
2 FUNDAMENTALS OF NEURAL
NETWORKS

Ali Zilouchian

2.1 INTRODUCTION

For many decades, it has been a goal of science and engineering to develop
intelligent machines with a large number of simple elements. References to this
subject can be found in the scientific literature of the 19th century. During the
1940s, researchers desiring to duplicate the function of the human brain, have
developed simple hardware (and later software) models of biological neurons
and their interaction systems. McCulloch and Pitts [1] published the first
systematic study of the artificial neural network. Four years later, the same
authors explored network paradigms for pattern recognition using a single layer
perceptron [2]. In the 1950s and 1960s, a group of researchers combined these
biological and psychological insights to produce the first artificial neural
network (ANN) [3,4]. Initially implemented as electronic circuits, they were
later converted into a more flexible medium of computer simulation. However,
researchers such as Minsky and Papert [5] later challenged these works. They
strongly believed that intelligence systems are essentially symbol processing of
the kind readily modeled on the Von Neumann computer. For a variety of
reasons, the symbolic–processing approach became the dominant method.
Moreover, the perceptron as proposed by Rosenblatt turned out to be more
limited than first expected. [4]. Although further investigations in ANN
continued during the 1970s by several pioneer researchers such as Grossberg,
Kohonen, Widrow, and others, their works received relatively less attention. The
primary factors for the recent resurgence of interest in the area of neural
networks are the extension of Rosenblatt, Widrow and Hoff’s works dealing
with learning in a complex, multi-layer network, Hopfield mathematical
foundation for understanding the dynamics of an important class of networks, as
well as much faster computers than those of 50s and 60s.

The interest in neural networks comes from the networks’ ability to mimic
human brain as well as its ability to learn and respond. As a result, neural
networks have been used in a large number of applications and have proven to
be effective in performing complex functions in a variety of fields. These
include pattern recognition, classification, vision, control systems, and
prediction [6], [7]. Adaptation or learning is a major focus of neural net research
that provides a degree of robustness to the NN model. In predictive modeling,
the goal is to map a set of input patterns onto a set of output patterns. NN
accomplishes this task by learning from a series of input/output data sets

18 Chapter 2 − Fundamentals of NN

presented to the network. The trained network is then used to apply what it has
learned to approximate or predict the corresponding output [8].

This chapter is organized as follows. In section 2.2, various elements of an
artificial neural network are described. The Adaptive Linear Element
(ADALINE) and single layer perceptron are discussed in section 2.3 and 2.4
respectively. The multi-layer perceptron is presented in section 2.5. Section 2.6
discusses multi-layer perceptron and section 2.7 concludes this chapter.

2.2 BASIC STRUCTURE OF A NEURON

2.2.1 Model of Biological Neurons

In general, the human nervous system is a very complex neural network. The
brain is the central element of the human nervous system, consisting of near 1010

biological neurons that are connected to each other through sub-networks. Each
neuron in the brain is composed of a body, one axon and multitude of dendrites.
The neuron model shown in Figure 2.1 serves as the basis for the artificial
neuron. The dendrites receive signals from other neurons. The axon can be
considered as a long tube, which divides into branches terminating in little
endbulbs. The small gap between an endbulb and a dendrite is called a synapse.
The axon of a single neuron forms synaptic connections with many other
neurons. Depending upon the type of neuron, the number of synapses
connections from other neurons may range from a few hundreds to 104.

The cell body of a neuron sums the incoming signals from dendrites as well
as the signals from numerous synapses on its surface. A particular neuron will
send an impulse to its axon if sufficient input signals are received to stimulate
the neuron to its threshold level. However, if the inputs do not reach the required
threshold, the input will quickly decay and will not generate any action. The
biological neuron model is the foundation of an artificial neuron as will be
described in detail in the next section.

Figure 2.1: A Biological Neuron.

