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This chapter presents an overview of some basic ideas underlying encryption technology. The chapter

begins by defining some basic terms and follows with a few historical notes so the reader can appreciate

the long tradition that encryption, or secret writing, has had. The chapter then moves into modern

cryptography and presents some of the underlying mathematical and technological concepts behind

private and public key encryption systems such as DES and RSA. We will provide an extensive discussion

of conventional private key encryption prior to introducing the concept of public key cryptography. We

do this for both historical reasons (private key did come first) and technical reasons (public key can be

considered a partial solution to the key management problem).

85.1 Some Basic Definitions

We begin our discussion by defining some terms that will be used throughout the chapter. The first term

is encryption. In simplest terms, encryption is the process of making information unreadable by

unauthorized persons. The process may be manual, mechanical, or electronic, and the core of this

chapter is to describe the many ways that the encryption process takes place. Encryption is to be

distinguished from message-hiding. Invisible inks, microdots, and the like are the stuff of spy novels and

are used in the trade; however, we will not spend any time discussing these techniques for hiding

information. Exhibit 85.1 shows a conceptual version of an encryption system. It consists of a sender and

a receiver, a message (called the “plain text”), the encrypted message (called the “cipher text”), and an

item called a “key.” The encryption process, which transforms the plain text into the cipher text, may be

thought of as a “black box.” It takes inputs (the plain text and key) and produces output (the cipher text).
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The messages may be handwritten characters, electromechanical representations as in a Teletype, strings

of 1s and 0s as in a computer or computer network, or even analog speech. The black box will be provided

with whatever input/output devices it needs to operate; the insides, or cryptographic algorithm will,

generally, operate independently of the external representation of the information.

The key is used to select a specific instance of the encryption process embodied in the machine. It is

more properly called the “cryptovariable.” The use of the term “key” is a holdover from earlier times. We

will discuss cryptovariables (keys) in more detail in later sections. It is enough at this point to recognize

that the cipher text depends on both the plain text and the cryptovariable. Changing either of the inputs

will produce a different cipher text. In typical operation, a cryptovariable is inserted prior to encrypting a

message and the same key is used for some period of time. This period of time is known as a

“cryptoperiod.” For reasons having to do with cryptanalysis, the key should be changed on a regular

basis. The most important fact about the key is that it embodies the security of the encryption system. By

this we mean the system is designed so that complete knowledge of all system details, including specific

plain and cipher text messages, is not sufficient to derive the cryptovariable.

It is important that the system be designed in this fashion because the encryption process itself is

seldom secret. The details of the data encryption standard (DES), for example, are widely published so

that anyone may implement a DES-compliant system. In order to provide the intended secrecy in the

cipher text, there has to be some piece of information that is not available to those who are not

authorized to receive the message; this piece of information is the cryptovariable, or key.

Inside the black box is an implementation of an algorithm that performs the encryption. Exactly how

the algorithm works is the main topic of this chapter, and the details depend on the technology used for

the message.

Cryptography is the study of the means to do encryption. Thus cryptographers design encryption

systems. Cryptanalysis is the process of figuring out the message without knowledge of the cryptovariable

(key), or more generally, figuring out which key was used to encrypt a whole series of messages.

85.2 Some Historical Notes

The reader is referred to Kahn1 for a well-written history of this subject. We note that the first evidence of

cryptography occurred over 4000 years ago in Egypt. Almost as soon as writing was invented, we had

secret writing. In India, the ancients’ version of Dr. Ruth’s Guide to Good Sex, the Kama-Sutra, places

secret writing as 45th in a list of arts women should know. The Arabs in the 7th century AD were the first

to write down methods of cryptanalysis. Historians have discovered a text dated about 855 AD that

describes cipher alphabets for use in magic.

One of the better known of the ancient methods of encryption is the Caesar Cipher, so called because

Julius Caesar used it. The Caesar Cipher is a simple alphabetic substitution. In a Caesar Cipher, each plain

Buy IBM

Plain text

Buy IBM

Plain text

Sender Receiver

? KeyKey

Cipher text

8812yph3

EXHIBIT 85.1 Conceptual version of an encryption system.

1Kahn, D. 1996. The Codebreakers; The Comprehensive History of Secred Communication from Ancient Times to the Internet.

Scribner.
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text letter is replaced by the letter 3 letters away to the right. For example, the letter A is replaced by D, B

by E, and so forth. (See Exhibit 85.2, where the plain-text alphabet is in lower case and the cipher text is in

upper case.)

Caesar’s Cipher is a form of a more general algorithm known as monoalphabetic substitution. While

Julius Caesar always used an offset of 3, in principal one can use any offset, from one to 25. (An offset of

26 is the original alphabet.) The value of the offset is in fact the cryptovariable for this simplest of all

monoalphabetic substitutions. All such ciphers with any offset are now called Caesar Ciphers.

There are many ways to produce alphabetic substitution ciphers. In fact, there are 26! (26 factorial or

26X25X24 . X2X1) ways to arrange the 26 letters of the alphabet. All but one of these yields a

nonstandard alphabet. Using a different alphabet for each letter according to some well-defined rule can

make a more complicated substitution. Such ciphers are called polyalphabetic substitutions.

Cryptography underwent many changes through the centuries often following closely with advances

in technology. When we wrote by hand, encryption was purely manual. After the invention of the

printing press various mechanical devices appeared such as Leon Batista Alberti’s cipher disk in Italy. In

the 18th century, Thomas Jefferson invented a ciphering device consisting of a stack of 26 disks each

containing the alphabet around the face of the edge. Each disk had the letters arranged in a different

order. A positioning bar was attached that allowed the user to align the letters along a row. To use the

device, one spelled out the message by moving each disk so that the proper letter lay along

the alignment bar. The bar was then rotated a fixed amount (the cryptovariable for that message)

and the letters appearing along the new position of the bar were copied off as the cipher text. The

receiver could then position the cipher text letters on his “wheel” and rotate the cylinder until the plain

text message appeared.

By World War II very complex electromechanical devices were in use by the Allied and Axis forces. The

stories of these devices can be found in many books such as Hodges.2 The need for a full-time,

professional cryptographic force was recognized during and after WWII and led to the formation of the

National Security Agency by Presidential memorandum signed by Truman. See Bamford3 for a history of

the NSA.

