 
and displaying the Feed name.

@Override
protected void handleEvent(AppEvent event) {
 EventType eventType = event.getType();
 if (eventType.equals(AppEvents.Init)) {
  onInit();
  setStatus("Init");
 } else if (eventType.equals(AppEvents.FeedSelected)) {
  Feed feed = event.getData();
  setStatus("Feed Selected - (" + feed.getTitle() +  
               ")");
       }
}

12. Similarly, extract the Item object from the AppEvent and display the Item name 
when an ItemSelected AppEvent is received.

@Override
protected void handleEvent(AppEvent event) {
 EventType eventType = event.getType();
 if (eventType.equals(AppEvents.Init)) {
  onInit();
  setStatus("Init");
 } else if (eventType.equals(AppEvents.FeedSelected)) {
  Feed feed = event.getData();
  setStatus("Feed Selected - (" + feed.getTitle() +  
                ")");
 } else if (eventType.equals(AppEvents.ItemSelected)) {
  Item item = event.getData();
  setStatus("Item Selected - (" + item.getTitle() +  
                ")");
 }
}



Model View Controller

[ 216 ]

13. Run the application and you will now see a message appear in the StatusToolbar 
when a Feed or Item is selected.

What just happened?
We created an additional Controller that monitored events and reported the status 
to the user. This showed us how AppEvents can be observed by multiple controllers.

Summary
In this chapter, we saw how the GXT framework can allow us to uncouple the different 
components of the application, and instead of being dependent on each other, they can  
just respond to events.

In the next chapter, we will take the concept of independent components further, by looking 
at the portal and the drag-and-drop functionality of GXT.



8
Portal and Drag-and-Drop

This chapter covers the portal and drag-and-drop features of GXT. We will start 
by learning how to use the Portal layout and Portlet and then move on to 
making use of GXT's drag-and-drop features in a practical way.

Specifically, we will cover the following topics:

 � Portal

 � Portlet

 � Draggable

 � DragSource

 � GridDragSource

 � ListViewDragSource

 � TreeGridDragSource

 � TreePanelDragSource

 � DropTarget

 � GridDropTarget

 � ListViewDropTarget

 � TreeGridDropTarget

 � TreePanelDropTarget

 � ColumnLayout

 � RowLayout



Portal and Drag-and-Drop

[ 218 ]

Portlet class
The Portlet class extends ContentPanel to provide a special type of panel that can be 
repositioned in the Viewport by the user with a Portal container. It may appear similar 
to a window in a desktop application. Creating a Portlet is similar to creating other 
containers. This code:

Portlet portlet = new Portlet();
portlet.setHeight(150);
portlet.setHeading("Example Portlet");

creates a Portlet like this:

A Portlet can be excluded from being repositioned by pinning it using:

portal.setPinned(true);

Apart from that, a Portlet inherits all the features of a standard ContentPanel.

The Portal class
A Portal is a special container for Portlet components. In fact, it is a Container 
containing a collection of LayoutContainer components arranged using ColumnLayout. 
Each of those LayoutContainer components in turn is able to contain Portlet 
components, arranged using a RowLayout.

Portal also supports dragging and dropping of Portlet components, both in terms of 
changing the row it is in within a column and the column within the Portal.

When creating a Portal, we need to set the number of columns the Portal should 
create in the constructor. We also need to set the widths of each column before using the 
setColumnWidth method of the Portal.



Chapter 8

[ 219 ]

So to create a Portal with two columns, (one using 30 percent of the width and the second 
70 percent) we would define it as follows:

Portal portal = new Portal(2);
portal.setColumnWidth(0, 0.3);
portal.setColumnWidth(1, 0.7);

We can then add a Portlet to each column like this:

Portlet portlet1 = new Portlet();
portlet1.setHeight(150);
portlet1.setHeading("Example Portlet 1");
portal.add(portlet1, 0);

Portlet portlet2 = new Portlet();
portlet2.setHeight(150);
portlet2.setHeading("Example Portlet 2");
portal.add(portlet2, 1);

This will produce the following output:

Both Portlet components can be dragged and dropped into different positions. The 
Portlet turns into a blue box while being dragged as shown in the following screenshot:



Portal and Drag-and-Drop

[ 220 ]

A Portlet will automatically resize and fit into the column in which it is dropped, as seen in 
the next screenshot:

ToolButton
Like ContentPanel that Portlet extends, we can add ToolButton components to the 
header. These can be very useful for making a Portlet look and behave even more like 
windows in a desktop application.

portlet.getHeader().addTool(new ToolButton("x-tool-minimize"));
portlet.getHeader().addTool(new ToolButton("x-tool-maximize"));
portlet.getHeader().addTool(new ToolButton("x-tool-close"));

The output can be seen as shown in the following screenshot:

At the moment, we are using ContentPanel components in our example application and 
laying them out using a BorderLayout. We shall now see that it does not take much to 
change the ContentPanel components into Portlet components and manage them 
using a Portal.



Chapter 8

[ 221 ]

Portlet components are ideally suited to being independent, self-contained user interface 
elements that respond to the data passed to them. Rather than tying them into a Portal 
directly, we can use the MVC components to cause the Portal to respond to the creation of 
a new Portlet to preserve that independence.

Time for action – creating a Portal Controller and a Portlet View
1. The first thing we need to do is add a new EventType to the existing AppEvents 

class named NewPortletCreated. We will fire this when we create a new 
Portlet.

public static final EventType NewPortletCreated = new EventType();

2. Create a new class named PortalController that extends Controller.

public class PortalController extends Controller {

3. Create a new class named PortalView that extends View.

public class PortalView extends View {

4. Create a constructor that sets the Controller of the PortalView.

public PortalView(PortalController portalController) {
  super(portalController);
} 

5. Returning to PortalController, create a variable to hold the PortalView and 
override the initialize method to set the view.

private PortalView portalView;

@Override
public void initialize() {
  super.initialize();
portalView = new PortalView(this);
}

6. Create a constructor that registers each EventType the PortalController 
should observe, specifically NewPortletCreated creation and Error.

public PortalController() {
  registerEventTypes(AppEvents.NewPortletCreated );
  registerEventTypes(AppEvents.Error);
} 



Portal and Drag-and-Drop

[ 222 ]

7. Override the handleEvent method to forward any events to the View apart from 
errors which for the time being we will just log to the GWT log.

@Override
public void handleEvent(AppEvent event) {
  EventType eventType = event.getType();
  if (eventType.equals(AppEvents.error)) {
   GWT.log("Error", (Throwable) event.getData());
  } else {
    forwardToView(portalView, event);
  }
}

8. Returning to PortalView, create a new portal field consisting of a Portal 
component with two columns.

private final Portal portal = new Portal(2);

9. Override the initialize method to set the width of the two columns, the first to 
30 percent of the width of the Portal and the second to 70 percent.

@Override
protected void initialize() {
  portal.setColumnWidth(0, 0.3);
  portal.setColumnWidth(1, 0.7);
}

10. Now create a Viewport, set the layout to FitLayout, add the Portal, and then 
add the Viewport to GWT's RootPanel.

@Override
protected void initialize() {
  portal.setColumnWidth(0, 0.3);
  portal.setColumnWidth(1, 0.7);
  
  final Viewport viewport = new Viewport();
  viewport.setLayout(new FitLayout());
  viewport.add(portal); 
  RootPanel.get().add(viewport);
}



Chapter 8

[ 223 ]

11. We also need to implement the handleEvent method of the View. For now, we 
will catch the NewPortletCreated event, but we will not do anything with it yet.

@Override
protected void handleEvent(AppEvent event) {
  EventType eventType = event.getType();
  if (eventType.equals(AppEvents.NewPortletCreated )) {
    
  }
} 

12. Finally, go to the onModuleLoad method of the EntryPoint RSSReader class 
and instead of creating an AppController, create a PortalController, and 
remove the line that forwards an Init AppEvent, as we will not be using it. The 
onModuleLoad method will now look like this:

public void onModuleLoad() {
  final FeedServiceAsync feedService =  
        GWT.create(FeedService.class);
  Registry.register(RSSReaderConstants.FEED_SERVICE, feedService);
  Dispatcher dispatcher = Dispatcher.get();
  dispatcher.addController(new PortalController());
}

What just happened?
We created the basic framework for a Portal layout of our application. However, 
if we started it now, we would just get a blank screen. What we need to do is add  
Portlet components.

The actual Portlet components are not too complicated, as most of the work is done by 
components that we created in the previous chapters. The Portlet components will just 
act as wrappers.

Time for action – creating the Navigation Portlet 
1. Create a new class named NavPortlet that extends Portlet.

public class NavPortlet extends Portlet {

2. Create a constructor and set the heading, layout, and height of the Portlet.

public NavPortlet()
{
 setHeading("Navigation");
 setLayout(new FitLayout());
 setHeight(610);
}



Portal and Drag-and-Drop

[ 224 ]

3. In the RSSReaderConstants class, add a new constant to act as the ID for 
this Portlet.

public static final String NAV_PORTLET = "navPortlet";

4. Back in the constructor of NavPortlet, set the ID of the Portlet to be the 
NAV_PORTLET constant.

public NavPortlet()
{
  setHeading("Navigation");
  setLayout(new FitLayout());
  setHeight(610);
  setId(RSSReaderConstants.NAV_PORTLET);
}

5. Now create a new instance of the NavPanel class to provide the content of the 
Portlet. As the Portlet already has a title, hide the header of the NavPanel 
and add it to the Portlet.

public NavPortlet() {
  setHeading("Navigation");
  setLayout(new FitLayout());
  setHeight(610);
  setId(RSSReaderConstants.NAV_PORTLET);
  NavPanel navPanel = new NavPanel();
  navPanel.setHeaderVisible(false);
  add(navPanel);
}

6. We now need to tell the Portal that this new Portlet has been created. We will 
do that by forwarding an AppEvent of the NewPortletCreated EventType with 
this  Portlet as the data payload using the Dispatcher.

public NavPortlet()
{
  setHeading("Navigation");
  setLayout(new FitLayout()); 
  setHeight(610);
  setId(RSSReaderConstants.NAV_PORTLET);
  NavPanel navPanel = new NavPanel();
  navPanel.setHeaderVisible(false);
  add(navPanel);
  Dispatcher.forwardEvent(AppEvents.NewPortletCreated , this);
}



Chapter 8

[ 225 ]

7. Now we have to respond to the NewPortletCreated event in the PortalView. 
So in PortalView, create a method called onNewPortletCreated and 
implement it so that if the NavPortlet is contained in the data of the AppEvent, it 
will be added to the first column of the Portal. All the other Portlet components 
will be added to the second column.

private void onNewPortletCreated (AppEvent event) {
  final Portlet portlet = (Portlet) event.getData();
  if (portlet.getId() == RSSReaderConstants.NAV_PORTLET) {
    portal.add(portlet, 0);
  } else {
    portal.add(portlet, 1);
  }
}

8. In the handleEvent method, call the onNewPortletCreated method when an 
AppEvent with the NewPortletCreated EventType is handled.

@Override
protected void handleEvent(AppEvent event) {
  EventType eventType = event.getType();
  if (eventType.equals(AppEvents.NewPortletCreated )) {
    onNewPortletCreated (event);
  }
}

9. All we need to do now is go back to the onModuleLoad method of the RSSReader 
EntryPoint class and create a new instance of NavPortlet and the MVC events 
will take care of the rest.

public void onModuleLoad() {
  final FeedServiceAsync feedService =  
        GWT.create(FeedService.class);
  Registry.register(RSSReaderConstants.FEED_SERVICE, feedService);
  Dispatcher dispatcher = Dispatcher.get();
  dispatcher.addController(new PortalController());
  new NavPortlet();
}



Portal and Drag-and-Drop

[ 226 ]

10. Finally, start the application and you will see a Portlet complete with a list 
of feeds.

What just happened?
We have created a new navigation Portlet and constructed the framework to automatically 
add it to the Portal. With this in place, it is now straightforward to create two more portlets, 
one for displaying feeds and one for displaying items.