Intelligent Control Systems 19

2.2.2 Elements of Neural Networks

A n ar tif icial n eu ro n as s ho wn in F ig u re 2 .2 , is the b as ic element o f a n eur al
n etwo rk . I t con sists o f thr ee b asic com po nen ts th at includ e w eigh ts , thr esh olds ,
and a s ing le activatio n f un ctio n .

Fig ure 2 .2 : Bas ic Elem ents of an A r tificial N eur on .

2.2.2.1 Weighting Factors
The values W1 ,W2 ,W3 ,…..,Wn are weight factors associated with each node

to determine the strength of input row vector X = [x1 x2 x3…..,xn]
T. Each input is

multiplied by the associated weight of the neuron connection XTW. Depending
upon the activation function, if the weight is positive, XTW commonly excites
the node output; whereas, for negative weights, XTW tends to inhibit the node
output.

2.2.2.2 Threshold
The node’s internal threshold θ is the magnitude offset that affects the

activation of the node output y as follows:

=

−=
n

i

kiiWXy
1

)(θ
 (2.1)

2.2.2.3 Activation Function
In this subsection, five of the most common activation functions are

presented. An activation function performs a mathematical operation on the
signal output. More sophisticated activation functions can also be utilized
depending upon the type of problem to be solved by the network. All the
activation functions as described herein are also supported by MATLAB
package.

y
w2

w1

Wn

ΣΣΣΣ

x1

x2

xn

Summing
Junction

Activation
function

Synaptic
Weights

θ

Threshold

20 Chapter 2 − Fundamentals of NN

Linear Function
As is known, a linear function satisfies the superposition concept. The

function is shown in Figure 2.3.

Figure 2.3: Linear Activation Function.

The mathematical equation for the above linear function can be written as

 uaufy .)(== (2.2)

where α is the slope of the linear function 2.2. If the slope α is 1, then the linear

activation function is called the identity function. The output (y) of identity
function is equal to input function (u). Although this function might appear to
be a trivial case, nevertheless it is very useful in some cases such as the last
stage of a multilayer neural network.

Threshold Function
A threshold (hard-limiter) activation function is either a binary type or a

bipolar type as shown in Figures 2.4 and 2.5, respectively. The output of a
binary threshold function can be written as:

u

f(u)

y f u

if u

if u

= =
<

≥









()

0 0

1 0
(2.3)

Intelligent Control Systems 21

Figure 2.4: Binary Threshold Activation Function.

Figure 2.5: Bipolar Threshold Activation Function.

The neuron with the hard limiter activation function is referred to as the
McCulloch-Pitts model.

Piecewise Linear Function
This type of activation function is also referred to as saturating linear function

and can have either a binary or bipolar range for the saturation limits of the
output. The mathematical model for a symmetric saturation function (Figure 2.6)
is described as follows:

u

f(u)

+1

-1

y f u

if u

u if u

if u

= =
− < −

− ≥ ≥
≥









()

1 1

1 1

1 1

u

f(u)

(2.4)

22 Chapter 2 − Fundamentals of NN

Figure 2.6: Piecewise Linear Activation Function.

 Sigmoidal (S shaped) function
This nonlinear function is the most common type of the activation used to

construct the neural networks. It is mathematically well behaved, differentiable
and strictly increasing function. A sigmoidal transfer function can be written in
the following form:

f x
e x

() =
+ −

1

1 α
 , 0 1≤ ≤f x() (2.5)

Figure 2.7: A Sigmoid Activation Function.

where α is the shape parameter of the sigmoid function. By varying this

parameter, different shapes of the function can be obtained as illustrated in
Figure 2.7. This function is continuous and differentiable.

u

f(u)

+1

-1

Intelligent Control Systems 23

Tangent hyperbolic function
This transfer function is described by the following mathematical form:

 f x
e e

e e

x x

x x
() = −

+

−

−

α α

α α
− ≤ ≤1 1f x() (2.6)

It is interesting to note that the derivatives of Equations 2.5 and 2.6 can be
expressed in terms of the individual function itself (please see problems
appendix). This is important for the learning development rules to train the
networks as shown in the next chapter.