Except for a few hobbyists, cryptography was virtually unknown outside of diplomatic and military

circles until the mid-seventies. During this period, as the use of computers, particularly by financial

institutions, became more widespread, the need arose for a “public,” (non-military or diplomatic)

cryptographic system. In 1973 the National Bureau of Standards (now the National Institute of Standards

and Technology) issued a request for proposals for a standard cryptographic algorithm. They received no

suitable response at that time and reissued the request in 1974. IBM responded to the second request with

their Lucifer system, which they had been developing for their own use. This algorithm was evaluated

with the help of the NSA and eventually was adopted as the Data Encryption Standard (DES) in 1976. See

Federal Information Processing Standard NBS FIPS PUB 46.

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B CD

Plain text: Omnia gallia est divisa in partes tres ....

Cipher text: RPQLD JDOOLD HVW GLYLVD LQ SDUWHV WUHV ...

E F G H I J K L M N O P Q R S T U V W X Y Z

EXHIBIT 85.2. The caesar cipher.

2Hodges, A. 1983. Alan Turing: The Enigma of Intelligence, Simon and Schuster.
3Bamford, J. 1982. The Puzzle palace. Houghton Mifflin.
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The controversy surrounding the selection of DES4 stimulated academic interest in cryptography and

cryptanalysis. This interest led to the discovery of many cryptanalytic techniques and eventually to the

concept of public key cryptography. Public key cryptography is a technique that uses distinct keys for

encryption and decryption, only one of which need be secret. We will discuss this technique later in this

chapter, as public key cryptography is more understandable once one has a firm understanding of

conventional cryptography.

The 20 years since the announcement of DES and the discovery of public key cryptography have seen

advances in computer technology and networking that were not even dreamed of in 1975. The Internet

has created a demand for instantaneous information exchange in the military, government, and most

importantly, private sectors that is without precedent. Our economic base, the functioning of our

government, and our military effectiveness are more dependent on automated information systems than

any country in the world. However, the very technology that created this dependence is its greatest

weakness: the infrastructure is fundamentally vulnerable to attacks from individuals, groups, or nation-

states that can easily deny service or compromise the integrity of information. The users of the Internet,

especially those with economic interests, have come to realize that effective cryptography is a necessity.

85.3 The Basics of Modern Cryptography

Since virtually all of modern cryptography is based on the use of digital computers and digital

algorithms, we begin with a brief introduction to digital technology and binary arithmetic. All

information in a computer is reduced to a representation as 1s and 0s. (Or the “on” and “off” state of

an electronic switch.) All of the operations within the computer can be reduced to logical OR,

EXCLUSIVE OR, and AND. Arithmetic in the computer (called binary arithmetic) obeys the rules

shown in Exhibit 85.3 (represented by “addition” and “multiplication” tables):

The symbol4 is called modulo 2 addition and5 is called modulo 2 multiplication. If we consider the

symbol ‘1’ as representing a logical value of TRUE and ‘0’ as the logical value FALSE then4 is equivalent

to exclusive OR in logic (XOR) while5 is equivalent to AND. For example, A XOR B is true only if A or

B is TRUE but not both. Likewise, A AND B is true only when both A and B are TRUE.

All messages, both plain text and cipher text, may be represented by strings of 1s and 0s. The actual

method used to digitize the message is not relevant to an understanding of cryptography so we will not

discuss the details here.

We will consider two main classes of cryptographic algorithms:

† Stream Ciphers—which operate on essentially continuous streams of plain text, represented as 1s

and 0s

† Block Ciphers—which operate on blocks of plain text of fixed size.

These two divisions overlap in that a block cipher may be operated as a stream cipher. Generally

speaking, stream ciphers tend be implemented more in hardware devices, while block ciphers are more

0

0

0

0

+

1 1

1

1 + 0

0

1

0

1 0

0

1

EXHIBIT 85.3 Binary Arithmetic rules.

4Many thought that NSA had implanted a “trap door” that would allow the government to recover encrypted messages at

will. Others argued that the cryptovariable length (56 bits) was too short.
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suited to implementation in software to execute on a general-purpose computer. Again, these guidelines

are not absolute, and there are a variety of operational reasons for choosing one method over another.

85.4 Stream Ciphers

We illustrate a simple stream cipher in the table below and in Exhibit 85.4. Here the plain text is

represented by a sequence of 1s and 0s. (The binary streams are to be read from right to left. That is, the

right-most bit is the first bit in the sequence.) A keystream5 generator produces a “random” stream of 1s

and 0s that are added modulo 2, bit by bit, to the plaintext stream to produce the cipher-text stream.

The cryptovariable (key) is shown as entering the keystream generator. We will explain the nature of

these cryptovariables later. There are many different mechanisms to implement the keystream generator,

and the reader is referred to Schneier6 for many more examples. In general, we may represent the internal

operation as consisting of a finite state machine and a complex function. The finite state machine consists

of a system state and a function (called the “next state” function) that cause the system to change state

based on certain input.

The complex function operates on the system state to produce the keystream. Exhibit 85.5 shows the

encryption operation. The decryption operation is equivalent; just exchange the roles of plain text and

cipher text. This works because of the following relationships in modulo two addition: Letting p

represent a plain-text bit, k a keystream bit, and c the cipher text bit

cZ p4k;

Plain text:

Keystream

Cipher text

1 1 1 1 1

1 1

1 11 11 1

1

0

0 0 0 0

0000

0 0

1 1

+ + + − + + +− +

EXHIBIT 85.4 Stream cipher.

Key

101101100

110100011

011001111
Plain text

Keystream

"Keystream" generator

Cipher text

Addition modulo 2

+

EXHIBIT 85.5 Stream ciphers.

5The reader is cautioned not to confuse “keystream” with key. The term is used for historical reasons and is not the “key”

for the algorithm. It is for this reason that we prefer the term “cryptovariable.”
6Schneier, B. 1996. Applied Cryptography. John Wiley.
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so; c4kZ ðp4kÞ4kZ p4ðk4kÞZ p40Z p;

since in binary arithmetic x 4 x is always 0. (14 1Z04 0Z0).

These concepts are best understood with examples. Exhibit 85.6 shows a simple linear feedback shift

register (LFSR). A LFSR is one of the simplest finite state machines and is used as a building block for

many stream ciphers (see Schneier’s text). In Exhibit 85.6, the four-stage register (shown here filled with

1s) represents the state. During operation, at each tick of the internal clock, the 4 bits shift to the right

(the right-most bit is dropped), and the last 2 bits (before the shift) are added (mod 2) and placed in the

left-most stage. In general, an LFSR may be of any length, n, and any of the individual stages may be

selected for summing and insertion into the left-most stage. The only constraint is that the right-most bit

should always be one of the bits selected for the feedback sum. Otherwise, the length is really nK1, not n.

Exhibit 85.6 shows the sequence of system states obtained from the initial value of 1111. In some systems,

the initial value of the register is part of the cryptovariable.