Time for action – creating more portlets
1. Create two new constants in RSSReaderConstants for the two new Portlet 

components we are going to create, namely, FEED_PORTLET and ITEM_PORTLET.

public static final String FEED_PORTLET = "feedPortlet";
public static final String ITEM_PORTLET = "itemPortlet"; 

2. Create a new class named FeedPortlet, extending Portlet, and build a 
constructor in the same way as we did with NavPortlet, this time setting the 
ID of the Portlet to the FEED_PORTLET constant.

public FeedPortlet() {
setHeading("Feed");
  setLayout(new FitLayout());
  setHeight(350);
  setId(RSSReaderConstants.FEED_PORTLET); 
}



Chapter 8

[ 227 ]

3. Create a new FeedPanel field, set its header to invisible in the constructor of the 
FeedPortlet, and add it to the underlying Portlet.

private final FeedPanel feedPanel = new FeedPanel();
  

public FeedPortlet()
{
  setHeading("Feed");
  setLayout(new FitLayout());
  setHeight(350);
  setId(RSSReaderConstants.FEED_PORTLET);
  feedPanel.setHeaderVisible(false);
  add(feedPanel); 
}

4. As before, tell the Portal about this new Portlet by forwarding an AppEvent of the 
NewPortletCreated EventType with the Portlet as the data payload, using 
the Dispatcher.

public FeedPortlet()
{
  setHeading("Feed");
  setLayout(new FitLayout());
  setHeight(350);
  setId(RSSReaderConstants.FEED_PORTLET);
  feedPanel.setHeaderVisible(false);
  add(feedPanel);
  Dispatcher.forwardEvent(AppEvents.NewPortletCreated, this);
}

5. Create a new class called ItemPortlet again extending Portlet and with a 
similar constructor to the other Portlet components, but this time using an 
ItemPanel as the content.

  public ItemPortlet()
  {
    setHeading("Item");
    setLayout(new FitLayout());
    setHeight(250);
    setId(RSSReaderConstants.ITEM_PORTLET);
    final ItemPanel itemPanel = new ItemPanel();
    itemPanel.setHeaderVisible(false);
    add(itemPanel);
    Dispatcher.forwardEvent(AppEvents.NewPortletCreated, this);
  }



Portal and Drag-and-Drop

[ 228 ]

6. With the new portlets defined, we can now create new instances of each in the 
onModuleLoad method of the RSSReader EntryPoint class.

public void onModuleLoad() {
  Registry.register(RSSReaderConstants.FEED_SERVICE, GWT
           create(FeedService.class));
  Dispatcher dispatcher = Dispatcher.get();
  dispatcher.addController(new PortalController());
  new NavPortlet();
  new FeedPortlet();
  new ItemPortlet();
}

7. Now start the application, and you will see that there are three Portlet 
components in the Portal.

 

What just happened?
We now have three Portlet components in our Portal. However, two are blank, and 
selecting a feed from the list will not do anything because there is nothing to pass the data 
to the other portlets. We are going to solve this in a different way by using drag-and-drop.



Chapter 8

[ 229 ]

Drag-and-drop
Drag-and-drop is another built-in feature of GXT that is useful and flexible. Like other  
GXT features, drag-and-drop is a feature common in desktop applications but unusual  
in web applications.

Many GXT components already have specific drag support, but you can extend this to any 
component you like by implementing the Draggable class.

The Draggable class
The Draggable class is used to add drag behavior to any component by providing 
a wrapper around it. For example, if we wanted to make a Button draggable, we 
would do the following:

Button dragButton = new Button("Draggable Button");
Draggable draggaable = new Draggable(dragButton);

Now the user will be able to drag the Button. The new location for the Button will be 
shown by a blue "ghost" rectangle of the Button like this:

By default, a draggable component can be dragged in any direction. However, this can be 
constrained to not allow horizontal or vertical dragging using setConstrainVertical 
and setConstrainHorizontal respectively.

Button dragButton = new Button("Draggable Button");
Draggable draggable = new Draggable(dragButton);
draggable.setConstrainVertical(true);

The DragSource class
The DragSource class identifies a component that drag and drops can be initiated from.

A DragSource is used to define the data that will be dragged during the drag-and-drop 
operation. Data can either be moved or copied from the source component. As this setting  
is only set when the data reaches the target, a DragSource also needs to be able to remove 
data from the source component.



Portal and Drag-and-Drop

[ 230 ]

The data can be set using the setData method of the DragSource. When the drag starts, a 
new DNDEvent is created. Alternatively, data can be set at this point by using the setData 
method on DNDEvent itself by overriding the onDragStart method.

DragSource source = new DragSource(component) {  
  @Override  
  protected void onDragStart(DNDEvent event) {  
    event.setData(component);  
  }
};

DragSource implementations
All the data-backed controls—Grid, ListView, TreeGrid, and TreePanel—have ready-
made DragSource implementations. These support both single and multi-selection.

The implementations for each component are as follows:

Component DragSource

Grid GridDragSource

ListView ListViewDragSource

TreeGrid TreeGridDragSource

TreePanel TreePanelDragSource

The DropTarget class
DropTarget is the other end of the drag-and-drop operation. DropTarget identifies a 
component that can receive the data from a drag-and-drop operation.

A DropTarget is responsible for a number of things. The first is determining if the object 
that is dragged over it is valid for a drop and showing a visual indication. 

Data is obtained from the DropTarget by overriding the onDragDrop method and calling 
the getData method of the DNDEvent.

DropTarget target = new DropTarget(component) {
  @Override
  protected void onDragDrop(DNDEvent event) {
    super.onDragDrop(event);
    Object data = event.getData();
  }

It can also specify the DND.Operation, which is either COPY or MOVE. If it is moved (the 
default), the corresponding DragSource needs to remove the data from its component.

target.setOperation(DND.Operation.MOVE);



Chapter 8

[ 231 ]

DropTarget implementations
As with DragSource, there are specific ready-made implementations for Grid, ListView, 
TreeGrid, and TreePanel.

Component DropTarget

Grid GridDropTarget

ListView ListViewDropTarget

TreeGrid TreeGridDropTarget

TreePanel TreePanelDropTarget

Grouping sources and targets
Both DragSource and DropTarget classes can be put into groups to constrain where 
data can be dragged and dropped to. This is useful for avoiding the user dropping data  
into a component that is unable to handle data of that type.

Simply use the setGroup method with a String parameter to identify the group of 
both the DragSource and DropTarget classes to put them in the same group. Once a 
DropTarget is in a group, it will only accept data from a DragSource in the same group.

Pop Quiz – Quick Q&A
Match the description to the correct component, method, or concept.

1. Special panel that extends ContentPanel and can be repositioned in the Viewport

2. Prevents a Portlet being repositioned.

3. The two things we must do when creating a Portal.

4. Class that allows any Component to be dragged.

5. The two places source data can be set in a drag operation.

6. DragSource for Grid.

7. DropTarget for TreePanel.

8. Prevents vertical dragging.

a. Set the number of columns and the column widths

b. GridDragSource

c. Draggable

d. setPinned (true)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Portal and Drag-and-Drop

[ 232 ]

e. setData of the DragSource and setData of the DNDEvent

f. setConstrainVertical(true) 

g. Portlet

h. TreePanelDropTarget 

Using drag-and-drop
We can use drag-and-drop with the Portal layout of our example application. This will give 
an example of how to use built-in and custom DragSource and DropTarget components.

The first thing we are going to do is allow users to drag a feed from the FeedList in the 
NavPortlet. When dropped on the FeedPortlet, this will cause the items in the feed 
to be displayed in an ItemGrid.

Time for action – dragging and dropping of feeds
1. In the RSSReaderConstants class, create a new constant named FEED_DD_GROUP 

to act as an ID for the drag-and-drop group for feeds.

public static final String FEED_DD_GROUP = "feedDDGroup";

2. At the end of the onRender method of the FeedList class, create a new 
DragSource object that wraps the FeedList.

DragSource source = new DragSource(feedList);

3. Override the onDragStart method of the DragSource so that the BeanModel 
object is selected from the FeedList and is attached to the DNDEvent as data.

DragSource source = new DragSource(feedList) {
  @Override
  protected void onDragStart(DNDEvent event) {
    event.setData(feedList.getSelection());
  }
};

4. Set the group of the DragSource to FEED_DD_GROUP.

DragSource source = new DragSource(feedList) {
  @Override
  protected void onDragStart(DNDEvent event) {
    event.setData(feedList.getSelection());
  }
};
source.setGroup(RSSReaderConstants.FEED_DD_GROUP);



Chapter 8

[ 233 ]

5. Now in FeedPortlet, create a new method named onFeedsDropped. This should 
extract the BeanModel objects contained in the data of the DNDEvent, and with 
each of them, create a new ItemGrid for each Feed in the same way as we did in 
the FeedView.

private void onFeedsDropped(DNDEvent event) {
  List<BeanModel> beanModels = event.getData();
  for (BeanModel beanModel : beanModels) {
    Feed feed = beanModel.getBean();
    final ItemGrid itemGrid = new ItemGrid(feed);
    TabItem tabItem = new TabItem(feed.getTitle());
    tabItem.setId(feed.getUuid());
    tabItem.setData("feed", feed);
    tabItem.add(itemGrid);
    tabItem.addListener(Events.Select, new 
Listener<TabPanelEvent>() {
      @Override
      public void handleEvent(TabPanelEvent be) {
        itemGrid.resetSelection();
      }
    });
    tabItem.setClosable(true);
    feedPanel.addTab(tabItem);
  }
}

6. Override the onRender method of FeedPortlet, and in it, create a new 
DropTarget using the actual FeedPortlet itself as the target component.

protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  DropTarget target = new DropTarget(this);
}

7. Override the onDragDrop method of the DropTarget so that it passes 
the DNDEvent to the onFeedsDropped method.

protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  DropTarget target = new DropTarget(this) {
    @Override
    protected void onDragDrop(DNDEvent event) {
      super.onDragDrop(event);
      onFeedsDropped(event);
    }
  };
}



Portal and Drag-and-Drop

[ 234 ]

8. Set the operation of the DropTarget to be DND.Operation.COPY so that the 
selected feeds are not removed from the FeedList when the data is dropped.

protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  DropTarget target = new DropTarget(this) {
    @Override
    protected void onDragDrop(DNDEvent event) {
      super.onDragDrop(event);
      onFeedsDropped(event);
    }
  };
  target.setOperation(DND.Operation.COPY);
}

9. Set the group of the DropTarget to FEED_DD_GROUP, so that it is in the same 
group as the DragSource we defined earlier.

protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  DropTarget target = new DropTarget(this) {
    @Override
    protected void onDragDrop(DNDEvent event) {
      super.onDragDrop(event);
      onFeedsDropped(event);
    }
  };
  target.setOperation(DND.Operation.COPY);
  target.setGroup(RSSReaderConstants.FEED_DD_GROUP);
}

10. Start the application and drag a feed from the FeedList to the FeedPortlet 
to display the content of the feed in an ItemGrid.



Chapter 8

[ 235 ]

What just happened?
We used a DragSource together with a custom DropTarget to allow the drag-and-drop 
of the feeds to view as a list of items.

We can now implement drag-and-drop in a similar way to allow items to be dragged from 
the FeedPortlet ItemGrid to the ItemPortlet to display them.

Time for action – dragging and dropping items
1. In the RSSReaderConstants class, create a new constant named ITEM_DD_GROUP 

to act as an ID for the drag-and-drop group for items.

public static final String ITEM_DD_GROUP = "itemDDGroup";

2. At the end of the onRender method of the ItemGrid, but before the Grid is 
added, create a new GridDragSource using the Grid as the source component.

GridDragSource source = new GridDragSource(grid);

3. Set the group of the GridDragSource to ITEM_DD_GROUP.

GridDragSource source = new GridDragSource(grid);
source.setGroup(RSSReaderConstants.ITEM_DD_GROUP);  



Portal and Drag-and-Drop

[ 236 ]

4. In the constructor of the ItemPortlet class, create a DropTarget where the 
ItemPortlet is the target. 

DropTarget target = new DropTarget(this);

5. Override the onDragDrop method of the DropTarget to retrieve the list of Item 
objects and then call the displayItem method of the ItemPanel to display the 
first Item object in the list.

DropTarget target = new DropTarget(this) {
  @Override
  protected void onDragDrop(DNDEvent event) {
    super.onDragDrop(event);
    List<Item> items = event.getData();
    itemPanel.displayItem(items.get(0));
  }
};

6. Again we need to set the operation of the target to COPY to avoid removing the 
Item objects from the Grid and use setGroup to put the DropTarget in the 
same group as its DragSource. This will prevent the user from being able to 
drop a feed into the ItemPortlet.

DropTarget target = new DropTarget(this) {
  @Override
  protected void onDragDrop(DNDEvent event) {
    super.onDragDrop(event);
    List<Item> items = event.getData();
    itemPanel.displayItem(items.get(0));
  }
};
target.setOperation(DND.Operation.COPY);
target.setGroup(RSSReaderConstants.ITEM_DD_GROUP);

7. Now start the application, drop a Feed from the NavPortlet to the FeedPortlet, 
and then an Item from the FeedPortlet to the ItemPortlet.



Chapter 8

[ 237 ]

What just happened?
We implemented drag-and-drop between the FeedPortlet and the ItemPortlet. We 
now have three portlets that are completely independent and just respond to the data that 
is dragged into them.

Have a go hero – creating an overview portlet
In the previous chapter, we created a FeedOverviewView that displayed a summary icon 
for a feed. Create a new OverviewPortlet that contains the FeedOverviewView.