Figure 2.8: A Tangent Hyperbolic Activation Function.

Example 2.1:
 Consider the following network consists of four inputs with the weights as

shown

Figure 2.9: Neuron Structure of Example 2.1.

y
+1

+1

-1

ΣΣΣΣ

X1 = 1

X2 = 2

X3 = 5 θθθθ====0000

R

+ 2X4 = 8

24 Chapter 2 − Fundamentals of NN

The output R of the network, prior to the activation function stage, is
calculated as follows:

R W XT= = −[]




















=. .1 1 1 2

1

2

5

8

14 (2.7)

With a binary activation function, and a sigmoid function, the outputs of the
neuron are respectively as follow:

y(Threshold) = 1;

 y(Sigmoid) = 1.5*2-8

2.3 ADALINE

An ADAptive LINear Element (ADALINE) consists of a single neuron of the
McCulloch-Pitts type, where its weights are determined by the normalized least
mean square (LMS) training law. The LMS learning algorithm was originally
proposed by Widrow and Hoff [6]. This learning rule is also referred to as delta
rule. It is a well-established supervised training method that has been used over
a wide range of diverse applications [7]- [11]. Curve fitting approximations can
also be used for training a neural network [10]. The learning objective of curve
fitting is to find a surface that best fits to the training data. In the next chapter
the implementation of LMS algorithms for backpropagation, and curve fitting
algorithms for radial basis function network, will be described in detail.

The architecture of a simple ADALINE is shown In Figure 2.10. It is
observed that the basic structure of an ADALINE is similar to a linear neuron
(Figure 2.2) with the activation function f(.) to be a linear one with an extra
feedback loop. Since ADALINE is a linear device, any combination of these
units can be accomplished with the use of a single unit.

During the training phase of ADALINE, the input vector X∈ R n:

[]TnxxxxX L321= as well as desired output are presented to the

network. The weights are adaptively adjusted based on delta rule. After the
ADALINE is trained, an input vector presented to the network with fixed
weights will result in a scalar output. Therefore, the network performs a
mapping of an n dimensional mapping to a scalar value. The activation function
is not used during the training phase. Once the weights are properly adjusted, the
response of the trained unit can be tested by applying various inputs, which are
not in the training set. If the network produces consistent responses to a high
degree with the test inputs, it said that the network could generalize. Therefore,
the process of training and generalization are two important attributes of the
network.

Intelligent Control Systems 25

W1

W2

Wn

Σ

Σ

_

+

Error

Desired
Output

Output

X1

X2

Xn

*
*

Figure 2.10: ADALINE.

In practice, an ADALINE is usually used to make binary decisions.
Therefore, the output is sent through a binary threshold as shown in Figure 2.4.
Realizations of several logic gates such as AND, NOT and OR are common
applications of ADALINE. Only those logic functions that are linearly separable
can be realized by the ADALINE, as is explained in the next section.

2.4 LINEAR SEPARABLE PATTERNS

For a single ADALINE to function properly as a classifier, the input pattern
must be linearly separable. This implies that the patterns to be classified must be
sufficiently apart from each other to ensure the decision surface consists of a
single hyperplane such as a single straight line in two-dimensional space. This
concept is illustrated in Figure 2.11 for a two-dimensional pattern.

(b)(a)

Figure 2.11: A Pair of Linearly Separable (a), and Non-Linearly Separable
Patterns (b).