Note that if we started the sequence with 0000, then all subsequent states would be 0000. This would

not be good for cryptographic applications since the output would be constant. Thus the all-0 state is

avoided. Note also that this four-stage register steps through 15Z24K1 distinct states before repeating.

Not all configurations of feedback will produce such a maximal sequence. If we number the stages in

Exhibit 85.6 from left to right as 1, 2, 3, 4, and instead of feeding back the sum of stages 3 and 4 we

selected 2 and 4, then we would see a very different sequence. This example would produce 2 sequences

(we call them cycles) of length 6, one cycle of length 3, and 1 of length 0. For example, starting with 1111

as before will yield:

1111/0111/0011/1001/1100/1110/1111

It is important to have as many states as possible produced by the internal state machine of the

keystream generator. The reason is to avoid repeating the keystream. Once the keystream begins to

repeat, the same plain text will produce the same cipher text. This is a cryptographic weakness and

should be avoided. While one could select any single stage of the LFSR and use it as the keystream,

this is not a good idea. The reason is that the linearity of the sequence of stages allows a simple

cryptanalysis. We can avoid the linearity by introducing some more complexity into the system.

The objective is to produce a keystream that looks completely random.7 That is, the keystream will

EXHIBIT 85.6 Simple LFSR.

7The output cannot be truly random since the receiving system has to be able to produce the identical sequence.
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pass as many tests of statistical randomness as one cares to apply. The most important test is that

knowledge of the algorithm and knowledge of a sequence of successive keystream bits does not allow

a cryptanalyst to predict the next bit in the sequence. The complexity can often be introduced by

using some nonlinear polynomial f(a1, a2, ., am) of a selection of the individual stages of the LFSR.
Nonlinear means that some of the terms are multiplied together such as a1a2 C a3a4 C . amK1am.

The selection of which register stages are associated with which inputs to the polynomial can be part

of the cryptovariable (key). The reader is encouraged to refer to texts such as Schneier6 for examples

of specific stream-cipher implementations. Another technique for introducing complexity is to use

multiple LFSRs and to select output alternately from each based on some pseudorandom process. For

example, one might have three LFSRs and create the keystream by selecting bits from one of the two,

based on the output of a third.

Some of the features that a cryptographer will design into the algorithm for a stream cipher include:

1. Long periods without a repetition.

2. Functional complexity—each keystream bit should depend on most or all of the

cryptovariable bits.

3. Statistically unpredictable—given n successive bits from the keystream it is not possible to predict

the nC1st bit with a probability different from 1⁄2 .

4. The keystream should be statistically unbiased—there should be as many 0s as 1s, as many 00s as

10s, 01s, and 11s, etc.

5. The keystream should not be linearly related to the cryptovariable.

We also note that in order to send and receive messages encrypted with a stream cipher the sending

and receiving systems must satisfy several conditions. First, the sending and receiving equipment must be

using identical algorithms for producing the keystream. Second, they must have the same cryptovariable.

Third, they must start in the same state; and fourth, they must know where the message begins.

The first condition is trivial to satisfy. The second condition, ensuring that the two machines have the

same cryptovariable, is an administrative problem (called key management) that we will discuss in a later

section. We can ensure that the two devices start in the same state by several means. One way is to include

the initial state as part of the cryptovariable. Another way is to send the initial state to the receiver at the

beginning of each message. (This is sometimes called a message indicator, or initial vector.) A third

possibility is to design the machines to always default to a specific state. Knowing where the beginning of

the message is can be a more difficult problem, and various messaging protocols use different techniques.

85.5 Block Ciphers

A block cipher operates on blocks of text of fixed size. The specific size is often selected to correspond to

the word size in the implementing computer, or to some other convenient reference (e.g., 8-bit ASCII text

is conveniently processed by block ciphers with lengths that are multiples of 8 bits). Because the block

cipher forms a one-to-one correspondence between input and output blocks it is nothing more or less

than a permutation. If the blocks are n bits long, then there are 2n possible input blocks and 2n possible

output blocks. The relationship between the input and output defines a permutation. There are (2n)!

possible permutations, so theoretically there are (2n)! possible block cipher systems on n bit blocks.8

A simple block cipher on 4-bit blocks is shown in Exhibit 85.7.

With such a prodigious number of possible block ciphers, one would think it a trivial matter to create

one. It is not so easy. First of all, the algorithm has to be easy to describe and implement. Most of the (2n)!

permutations can only be described by listing the entries in a table such as the one in Exhibit 85.8. For a

32-bit block cipher this table would have on the order of 109.6 entries, which is quite impractical. Another

consideration is that there needs to be a relation between the cryptovariable and the permutation.

8For nZ7, 2n! is about 10215. The case nZ8 is more than I can calculate. Clearly, there is no lack of possible block ciphers.

AU7495—Chapter85—25/1/2007—20:57—PARTHIBAN—14745—XML MODEL CRC12a – pp. 1095–1114.

Fundamentals of Cryptography and Encryption 1101



In most implementations, the cryptovariable selects a specific permutation from a wide class of

permutations. Thus one would need as many tables as cryptovariables. We conclude from this that it

is not easy to design good block ciphers.

The most well-known block cipher is the Data Encryption Standard, DES. The cryptovariable for DES

is 64 bits, 8 of which are parity check bits. Consequently the cryptovariable is effectively 56 bits long. DES

operates as follows: a 64-bit plain text block, after going through an initial permutation (which has no

cryptographic significance) is split onto left and right halves, L0 and R0. These two halves are then

processed as follows for iZ0, 1, ., 15

LiZRiK1

RiZ LiK1C f ðRiK1;KiÞ:
The blocks Ki are derived from the cryptovariable. The function f is a very complex function involving

several expansions, compressions, and permutations by means of several fixed tables called the S-boxes

and P-boxes. The reader is referred to FIPS PUB 46 for a detailed description of the S-boxes and P-boxes.

As was the case with the DES cryptovariable, there has been much discussion about the significance of

the S-boxes. Some people have argued that the NSA designed the S-Boxes so as to include a “trap door”

that would allow them to decrypt DES-encrypted messages at will. No one has been able to discover such

a trap door. More recently it has been stated that the S-boxes were selected to minimize the danger from

an attack called differential cryptanalysis.

Because of the widespread belief that the DES cryptovariable is too small, many have suggested that

one encrypt a message twice with DES using two different cryptovariables. This “Double DES” is carried

out in the following way. Represent the operation of DES encryption on message P and cryptovariable K

as CZE(P; K); and the corresponding decryption as PZD(C; K) ZD(E(P; K); K). The “Double DES”

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

Encrypt Decrypt

1010
1011
1100
1101
1110
1111

1000
1110
1111
0000
0001
0010
0011
1010
1011
1100
1001
1101
0100
0101
0110
0111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

EXHIBIT 85.8 Simple Block cipher.