Modify the view so instead of loading Feed objects from the FeedService, it adds and 
renders them in the ListView when Feed objects are dragged into the OverviewPortlet.



Portal and Drag-and-Drop

[ 238 ]

Solution:

OverviewPortlet:

public class OverviewPortlet extends Portlet {

  public OverviewPortlet() {
    setHeading("Overview");
    setLayout(new FitLayout());
    setHeight(250);
    setId(RSSReaderConstants.OVERVIEW_PORTLET);
    final FeedOverviewView feedOverviewView = new FeedOverviewView();
    add(feedOverviewView);

    DropTarget target = new DropTarget(this) {
      @Override
      protected void onDragDrop(DNDEvent event) {
        super.onDragDrop(event);
        List<BeanModel> beanModels = event.getData();
        feedOverviewView.addFeeds(beanModels);
      }
    };
    target.setOperation(DND.Operation.COPY);
    target.setGroup(RSSReaderConstants.FEED_DD_GROUP);

    Dispatcher.forwardEvent(AppEvents.NewPortletCreated, this);
  }
}

Modified FeedOverviewView:

public class FeedOverviewView extends LayoutContainer {

  private final ListStore<BeanModel> feedStore = new 
ListStore<BeanModel>();
  private ListView<BeanModel> listView = new ListView<BeanModel>();
  
  public void addFeeds(List<BeanModel> feeds)
  {
    feedStore.add(feeds);
  }

  private String getTemplate() {
    StringBuilder sb = new StringBuilder();
    sb.append("<tpl for=\".\">");



Chapter 8

[ 239 ]

    sb.append("<div class=\"feed-box\">");
    sb.append("<h1>{title}</h1>");
    sb.append("<tpl if=\"imageUrl!=''\">");
    sb.append("<img class=\"feed-thumbnail\" src=\"{imageUrl}\" 
       title=\"{shortTitle}\">");
    sb.append("</tpl>");
    sb.append("<p>{shortDescription}</p>");
    sb.append("<ul>");
    sb.append("<tpl for=\"items\">");
    sb.append("<tpl if=\"xindex &lt; 3\">");
    sb.append("<li>{title}</li>");
    sb.append("</tpl>");
    sb.append("</tpl>");
    sb.append("</ul>");
    sb.append("</div>");
    sb.append("</tpl>");
    return sb.toString();
  }
  
  @Override
  protected void onRender(Element parent, int index) {
    super.onRender(parent, index);
    setScrollMode(Scroll.AUTOY);
    listView = new ListView<BeanModel>() {
      @Override
      protected BeanModel prepareData(BeanModel feed) {
        feed.set("shortTitle", Format.ellipse((String) feed
            .get("title"), 50));
        feed.set("shortDescription", Format.ellipse((String) feed
            .get("description"), 100));
        return feed;
      }
    };
    listView.setStore(feedStore);
    listView.setTemplate(getTemplate());
    listView.setItemSelector("div.feed-box");
    listView.getSelectionModel().addListener(Events.SelectionChange, 
new Listener<SelectionChangedEvent<BeanModel>>() {
      public void handleEvent(SelectionChangedEvent<BeanModel> be) {
        BeanModel feed = (BeanModel) be.getSelection().get(0);
        Info.display("Feed selected", (String)feed.get("title"));
      }
    });
    



Portal and Drag-and-Drop

[ 240 ]

    add(listView);
  }
}

Modified RSSReader:

public class RSSReader implements EntryPoint {

  public void onModuleLoad() {
    Registry.register(RSSReaderConstants.FEED_SERVICE, GWT
        .create(FeedService.class));
    Dispatcher dispatcher = Dispatcher.get();
    dispatcher.addController(new PortalController());
    new NavPortlet();
    new OverviewPortlet();
    new FeedPortlet();
    new ItemPortlet();
  }
}

Summary
We have looked at GXT's drag-and-drop features and used Portlet components to create 
components that independently respond to the data that is dragged and dropped into them.

In the next chapter, we will look at GXT's charting capabilities.



9
Charts

In this chapter, we will look at the GXT charting plugin. We will explore the wide 
range of charts available, avoid the pitfalls of the plugin, and see how we can 
use charts with existing data.

Specifically, we will cover the following classes:

 � Chart

 � ChartModel

 � ChartConfig

 � BarChart

 � CylinderBarChart

 � FilledBarChart

 � SketchBarChart

 � HorizontalBarChart

 � PieChart

 � LineChart

 � AreaChart

Charts are a bit different from the other parts of GXT. Rather than being a core part of the 
framework, they are an add-in based on Open Flash Charts 2, an LGPL Flash-based charting 
system. More information on Open Flash Charts is available here: 
http://teethgrinder.co.uk/open-flash-chart-2/.

As charts are a plug-in to GXT, several configuration steps are required to get them to work 
and these are not obvious. This means that it is easy to run into problems. Therefore, before 
we get started properly with charts, let's set up our example application step-by-step so that 
it can use them. We will also look at the error message that will appear if we miss out a step, 
as this should help if you encounter problems in your own applications.



Charts

[ 242 ]

Time for action – including the chart module
1. In the project's module file, RSSReader.gwt.xml, add a line to include the charts 

module so that it looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<module rename-to='rssreader'>
…
  <!-- Other module inherits -->
  <inherits name='com.extjs.gxt.ui.GXT' />
  <inherits name='com.extjs.gxt.charts.Chart' />
…
</module>

2. If you miss this step, you will see an error message like this:

17:47:28.468 [ERROR] [rssreader] Line 26: No source code is 
available for type com.extjs.gxt.charts.client.Chart; did you 
forget to inherit a required module?

What just happened?
We added the charts module to the example application. This includes the chart source code 
and makes charts available to the application.

The charts themselves are displayed using Flash and JavaScript. The code is contained in 
resource files and not the chart module itself. These resource files need to be included in  
the project.

Time for action – including the chart resources
1. In the resources folder of the GXT distribution, locate the chart folder and copy 

it to the project's war\gxt folder.

2. Also locate the flash folder in the resources folder and again copy it to the 
project's war\gxt folder.

3. The war folder should now look like this:



Chapter 9

[ 243 ]

4. If you forget to include the chart folder, you will get an error like this on the 
console in Eclipse:

[WARN] 404 - GET /gxt/chart/open-flash-chart.swf (127.0.0.1) 1416 
bytes

5. If you forget to include the flash folder, you will get an error like this:

18:27:08.015 [ERROR] [rssreader] Unable to load module entry point 
class  
  com.danielvaughan.rssreader.client.RSSReader (see associated 
exception for  
  details)
com.google.gwt.core.client.JavaScriptException: (TypeError): 
Cannot call  
  method 'embedSWF' of undefined
 stack: TypeError: Cannot call method 'embedSWF' of undefined

as well as the following message on the Java console:

[WARN] 404 - GET /gxt/flash/swfobject.js (127.0.0.1) 1408 bytes

What just happened?
We added the chart resources, specifically a flash file and a JavaScript library to the  
example project.

Finally, we need to load the JavaScript library.



Charts

[ 244 ]

Time for action – loading the chart JavaScript library
1. In the header of the RSSReader.html file, add a script tag that loads the JavaScript 

library for GXT's charts:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF- 
  8">
<link type="text/css" rel="stylesheet" href="RSSReader.css">
<link type="text/css" rel="stylesheet" href="css/item.css">
<link type="text/css" rel="stylesheet" href="gxt/css/gxt-all.css">
<script language='javascript' src='gxt/flash/swfobject.js'>
</script> 
<title>RSSReader</title>
</head>

2. If you forget to do this, you will again get the following error. However, you will not 
get the 404 error on the console:

18:27:08.015 [ERROR] [rssreader] Unable to load module entry point 
class  
  com.danielvaughan.rssreader.client.RSSReader (see associated 
exception for  
  details)
com.google.gwt.core.client.JavaScriptException: (TypeError): 
Cannot call  
  method 'embedSWF' of undefined
 stack: TypeError: Cannot call method 'embedSWF' of undefined:

What just happened?
We added a script tag in the example application's HTML file to load the chart  
JavaScript library.

Now that we have set up the example application to use charts, let's create  
a simple example.

Chart class
Chart is the Java class that wraps the Open Flash Chart library and allows it to be treated as 
a GXT component. It needs to be provided with an URL that corresponds with the location 
of the open-flash-chart.swf that is contained in the chart folder that we copied from 
GXT's resources. This must be correct, otherwise the chart will simply not render. No error 
will be displayed, apart from a 404 error on the console.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 9

[ 245 ]

 For example, let's say that instead of:

Chart chart = new Chart("gxt/chart/open-flash-chart.swf");

We wrote:

Chart chart = new Chart("wrong/path/open-flash-chart.swf");

We would get the message on the console:

[WARN] 404 - GET /wrong/path/open-flash-chart.swf (127.0.0.1) 1417 
bytes

As an example of using a chart, let's create a new Portlet for the example application that 
contains a chart.

Time for action – creating a chart Portlet
1. Create a container for the chart named FeedChart that extends 

LayoutContainer in a package named client.charts:

public class FeedChart extends LayoutContainer {

2. Create a new chart property using the URL for the open-flash-chart.swf file:

private final Chart chart = new Chart("gxt/chart/open-flash- 
  chart.swf");

3. Override the onRender method to use FitLayout for the container, add borders 
to the chart, and add the chart to the container:

@Override
protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  setLayout(new FitLayout());
  chart.setBorders(true);
  add(chart);
}

4. Create a new class that extends Portlet in the client.portlet package 
and name it ChartPortlet:

public class ChartPortlet extends Portlet {

5. Create a new instance of FeedChart:

private final FeedChart feedChart = new FeedChart();



Charts

[ 246 ]

6. In the constructor of the Portlet, define the title, layout, and height of the 
Portlet and set the ID to a new RSSReaderConstants named CHART_PORTLET:

public ChartPortlet()
{
  setHeading("Chart");
  setId(RSSReaderConstants.CHART_PORTLET);
  setLayout(new FitLayout());
  setHeight(250);
}

7. Add the FeedChart to the Portlet and dispatch an event to notify the application 
that the new Portlet has been created:

public ChartPortlet()
{
  setHeading("Chart");
  setId(RSSReaderConstants.CHART_PORTLET);
  setLayout(new FitLayout());
  setHeight(250);  
  add(feedChart);
  Dispatcher.forwardEvent(AppEvents.NewPortletCreated, this);
}

8. We would like the ChartPortlet to be shown in the first column of the Portal. 
We also need to modify the onAddPortlet method of the PortalView class 
to do this:

private void onAddPortlet(AppEvent event) {
  final Portlet portlet = (Portlet) event.getData();
  if (portlet.getId() == RSSReaderConstants.NAV_PORTLET 
    || portlet.getId() == RSSReaderConstants.CHART_PORTLET) {
    portal.add(portlet, 0);
  } else {
    portal.add(portlet, 1);
  }
}

9. We also need to make the height of the NavPortlet smaller to make room for 
the ChartPortlet, so change the setHeight line in the constructor of the 
NavPortlet:

public NavPortlet() {
  setHeading("Navigation");
  setLayout(new FitLayout());
  setHeight(350);
  setId(RSSReaderConstants.NAV_PORTLET);



Chapter 9

[ 247 ]

  NavPanel navPanel = new NavPanel();
  navPanel.setHeaderVisible(false);
  add(navPanel);
  Dispatcher.forwardEvent(AppEvents.NewPortletCreated, this);
}

10. In the onModuleLoad method of the RSSReader EntryPoint class, create a new 
instance of the ChartPortlet class:

public void onModuleLoad() {
  Registry.register(RSSReaderConstants.FEED_SERVICE, GWT 
    .create(FeedService.class));
  Dispatcher dispatcher = Dispatcher.get();
  dispatcher.addController(new PortalController());
  new NavPortlet();
  new FeedPortlet();
  new ItemPortlet();
  new ChartPortlet();
}

11. Start the application now and you will see the ChartPortlet displayed. But it will 
be displayed with an error from Open Flash Charts like this:

12. The reason for this is that we have not loaded any data for the chart and at this 
stage we don't want to. To avoid displaying the error, we can make the chart invisible 
before adding it to the Portlet in the onRender method of FeedChart:

  @Override
  protected void onRender(Element parent, int index) {
    super.onRender(parent, index);
    setLayout(new FitLayout());
    chart.setBorders(true);
    chart.setVisible(false);
    add(chart);
  }



Charts

[ 248 ]

13. Start the application again and you will see the empty chart Portlet without 
the error:

What just happened?
We created a chart component and displayed it using a Portlet. We then made the chart 
invisible to avoid Open Flash Charts displaying an error message, as the chart does not have 
any data.