26 Chapter 2 − Fundamentals of NN

A class ic ex amp le o f a m app in g that is no t s ep ar able is XO R (th e ex clu siv e or)
g ate fu n ctio n . Table 2 .1 sh ow s the in pu t- ou tpu t p attern of th is p ro b lem. Figu re
2 .1 2 sh o ws th e lo catio ns of the sy mb o lic ou tpu ts of X OR fu nctio n co r resp o nd in g
to fo ur in pu t p atter ns in X 1- X2 plan e. Th er e is n o way to dr aw a sin gle s tr aigh t
lin e so th at th e cir cles ar e on on e s id e of th e lin e an d the tr iang u lar s ig n on th e
o th er s ide. Therefo r e, an A DA LI N E can no t realize th is f u nctio n.

Tab le 2 .1: In pu ts /Ou tp u ts Relation s hip fo r X OR.

X1 X2 O utpu t
0 0 0
0 1 1
1 0 1
1 1 0

X1

X2

1

.5

1.5

Fig ure 2 .1 2: The O utp ut o f X OR in X 1- X 2 Plan e.

One approach to solve this nonlinear separation problem is to use
MADALINE (Multiple ADALINE) networks. The basic structure of a
MADALINE network consists of combining several ADALINE with their
correspondence activation functions into a single forward structure. When
suitable weights are chosen, the network is capable of implementing
complicated and nonlinear separable mapping such as XOR gate problems. We
will address this issue later in this chapter.

2.5 SINGLE LAYER PERCEPTRON

2.5.1 General Architecture

The original idea of the perceptron was developed by Rosenblatt in the late
1950s along with a convergence procedure to adjust the weights. In Rosenblatt’s
perceptron, the inputs were binary and no bias was included. It was based on
the McCulloch-Pitts model of the neuron with the hard limitation activation
function. The single layer perceptron as shown in Figure 2.13 is very similar to
ADALINE except for the addition of an activation function.

Intelligent Control Systems 27

W1

W2

Wn

Σ

Desired
Output

Output

X0

X2

Xn

*
*

Σ

_

+

Error

Activation
Function

X1
W0

Figure 2.13: A Perceptron with a Sigmoid Activation Function.

Connection weights and threshold in a perceptron can be fixed or adapted
using a number of different algorithms. Here the original perceptron
convergence procedure as developed by Minsky and Papert[5] is described.
First, connection weights W1, W2,…,Wn and the threshold value W0 are
initialized to small non-zero values. Then, a new input set with N values
received through sensory units (measurement devices) and the input is
computed. Connection weights are only adapted when an error occurs. This
procedure is repeated until the classification of all inputs is completed.

2.5.2 Linear Classification

For clarification of the above concept, consider two input patterns classes C1
and C2. The weight adaptation at the kth training phase can be formulated as
follow:
1. If k member of the training vector x(k) is correctly classified, no correction

action is needed for the weight vector. Since the activation function is
selected as a hard limiter, the following conditions will be valid:
W (k+1)=W (k) if output>0 and x (k)∈C1 , and

W(k+1)=W(k) if output<0 and x(k)∈C2.

2. Otherwise, the weight should be updated in accordance with the following
rule:
W(k+1)=W(k)+η x(k) if output≥0 and x(k)ε C1

W(k+1)=W(k)-η x(k) if output≤0 and x(k)ε C2

Where η is the learning rate parameter, which should be selected between 0

and 1.

28 Chapter 2 − Fundamentals of NN

Example 2.2:
 Let us consider pattern classes C1 and C2, where C1: {(0,2), (0,1)} and C2:

{(1,0), (1,1)}. The objective is to obtain a decision surface based on perceptron
learning. The 2-D graph for the above data is shown in Figure 2.14

X1

X2

1

2

1

Figure 2.14: 2-D Plot of Input Data Sets for Example 2.2.

 Since, the input vectors consist of two elements , the perceptron structure is
simply as follows:

Σ
Output

θ

X2(k)

X1(k)

W0

W1(k)

W2(k)

yk

Figure 2.15: Perceptron Structure for Example 2.2.