Plain
text

Complex function

Cipher text

x1 xn−1 xn

c1 cn−1 cn

EXHIBIT 85.7 Block ciphers.
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with cryptovariables K and K 0 is

CZ EðEðP;KÞ;K 0Þ
Since each cryptovariable is 56 bits long, we have created an effective cryptovariable length of

56C56Z112 bits. However, we shall see in the section on cryptanalysis that there is an attack on

double-DES that requires about the same amount of computation as that required to attack a single DES.

Thus double DES is really no more secure than single DES.

A third variant is triple DES, which applies the DES algorithm three times with two distinct

cryptovariables. Let K and K 0 be DES cryptovariables. Then triple DES is

CZ EðDðEðP;KÞ;K 0Þ;KÞ:
That is, apply the encrypt function to P using the first cryptovariable, K. Then apply the decrypt

function to the result using the second cryptovariable, K 0 Since the decrypt function is using a different
cryptovariable, the message is not decrypted; it is transformed by a permutation as in any block cipher.

The final step is to encrypt once again with the encrypt function using the first key, K. By using the D in

the middle, a triple DES implementation can be used to encrypt a single DES message when KZK 0:

CZ EðDðEðP;KÞ;KÞ;KÞZ EðP;KÞ:

Thus, someone using triple DES is still able to communicate securely with persons using single DES.

No successful attacks have been reported on triple DES that are any easier than trying all possible pairs of

cryptovariables. In the next section we deal with cryptanalysis in more detail.

85.6 Cryptanalysis

As we stated in the introduction, cryptography is the science of designing algorithms for encrypting

messages. Cryptanalysis is the science (some would say art) of “breaking” the cryptographic systems. In

the following we will try to explain just what “breaking” a cryptosystem means, as there are many

misconceptions in the press.

There is an obvious analogy between cryptanalysis and cryptography and burglars and locks. As the

locksmiths design better locks the burglars develop better ways to pick them. Likewise, as the

cryptographer designs better algorithms the cryptanalyst develops new attacks. A typical design

methodology would be to have independent design teams and attack teams. The design team proposes

algorithms, and the attack teams tries to find weaknesses. In practice, this methodology is used in the

academic world. Researchers publish their new algorithms, and the rest of the academic world searches

for attacks to be published in subsequent papers. Each cycle provides new papers toward tenure.

Breaking or attacking a cryptosystem means recovering the plain-text message without possession of

the particular cryptovariable (or key) used to encrypt that message. More generally, breaking the system

means determining the particular cryptovariable (key) that was used. Although it is the message (or the

information in the message) that the analyst really wants, possession of the cryptovariable allows the

analyst to recover all of the messages that were encrypted in that cryptovariable. Since the cryptoperiod

may be days or weeks, the analyst who recovers a cryptovariable will be able to recover many more

messages than if he attacks a single message at a time.

Determining the specific details of the algorithm that was used to encrypt the message is generally not

considered part of breaking an encryption system. In most cases, e.g., DES, the algorithm is widely

known. Even many of the proprietary systems such as RC4 and RC5 have been published. Because it is

very difficult to maintain the secrecy of an algorithm it is better to design the algorithm so that knowledge

of the algorithm’s details is still not sufficient to determine the cryptovariable used for a specific message

without trying all possible cryptovariables.
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Trying all cryptovariables is called a “brute force” or “exhaustion” attack. It is an attack that will always

work as long as one is able to recognize the plain-text message after decryption. That is, in any attack you

need to be able to decide when you have succeeded. One also has to be able to find the cryptovariable

(and hence the message) in time for it to be of use. For example, in a tactical military environment, to

spend one week to recover a message about an attack that will occur before the week is over will not be

useful. Last, one has to be able to afford to execute the attack. One may often trade off time and computer

power; an attack that may take one year on a PC might take only one day on 365 PCs. If one must have

the message within a day for it to be valuable, but one does not have the funds to acquire or run 365 PCs,

then one really doesn’t have a viable attack.

Often a cryptanalyst might assume that she possesses matched plain and cipher text. This is sometimes

possible in real systems because military and diplomatic messages often have stereotyped beginnings. In

any case it is not a very restrictive condition and can help the cryptanalyst evaluate the cryptographic

strength of an algorithm.

Let us look at a brute force attack on some system. We suppose that the cryptovariable has n binary bits

(e.g., DES has nZ56). We suppose that we have a stream cipher and that we have matched plain and

cipher text pairs Pi and Ci for IZ1, 2,.. For each possible cryptovariable there is some fixed amount of
computation (“work”) needed to encrypt a Pi and see if it results in the corresponding Ci. We can convert

this work into the total number, W, of basic bit operations in the algorithm such as shifts, mod 2

additions, compares, etc. Suppose for definiteness that WZ1000 or 103.
There is a total of 2n n-bit cryptovariables. For nZ56, 256 is about 1016.8 or 72,000,000,000,000,000. If

we select one of the possible cryptovariables and encrypt P1 we have a 50:50 chance of getting C1 since the

only choices are 1 and 0. If we do not obtain C1 we reject the selected cryptovariable as incorrect and test

the next cryptovariable. If we do get C1 then we must test the selected cryptovariable on P2 and C2. How

many tests do we need to make in order to be sure that we have the correct cryptovariable? The answer is:

at least 56. The rationale is that the probability of the wrong cryptovariable successfully matching 56 or

more bits is 2K56. Since we potentially have to try 256 cryptovariables the expected number of

cryptovariables passing all the tests is (256)(2K56)Z1. With one “survivor” we may correctly assume it

is the cryptovariable we want. If we tested only 255 cryptovariables, then we would expect two survivors.

(Cryptanalysts call a cryptovariable that passes all of the tests by chance a “non-causal survivor.”) If

we test a few more than 56, the expected number of non-causal survivors is much less than 1. Thus we

can be sure that the cryptovariable that does successfully match the 56 Pi and Ci is the one actually used.

In a block cipher, such as DES, testing one block is usually sufficient since a correct block has 64

correct bits.

A natural question is how long does it take to execute a brute force attack (or any other kind of attack

for that matter). The answer depends on how much computational power is available to the analyst. And

since we want cryptographic systems to be useful for many years we also need to know how much

computational power will be available in years hence. Gordan Moore, one of the founders of Intel, once

noted that processing speeds seem to double (or costs halved) every 18 months. This is equivalent to a

factor of 10 increase in speed per dollar spent about every 5 years. This trend has continued quite

accurately for many years and has come to be known as “Moore’s law.”