ChartModel class
ChartModel extends BaseModel to provide a data model compatible with Open Flash 
Chart's chart model. The ChartModel is used to define the type, appearance, and data of a 
chart. This is where the work is done. A ChartModel contains one or more ChartConfig 
objects for different types of charts that can be displayed.

ChartConfig class
ChartConfig is an abstract class that again extends BaseModel. This class provides the 
base class for a number of classes that define specific chart types. The classes that extend 
ChartConfig provide a hierarchy of different chart styles.

The following diagram shows the relationships between the different chart types that  
extend ChartConfig:



Chapter 9

[ 249 ]

BarChart class
The first ChartConfig that we are going to look at is the BarChart. In its very simplest 
form, we can create a createChartModelData method as follows:

 � Create a ChartModel

 � Create a BarChart ChartConfig

 � Add values to the BarChart

 � Add the BarChart to the ChartModel

 � Return the ChartModel

private ChartModel createChartModel() {
  ChartModel chartModel = new ChartModel();
  BarChart chartConfig = new BarChart();
  chartConfig.addValues(6936,8628,41832,68376,296,10114,4693);
  chartModel.addChartConfig(chartConfig);
  return chartModel;
}



Charts

[ 250 ]

However, this will produce a chart that looks like this:

The main problem is that the values are too large for the Y axis. We can tidy this up  
as follows:

private ChartModel getChartModel() {
  ChartModel chartModel = new ChartModel("Population of Western  
    European Countries in 1950 (000's)","font- 
    size:14px;color:#000000");
  chartModel.setBackgroundColour("#ffffff");
  XAxis xAxis = new XAxis();
  xAxis.addLabels("Austria", "Belgium", "France", "Germany",  
    "Luxembourg", "Netherlands", "Switzerland");
  chartModel.setXAxis(xAxis);
  YAxis yAxis = new YAxis();
  yAxis.setRange(0, 70000, 10000);
  chartModel.setYAxis(yAxis);
  BarChart chartConfig = new BarChart();
  chartConfig.addValues(6936,8628,41832,68376,296,10114,4693);
  chartModel.addChartConfig(chartConfig);
  return chartModel;
}

Here we are:

 � Specifying a title and CSS styling information in the constructor of ChartModel.

 � Setting the background color



Chapter 9

[ 251 ]

 � Defining an XAxis and adding labels

 � Defining a YAxis and setting the range to be large enough to accommodate 
all our data

These changes produce a much more satisfactory chart. Placing the mouse on a bar causes a 
pop up showing the bar's value to be displayed:

When we create a BarChart with no parameters in the constructor, we get a default 
BarChart. However, we can pass a BarStyle parameter to display the columns with 
one of two effects:

BarChart chartConfig = new BarChart(BarStyle.THREED);



Charts

[ 252 ]

BarChart chartConfig = new BarChart(BarStyle.GLASS);

However, this is just the start. There are a number of components that extend  
BarChart to give a different look, and using them is simply a question of changing 
the chart that is created.

CylinderBarChart class
There is the CylinderBarChart:

BarChart chartConfig = new CylinderBarChart();
chartConfig.addValues(6936,8628,41832,68376,296,10114,4693);



Chapter 9

[ 253 ]

FilledBarChart class
There is the FilledBarChart that will look exactly the same as a standard BarChart 
unless we use the setOutlineColor method to set a color for an outline around each bar:

FilledBarChart chartConfig = new FilledBarChart();
chartConfig.setColour("#cc0000");
chartConfig.setOutlineColour("#660000");
chartConfig.addValues(6936,8628,41832,68376,296,10114,4693);

SketchBarChart class
There is also the more casual SketchBarChart:

BarChart chartConfig = new SketchBarChart();
chartConfig.addValues(6936,8628,41832,68376,296,10114,4693);



Charts

[ 254 ]

BarChart.Bar class
Instead of simply adding values to a BarChart to produce bars, each BarChart class has 
a Bar class that allows us to define the appearance of an individual bar in more detail. For 
example, we can define different colors for each bar:

BarChart chartConfig = new SketchBarChart();
chartConfig.addBars(new BarChart.Bar(6936, "#FF0000"));
chartConfig.addBars(new BarChart.Bar(8628, "#FFA500"));
chartConfig.addBars(new BarChart.Bar(41832, "#FFFF00"));
chartConfig.addBars(new BarChart.Bar(68376,"#008000"));
chartConfig.addBars(new BarChart.Bar(296,  "#0000FF"));
chartConfig.addBars(new BarChart.Bar(10114,"#4B0082"));
chartConfig.addBars(new BarChart.Bar(4693, "#EE82EE"));

This leads to a more colorful chart like this:

HorizontalBarChart class
HorizontalBarChart works in the same way as a standard BarChart. Of course, the 
YAxis becomes the XAxis. It is important to note that the order of the country labels needs 
to be reversed:



Chapter 9

[ 255 ]

This chart is implemented as follows:

YAxis yAxis = new YAxis();
yAxis.addLabels("Switzerland",  
  "Netherlands","Luxembourg","Germany","France","Belgium","Austria");
yAxis.setOffset(true);
chartModel.setYAxis(yAxis);
XAxis xAxis = new XAxis();
xAxis.setRange(0, 70000, 10000);
chartModel.setXAxis(xAxis);
HorizontalBarChart chartConfig = new HorizontalBarChart();
chartConfig.addValues(6936,8628,41832,68376,296,10114,4693); 

PieChart class
Moving away from BarChart variants to other charts is also straightforward. In fact, the 
only change we need to make to move from a BarChart to a PieChart is to change the 
definition of ChartConfig. It is also a good idea to define a set of colors for the PieChart 
segments using setColours:

private ChartModel getChartModel() {
  ChartModel chartModel = new ChartModel();
  PieChart chartConfig = new PieChart();
  chartConfig.setColours("#FF0000", "#FFA500", "#FFFF00", "#008000",  
    "#0000FF","#4B0082", "#EE82EE");



Charts

[ 256 ]

  chartConfig.addValues(6936,8628,41832,68376,296,10114,4693);
  chartModel.addChartConfig(chartConfig);
  return chartModel;
}

However, this is not very useful as there are no labels on the pie slices.

PieChart.Slice class
As with BarChart.Bar PieChart, slices can be individually defined using PieChart.
Slice. In this case, we can use a PieChart.Slice to define both a value and a label:

PieChart chartConfig = new PieChart();
chartConfig.setColours("#FF0000", "#FFA500", "#FFFF00", "#008000",  
  "#0000FF","#4B0082", "#EE82EE");
chartConfig.addSlices(new PieChart.Slice(6936,"Austria"));
chartConfig.addSlices(new PieChart.Slice(8628,"Belgium"));
chartConfig.addSlices(new PieChart.Slice(41832,"France"));
chartConfig.addSlices(new PieChart.Slice(68376,"Germany"));
chartConfig.addSlices(new PieChart.Slice(296,"Luxembourg"));
chartConfig.addSlices(new PieChart.Slice(10114,"Netherlands"));
chartConfig.addSlices(new PieChart.Slice(4693,"Switzerland"));



Chapter 9

[ 257 ]

LineChart class
The LineChart can be used in a similar manner:

private ChartModel getChartModel() {
  ChartModel chartModel = new ChartModel("Population of  
    Germany","font-size:14px;color:#000000");
  chartModel.setBackgroundColour("#ffffff");
  
  XAxis xAxis = new XAxis();
  xAxis.addLabels("1950","1960","1970","1980","1990","2000");
  chartModel.setXAxis(xAxis);

  YAxis yAxis = new YAxis();
  yAxis.setRange(50000, 100000, 10000);
  yAxis.setOffset(true);
  chartModel.setYAxis(yAxis);
  
  LineChart chartConfig = new LineChart();
  chartConfig.addValues(68376,72815,78169,78289,79433,82075);
  chartConfig.setText("Germany");
  chartModel.addChartConfig(chartConfig);
  return chartModel;
}

To add a separate set of data, simply create a separate ChartConfig and add it to 
the model:

LineChart germanyChartConfig = new LineChart();
germanyChartConfig.addValues(68376,72815,78169,78289,79433,82075);
germanyChartConfig.setColour("#ff0000");
germanyChartConfig.setText("Germany");
chartModel.addChartConfig(germanyChartConfig);
    



Charts

[ 258 ]

LineChart franceChartConfig = new LineChart();
franceChartConfig.addValues(41832,45674,50771,53950,56842,59128);
franceChartConfig.setColour("#000066");
franceChartConfig.setText("France");
chartModel.addChartConfig(franceChartConfig);

When using multiple datasets, the charts do not have to be of the same type. A LineChart 
and a BarChart can be displayed together, for example:

BarChart germanyChartConfig = new BarChart();
germanyChartConfig.addValues(68376,72815,78169,78289,79433,82075);
germanyChartConfig.setColour("#ff0000");
germanyChartConfig.setText("Germany");
chartModel.addChartConfig(germanyChartConfig);
    
LineChart franceChartConfig = new LineChart();
franceChartConfig.addValues(41832,45674,50771,53950,56842,59128);
franceChartConfig.setColour("#000066");
franceChartConfig.setText("France");
chartModel.addChartConfig(franceChartConfig);



Chapter 9

[ 259 ]

AreaChart class
 AreaChart extends LineChart and works in the same way. The difference is that instead 
of a single line, data is displayed as a filled area:

AreaChart germanyChartConfig = new AreaChart();
germanyChartConfig.addValues(68376,72815,78169,78289,79433,82075);
germanyChartConfig.setColour("#ff0000");
germanyChartConfig.setText("Germany");
    
AreaChart franceChartConfig = new AreaChart();
franceChartConfig.addValues(41832,45674,50771,53950,56842,59128);
franceChartConfig.setColour("#000066");
franceChartConfig.setText("France");

ScatterChart class
ScatterChart is a chart type available in GXT, but not something that is fully supported. 
We can set the data like this:

ScatterChart chartConfig = new ScatterChart();
chartConfig.addPoint(41832, 68376);
chartConfig.addPoint(45674, 72815);
chartConfig.addPoint(50771, 78169);
chartConfig.addPoint(53950, 78289);
chartConfig.addPoint(56842, 79433);
chartConfig.addPoint(59128, 82075);

However, there is no way of defining how the actual data will be rendered on the graph 
so that they do not appear until we pass the mouse over them. To use ScatterChart 
properly, we would need to extend GXT ourselves, and that is beyond the scope of this book.



Charts

[ 260 ]

StackedBarChart class
StackedBarChart also is not fully implemented in GXT at the time of writing.

Pop quiz – match the chart feature to the chart
Given the list of chart-related components, match each with the most suitable description:

1. What charting system does GXT wrap to produce charts?

2. What would cause this error?

[WARN] 404 - GET /gxt/chart/open-flash-chart.swf (127.0.0.1) 1416 
bytes

3. What would cause this error?

[WARN] 404 - GET /gxt/flash/swfobject.js (127.0.0.1) 1408 bytes

4. Which type of chart has style attributes called THREED and GLASS?

5. What class is used for defining how the vertical axis of a chart will be displayed?

6. What type of chart is this?

7. What line of code would add a color to a BarChart line?

8. What line of code would define colors for a PieChart?

a. SketchBarChart.

b. YAxis.

c. Open Flash Charts 2.



Chapter 9

[ 261 ]

d. Forgetting to include the flash resource folder in the project.

e. chartConfig.setColours("#FF0000", "#FFA500", "#FFFF00", 
"#008000",  
     "#0000FF","#4B0082", "#EE82EE");

f. chartConfig.addBars(new BarChart.Bar(6936, "#FF0000"));

g. BarChart.

h. Forgetting to include the chart resource folder in the project. 

Using a PieChart
Our example application does not display any chart data at the moment. An RSS reader 
application does not have many uses for charts, but we do have suitable data. Let's create 
a chart that takes a feed and shows a distribution of the days of the week when items were 
published, and display it as a PieChart.

