
1

MMOGlider

Presented by
Alex Ten and Dan Lake

for CS592 Computer
Security Practicum

2

Glider System Overview

3

Glider System Overview

4

Glider System Overview

5

Glider System Overview

6

Into the cheat, Launchpad.exe

7

Themida

8

Themida

● A commercial packer, originated from
Xtreme-Protector

● Main Features:
– Patching, i.e. removing certain commands from

the original file and adding them to the packer's
code.

– Mutation, i.e. real and garbage instructions that
are added are getting mutated.

9

Themida

10

Themida

11

Themida

● Run-time decryption, i.e. all decryption is
happening at run-time, block by block. There are 3
'flavors' of decrypting/encrypting:

● Poly-Decrypting, the engine generates thousands of
combinations in the way that the code is decrypted at
runtime.

● DrX-Decrypting, the engine decrypts the code using
Debug Control registers, which makes debugging
virtually impossible.

● Thread-Decrypting, the engine decrypts the code
using more than one thread.

12

Themida

● Anti-debugger techniques
that detect/fool any kind of
debugger

● Anti-memory dumpers
techniques for any Ring3 and
Ring0 dumpers

● Different encryption
algorithms and keys in each
protected application

● Automatic decompilation
and scrambling techniques in
target application

● Anti-disassember techniques
for any static and interactive
disassemblers

● Anti-monitors techniques
against file and registry
monitors

● Random garbage code
insertion between real
instructions

● Advanced Entry point
protection

13

Custom Classes

Using provided API you can program
your own class behavior (woo-hoo).

That's probably one of the reasons why
Launchpad.exe (which loads those classes)
is packed, but not obfuscated.

Any class has to be written in C#.

14

Into the cheat, Glider.exe

15

Deobfuscating Glider.exe

It wasn't clear whether Glider.exe uses
Themida's encrypting tool, anything
else or both (or more than just two
tools).

Dumping strings from the binary didn't
help, since there was a lot of junk and
all un-obfuscated strings seemed
unrelated to a packer(s) name.

16

Deobfuscating Glider.exe

An attempt to dump/unpack the
executable yielded this:

The only thing that was verified was the
fact that the binary was packed with
something.

17

Deobfuscating Glider.exe

Since there was no clue in Glider.exe for
its deobfuscation, we went back and
decided to review strings dump for
Launchpad.exe. After awhile, we've
found this:

18

Dotfuscator

.NET specific commercial obfuscator
that tampers the binary and makes it
very hard to decompile.

Dotfuscator Community Edition comes
for free with any version of Visual
Studio .NET, except Express Edition,
and is to date the most common
obfuscator for .NET applications.

19

Dotfuscator

It uses the Overload Induction
technique to rename all program
identifiers into small meaningless
names, which are divided into colliding
sets.

20

Dotfuscator

float getCheckingBalance(int accntnmbr)
void setCheckingBalance(int accntnmbr, float value)
int getCheckingStatus(int accntnmbr)

becomes
float a(int a)
void a(int a, float b)
int b(int a)

if standard Overload Instruction is used

21

Dotfuscator

float getCheckingBalance(int accntnmbr)
void setCheckingBalance(int accntnmbr, float value)
int getCheckingStatus(int accntnmbr)

becomes
float a(int a)
void a(int a, float b)
int a(int a)

if Enhanced Overload Instruction is used

22

Dotfuscator

The fact that Glider.exe doesn't have any function
called “a” or “b” arouse suspicion that it was
obfuscated not only with Dotfuscator. Most probably
an addition tool was involved (such as Themida).

23

Applications used

● Debuggers/Decompilers - IDA Pro, OllyDBG,
SoftICE (completely broken on XP SP2),
Kernel Debugger (LiveKD version of it)

● Unpackers – PeiD, procDump, XprotStripper

● Process monitors – SysAnalyzer, FileMon,
RegMon, Axe 3