Using Moore’s law we can make some predictions. We first introduce the idea of a MIPS year (M.Y.).

This is the number of instructions a million-instruction-per-second computer can execute in one year.

One M.Y. is approximately 1013.5 instructions. At today’s prices, one can get a 50 MIPS PC for about

$750. We can then estimate the cost of a MIPS year at about $750/50 or $15, assuming we can run the

computer for one year.

Let’s look at what this means in two examples. We consider two cryptographic systems. One with a

56-bit cryptovariable (e.g., DES) and the other a 40-bit cryptovariable. Note that 40 bits is the maximum

cryptovariable length allowed for export by the U.S. government. We assume that each algorithm requires

about 1000 basic instructions to test each cryptovariable. Statistics tells us that, on average, we may

expect to locate the correct cryptovariable after testing about 1⁄2 of the cryptovariable space.
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There are two perspectives: how much does it cost? And how long does it take? The cost may be

estimated from:

ð1⁄2Þð1000Nð15ÞÞ=M:Y :;

where N equals the number of cryptovariables (in the examples, either 256 or 240), andM.Y.Z1013.5. The
elapsed time requires that we make some assumptions as to the speed of processing. If we set K equal to

the number of seconds in one year, and R the number of cryptovariables tested per second, we obtain the

formula:

Timeðin yearsÞZ ð1⁄2ÞðN=KRÞ:

The results are displayed in Exhibit 85.9.

One of the first public demonstrations of the accuracy of these estimates occurred during the summer

of 1995. At that time a student at Ecole Polytechnique reported that he had “broken” an encrypted

challenge message posted on the Web by Netscape. The message, an electronic transaction, was encrypted

using an algorithm with a 40-bit cryptovariable. What the student did was to partition the cryptovariable

space across a number of computers to which he had access and set them searching for the correct one. In

other words he executed a brute force attack and he successfully recovered the cryptovariable used in the

message. His attack ran for about 6 days and processed about 800,000 keys per second. While most

analysts did not believe that a 40-bit cryptovariable was immune to a brute force attack, the student’s

success did cause quite a stir in the press. Additionally the student posted his program on a Web site so

that anyone could copy the program and run the attack. At the RSA Data Security Conference, January

1997, it was announced that a Berkeley student using the idle time on a network of 250 computers was

able to break the RSA challenge message, encrypted using a 40-bit key, in three and one-half hours.

More recently a brute force attack was completed against a DES message on the RSAWeb page. We

quote from the press release of the DES Challenge team (found on www.frii.com/~rtv/despr4.htm):

LOVELAND, COLORADO (June 18, 1997). Tens of thousands of computers, all across the U.S. and

Canada, linked together via the Internet in an unprecedented cooperative supercomputing effort to

decrypt a message encoded with the government-endorsed Data Encryption Standard (DES).

Responding to a challenge, including a prize of $10,000, offered by RSA Data Security, Inc., the

DESCHALL effort successfully decoded RSA’s secret message.

According to Rocke Verser, a contract programmer and consultant who developed the specialized

software in his spare time, “Tens of thousands of computers worked cooperatively on the challenge

Year
1998
2003
2008

1,000
1,000,000
1,000,000,000
1,000,000,000,000

300 million years
300,000 years
300 years
109 days

17.5 years
6.2 days
9 minutes
0.5 seconds

$15
$1.50
$0.15

Number of cryptovariables
tested per second On 56 bit cryptovariable On 40 bit cryptovariable

$17 million
$1.7 million
$170 thousand

$260
$26
$2.60

M.Y. cost
On 56 bit
cryptovariable

On 40 bit
cryptovariable

EXHIBIT 85.9 Cost and time for brute force attack.
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in what is believed to be one of the largest supercomputing efforts ever undertaken outside of

government.”

Using a technique called “brute-force,” computers participating in the challenge simply began trying

every possible decryption key. There are over 72 quadrillion keys (72,057,594,037,927,936). At the

time the winning key was reported to RSADSI, the DESCHALL effort had searched almost 25% of the

total. At its peak over the recent weekend, the DESCHALL effort was testing 7 billion keys per second.

. And this was done with “spare” CPU time, mostly from ordinary PCs, by thousands of users who

have never even met each other.

In other words, the DESCHALL worked as follows. Mr. Verser developed a client-server program that

would try all possible keys. The clients were available to any and all who wished to participate. Each

participant downloaded the client software and set it executing on their PC (or other machine). The

client would execute at the lowest priority in the client PC and so did not interfere with the participant’s

normal activities. Periodically the client would connect to the server over the Internet and would receive

another block of cryptovariables to test. With tens of thousands of clients it only took 4 months to hit the

correct cryptovariable.

Another RSA Data Security Inc.’s crypto-cracking contest, launched in March 1997, was completed in

October 1997. A team of some 4000 programmers from across the globe, calling themselves the “Bovine

RC5 Effort,” has claimed the $10,000 prize for decoding a message encrypted in 56-bit -RC5 code. The

RC5 effort searched through 47 percent of the possible keys before finding the one used to encrypt

the message.

RSA Data Security Inc. sponsored the contest to prove its point that 128-bit encryption must become

the standard. Under current U.S. policy, software makers can sell only 40-bit key encryption overseas,

with some exceptions available for 56-bit algorithms.

A second DES challenge was solved in February 1998 and took 39 days (see Exhibit 85.10). In this

challenge, the participants had to test about 90 percent of the keyspace.

This chapter has focused mostly on brute force attacks. There may be, however, other ways to attack an

encryption system. These other methods may be loosely grouped as analytic attacks, statistical attacks,

and implementation attacks.

Analytic attacks make use of some weakness in the algorithm that enables the attacker to effectively

reduce the complexity of the algorithm through some algebraic manipulation. We will see in the section

on public key systems, that the RSA public key algorithm can be attacked by factoring with much less

work than brute force. Another example of an analytic attack is the attack on double DES.

Start of contest:
January 13, 1998 at 09:00 PST

End of contest: February 23, 1998 at 02:26 PST

Size of keyspace: 72,057,594,037,927,936
Approximate keys tested: 63,686,000,000,000,000

Peak keys Per second: 34,430,460,000

Start of distributed.net effort: January 13, 1998 at 09:08
PST

EXHIBIT 85.10 RSA project statistics.
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Double DES, you recall, may be represented by:

CZ EðEðP; KÞ; LÞ;

where K and L are 56-bit DES keys. We assume that we have matched plain and cipher text pairs Ci, Pi.