Time for action – creating PieChart data
1. In FeedChart, add the following prepareData method. This is not part of the 

chart itself, but takes a list of items and counts the number of occurrences of each 
day to provide the data for use in the chart:

  private HashMap<String, Integer> prepareData(List<Item> items) {
    HashMap<String, Integer> days = new HashMap<String,  
      Integer>();
    for (Item item : items) {
      DateTimeFormat fmt = DateTimeFormat.getFormat("EEEE");
      String day = fmt.format(item.getPubDate());
      Integer dayOccurance = days.get(day);
      if (dayOccurance == null) {
        days.put(day, 1);
      } else {
        days.put(day, ++dayOccurance);
      }
    }
    return days;
  }

2. Create a new method named createChartModelData that takes a list of items 
as a parameter and returns a ChartModel:

private ChartModel createChartModelData(List<Item> items) {

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Charts

[ 262 ]

3. Create a new instance of ChartModel including the title of the chart and the 
formatting, set the background color, and return the ChartModel:

private ChartModel createChartModelData(List<Item> items) {
  ChartModel chartModel = new ChartModel("Posts per week of day", 
    "font-size: 14px; font-family: Verdana; text-align: center;");
  chartModel.setBackgroundColour("#ffffff");
  return chartModel;
}

4. Create a new PieChart ChartConfig and set colors for the PieChart:

private ChartModel createChartModelData (List<Item> items) {
  ChartModel chartModel = new ChartModel("Posts per week of day",
    "font-size: 14px; font-family: Verdana; text-align: center;");
  chartModel.setBackgroundColour("#ffffff");
    
  PieChart pie = new PieChart();
  pie.setColours("#FF0000", "#FFA500", "#FFFF00", "#008000",  
    "#0000FF","#4B0082", "#EE82EE");
        
  return chartModel;
}

5. Retrieve the prepared data using the prepareData method, and then for each 
item in the HashMap, add a new PieChart.Slice. Then add the PieChart 
ChartConfig to the ChartModel:

private ChartModel createChartModelData (List<Item> items) {
  ChartModel chartModel = new ChartModel("Posts per week of day",
    "font-size: 14px; font-family: Verdana; text-align: center;");
  chartModel.setBackgroundColour("#ffffff");
    
  PieChart pie = new PieChart();
  pie.setColours("#FF0000", "#FFA500", "#FFFF00", "#008000",  
    "#0000FF","#4B0082", "#EE82EE");
    
  HashMap<String, Integer> days = prepareData(items);
  for (String key : days.keySet()) {
    pie.addSlices(new PieChart.Slice(days.get(key), key));
  }
  chartModel.addChartConfig(pie);
    
  return chartModel;
}



Chapter 9

[ 263 ]

6. Create a new public method named setFeed. This should take a Feed object and 
use the FeedService to load the Item objects for the Feed. When it retrieves the 
Item objects, it should use the list as a parameter to the createChartModelData 
method to create a ChartModel, and in turn, use that to set the ChartModel of 
the Chart:

public void setFeed(final Feed feed) {
    final FeedServiceAsync feedService = Registry
        .get(RSSReaderConstants.FEED_SERVICE);
    feedService.loadItems(feed.getUuid(), new  
      AsyncCallback<List<Item>>() {
      @Override
      public void onFailure(Throwable caught) {
        Dispatcher.forwardEvent(AppEvents.Error, caught);
      }

      @Override
      public void onSuccess(List<Item> items) {
        chart.setChartModel(createChartModelData(items));
      }
    });
  }

7. As the Chart now has a ChartModel, there will not be a data error in the Open 
Flash Chart. So as part of this method, we can make the chart visible, if it isn't 
already visible:

public void setFeed(final Feed feed) {
  final FeedServiceAsync feedService = Registry
        .get(RSSReaderConstants.FEED_SERVICE);
  feedService.loadItems(feed.getUuid(), new  
    AsyncCallback<List<Item>>() {
    @Override
    public void onFailure(Throwable caught) {
      Dispatcher.forwardEvent(AppEvents.Error, caught);
    }

    @Override
    public void onSuccess(List<Item> items) {
      chart.setChartModel(createChartModelData(items));
    }
  });
  if (!chart.isVisible()) {
    chart.setVisible(true);
  }
}



Charts

[ 264 ]

8. In the ChartPortlet class, add a method named onFeedsDropped method that 
extracts the feed from the drop event and use it to set the feed for the chart:

private void onFeedsDropped(DNDEvent event) {
  List<Feed> feeds = event.getData();
  for (Feed feed : feeds) {
    feedChart.setFeed(feed);
  }
}

9. Overwrite the onRender method in the same way that we did in the last chapter for 
the FeedPortlet to make the ChartPortlet act as another DropTarget in the 
FEED_DD_GROUP:

@Override
protected void onRender(Element parent, int index) {
  super.onRender(parent, index);
  DropTarget target = new DropTarget(this) {
    @Override
    protected void onDragDrop(DNDEvent event) {
      super.onDragDrop(event);
      onFeedsDropped(event);
    }
  };
  target.setOperation(DND.Operation.COPY);
  target.setGroup(RSSReaderConstants.FEED_DD_GROUP);
}

10. Start the application and drag-and-drop a feed from the NavPortlet to the 
ChartPortlet to generate a chart from the data:



Chapter 9

[ 265 ]

What just happened?
We added a PieChart configuration to the FeedChart to allow for data to be rendered 
as a chart and enabled the ChartPortlet as a DropTarget to pass the data to the 
FeedChart.

Have a go hero – creating an item count bar chart
Using the chart we have just created as a guide. Create a component that uses a 
HorizontalBarChart to display the number of items in each feed. Name the component 
ItemCountChart and use the loadFeedList method of the FeedService with the true 
parameter to retrieve the raw data. The result should look something like this:

Solution:

public class ItemCountChart extends LayoutContainer {

  private final Chart chart = new Chart("gxt/chart/open-flash- 
    chart.swf");

  public ItemCountChart() {
    chart.setVisible(false);
    final FeedServiceAsync feedService = Registry 
      .get(RSSReaderConstants.FEED_SERVICE);
    feedService.loadFeedList(true, new AsyncCallback<List<Feed>>() {
      @Override
      public void onFailure(Throwable caught) {
        Dispatcher.forwardEvent(AppEvents.Error, caught);
      }



Charts

[ 266 ]

      @Override
      public void onSuccess(List<Feed> feeds) {
        chart.setChartModel(createChartModelData(feeds));
        chart.setVisible(true);
      }
    });
  }

  private ChartModel createChartModelData(List<Feed> feeds) {
    ChartModel chartModel = new ChartModel("Items per Feed", 
      "font-size:14px;color:#000000");
    chartModel.setBackgroundColour("#ffffff");

    HashMap<String, Integer> data = prepareData(feeds);

    YAxis yAxis = new YAxis();
    for (String key : data.keySet()) {
      yAxis.addLabels(key);
    }
    yAxis.setOffset(true);

    chartModel.setYAxis(yAxis);
    XAxis xAxis = new XAxis();
    xAxis.setRange(0, 50, 10);
    chartModel.setXAxis(xAxis);

    HorizontalBarChart chartConfig = new HorizontalBarChart();
    List<Number> reverseValues = new  
      ArrayList<Number>(data.values());
    Collections.reverse(reverseValues);
    chartConfig.addValues(new ArrayList<Number>(reverseValues));
    chartModel.addChartConfig(chartConfig);

    return chartModel;
  }

  @Override
  protected void onRender(Element parent, int index) {
    super.onRender(parent, index);
    setLayout(new FitLayout());
    chart.setBorders(true);
    add(chart);
  }



Chapter 9

[ 267 ]

  private HashMap<String, Integer> prepareData(List<Feed> feeds) {
    HashMap<String, Integer> counts = new HashMap<String, Integer>();
    for (Feed feed : feeds) {
      String feedTitle = feed.getTitle();
      int itemCount = feed.getItems().size();
      counts.put(feedTitle, itemCount);
    }
    return counts;
  }
}

Summary
In this chapter, we have looked into GXT's charting features. We have learnt that charts 
are more of an extension to GXT than core functionality and examined how to overcome 
potential pitfalls when setting up charts. We then went on to investigate the different charts 
available. Finally, we made use of a chart in our example application.





10
Putting It All Together

In the previous chapters, we have developed an example application using GXT. 
In this chapter, we will learn how to publish it to the world, using Google App 
Engine. We will then move on to look at how you can take your development 
further with GXT, and other resources you can turn to, once you have finished 
this book.

Specifically, we will cover the following subjects:

 � Deploying to Google App Engine

 � Creating an application shortcut in Google Chrome

 � The possibilities offered by Google Gears

 � Options for using GXT for mobile applications

 � The future of GXT

 � Sources of further information

Using Google App Engine
Google App Engine for Java (GAE/J) is Google's cloud computing platform. It is an excellent 
companion to GWT as it provides an easy way of hosting applications. It is also a perfect 
platform for hosting GXT applications such as our RSS Reader.

Before we get started with Google App Engine, we need to create an account and register  
an application.



Putting It All Together

[ 270 ]

Time for action – registering a Google App Engine application
1. Go to the Google App Engine (GAE) website at http://appengine.google.com/

and log in using your Google ID. If you don't already have an account, you can also 
sign up for one there.

2. Once you have logged into GAE, you will see the following screen. Click on the 
Create an Application button.

3. After clicking on the Create an Application button, you may be asked to verify your 
account at this point, if you have created a new Google account.

4. You will be presented with the following form. Enter the Application Identifier. 
This is a unique ID for your application across GAE. So while in the screenshot  
gxt-rss-reader is the app ID, your ID will need to be different. In this case, 
however, the application will be hosted at http://gxt-rss-reader.appspot.
com. You also need to enter a title for the application.



Chapter 10

[ 271 ]

5. Leave the authentication options as default, read and accept the Terms of Service, 
and finally, click on the Create Application button.



Putting It All Together

[ 272 ]

6. If successful, you will receive the following message and you will have an application 
to deploy your code to:

What just happened?
We created an application on Google App Engine, but as yet, it is just an empty container.  
We need to GAE-enable our example application. However, before we can do that, we need 
to add the GAE SDK to our Eclipse setup.

In Chapter 1, Getting Started with Ext GWT, we installed the Google Plugin for Eclipse and 
the Google Web Toolkit SDK. Now, in a similar way, we need to install the Google App Engine 
Java SDK.

Time for action – getting the application ready for GAE
1. In Eclipse, select Help | Install New Software. The install dialog will be displayed, as 

shown in the next screenshot:



Chapter 10

[ 273 ]

2. Select Google Plugin for Eclipse from the Work with list. Tick the Google App 
Engine Java option under SDKs and click on the Next button.

3. Continue till the end of the wizard and restart Eclipse when prompted.

4. When Eclipse restarts, right-click on the example application project and 
select Properties.

5. In the properties dialog, select the Google item from the tree and then 
App Engine entry.



Putting It All Together

[ 274 ]

6. Tick the Use Google App Engine option.

7. Click on the OK button. The application will not re-build, but the build will result 
in a number of errors that will appear in Eclipse's problem panel.



Chapter 10

[ 275 ]

8. The last error, The appengine-web.xml file is missing, is easy to fix. Right-click on it 
and select Quick Fix.

9. You will be given an option to create a new file appengine-web.xml—Create a 
new appengine-web.xml. Select this option and click on Finish. The Google Plugin 
will create the missing file for you.

10. Return to the projects App Engine properties dialog, enter the name of the 
application identifier of the application you previously registered in the Application 
ID field, and click on the OK button.

What just happened?
We installed Google App Engine and enabled it for our example application. However, we 
still have some compile errors. This is because Google App Engine has some limitations. 
Fortunately, none of these limitations affect GXT, and we can make a few small changes to 
the Example Application and it will work perfectly on GAE.

The errors we have are because we cannot write to the filesystem of the GAE server, which is 
one of the limitations of GAE. However, GAE makes up for this by providing a mechanism for 
persisting data to a provided data store.



Putting It All Together

[ 276 ]

There are several ways of persisting to the data store, but for this application we are going to 
use JDO, as it is the most straightforward. We are going to create a GAE implementation of 
our backend persistence interface in our example application.

Note that we will only be implementing the ability to save the feed list and hence we will 
only be able to save references to the existing feeds and not create new feeds as XML files. 
This is because the GAE does not give direct access to the filesystem.

Time for action – using the Google App Engine data store
1. First, we need to make sure that the jdoconfig.xml file is present in a 

directory named META-INF in the project's source folder. This is normally created 
automatically when you create a GAE project in Eclipse. However, as we added GAE 
to the project later, it may be missing. If it is, add the file with the following content:

<?xml version="1.0" encoding="utf-8"?>
<jdoconfigxmlns="http://java.sun.com/xml/ns/jdo/jdoconfig"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:noNamespaceSchemaLocation="http://java.sun.com/xml/ns/jdo/
jdoconfig">

  <persistence-manager-factory name="transactions-optional">
    <property name="javax.jdo.PersistenceManagerFactoryClass"
          value="org.datanucleus.store.appengine.jdo.
DatastoreJDOPersistenceManagerFactory"/>
    <property name="javax.jdo.option.ConnectionURL"  
              value="appengine"/>
    <property name="javax.jdo.option.NontransactionalRead"  
              value="true"/>
    <property name="javax.jdo.option.NontransactionalWrite"  
              value="true"/>
  <property name="javax.jdo.option.RetainValues" value="true"/>
  <property name="datanucleus.appengine.autoCreateDatastoreTxns"  
            value="true"/>
  </persistence-manager-factory>
</jdoconfig>

2. We now need to create a simple singleton class to provide an instance of 
PersistenceManagerFactory that we will use for persistence. Create a final 
class with the name PMF in the server.utils package, which is implemented 
as follows:

public final class PMF {
  private static final PersistenceManagerFactory pmfInstance = 
JDOHelper
      .getPersistenceManagerFactory("transactions-optional");



Chapter 10

[ 277 ]

  private PMF() {
  }

  public static PersistenceManagerFactory get() {
    return pmfInstance;
  }
}

3. Previously, we simply saved the text of the URLs of the RSS feeds directly to a file. 
In GAE, we must wrap our data in a JavaBean. So create a class named FeedUrl 
and a new package named server.model as follows:

public class FeedUrl {

  private String url;

  public FeedUrl(String url) {
    this.setUrl(url);
  }

  public void setUrl(String url) {
    this.url = url;
  }

  public String getUrl() {
    return url;
  }
}

4. We now need to make the JavaBean persist-able by adding an 
@PersistenceCapable annotation to the class and an @PrimaryKey 
annotation to the primary key field.