For simplicity, let us assume η=1 and initial weight vector W(1)=[0 0]. The

iteration weights are as follow:

Iteration 1: W xT (). ()1 1 0 0
0

2
0= []







 =

Weight Update: W W x() () ()2 1 1
0

0

0

2

0

2
= + =









 +









 =











Intelligent Control Systems 29

Iteration 2: W xT (). ()2 2 0 2
0

1
2 0= []







 = >

Weight Update:)2()3(WW =

Iteration 3: W xT (). ()3 3 0 2
1

0
0= []







 =

Weight Update: W W x() () ()4 3 3
0

2

1

0

1

2
= − =









 −









 =

−









Iteration 4: W xT (). ()4 4 1 2
1

1
1= −[]







 =

Weight Update: W W x() () ()5 4 4
1

2

1

1

2

1
= − =

−







 −









 =

−









Now if we continue the procedure, the perceptron classifies the two classes
correctly at each instance. For example for the fifth and sixth iterations:

Iteration 5: W xT (). ()5 5 2 1
0

2
2 0= −[]







 = > :Correct Classification

Iteration 6: W xT (). ()6 6 2 1
0

1
1 0= −[]







 = > :Correct Classification

In a similar fashion for the seventh and eighth iterations, the classification
results are indeed correct.

Iteration 7: W xT (). ()7 7 2 1
1

0
2 0= −[]







 = − < :Correct Classification

Iteration 8: W xT (). ()8 8 2 1
1

1
1 0= −[]







 = − < :Correct Classification

Therefore, the algorithm converges and the decision surface for the above
perceptron is as follows:

02)(21 =+−= XXxd (2.8)

Now, let us consider the input data {1,2}, which is not in the training set. If
we calculate the output:

Y W XT= = −[]






 = − <. 2 1

2

1
3 0 (2.9)

The output Y belongs to the class C2 as is expected.

30 Chapter 2 − Fundamentals of NN

X1

X2

1

2

1

Decision Surface
-2*X1+X2=0

Figure 2.16: Decision Surface for Example 2.2.

2.5.3 Perceptron Algorithm

The perceptron learning algorithm (Delta rule) can be summarized as
follows:

Step 1: Initialize the weights W1, W2…Wn and threshold θ to small random

 values.
Step 2: Present new input X1, X2,..Xn and desired output kd .

Step 3: Calculate the actual output based on the following formula:

y X Wik
h

i k

i

n

f= −
=

∑(())θ
1

 (2.10)

Step 4: Adapt the weights according to the following equation:

W new W old d y x i Ni i k k i() () () ,= + − ≤ ≤η 0

Where η is a positive gain fraction less than 1 and kd is the desired output.

Note that the weights remain the same if the network makes the correct decision.
Step 5: Repeat the procedures in steps 2−4 until the classification task is

completed.

Similar to ADALINE, if the presented inputs pattern is linearly separable,
then the above perceptron algorithm converges and positions the decision

(2.11)

Intelligent Control Systems 31

hyperplane between two separate classes. On the other hand, if the inputs are not
separable and their distribution overlaps, then the decision boundary may
oscillate continuously. A modification to the perceptron convergence procedure
is the utilization of Least Mean Square (LMS) in this case. The algorithm that
forms the LMS solution is also called the Widrow-Hoff. The LMS algorithm is
similar to the procedure above except a threshold logic nonlinearity, replaces the
hard limited non-linearity. Weights are thus corrected on every trail by an
amount that depends on the difference between the desired and actual values.
Unlike the learning in the ADALINE, the perceptron learning rule has been
shown to be capable of separating any linear separable set of the training
patterns.

2.6 MULTI-LAYER PERCEPTRON

2.6.1 General Architecture

Multi-layer perceptrons represent a generalization of the single-layer
perceptron as described in the previous section. A single layer perceptron forms
a half–plane decision region. On the other hand multi-layer perceptrons can
form arbitrarily complex decision regions and can separate various input
patterns. The capability of multi-layer perceptron stems from the non-linearities
used within the nodes. If the nodes were linear elements, then a single-layer
network with appropriate weight could be used instead of two- or three-layer
perceptrons. Figure 2.17 shows a typical multi-layer perceptron neural network
structure. As observed it consists of the following layers:

Figure 2.17: Multi-layer Perceptron.