Begin by noting that if XZE(P; K). Then D(C; L) ZX. Fix a pair C1, P1, and make a table of all 2
56

values of D(C1; L) as L ranges through all 256 possible DES keys. Then try each K in succession,

computing E(P1; K) and looking for matches with the values of D(C1; L) in the table. Each pair K, L for

which E(P1; K) matches D(C1; L) in the table is a possible choice of the sought-for cryptovariable. Each

pair passing the test is then tested against the next plain-cipher pair P2, C2.

The chance of a non-causal match (a match given that the pair K, L is not the correct cryptovariable) is

about 2K64. Thus of the 2112 pairs K, L, about 2(112K64)Z248 will match on the first pair P1, C1. Trying
these on the second block P2, C2 and only 2

(48K64)Z2K16 of the non-causal pairs will match. Thus, the

probability of the incorrect cryptovariable passing both tests is about 2K16w 0. And the probability of

the correct cryptovariable passing both tests is 1.

The total work to complete this attack (called the “meet in the middle” attack) is proportional to

256C248Z256(1C2K8) w 256. In other words an attack on double DES has about the same work as

trying all possible single DES keys. So there is no real gain in security with double DES.

Statistical attacks make use of some statistical weakness in the design. For example, if there is a slight

bias toward 1 or 0 in the keystream, one can sometimes develop an attack with less work than brute force.

These attacks are too complex to describe in this short chapter.

The third class of attacks is implementation attacks. Here one attacks the specific implementation of

the encryption protocol, not simply the cryptographic engine. A good example of this kind of attack was

in the news in late summer 1995. The target was Netscape; and this time the attack was against the 128-bit

cryptovariable. Several Berkeley students were able to obtain source code for the Netscape encryption

package and were able to determine how the system generated cryptovariables. The random generator

was given a seed value that was a function of certain system clock values.

The students discovered that the uncertainty in the time variable that was used to seed the random-

number generator was far less than the uncertainty possible in the whole cryptovariable space. By trying

all possible seed values they were able to guess the cryptovariable with a few minutes of processing time.

In other words, the implementation did not use a randomization process that could, in principle,

produce any one of the 2128 possible keys. Rather it was selecting from a space more on the order of 220.

The lesson here is that even though one has a very strong encryption algorithm and a large key space, a

weak implementation could still lead to a compromise of the system.

85.7 Key (Cryptovariable) Management

We have noted in the previous sections that each encryption system requires a key (or cryptovariable) to

function and that all of the secrecy in the encryption process is maintained in the key. Moreover, we

noted that the sending and receiving party must have the same cryptovariable if they are to be able to

communicate. This need translates to a significant logistical problem.

The longer a cryptovariable is used the more likely it is to be compromised. The compromise may

occur through a successful attack or, more likely, the cryptovariable may be stolen by or sold to an

adversary. Consequently, it is advisable to change the variable frequently. The frequency of change is a

management decision based on the perceived strength of the algorithm and the sensitivity of the

information being protected.

All communicating parties must have the same cryptovariable. Thus you need to know in advance

with whom you plan to exchange messages. If a person needs to maintain privacy among a large number

of different persons, then one would need distinct cryptovariables for each possible communicating pair.

In a 1000-person organization, this would amount to almost one million keys.
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Next, the keys must be maintained in secrecy. They must be produced in secret, and distributed in

secret, and held by the users in a protected area (e.g., a safe) until they are to be used. Finally they must be

destroyed after being used.

For centuries, the traditional means of distributing keys was through a trusted courier. A government

organization would produce the cryptovariables. And couriers, who have been properly vetted and

approved, would distribute the cryptovariables. A rigorous audit trail would be maintained of

manufacture, distribution, receipt, and destruction. Careful plans and schedules for using the keys

would be developed and distributed.

This is clearly a cumbersome, expensive, and time-consuming process. Moreover the process was and

is subject to compromise. Many of history’s spies were also guilty of passing cryptovariables (as well as

other state secrets) to the enemy.

As our communications systems became more and more dependent on computers and communi-

cation networks, the concept of a key distribution center was developed. The key distribution center

concept is illustrated in Exhibit 85.11. The operation is as follows: Initially each user, A, B, ., is given
(via traditional distribution) a user-unique key that we denote by KA, KB, etc. These cryptovariables will

change only infrequently, which reduces the key distribution problem to a minimum. The KDC

maintains a copy of each user-unique key. When A calls B, the calling protocol first contacts the KDC

and tells it that user A is sending a message to user B. The KDC then generates a random “session key,” K,

i.e., a cryptovariable that will be used only for this communicating session between A and B. The KDC

encrypts K in user A’s unique cryptovariable, E(K; KA) and sends this to A. User A decrypts this message

obtaining K. The KDC likewise encrypts K in user B’s unique cryptovariable, E(K; KB) and sends this

result to B. Now A and B (and no other party) have K, which they use as the cryptovariable for

this session.

A session here may be a telephone call or passing a message through a packet switch network; the

principles are the same. In practice the complete exchange is done in seconds and is completely

transparent to the user.

The KDC certainly simplifies the distribution of cryptovariables. Only the user-unique keys need to be

distributed in advance, and only infrequently. The session key only exists for the duration of the message

so there is no danger that the key might be stolen and sold to an unauthorized person at some later date.

But the KDC must be protected, and one still has to know with whom they will be communicating. The

KDC will not help if one needs to send an electronic mail message to some new party (i.e., a party

unknown to the KDC) for example.

E(K, KA)

E(K, KB)

Network

KA

KA

A B

KDC
KB

KB

KD

EXHIBIT 85.11 Key distribution center.
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It is clear that cryptovariable (or key) management is difficult and does not provide much in the way of

flexibility. Many people have wondered if it would be possible to develop an encryption system that did

not require secret keys; a system where one could have a directory of public keys. When you wanted to

send an encrypted message to someone, you would look up that person’s cryptovariable in a “telephone

book,” encrypt the message, and send it. And no one intercepting the message would be able to decrypt it

except the intended recipient. Can such a system be designed? The answer is yes. It is called public

key cryptography.

85.8 Public Key Cryptography

The concept of public key cryptography was first discovered and publicly announced by Whitfield Diffie

and Martin Hellman (and independently by Ralph Merkle) in 1976. Adm. Bobby Inmann, a former

director of the National Security Agency once stated publicly that NSA knew of the idea for many years

prior to the publication by Diffie and Hellman.