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class FeedUrl {
  @PrimaryKey
  private String url;

  public FeedUrl(String url) {
    this.setUrl(url);
  }

  public void setUrl(String url) {
    this.url = url;



Putting It All Together

[ 278 ]

  }

  public String getUrl() {
    return url;
  }
}

5. Create a new class named GaePersistence in the server.utils package 
that implements the Persistence interface.

public class GaePersistence implements Persistence {

6. In the GaePersistence class, implement the saveFeedList method so that it 
takes URL strings past to it, creates a FeedUrl JavaBean for each string, and makes 
it persistent using the persistence manager.

@Override
public void saveFeedList(Set<String>feedUrls) {
  PersistenceManager pm = PMF.get().getPersistenceManager();
  try {
    for (String url : feedUrls) {
      FeedUrl feedUrl = new FeedUrl(url);
      pm.makePersistent(feedUrl);
    }
  } finally {
    pm.close();
  }
}

7. In a similar way, implement the loadFeedList method by using the persistence 
manager to retrieve the URLs of the feeds from the GAE persistence store.

@SuppressWarnings("unchecked")
@Override
public Set<String> loadFeedList() {
  PersistenceManager pm = PMF.get().getPersistenceManager();
  try {
    Set<String>urls = new HashSet<String>();
    Query q = pm.newQuery("select url from " + FeedUrl.class.
getName());
       List ids = (List) q.execute();
    urls.addAll(ids);
    return urls;
  } finally {
    pm.close();
  }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Chapter 10

[ 279 ]

8. In the FeedServiceImpl class, change the persistence field so that it instantiates 
as a GaePersistence object instead of a FilePersistence object.

public class FeedServiceImpl extends RemoteServiceServlet 
implements
  FeedService {

 private final static Logger LOGGER = Logger.
getLogger(FeedServiceImpl.class
   .getName());

 private Map<String, Feed> feeds = new HashMap<String, Feed>();

 private final Persistence persistence = new GaePersistence();

9. Finally, remove the now redundant FilePersistence class and with it the 
compile errors.

What just happened?
In order to store the data in Google App Engine, we created a persistence solution that 
makes use of GAE's persistence store instead of the filesystem.

We are now ready to publish the application to Google App Engine, which is surprisingly 
straightforward.

Time for action – publishing the example application
1. In Eclipse, there is a row of toolbar buttons related to the Google Plugin. The third 

button is Deploy App Engine Project. With the example application project selected, 
click on this button.



Putting It All Together

[ 280 ]

2. You will be prompted with the following dialog box. Enter the e-mail address and 
password of the Google App Engine account you used earlier in order to register  
the application and click on the Deploy button.

3. The Google Plugin will now automatically compile the application and upload the 
generated files to Google App Engine. Progress is output to the console, and when 
finished, the message Deployment completed successfully will be displayed.



Chapter 10

[ 281 ]

4. Once deployed, check that the application is available on the web. The URL will 
be in the format http:/<application-id>.appspot.com/, and in this case, 
http://gxt-rss-reader.appspot.com/.

What just happened?
We deployed our example application onto the Google App Engine, making it available 
publically on the web.

Google Chrome
Google Chrome is Google's own web browser and is optimized for running the JavaScript that 
GWT and GXT applications consist of. Google Chrome is available for free. You can download 
it from http://www.google.com/chrome.

One of the great features of Google Chrome is its ability to create application shortcuts to 
make web applications appear like normal desktop applications.



Putting It All Together

[ 282 ]

Time for action – creating a Google Chrome application shortcut
1. In Google Chrome, browse to your deployed Google App Engine application, click 

the settings icon, and select Tools | Create application shortcuts... from the menu.

2. From the dialog box that is displayed, choose the types of shortcuts that you want 
to create, in this case, just a desktop shortcut.



Chapter 10

[ 283 ]

3. Click on the Create button and a new shortcut will be created on your desktop.

4. Click on the shortcut and the example application will start. Notice that now it looks 
more like a desktop application rather than one running in a browser. There is no 
address bar or other browser user interface around it.

What just happened?
We used the Google Chrome browser to create a desktop shortcut to our example 
application running on Google App Engine. When started, it looks like a desktop  
application. Would an average user even realize they are using a web application?

Have a go hero: ideas for doing even more
GWT and GXT is a great platform for building applications. However, there are lots of other 
technologies out there that can be incorporated to give the platform even more potential.

If you would like to start looking at the possibilities, we suggest the following technologies 
would be a good start.



Putting It All Together

[ 284 ]

Gears
Gears is another open source Google-provided library that adds a selection of new 
features to web browsers. These allow the application to run offline without an internet 
connection together with a number of other enhancements. Specifically, Gears includes  
the following modules.

 � Database module: This allows the local storage of data using SQLite

 � WorkerPool module: This allows for the parallel execution of JavaScript code

 � LocalServer module: caches and serves the HTML, JavaScript, and images of an 
application locally

 � Desktop module: This allows the Web to interact with the desktop of the  
client machine

 � Geolocation module: This allows the web application to determine the geographical 
location of the user

To use Gears with GWT, download the Gears API library for GWT. It is available at 
http://code.google.com/p/gwt-google-apis/. The GWT library doesn't 
support every feature of Gears at the time of writing, but it does offer many  
useful features.

Mobile applications
In the same way as Gear can make the GXT web applications available offline and Chrome 
can make the same applications appear more like desktop applications, other technologies 
can do this on mobile devices. These allow web applications to run locally on mobile phones 
or tablet devices and appear like native mobile applications.

PhoneGap
PhoneGap is an open source mobile application development framework. It allows the 
developers to take the HTML, JavaScript, and image files like those produced using GXT  
and build them into native applications for a wide range of mobile phone operating systems.

More information about PhoneGap can be found at http://www.phonegap.com/.

Widgets
Widgets are another way of running a web application locally on a device such as a native 
application rather than on a server. The device could be a mobile phone or devices such as 
a TV set-top box or just a normal desktop computer. The examples of this technology you 
might like to investigate are:



Chapter 10

[ 285 ]

 � Opera Widgets at http://widgets.opera.com/

 � Nokia WRT at http://www.forum.nokia.com/Develop/Web/

The future for GXT
There is little point in writing about the future of GXT, as this sort of technology moves so 
fast that anything written will soon be superseded. However, at the time of writing, Sencha 
had just announced that a touch interface for GXT was under development. This would  
make GXT a very attractive tool for developers of touchscreen-based mobile phones and 
tablet devices.

If, at any time, you want to look at what is coming up in GXT, check out the road map on  
the Sencha website at http://www.sencha.com/products/gwt/roadmap.php.

Getting more information
This book is intended to be a comprehensive introduction to GXT but it cannot cover 
everything. As you continue with GXT, you may find the following resources useful.

GXT Explorer website
The GXT Explorer (at http://www.sencha.com/examples) that we introduced in Chapter 
2, The Building Blocks, is the best place for finding additional examples of how to use the 
GXT components.

GXT sample code
In the GXT distribution, there is a samples directory that contains the source code for the 
GXT explorer used in the showcase plus additional examples. These can be useful when you 
want to learn more about how components fit together than what is possible by just looking 
at the snippets of code provided on the website.

GXT Java doc
The Java doc for GXT is the place to look for detailed information about the API structure 
of GXT. It is available both in the docs folder of the distribution and online in Sencha's Docs 
application at http://www.sencha.com/gxtdocs/.

http://www.forum.nokia.com/Develop/Web/
http://www.sencha.com/examples


Putting It All Together

[ 286 ]

GXT Help Eclipse plugin
At the time of writing, Sencha has released a basic GXT help plugin for Eclipse. This can be 
downloaded from the GXT eclipse update site, mentioned here: http://dev.sencha.
com/deploy/gxt-update-site/. The help is, at present, a little sparse, but should 
improve as time goes on.

GXT source code
GXT is an open source project meaning that the source code is there for you to look at 
or even modify, should you desire. Understanding how the source code works is an  
excellent way to start understanding GXT in depth. It can also be useful when you have  
a problem and want to see what is going on. The source code can be found in the src 
folder of the distribution.

GXT forums
If you have a specific question about GXT, there are a number of forums on the Sencha 
website at http://www.sencha.com/forum/. There are two sets of forums—community 
forums (where anyone can post questions) and the premium forums (where only those with 
a GXT-support license can post questions). Anyone can view the past questions on both the 
sets of forums, and it is a good idea to search the forums before posting to make sure your 
question hasn't been answered already. The forum users include experienced GXT users 
as well as some of the developers of GXT, so there is a good chance you will get a helpful 
answer for even the most complex question.



Chapter 10

[ 287 ]

Other programmer forums
Other programming websites also feature questions about GXT. The site 
http://stackoverflow.com/ is one of the best sites and GXT questions 
can be found tagged as follows:

 � With the GXT tag at this address: http://stackoverflow.com/questions/
tagged/GXT

 � With the GXT tag at this address:

http://stackoverflow.com/questions/tagged/gxt

PopQuiz: Finding additional information
In addition to this book, where could you look if you required:

1. To find out the parameters of a particular GXT method.

2. To ask a question to the developers of GXT.

3. To ask a question to other developers that use GXT.

4. To search previous answers asked about GXT.

5. To work out in detail how a particular GXT component works.

6. To get an example of how a particular GXT component is used.

7. To find out what new features are planned for GXT.

8. To learn about what components are available.

9. To find out if a problem you are having is a bug in GXT.

10. To attempt to fix a bug in GXT.

a. GXT Explorer website

b.  GXT Sample code

c. GXT Java doc

d. GXT help plugin

e. GXT source code

f. GXT forums

g. Other programming website like Stack Overflow

h. The GXT roadmap

http://stackoverflow.com/questions/tagged/ext-gwt
http://stackoverflow.com/questions/tagged/gxt


Putting It All Together

[ 288 ]

Summary
GXT provides a rich set of components that work with GWT to provide a whole new set of 
opportunities in web application development. It is a powerful and constantly developing 
platform that opens doors to all sorts of possibilities.

We hope you have enjoyed your journey through GXT and are inspired to create some great 
Rich Internet Applications.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Pop Quiz Answers

Chapter 1
Introducing GXT

1 Ext JS.

2 Smart GWT.

3 Vaadin.

4 GWT-Ext.

5 Sencha.

6 gxt.jar.

7 Dual GPL and commercial.

8 The GWT module’s gwt.xml module file.

9 The GWT module’s HTML file.

10 The project’s war\WEB-INF\lib folder.

Chapter 2
Matching the component with the description

1 2 3 4 5 6 7 8 9 10

g c b h a i e d f j



Pop Quiz Answers

[ 290 ]

Chapter 3
Match the form components with their definitions

1 2 3 4 5 6 7 8 9 10

h c i e g f a b j d

Chapter 4
Right tool for the job

DataProxy DataReader Loader

1 HttpProxy XmlLoadResultReader BaseListLoader

2 RpcProxy BeanModelReader BasePagingLoader

3 MemoryProxy ModelReader BaseListLoader

4 HttpProxy JsonLoadResultReader BasePagingLoader

5 ScriptTagProxy ScriptTagProxy BaseListLoader

Chapter 5
Matching the component with the definition

1 2 3 4 5 6 7 8 9 10

b j h i c e f d a g

Chapter 6
What does what?