32 Chapter 2 − Fundamentals of NN

Input Layer: A layer of neurons that receives information from external
sources, and passes this information to the network for processing. These may
be either sensory inputs or signals from other systems outside the one being
modeled.

Hidden Layer: A layer of neurons that receives information from the input
layer and processes them in a hidden way. It has no direct connections to the
outside world (inputs or outputs). All connections from the hidden layer are to
other layers within the system.

Output Layer: A layer of neurons that receives processed information and
sends output signals out of the system.

Bias: Acts on a neuron like an offset. The function of the bias is to provide a
threshold for the activation of neurons. The bias input is connected to each of
the hidden and output neurons in a network.

2.6.2 Input-Output Mapping

The input/output mapping of a network is established according to the
weights and the activation functions of their neurons in input, hidden and output
layers. The number of input neurons corresponds to the number of input
variables in the neural network, and the number of output neurons is the same as
the number of desired output variables. The number of neurons in the hidden
layer(s) depends upon the particular NN application. For example, consider the
following two-layer feed-forward network with three neurons in the hidden layer
and two neurons in the second layer:

i 1

i 2

w 12

w 11

w
23

w 13

w 22

w 21 o 2

o 1

n1

n2

n3

n4

n5

11 w’

21 w’
12 w’

22 w’

23 w’

13 w’

i =1 0 w 01

w 02

w 03

Figure 2.18: An Example of Multi-layer Perceptron.

Intelligent Control Systems 33

A s is s h ow n, th e in p uts are con n ected to each neu ro n in hidd en layer v ia th eir
cor resp o nd in g w eigh ts. A zero w eig ht in dicates n o con nection . F or ex am ple, if
W 2 3 = 0, it is imp lied th at no con n ectio n ex is ts between th e secon d in p ut (i2) and
the thir d neu ro n (n 3) . Ou tp u ts o f the last layer ar e con s id er ed as th e ou tp u ts o f the
n etwo rk .

 Th e str uctu r e of each n eur on w ith in a layer is s im ilar to th e ar ch itectu re as
d es cr ib ed in sectio n 2 .5 . A ltho u gh th e activ atio n f un ction f o r on e n eu ro n cou ld be
d if feren t fr o m other n eu r on s within a lay er , f or stru ctu ral s im plicity , s im ilar
n eu ro ns ar e com mo nly cho s en w ith in a layer. Th e inp ut d ata s ets (or sens o ry
inf or matio n) ar e pr esented to th e in p ut lay er. Th is lay er is co nn ected to the f irs t
h id den lay er . I f th ere is m or e than o ne h id d en layer, th e las t hidd en lay er s ho u ld b e
con nected to th e ou tpu t lay er o f the netw or k . A t th e f ir st ph as e, we w ill h av e the
f ollo win g lin ear relatio n sh ip f o r each layer :

XWA 11 = (2.12)

where 1A is a column vector consisting of m elements, 1W is an m×n weight

matrix and X is a column input vector of dimension n. For the above example,
the linear activity level of the hidden layer (neurons n1 to n3) can be calculated
as follows:

a w i w i

a w i w i

a w i w i

11 11 1 21 2

12 12 1 22 2

13 13 1 23 2

= +
= +
= +









 (2.13)

The o utp ut v ector f o r th e h id den lay er can b e calcu lated b y the f ollow in g
f or mu la:

11 .AFO = (2.14)

w here 1A is d ef ined in Eq uatio n 2 .1 2, an d 1O is th e o utpu t colum n v ector o f the

h id den lay er with m elem ent. F is a d iag on al matr ix co m pr is in g the no n- lin ear
activ ation f u nction s o f the f ir s t hid den lay er :

F

f

f

fm

=























1

2

0 0 0

0 0

0

0 0 0

(.) ...