The public key concept is rather simple (as are most great ideas, once they are explained). We assume

that we have two special functions, E andD, that can operate on messagesM. (In actual applications large

integers will represent the messages, and E and D will be integer functions.) We assume that E and D

satisfy the following conditions:

1. D(E(M))ZM

2. E(D(M))ZM

3. Given E it is not possible to determine D

4. Given D it is not possible to determine E.

The use of the function E in encryption is straightforward. We assume that each person, A, B, C, has

pairs of functions EA, DA, EB, DB, . that satisfy the conditions 1., 2., and 3. given above. Each user X

makes their EX publicly available but keeps their DX secret and known only to themselves. When Awants

to send a message, M, to B, A looks up EB in the published list and computes EB(M). By property 2,

DB(EB(M)) ZM so B can decrypt the message. From property 3, no person can determine DB from

knowledge of EB so no one but B can decipher the message.

The functions can also be used to sign messages. Perhaps A wants to send a message M to B and she

does not care if anyone else sees the message, but she does want B to know that it really came from her. In

this case A computes DA(M), called a signature, and sends it along with M. When B gets these two

messages, he looks up A’s function EA and computes EA(DA(M)) and obtains M from property 2. If this

computedM agrees with the message sent asM, then B is sure that it came from A. Why? Because no one

else has or can compute DA except A and the likelihood of someone producing a fictitious X such that

EA(X)ZM is infinitesimally small.

Now suppose A wants to send B a secret message and sign it. Let M be the message. A first

computes a “signature” SZDA(M) and concatenates this to the message M, forming M, S. A then

encrypts both the message and the signature, EB(M, S) and sends it to B. B applies DB to EB(M, S)

obtaining DB(EB(M, S))ZM, S. B then computes EA(S)ZEA(DA(M))ZM and compares it to the

message he decrypted. If both versions of M are the same, he can be assured that A sent

the message.

The question the reader should be asking is “Do such functions exist?” The answer is yes, if we relax

what we mean by conditions 3 and 4 above. If we only require that it be computationally infeasible to

recover D from E (and vice versa) then the functions can be shown to exist. The most well-known

example is the RSA algorithm, named for its discoverers, Rivest, Shamir, and Adleman.

A description of RSA requires a small amount of mathematics that we will explain as we proceed. We

start with two large prime numbers, p and q. By large we mean they contain hundreds of digits. This is

needed in order to meet conditions 3 and 4. A prime number, you recall, is a number that has no divisors

except the number itself and 1. (In dealing with integers when we say a divides b we mean that there is no

AU7495—Chapter85—25/1/2007—20:58—PARTHIBAN—14745—XML MODEL CRC12a – pp. 1095–1114.

Fundamentals of Cryptography and Encryption 1109



remainder; i.e., bZac for some integer c.) The numbers 2, 3, 7, 11, 13, 17 are all prime. The number 2 is

the only even prime. All other primes must be odd numbers.

We then define a number n as the product of p and q:

nZ pq

We also define a number t as:

tZ ðpK1ÞðqK1Þ

As an example, take pZ3 and qZ7. (These are not large primes, but the mathematics is the same.)
Then nZ21 and tZ12. The next step in the construction of RSA is to select a number e that has no

common divisors with t. (In this case e and t are said to be relatively prime.) In our numerical example we

may take eZ5 since 5 and 12 have no common divisors. Next we must find an integer d such that edK1 is

divisible by t. (This is denoted by edZ1 mod t.) Since 5*5K1Z25K1Z24Z2*12Z2*t, we may take
dZ5. (In most examples e and d will not be the same.)
The numbers d, p, and q are kept secret. They are used to create the D function. The numbers e and n

are used to create the E function. The number e is usually called the public key and d the secret key. The

number n is called the modulus. Once p and q are used to produce n and t, they are no longer needed and

may be destroyed, but should never be made public.

To encrypt a message, one first converts the message into a string of integers, m1, m2, . all smaller

than n. We then compute:

ciZ EðmiÞZme
imod n

This means that we raise mi to the e
th power and then divide by n. The remainder is ciZE(mi). In our

example, we suppose that the message is m1Z9. We compute:

c1Z 95mod 21

Z 59049 mod 21

Because 59049Z89979*21C18, we conclude that c1Z18 mod 21.
The decryption, or D function, is defined by:

DðciÞZ cdimod n

In our example,

18dmod n

Z 185mod 21

Z 1889668mod 21

As 1889568Z889979*21C9, we conclude that D(18)Z9, the message we started with.
To demonstrate mathematically that the decryption function always works to decrypt the message (i.e.,

that properties 1 and 2 above hold) requires a result from number theory called Euler’s generalization of

Fermat’s little theorem. The reader is referred to any book on number theory for a discussion of

this result.

The security of RSA depends on the resistance of n to being factored. Since e is made public, anyone

who knows the corresponding d can decrypt any message. If one can factor n into its two prime factors, p

and q, then one can compute t and then easily find d. Thus it is important to select integers p and q such
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that it is not likely that someone can factor the product n. In 1983, the best factoring algorithm and the

best computers could factor a number of about 71 decimal (235 binary) digits. By 1994, 129 digit (428

bits) numbers were being factored. Current implementations of RSA generate p and q on the order 256 to

1024 bits so that n is about 512 to 2048 bits.

The reader should note that attacking RSA by factoring the modulus n is a form of algebraic attack.

The algebraic weakness is that the factors of n lead to a discovery of the “secret key.” A brute force attack,

by definition, would try all possible values for d. Since d is hundreds of digits long, the work is on the

order of 10100, which is a prodigiously large number. Factoring a number, n, takes at most on the order of

square root of n operations or about 1050 for a 100-digit number. While still a very large number it is a

vast improvement over brute force. There are, as we mentioned, factoring algorithms that are much

smaller, but still are not feasible to apply to numbers of greater than 500 bits with today’s technology, or

with the technology of the near future.

As you can see from our examples, using RSA requires a lot of computation. As a result, even with

special purpose hardware, RSA is slow; too slow for many applications. The best application for RSA and

other public key systems is as key distribution systems.

Suppose A wants to send a message to B using a conventional private key system such as DES.

Assuming that B has a DES device, A has to find some way to get a DES cryptovariable to B. She generates

such a key, K, through some random process. She then encrypts K using B’s public algorithm, EB(K) and

sends it to B along with the encrypted message EDES(M; K). B applies his secret function DB to EB(K) and

recovers K, which he then uses to decrypt EDES(M; K).

This technique greatly simplifies the whole key management problem. We no longer have to

distribute secret keys to everyone. Instead, each person has a public key system that generates the

appropriate E and D functions. Each person makes the E public, keeps D secret and we’re done.

Or are we?

85.8.1 The Man-in-the-Middle

Unfortunately there are no free lunches. If a third party can control the public listing of keys, or E

functions, that party can masquerade as both ends of the communication.