1 2 3 4 5 6 7

c f d a b e g



Appendix

[ 291 ]

Chapter 7
MVC Fundamentals

1 2 3 4 5 6 7 8

a b b & c d b & c a a b

Chapter 8
Quick Q&A

1 2 3 4 5 6 7 8

g d a c e b h f

Chapter 9
Match the chart feature to the chart

1 2 3 4 5 6 7 8

c h d g b a f e

Chapter 10
Finding additional information

1 2 3 4 5 6 7 8 9 10

c, d or e f f or g f or g e a or b h a, b, d e or f c and e





Index
Symbols
@Resource annotation  126
.x-viewport class  36

A
AdapterField component  65
addButton method  146
addExistingFeed method  101, 156, 211
addFeed method  102, 211
addHeaderGroup method  132
add method  149
addPlugin method  169
AggregationRowConfig class

about  132
example  133

alternatives, to Ext GWT
GWT-Ext  9
Smart GWT  9
Vaadin  9

AppController class  185, 201
AppEvent class

about  183
setData methods  183

AppEvent object  183
AppEvents class  200, 209
applyTemplate method  157
AppView class  202
AreaChart class  259

B
BarChart.Bar class  254
BarChart class  254

about  249-254 
BarChart.Bar class  254

CylinderBarChart class  252
FilledBarChart class  253
HorizontalBarChart class  254, 255
SketchBarChart class  253

Bar class  254
BaseListLoadConfig

about  111
BaseGroupingLoadConfig  111
BasePagingLoadConfig  111

BaseModel, ModelData interface  93
BaseTreeModel class

about  122
categorized items, providing  124
creating  123, 124

BeanModel class
about  94
BeanModelFactory  94
BeanModelMarker, creating  95
BeanModelMarker, creating for Feed objects  96
BeanModelTag, implementing  94, 95

BeanModelFactory class  94
BeanModelMarker

creating  95
creating, for Feed objects  96

BeanModel object  233
BeanModelTag

implementing  94, 95
blank project, GXT

creating  34
solution  34

BorderLayout  37, 220
BorderLayoutData, GXT  38
BoxComponent  29
built-in template variables, XTemplate

{[   ]}  167
{#}  167



[ 294 ]

fm  167
parent  167
values  167
xcount  167
xindex  167

buttons, GXT
about  46
adding  48
icon position  47
icons  46
link feed button, creating  48
menu, adding  47
sizes  46
SplitButton  48
ToggleButton  48

C
canHandle method  185
chart  241-245
chart class  244, 245
chart Portlet, creating  245-248
ChartConfig class  248
chart JavaScript library

loading  244
ChartModel class  248
chart module  242
ChartPortlet class  264
chart resources

including  242, 243
CheckBox component  64
Checkbox fields

about  64
CheckBox  64
Radio  64

CheckBoxListView  178
CheckMenuItem component  143
ColumnConfig class  168
ColumnConfig object  115
ColumnModel object  115
ComboBox component  63
ComboBox, data-backed components  98
ComboBox fields

about  64
SimpleComboBox  64
ThemeSelector  64
TimeField  64

compile method  157
component, GXT

about  29
BoxComponent  29
lazy rendering, using  29

container, GXT
about  30
LayoutContainer  30, 31

ContentPanel component  32, 204, 220
Controller class

about  184
controller, creating  184
events, handling  185

createChartModelData method  249, 263
create feed button

creating  66, 68
createFeed method  83
createNewFeed method  83
createNewFeedWindow method  83
custom components, GXT

about  43
creating  44, 45
onRender method, overriding  43

CylinderBarChart class  252

D
data

working with  92
data-backed components

BeanModel  94
BeanModelFactory  94
BeanModelMarker  95
BeanModelTag  94
ColumnConfig  115
ColumnModel  115
ComboBox  98
DataProxy  108
DataReader  108
grid  115
GridCellRenderer  118
ListField  99
LoadConfigs  111
Loaders  111
ModelData  92
ModelType  110
Stores  96



[ 295 ]

database module  284
DataProxy interface

about  108
HttpProxy  108
MemoryProxy  108
PagingModelMemoryProxy  108
RpcProxy  108
ScriptTagProxy  108

DataReader interface
about  108
BeanModelReader  109
JsonLoadResultReader  109
JsonPagingLoadResultReader  109
JsonReader  109
ModelReader  109
XmlLoadResultReader  109
XmlPagingLoadResultReader  109
XmlReader  109

data store, Google App Engine  276-279
DateField component  63
Desktop module  284
Dispatcher  187
displayItem method  158
Draggable class  229
DragSource class  229, 230
DropTarget class

about  230
implementations  231

E
Eclipse setup  11
EntryPoint class  189
events, GXT

about  32, 33
sinking  33
swallowing  33

EventType class
about  183, 209
application events, defining  184

example application
about  33
BorderLayout, using  38, 39
expanding  66
requisites  33
server-side persistence  101
server-side retrieval  106
solution  33

Ext GWT. See  also GXT
about  8
alternatives  8
features  8
licensing  8

Ext GWT Explorer
about  28
demo  28

F
FeedAdded  209
Feed class

templates, adding  154
FeedController  197
feed data object

creating  68, 69
Feed field  205
FeedForm class  

about  77, 211
creating  73-75

FeedList class  112, 156, 209, 232
Feed object  80, 102, 206
FeedOverviewView  173
FeedPanel class  198, 203
FeedPanelReady  197
feeds

dragging  232-235
dropping  232-235

FeedServiceAsync class  115
FeedServiceAsync interface  106
FeedServiceAsync method  155
FeedService class  155
FEED_SERVICE constant  83
FeedServiceImpl class  102, 106, 115, 155, 279
FeedService interface  106
FeedView class  198, 206, 211
FeedWindow class  

about  74
creating  71-73

FieldMessages
about  78
adding, to fields  78, 79
implementing  78

FieldSet component  65
fields, GXT

about  52, 63
AdapterField  65



[ 296 ]

CheckBox fields  64
ComboBox fields  64
FieldSet  65
HiddenField  65
HtmlEditor field  65
LabelField  65
ListField  64
SliderField  65
TextFields  63
Trigger fields  63
validating  75

field validation
about  75
adding, to FeedForm  76, 77
custom validator, using  76
numerical validation  76
text validation  76

FileUploadFile component  63
FilePersistence class  103, 279
FilledBarChart class  253
findItem method  149
FirstApp class  21
FirstGxtApp class  21
FitLayout  71
FlowLayout  32
form

submitting  80
submitting, HTTP used  79

form components
requisites  61
RSS 2.0 specification  62

FormPanel  62
forwardEvent methods, Dispatcher  188

G
GaePersistence class  278
GaePersistence object  279
gears  284
Gears API library

URL, for downloading  284
gears, modules

database module  284
Desktop module  284
Geolocation module  284
LocalServer module  284
WorkerPool module  284

Geolocation module  284
getData method  230
getPagingLoadResult method  135
getSelectedItem method  149
getTemplate method  172, 175
getUrl method  104
Google App Engine

application, preparing  272-276
application, registering  270, 272
data store, using  276-279
example application, publishing  279, 280
using, for Java (GAE/J)  269

Google Chrome
about  281
shortcut, creating  282, 283

Google Web Toolkit (GWT)
about  7
setting up  11-13

grid
about  115
ColumnConfig object  115
ColumnModel  115
example  115
CellRenderer  118
GridCellRenderer, using  119
ItemGrid, creating  115-118

GridCellRenderer
about  118
implementing  119, 120

Grid component  231
grid features

AggregationRowConfig class  132, 133
sHeaderGroupConfig class  131, 132
Paging  134
PagingLoadConfig class  135
PagingLoader class  137
PagingLoadResult interface  135
PagingModelMemoryProxy class  136
PagingToolBar class  137

GWT application
adapting, to use GXT controls  21-24

GWT-Ext  9
GWT project

creating  15, 16
GWT-RPC approach  80
GXT. See  also Ext-GWT

about  9

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



[ 297 ]

blank project, creating  34
BorderLayout  37
BorderLayoutData  38
BoxComponent  29
buttons  46
component  29
container  30
ContentPanel  32
custom components  43
data-backed components  92
events  32
example application  33
features  27
FeedForm, creating  73-75
FeedWindow, creating  71-73
Field  52
fields  63
FitLayout  71
FlowLayout  32
form components  61
FormPanel  62
forums  286
future  285
 Explorer website  285
 forums  286
GXT Help Eclipse plugin  286
GXT Java doc  285
GXT sample code  285
GXT source code  286
Help Eclipse plugin  286
Java doc  285
KeyListener, adding  58
layout  37
LayoutContainer  30, 37
loading message  40
menu component  140
other programmer forums  287
plugging, in GWT  10
popup  50
popup, positioning  56-58
registry  82
sample code  285
SelectionListener  51
setting up  14
source code  286
Status component  149
templates  153

TextField  53
toolbar component  146
toolkit, downloading  10
tooltip  49
trees  122
Viewport  36
Window  70
working with  10

GXT application structure, need for  181
GXT components

diagrammatic representation  28
GXT controls, differences  21
GXT Model View Controller  182
GXT MVC framework

about  189
Controller, registering with Dispatcher  189
FeedPanel Controller, creating  197-199
FeedPanel View, creating  197-199
item Controller, creating  200-203
item View, creating  200-203
NavPanel Controller, creating  193-196
NavPanel View, creating  193-196
UI setup, refactoring  190-192

GXT project, configuring  17-19
GXT tag, URL  287

H
handleEvent method  185, 194, 211, 213, 222, 

223
hasChildren method  129
HeaderGroupConfig class  131, 132
HiddenField component  65
HorizontalBarChart class  254, 255
HtmlEditor field  65

I
ImageBundle class

about  126
implementing  126

Init AppEvent  213
initialize method   222
initToolbar method  146
isCollapsible method  43
isValid() method  75, 79
ItemCategoryGrid  130



[ 298 ]

Item class  115
templates, adding  154

ItemController class  201
item count bar chart

creating  265, 266
ItemGrid class  205, 206
ItemGrid, grid example

creating  115-118
ItemPanel code  169
ItemPorlet class  236
items

dragging  235, 237
dropping  235, 237

ItemSelected AppEvent  207
Item selectors

about  175
ListView items, making selectable  176

ItemView class  202, 207

L
LabelField component  65
LayoutContainer class

about  30, 31, 115
ContentPanel  32
FlowLayout  32

LayoutContainer component  218
LineChart class  257, 258
link feed button, creating  48
LinkFeedPopup class  102, 211
ListField  64, 209
ListField, data-backed components

about  99
creating, for feeds  99, 100

ListLoader  209
ListStore

about  96
creating  97
populating  97

ListView class
about  170
Feed overview ListView, creating  171, 172

ListView component  231
loadCategorisedItems method  124
LoadConfig interface  111
Loader interface

about  111

BaseListLoader  111
BasePagingLoader  111
ListLoader interface  111
PagingLoader interface  111
TreeLoader interface  111

loadFeedList method  106, 112, 155, 156, 177, 
265, 278

loadFeed method  102, 103, 155
loading message, GXT

adding  40, 41
loadItems parameter  155
load method  209
LocalServer module  284

M
MenuBar component  141
menu component

about  140
CheckMenuItem component  143
MenuBar component  141
MenuEvent class  144
MenuItem component  142

MenuEvent class
about  144
menu, adding  144-146

MenuItem component  142
mobile applications

PhoneGap  284
Widgets  284

ModelData interface
about  92
BaseMode, extending  93
BaseModel, extending  93

ModelData items  204
ModelProcessor class

about  173
model data, pre-processing  174, 175

ModelType class  110
multiple feeds

viewing  203
MVC fundamentals  188
MVC pattern, GXT

about  182
Controller  183
Dispatcher  183
Model  182



[ 299 ]

View  183

N
NavController class  209
navigation portlet, creating  223-226
NavPanel  194
NavView class  194, 210
newFeedWindow method  72
NewPortletCreated event  223
NumberField component  63
numerical validation

allow decimals  76
allow negative  76
maximum value  76
minimum value  76

O
onAddPortlet method  246
onDragDrop method  230-236
onDragStart method  230
onFeedAdded method  210, 211
onFeedsDropped method  233, 264
onFeedSelected method  207, 211
onInit method  193, 213
onModuleLoad method  22, 36, 83, 189, 223, 247
onNavPanelReady method  195
onRender method  43, 74, 88, 172, 205, 207, 233, 

245, 247
onSuccess method  211
onTabSelected method  210, 211
onUIReady method  192
overview portlet, creating  237-240

P
paging

about  134
example  134

PagingLoadConfig class
about  135
paged data, providing  135

PagingLoader class  137
PagingLoadResult interface  135
PagingModelMemoryProxy class  136
PagingToolBar class

about  137

paging grid, creating  137, 138
PagingToolBar controls  137
Persistence interface  278
PhoneGap  284
PieChart

item count bar chart, creating  265, 266
PieChart data, creating  261-265
using  261

PieChart class  255, 256
PieChart.Slice class  256
popup, GXT

about  50
creating  50

Portal class  218, 219
Portal Controller

creating  221- 223
PortalView class  246
portlet class  218
Portlet components  218, 221
portlets

creating  226, 227
Portlet View

creating  221-223
prepareData method  174, 261, 262

R
Radio component  64
registerEventTypes method  184
registry

about  82
feed object, saving  84, 85
feed object, using  83
service, storing  82

reloadFeeds method  209, 210
remote data

DataProxy interface  108
DataReader interface  108
items, loading  114
ListLoadResult  108
LoadConfig interface  111
Loader interface  111
ModelType class  110
using  107
using, with ListField  112, 113
working with  107

remote paging  134



[ 300 ]

remove method  149
resetSelection method  206
RowExpander class

about  168, 169
using  169

RSS 2.0 specification  62
RssMainPanel class  130, 138, 173, 198
RssNavigationPanel class  100, 194
RSSReader class  160, 169, 190, 201
RSSReader EntryPoint class  228, 247
RSS XML

creating  85
feed, saving  86-88
new item form, creating  90
validation, adding to LinkFeedPopup  89

S
saveData method  85
saveFeedList method  103
saveFeed method  104, 211
save method  211
ScatterChart class  259
ScrollContainer class  30
selectFeed method  210
SelectionListener, GXT

about  51
adding  51

Sencha  8
Serializable interface  68
server-side persistence, example application

about  101
existing feed, persisting  101
feed, persisting as XML document  105
link, persisting to existing feed  101, 104

server-side retrieval, example application  106
feeds, loading  106

service, for feed objects
creating  80-82

setAction method  79
setAutoValidate method  88
setBox method  150
setColumnWidth method  218
setData method  230
setDisplayProperty method  126
setFeed method  263
setGroup method  231

setHeading  204
setLayout  204
setLeafIcon method  126
setMaxHeight method  140
setMenu method  148
setOutlineColor method  253
setRoot method  110
setSelectedItem method  149
setSortDir method  111
setSortField method  111
setStatus method  213
setSubMenu method  142
setValidator method  76
show() method  70, 140
SimpleComboBox component  64
SketchBarChart class  253
SliderField component  65
Smart GWT

about  9
URL  9

sources, grouping  231
SplitButton  48
StackedBarChart class

about  260
chart feature, matching to the chart  260, 261

Status component
about  149
adding, to toolbar component  149, 150

Status object  213
status toolbar Controller

creating  212-215
StatusToolbarReady AppEvent  213
StatusToolbarReady EventType  212
Stores

about  96
ListStore  96

String parameter  231
submit method  79

T
TabItem objects  149, 203
TabPanel class  149, 204
TabSelected AppEvent  211
TabSelected EventType  209
targets

grouping  231



[ 301 ]

Template class
about  157
ItemPanel, creating  157-160
using, with ListField  161, 162
using, with other components  161

templates
about  153
adding, to feed  154
adding, to Item class  154

TEST_DATA_FILE  206
TextArea component  63
TextField, GXT

about  53, 63
components, adding to link feed popup  53-55
FileUploadField  63
NumberField  63
TextArea  63

text validation
allow blank  76
maximum field length  76
minimum field length  76
regular expression  76

ThemeSelector component  64
TimeField component  64
ToggleButton  48
toogleGroup method  48
toolbar component

about  146
Status component, adding  149
toolbar, adding  146, 148

ToolButton component  220
tooltip, GXT

about  49
adding  50

TreeGridCellRenderer class
about  127
Feed List, replacing with Feed tree  128-130

TreeGrid class  127
TreeGrid component  231
TreePanel class  125
TreePanel component  231
trees

about  122
BaseTreeModel class  122
ImageBundle class  126
TreeGridCellRenderer class  127
TreeGrid class  127

TreePanel class  125
TreeStore class  125

TreeStore class  125
TriggerField component  63
trigger fields

about  63
ComboBox  63
DateField  63
TriggerField  63
TwinTriggerField  63

TwinTriggerField component  63

U
UI components

wiring  204
UIReady AppEvent  192

V
Vaadin

disadvantage  9
URL  9

validate method  76
validator  76
View class

about  186
View, creating  186

Viewport, GXT
about  36
adding  36

W
Widgets  284
Window  70
WorkerPool module  284

X
XTemplate class

about  163
built-in template variables  167
for function  163, 164
if function  165, 166
inline code execution  167
math function support  167
using  168



Thank you for buying 
Ext GWT 2.0: Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Learning Ext JS
ISBN: 978-1-847195-14-2            Paperback: 324 pages

Build dynamic, desktop-style user interfaces for your 
data-driven web applications

1. Learn to build consistent, attractive web 
interfaces with the framework components. 

2. Integrate your existing data and web services 
with Ext JS data support.

3. Enhance your JavaScript skills by using Ext's 
DOM and AJAX helpers.

4. Extend Ext JS through custom components.

Ext JS 3.0 Cookbook
ISBN:  978-1-847198-70-9            Paperback: 376 pages

Clear step-by-step recipes for building impressive 
rich internet applications using the Ext JS JavaScript 
library

1. Master the Ext JS widgets and learn to create 
custom components to suit your needs 

2. Build striking native and custom layouts, 
forms, grids, listviews, treeviews, charts, tab 
panels, menus, toolbars and much more for 
your real-world user interfaces 

3. Packed with easy-to-follow examples to 
exercise all of the features of the Ext JS library  

Please check www.PacktPub.com for information on our titles


	Cover 
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started with Ext GWT
	What is GWT missing?
	What does Ext GWT offer?
	How is Ext GWT licensed?
	Alternatives to Ext GWT
	GWT-Ext
	Smart GWT
	Vaadin

	Ext GWT or GXT?
	Working with GXT: A different type of web development
	How GXT fits into GWT
	Downloading what you need
	Eclipse setup
	GWT setup
	Time for action – setting up GWT
	GXT setup
	Time for action – setting up GXT
	GWT project creation
	Time for action – creating a GWT project
	GXT project configuration
	Time for action – preparing the project to use GXT
	Differences of GXT controls
	Time for action – adapting the GWT app to use GXT controls
	Summary

	Chapter 2: The Building Blocks
	The Ext GWT Explorer Demo
	Essential knowledge
	GXT building block 1: Component 
	BoxComponent
	Lazy Rendering

	GXT building block 2: Container
	LayoutContainer
	FlowLayout
	ContentPanel

	GXT building block 3: Events
	Sinking and swallowing events

	Introducing the example application
	The requirement 
	The solution

	Blank project
	Time for action – creating a blank project 
	Viewport
	Time for action – adding a Viewport 
	Layout
	BorderLayout

	BorderLayoutData
	Time for action – using BorderLayout
	Loading message
	Time for action – adding a loading message
	Custom components
	The onRender method

	Time for action – creating custom components
	First field components
	Button
	Size
	Icons
	Icon position
	Adding a menu
	ToggleButton
	SplitButton

	Creating a Link feed button
	Time for action – adding a button
	Tooltip
	Time for action – adding a tooltip
	Popup
	Time for action – creating a popup
	SelectionListener
	Time for action – adding a SelectionListener
	Field
	TextField
	Time for action – adding components to the Link feed popup
	Popup positioning and alignment
	Time for action – positioning the popup
	Summary

	Chapter 3: Forms and Windows
	Change of requirements
	The RSS 2.0 specification

	FormPanel
	Fields
	TextFields
	TriggerField components
	ComboBox component
	ListField component
	CheckBox components
	HtmlEditor component
	Other field components

	Expanding the example application
	Creating a Create feed button
	Time for action – adding a Create feed button
	Creating a Feed class
	Time for action – creating a feed data object
	Window
	FitLayout
	Creating the FeedWindow component
	Time for action – creating a Window
	Creating FeedForm
	Time for action – creating a feed form
	Validating fields
	Text validation
	Numerical validation
	Custom validator

	Time for action – adding field validation
	Using FieldMessages
	Time for action – adding FieldMessages to the fields
	Submitting a form using HTTP
	Alternative to submitting a form using HTTP
	Creating a Feed service
	Time for action – creating service for feed objects
	The Registry
	Storing the service in the Registry
	Time for action – using the Feed object
	Saving a Feed
	Time for action – saving an object to the registry
	Creating RSS XML
	Time for action – saving a Feed
	Time for action – adding to the LinkFeedPopup
	Summary

	Chapter 4: Data-backed Components
	Working with data
	ModelData interface
	Method 1: Extending BaseModel

	BeanModel class
	BeanModelFactory class
	Method 2: Implementing BeanModelTag
	Method 3: Creating a BeanModelMarker 


	Time for action – creating a BeanModelMarker for Feed objects
	Stores
	Time for action – creating and populating a ListStore
	Data-backed ComboBox
	Data-backed ListField
	Time for action – creating a ListField for feeds
	Server-side persistence
	Persisting an Existing Feed

	Time for action – persisting a link to an existing feed
	Time for action – persisting a feed as an XML document
	Server-side retrieval
	Time for action – loading feeds
	Using remote data
	DataProxy interface
	DataReader interface
	ModelType class
	Loader interface

	LoadConfig
	How they fit together
	Time for action – using remote data with a ListField
	Grid
	ColumnConfig
	Grid Example
	Time for action – creating the ItemGrid
	GridCellRenderer
	Time for action – using a GridCellRenderer
	Summary

	Chapter 5: More Components
	Trees
	BaseTreeModel class

	Time for action – creating a BaseTreeModel
	Time for action – providing categorized items
	TreeStore class
	TreePanel class
	ImageBundle class

	Time for action – using an ImageBundle
	TreeGrid class
	TreeGridCellRenderer class

	Time for action – replacing the Feed List with a Feed Tree
	Advanced grid features
	HeaderGroupConfig class
	AggregationRowConfig class
	Paging
	PagingLoadResult interface
	PagingLoadConfig class

	Time for action – providing paged data
	PagingModelMemoryProxy class
	PagingLoader class
	PagingToolBar class

	Time for action – creating a paging grid
	Menus and toolbars
	Menu component
	MenuBar component
	MenuItem component
	CheckMenuItem component
	MenuEvent class
	ToolBar component

	Time for action – adding a toolbar
	TabPanel class
	TabItem class
	Status component

	Time for action – adding a Status component
	Summary

	Chapter 6: Templates
	Time for action – adding to the Feed and Item
	Template class
	Time for action – creating the ItemPanel
	Using a Template with other components

	Time for action – using a Template with a ListField
	XTemplate class
	The for function
	The if function
	Special built-in template variables
	Basic math function support
	Inline code execution
	Using an XTemplate

	The RowExpander class
	Time for action – using a RowExpander
	The ListView class
	Time for action – creating a Feed overview ListView
	The ModelProcessor class
	Time for action – pre-processing model data
	Item selectors
	Time for action – making ListView items selectable
	CheckBoxListView
	Summary

	Chapter 7: Model View Controller
	The need for good application structure
	The classic Model View Controller pattern
	The GXT Model View Controller
	The AppEvent class
	The EventType class
	Time for action – defining application events
	Controller class
	Time for action – creating a controller
	Time for action – handling events
	The View class
	Time for action – creating a View
	Dispatcher
	Incorporating MVC
	Time for action – registering a Controller with the Dispatcher
	Time for action – refactoring UI setup
	Time for action – creating the navigation Controller and View
	Time for action – creating the FeedPanel Controller and View
	Allowing viewing of multiple feeds
	Time for action – adding tabs
	Wiring it together
	Time for action – responding to selections
	Keeping things in sync 
	Time for action – responding to a Feed being added
	Time for action – creating a status toolbar Controller and View
	Summary

	Chapter 8: Portal and Drag-and-Drop
	Portlet class
	The Portal class
	ToolButton
	Time for action – creating a Portal Controller and a Portlet View
	Time for action – creating the Navigation Portlet 
	Time for action – creating more portlets
	Drag-and-drop
	The Draggable class
	The DragSource class
	DragSource implementations
	The DropTarget class
	DropTarget implementations
	Grouping sources and targets

	Using drag-and-drop
	Time for action – dragging and dropping of feeds
	Time for action – dragging and dropping items
	Summary

	Chapter 9: Charts
	Time for action – including the chart module
	Time for action – including the chart resources
	Time for action – loading the chart JavaScript library
	Chart class
	Time for action – creating a chart Portlet
	ChartModel class
	ChartConfig class
	BarChart class
	CylinderBarChart class
	FilledBarChart class
	SketchBarChart class
	BarChart.Bar class
	HorizontalBarChart class

	PieChart class
	PieChart.Slice class
	LineChart class
	AreaChart class
	ScatterChart class
	StackedBarChart class
	Using a PieChart
	Time for action – creating PieChart data
	Summary

	Chapter 10: Putting It All Together
	Using Google App Engine
	Time for action – registering a Google App Engine application
	Time for action – getting the application ready for GAE
	Time for action – using the Google App Engine data store
	Time for action – publishing the example application
	Google Chrome
	Time for action – creating a Google Chrome application shortcut
	Gears
	Mobile applications
	PhoneGap
	Widgets

	The future for GXT
	Getting more information
	GXT Explorer website
	GXT sample code
	GXT Java doc
	GXT Help Eclipse plugin
	GXT source code
	GXT forums
	Other programmer forums

	Summary

	Appendix: Pop Quiz Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	Index