(.)

.

. ..

... (.)

 (2.15)

F or exam ple, if all activ atio n f un ction s fo r the neur on s in the h id d en layer of
F ig ur e 2 .1 8 are cho s en s imilarly , th en th e o utpu t o f th e n eu r on s n1 to n 3 can be
calcu lated as f ollo w s:

34 Chapter 2 − Fundamentals of NN

O f a

O f a

O f a

11 11

12 12

13 13

=
=
=









()

()

()

 (2.16)

In a similar manner, the output of other hidden layers can be computed. The
output of a network with only one hidden layer according to Equation 2.14 is
as follows:

122 .OWA = (2.17)

22 .AGO = (2.18)

W here 2A is the vecto r of activity levels of ou tp ut layer and 2O is th e q o utp ut o f

the n etw or k. G is a d iag on al matr ix co n sistin g o f n on linear activ atio n f un ction s o f
the o utp ut layer:

G

g

g

gq

=























1

2

0 0 0

0 0

0

0 0 0

(.) ...

(.)

.

. ..

... (.)

 (2.19)

 For Figure 2.18, the activity level of output neurons n 4 and n 5 can be
calculated as follows:

a W O W O W O

a W O W O W O
21 11 11 12 21 13 31

22 21 11 22 21 23 31

= ′ + ′ + ′
= ′ + ′ + ′





 (2.20)

 The two outputs of the network with the similar activation functions can be
calculated as follows:

O g a

O g a
1 21

2 22

=
=





()

()
 (2.21)

 Therefore, the input-output mapping of a multi-layer perceptron is
established according to relationships 2.12−2.22. In sequel, the output of the
network can be calculated using such nonlinear mapping and the input data sets.

2.6.3 XOR Realization

As it was shown in section 2.4, a single-layer perceptron cannot classify the
input patterns that are not linearly separable such as an Exclusive OR (XOR)
gate. This problem may be considered as a special case of a more general non-
linear mapping problem. In the XOR problem, we need to consider the four
corners of the unit square that correspond to the input pattern. We may solve the

Intelligent Control Systems 35

problem with a multi-layer perceptron with one hidden layer as shown in Figure
2.19.

θ2

θ3

W23

W21

W12

W11

W22

W13

W11

W11

W03

x2

x1

θ1

Figure 2.19: Neural Network Architecture to Solve XOR Problem.

In the above configuration, a McCulloh-Pitts model represents each neuron,
which uses a hard limit activation function. By appropriate selections of the
network weights, the XOR could be implemented using decision surfaces as
shown in Figure 2.20.

X1

X2

1

2

1

Figure 2.20: Decision Surfaces to Solve XOR Problem.

Example 2.3:
Suppose weights and biases are selected as shown in Figure 2.21. The

McCulloh-Pitts model represents each neuron (binary hard limit activation
function). Show that the network solves XOR problem. In addition, draw the
decision boundaries constructed by the network.

36 Chapter 2 − Fundamentals of NN

θ3=1

-1

-1

+1

-1

+1

-0.5

+0.5

-1

x2

x1

θ1=1

+1

Figure 2.21: Neural Network Architecture for Example 2.3.

In Figure 2.21, suppose the outputs of neurons (before activation function)
denote as O1, O2, and O3. The outputs of the summing points at the first layer
are as follow:

5.0211 +−= xxO (2.22)

5.0212 −−= xxO (2.23)

 With the binary hard limited functions, the output y1 and y 2 are shown in
Figures 2.22 and 2.23.

X2

1

.5

1.5

X1-X2+0.5=0
Y1=0

Y2=1

Figure 2.22: Decision Surface for Neuron 1 of Example 2.3.