We suppose that A and B have posted their EA and EB, respectively, on a public bulletin board.

Unknown to them, C has replaced EA and EB with EC, his own encryption function. Now when A sends a

message to B, A will encrypt it as EC(M) although he believes he has computed EB(M). C intercepts the

message and computesDC(EC (M))ZM. He then encrypts it with the real EB and forwards the result to B.

B will be able to decrypt the message and is none the wiser. Thus this man in the middle will appear as B

to A and as A to B.

The way around this is to provide each public key with an electronically signed signature (a certificate)

attesting to the validity of the public key and the claimed owner. The certificates are prepared by an

independent third party known as a certificate authority (e.g., VeriSign). The user will provide a public

key (E function) and identification to the certificate authority (CA). The CA will then issue a digitally

signed token binding the customer’s identity to the public key. That is, the CAwill produceDCA(IDA, EA).

A person, B, wishing to send a message to A will obtain A’s public key, EA and the token DCA(IDA, EA).

Since the CA’s public key will be publicized, B computes ECA(DCA(IDA, EA))ZIDA, EA. Thus B, to the

extent that he can trust the certification authority, can be assured that he really has the public key

belonging to A and not an impostor.

There are several other public key algorithms, but all depend in one way or another on difficult

problems in number theory. The exact formulations are not of general interest since an implementation

will be quite transparent to the user. The important user issue is the size of the cryptovariable, the speed

of the computation, and the robustness of the implementation. However, there is a new implementation

that is becoming popular and deserves some explanation.
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85.9 Elliptic Curve Cryptography

A new public key technique based on elliptic curves has recently become popular. To explain this new

process requires a brief digression. Recall from the previous section, that the effectiveness of public key

algorithms depend on the existence of very difficult problems in mathematics. The security of RSA

depends, for example, on the difficulty of factoring large numbers. While factoring small numbers is a

simple operation, there are only a few (good) known algorithms or procedures for factoring large

integers, and these still take prodigiously long times when factoring numbers that are hundreds of digits

long. Another difficult mathematical problem is called the discrete logarithm problem. Given a number

b, the base, and x, the logarithm, one can easily compute bx or bxmodN for anyN. It turns out to be very

difficult to solve the reverse problem for large integers. That is, given a large integer y and a base b, find x

so that bxZy Mod N. The known procedures (algorithms) require about the same level of computation
as finding the factors of a large integer. Diffie and Hellman9 exploited this difficulty to define their public

key distribution algorithm.

85.9.1 Diffie and Hellman Key Distribution

Suppose that Sarah and Tanya want to exchange a secret cryptovariable for use in a conventional

symmetric encryption system, say a DES encryption device. Sarah and Tanya together select a large prime

p and a base b. The numbers p and b are assumed to be public knowledge. Next Sarah chooses a number s

and keeps it secret. Tanya chooses a number t and keeps it secret. The numbers s and tmust be between 1

and pK1. Sarah and Tanya then compute (respectively):

xZ bsMod pðSarahÞ
yZ btMod p ðTanyaÞ

In the next step of the process Sarah and Tanya exchange the numbers x and y; Tanya sends y to Sarah,

and Sarah sends x to Tanya. Now Sarah can compute

ysZ btsMod p

And Tanya can compute

xt Z bstMod p

But,

btsMod pZ bstMod pZK

which becomes their common key. In order for a third party to recover K, that party must solve the

discrete logarithm problem to recover s and t. (To be more precise, solving the discrete logarithm

problem is sufficient to recover the key, but it might not be necessary. It is not known if there is another

way to find bst given bs and bt. It is conjectured that the latter problem is at least as difficult as the discrete

logarithm problem.) The important fact regarding the Diffie-Hellman key exchange is that it applies to

any mathematical object known as an Abelian group. (See Exhibit 85.12.)

Now we can get into the idea of elliptic curve cryptography, at least at a high level. An elliptic curve is a

collection of points in the xKy plane that satisfy an equation of the form

9Hellman, M.E. and Diffie, W. 1976. New directions in cryptography. IEEE Transactions on Information Theory IT-22,

644–654.
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y2Z x3CaxCb: ð85:1Þ
The elements a and b can be real numbers, imaginary numbers, or elements from a more general

mathematical object known as a field. As an example, if we take aZK1 and bZ0. The equation is:

y2Z x3Kx: ð85:2Þ

A graph of this curve is shown in Exhibit 85.13. It turns out that the points of this curve (those pairs (x,

y) that satisfy the equation 2) can form a group under a certain operation. Given two points PZ(x, y) and
QZ(x 0, y 0) on the curve we can define a third point RZ (x 00, y 00) on the curve called the “sum” of P andQ.

0

3

2

1

−1

−2

−3

0
0.5−0.5−1.5 −1 1 1.5 2

EXHIBIT 85.13 Graph of elliptic curve.

Groups:

A group is a collection of elements, G,
together with an operation * (called a
"product" or a "sum") that assigns to each
pair of elements x, y in G a third element z
= x*y. The operation must have an identify
element e with e*x = x *e = x for all x in G.
Each element must have an inverse with
respect to this identify. That is, for each x
there is an x ' with x*x ' = e = x '*x. Last,
the operation must be associative. If it is
also true that x*y = y*x for all x and y in
G, the group is said to be commutative, or
Abelian. (In this case the operation is often
written as −.

EXHIBIT 85.12 Definition of Abelian groups.
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Furthermore this operation satisfies all of the requirements for a group. Now that we have a group we

may define a Diffie-Hellman key exchange on this group. Indeed, any cryptographic algorithm that may

be defined in a general group can be instantiated in the group defined on an elliptic curve. For a given size

key, implementing an elliptic curve system seems to be computationally faster than the equivalent RSA.

Other than the speed of the implementation there does not appear to be any advantage for using elliptic

curves over RSA. RSA Data Security Inc. includes an elliptic curve implementation in their developer’s kit

(BSAFE) but they strongly recommend that the technique not be used except in special circumstances.

Elliptic curve cryptographic algorithms have been subjected to significantly less analysis than the RSA

algorithm so it is difficult to state with any confidence that elliptic curves are as secure or more secure

than RSA. See Koblitz10 for a complete discussion.

85.10 Conclusions

This short chapter presented a quick survey of some basic concepts in cryptography. No attempt was

made to be comprehensive; the object was to help the reader better understand some of the reports about

encryption and “breaking encryption systems” that often appear in the trade press and newspapers.

The reader is referred to any of the many fine books that are available for more detail on any of the

topics presented.

10Koblitz, N. 1994. A Course in Number Theory and Cryptography. 2nd Ed., Springer-Verlag.
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