

Overview
● Launchpad.exe

– Renames Glider.exe to a random name (3-8 characters long)
– Writes shadow kernel driver to disk with random name ".sys"
– Loads kernel driver, starts it, then deletes the .sys file
– Starts renamed Glider.exe /launchpad /handle=000001f4

/processid=00000418 /kill=shtokshtokshtok /resume
● shadow.sys (aka ppmevvyh.sys)

– Hooks several system calls to hide itself and renamed glider.exe
– Updates descriptor tables
– Backs up current system states for replay to wow.exe

● Glider.exe (aka jxbvragk.exe)
– Contains all of the game-playing logic
– How does it query wow.exe process memory??

Launchpad.exe
● Shadow enable – use kernel driver
● Invisible mode – no glider gui

.NET Obfuscation – Makes it hard
.class public auto sealed ansi bc extends [mscorlib]System.Enum
{
 .field public specialname rtspecialname int32 value__
 .field public static literal value class bc a = int32(-1515870811)
 .field public static literal value class bc b = int32(-1515870811)
 .field public static literal value class bc c = int32(-1515870811)
 .field public static literal value class bc d = int32(-1515870811)
}
.class public auto ansi j extends [mscorlib]System.Object
{
 .field family static literal int32 a = int32(-1515870811)
 .field family static literal int32 b = int32(-1515870811)
 .field family static literal int32 c = int32(-1515870811)
 .field family static literal int32 d = int32(-1515870811)
 .field family static literal int32 e = int32(-1515870811)
 .field family static literal int32 f = int32(-1515870811)
 .field family static literal int32 g = int32(-1515870811)
 .field family static literal int32 h = int32(-1515870811)
 .field family static literal int32 i = int32(-1515870811)
 .field private static literal unsigned int32 j = unsigned int32(-1515870811)
 .field private static literal unsigned int32 k = unsigned int32(-1515870811)
 .field private static literal unsigned int32 l = unsigned int32(-1515870811)
 .field private static literal unsigned int32 m = unsigned int32(-1515870811)
 .field private static literal int32 n = int32(-1515870811)
 .field private static literal int32 o = int32(-1515870811)
 .field private static literal unsigned int32 p = unsigned int32(-1515870811)
 .field private static literal unsigned int32 q = unsigned int32(-1515870811)

Launchpad.exe – Reversed Functions
● 0x13FE0: Check for admin privileges
● 0x141D0: Ensure glider files are on an NTFS Volume
● 0x142F0: Warn user if running from desktop or root of drive
● 0x14952: Get WoW key from registry

HKEY_LOCAL_MACHINE\SOFTWARE\Blizzard Entertainment\World of Warcraft\GamePath

● 0x14A20: Check if WoW is already running
● 0x14AA0: Report Warning (takes string)
● 0x14B50: Report Error (takes string) and exit launchpad
● 0x14B90: Initialize Launchpad.log with date and time or report error
● 0x14BF0: Backup Launchpad.log to Launchpad.lastRun.log
● 0x14CB0: Init Launchpad GUI (ctor for Forms, Groupbox, Label, etc...)

Launchpad.exe – More Reversed Functions
● 0x19DB3: Copy driver data to memory using GetManifestResourceStream

● 0x66F52: Create random string of 3-8 alpha characters using System.Random and
StringBuilder::Append

● 0x19DF0: Create new shadow .sys file and copy binary data into it from memory

● 0x655C0: Phone Home (Perform DNS, open socket, write request, get responses from HTTP server)

● 0x65FD0: Install and start service (shadow.sys)

– j::CreateService, j::StartService, j::OpenService, j::CloseServiceHandle
● 0x16530: Query all usernames and create restricted token

● 0x18752: Fix token owner/creator (ACL's, Sid, AccessToken, TokenInformationClass)

– This creates a token with many privileges disabled. Then, shadow.sys can replace the
unwanted privilges with new privileges that glider needs to read memory, etc and assign this
token info to the glider process. - could not validate this using process explorer from
sysinternals. Showed same privileges for glider.exe as all other apps running.

12:48:41 PM 0 = OZ\None
12:48:41 PM 1 = Everyone
12:48:41 PM 2 = BUILTIN\Administrators (not getting that one!)
12:48:41 PM 3 = BUILTIN\Users
12:48:41 PM 4 = NT AUTHORITY\INTERACTIVE
12:48:41 PM 5 = NT AUTHORITY\Authenticated Users
12:48:42 PM 6 = <unknown>
12:48:42 PM 7 = LOCAL
12:48:42 PM Created restricted token!
12:48:42 PM Fixing token owner/creator
12:48:42 PM Token owner: OZ\Dan

GetManifestResourceStream

Launchpad Installs Kernel "Service"

Shadow Kernel Driver Hides Glider
Windows Event Log

Windows Task Manager

EPROC Structure from "Rootkits"
"The assembly code for IoGetCurrentProcess goes to the offset
0x124 from the fs register. This is the pointer to the current
ETHREAD. From the ETHREAD block, we follow the pointer in
the KTHREAD structure to the EPROCESS block of the current
process. We then traverse the doubly linked list of EPROCESS
blocks until we locate the process we wish to hide.
One way to find a process is by its PID. The PID is located at
an offset with the EPROCESS block that varies depending on
the version of the operating system in which the rootkit is
running. Here is where determining the operating system
version will come into play."

EPROC Structure from "Rootkits"

EPROC Structure from "Rootkits"

Searching EPROC List

shadow.sys – Hooking System Calls
● 0x11538: Utility: Hooks Descriptor Table (pass a string and ptr)
● 0x114BC: Hooks NtOpenProcess using 0x11538
● 0x1150E: Unhooks NtOpenProcess using 0x11538

● 0x110B2: Utility: Hooks aW32kServiceTable (pass a string and ptr)
● 0x111A8: Hooks GetCursorPos using 0x110B2
● 0x111C1: Hooks GetForegroundWindow using 0x110B2
● 0x111DF: Hooks GetActiveWindow using 0x110B2
● 0x111FD: Hooks ThreeArg using 0x110B2
● 0x1121B: Hooks GetCursorInfo using 0x110B2
● 0x11239: Hooks OneArg using 0x110B2
● 0x11257: Hooks SetCursor using 0x110B2

0x11538 - HookDescriptorTable

nullsub_1 "was" debug printf

Shadow.sys Uses CR0 "Trick"
Done exactly the way it's presented on p.67 of "Rootkits" book

End of 0x11538 - HookDescriptorTable

Near start of shadow.sys
Set 0x12B58 = KeServiceDescriptorTable + 40h

Hook Win32ServiceTable

Hook HwndList

Example Hook: GetCursorInfo
Each hook just checks if it's WoW making the call

Is WoW asking??

Holodeck Cannot Find shadow.sys

Holodeck Can Run Launchpad.exe

Holodeck – Too many System Calls

Holodeck – Exceptions and BSOD's

But we get to see some
obfuscated functions in action

Further Strategies
● Add printk call to shadow.sys: nullsub_1 to see

debug messages
● Edit launchpad.exe to use fixed shadow.sys on

ever call rather than writing over it each time

Observations & Questions
● Mention of FU in shadow.sys could be FU_rootkit
● Shadow/Glider does not seem to hide disk files
● Blizzard wants to make sure glider is "running"?