Intelligent Control Systems 37

X1

X2

1

.5

1.5

X1-X2-0.5=0

Y1=0

Y2=1

Figure 2.23: Decision Surface for Neuron 2 of Example 2.3.

The outputs of the summing points at the second layer are:

1213 −−= yyO (2.24)

The decision boundaries of the network are shown in Figure 2.24. Therefore,
XOR realization can be accomplished by selection of appropriate weights using
Figure 2.19.

X1

X2

1

.5

1.5

Y3=0
Y3=1

Y3=0

Figure 2.24: Decision Surfaces for Example 2.3.

38 Chapter 2 − Fundamentals of NN

2 .7 C ON CLUS I ON

I n th is ch ap ter , th e f un d am en tals of neur al netw o rk s wer e in tro du ced . Th e
p er ceptr on is the s imp les t fo rm of n eur al n etw or k u sed f or th e clas s if ication o f
lin early s ep arable p atter ns . Mu lti-layer p er ceptr on o v er co me many limitatio ns of
s in gle- lay er percep tro n. Th ey can fo r m ar bitrarily co mp lex d ecision regio ns in
o rd er to s ep arate v ariou s n on lin ear p attern s . Th e n ex t chapter is d evo ted to sev er al
n eu ral n etwo r k ar ch itectu res. A p plication s o f NN will b e p res en ted in Ch apter s
4 − 7 and Ch ap ter 1 5 of th e b oo k.

REFERENCES

1. McCulloch, W.W. and Pitts, W., A Logical Calculus of Ideas Imminent
in Nervous Activity. Bull. Math. Biophys., 5, 115−133, 1943.

2 . Pitts, W. and McCulloch, W.W., How we Know Universals, Bull.
Math. 127−147, 1947.

3. McClelland, J.L. and Rumelhart, D.E., Parallel Distributed Processing
-Explorations in the Microstructure of Cognition, Vol. 2, Psychological
and Biological Models, MIT Press, Cambridge, MA, 1986.

4. Rosenblatt, F., Principles of Neurodynamics, Spartan Press,
Washington, DC, 1961.

5 . Minsky, M. and Papert, S., Perceptron: An Introduction to
Computational Geometry, MIT Press, Cambridge, MA, 1969.

6 . Widrow, B. and Hoff, M.E, Adaptive Switching Circuits, IRE
WESCON Convention Record, Part 4, NY, IRE, 96−104, 1960.

7 . Fausett, L., Fundamentals of Neural Networks, Prentice-Hall,
Englewood Cliffs, NJ, 1994.

8. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice
Hall, Upper Saddle River, NJ, 1999.

9 . Kosko, B., Neural Network for Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1992.

10. Ham, F. and Kostanic, I., Principles of Neurocomputing for Science
and Engineering, McGraw Hill, New York, NY, 2001.

11. Lippmann, R.P., An Introduction to Computing with Neural Network,
IEEE Acoustic, Speech, and Sig. Proces. Mag., 4, 1987.

	Intelligent Control Systems Using Soft Computing Methodologies
	Table of Contents
	FUNDAMENTALS OF NEURAL NETWORKS
	2.1 INTRODUCTION
	2.2 BASIC STRUCTURE OF A NEURON
	2.2.1 Model of Biological Neurons
	2.2.2 Elements of Neural Networks
	2.2.2.1 Weighting Factors
	2.2.2.2 Threshold
	2.2.2.3 Activation Function

	2.3 ADALINE
	2.4 LINEAR SEPARABLE PATTERNS
	2.5 SINGLE LAYER PERCEPTRON
	2.5.1 General Architecture
	2.5.2 Linear Classification
	2.5.3 Perceptron Algorithm

	2.6 MULTI-LAYER PERCEPTRON
	2.6.1 General Architecture
	2.6.2 Input-Output Mapping
	2.6.3 XOR Realization

	2 .7 C O N C L U S I O N
	REFERENCES

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC

