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1 Introduction 
Buffer Overflows are one of the most 
common and potentially deadly forms of 
attack against computer systems to date. 
They allow an attacker to locally or 
remotely inject malicious code into a system 
and compromise its security. They arise out 
of poor programming practices and buggy 
software. First seen in the Internet Worm of 
1987 they can occur on all major platforms 
(UNIX, Linux, Win32, and Solaris) and all 
major architectures (Intel, Alpha and MIPS). 
There are in fact many variations of buffer 
overflows but this paper will deal with the 
most basic and common type, i.e. stack 
based overflows. Other types include heap-
based overflows, frame pointer overflows 
and adjacent memory space overflows. 
These however are beyond the scope of this 
paper. I will begin with observing how this 
vulnerability arises before assessing what 
methods are used to prevent such 
occurrences from being able to happen. 
Throughout this paper I will be using C code 
examples and x86 Assembly Language 
examples (coded in the Intel syntax, the 
AT&T syntax is messy). All examples are 
intended to work on a Win32 system but 
should be portable to Linux unless otherwise 
stated. 
 

1.1 Where does the problem lie? 
To understand and prevent this type of 
vulnerability we need to fully understand 
where the weaknesses in the system are. 
There are two key elements involved here: 
 
• The stack and function calling. 
• Memory I/O with no bounds checking. 
 

1.1.1 The Stack 

 

An executing program, further referenced in 
this paper as a process, uses the stack 



 
 

 
 

primarily for passing arguments 
(pointers, variables) and function 
calling. Variables can be held in the 
stack but are also stored in other 
locations of a process depending 
how they are instantiated or allocated 
(Refer to section 4 Process Segments 
for a list of possibilities). The stack 
is an abstract space that uses a 
method known as Last in First out 
(LIFO). This means the last thing to 
be pushed onto the stack can be 
retrieved by popping it out. Pushing 
and Popping will automatically grow 
and shrink the stack. It is important 
to remember the stack grows 
downwards in memory as it gets 
bigger (see Figure 1). This is because 
the stack works backwards, the 
bottom of it is located at a higher 
memory address then the top. 
 

 
Figure 1 

 
Variables declared inside a function 
are allocated space within the stack 
frame of that function. To understand 
what a stack frame is and how 
memory is allocated for a variable 
we can use the example C code in 
Listing 1 and its assembly language 
equivalent in Listing 2. 

 
1: int main () 
2: { 
3: char buffer[16]; 
3: return 0; 
4: } 

Listing 1 

 
1: push ebp 
2: mov ebp, esp 
3: sub esp, 0x10 
4: xor eax, eax 
5: mov esp, ebp 
6: pop ebp 
7: ret 

Listing 2 

 
In Listing 1 we see a very simple C program 
which when run will allocate 16 bytes on the 
stack to a variable called buffer and then 
exit. This does not give us much information 
on how the stack is used so we must look 
into its assembly equivalent. Listing 2 shows 
us the same program, which will do exactly 
the same thing when run, but here we can 
see exactly what is going on inside the 
process space. 
 
There are three registers used here, the base 
pointer (EBP), the stack pointer (ESP) and 
the accumulator register (EAX). The EBP is 
a static pointer within a stack frame and can 
be used to reference variables held within 
the stack. The ESP is a dynamic register that 
will grow and shrink as variables are 
allocated and de-allocated on the stack 
(Refer to Figure 1). The EAX is used 
normally to return values from a function. 
The first two lines are called the procedure 
prelude; this is what sets up a new stack 
frame. Line one saves the old base pointer 
by pushing it onto the stack. Line two moves 
the current stack pointer into the base 
pointer. Now a new stack frame has been set 
up. By executing line two the base of this 
new stack frame begins at the top of 
previous stack. Thus a stack frame can be 
considered a separate stack for the current 
function held on top of the callers stack 



 
 

 
 

frame. Line three is where the 16 
bytes are allocated for the variable 
"buffer". It increases the stack size 
by subtracting 16 bytes from the 
stack pointer (remember that the 
stack grows down and the ESP 
points to a lower memory address 
than the EBP, this is why we subtract 
the required amount). If we were to 
reference this variable we would 
point to its address in memory by 
referring to the EBP (this is possible 
because the base pointer is static.). 
For example: lea eax, [ebp-0x10]. If 
we executed this line EAX would 
point to our variable. Line four sets 
the functions return value to zero by 
xoring the EAX with itself, thus 
reducing it to zero. Lines five and six 
are known as the procedure 
prologue. Line five destroys the 
current stack frame by moving the 
base pointer into the stack pointer. 
This will set the ESP back to its 
original value before the function 
was called. Line six restores the EBP 
to its original value before the 
function was called. Finally in line 
seven the function after restoring the 
ESP and EBP returns. 
 
Listing 3 (shown below) and its 
assembly equivalent in Listing 4 
shows us a practical example of 
stack frames being created and 
destroyed as function foo() is called 
and returns. A quick overview of 
what happens is a new stack frame is 
created when main() is called. As 
foo() is called a separate stack frame 
is arranged on top of main()'s one. 
 
1: void foo() 
2: { 
3: return; 
4: } 
5: int main () 
6: { 

7: foo(); 
8: return 0; 
9: } 

Listing 3 

  
 

1: push ebp 
2: mov ebp, esp 
3: pop ebp 
4: ret 
5: push ebp 
6: mov ebp, esp 
7: call 1 
8: xor eax, eax 
9: pop ebp 
10: ret 

Listing 4 

 
It is extremely important to note that when a 
call is performed in assembly the current 
Instruction Pointer (EIP) is pushed onto the 
stack. The EIP is a pointer to the current line 
of code being executed and is the key to 
execution redirection. Thus a call in 
assembly is the same as: 
 
push eip ; pushes the current EIP 
onto the stack 
jmp X ; jump to the function at 
address X 
 
This allows for a function to return to its 
caller as it can restore the old EIP. If we can 
overwrite the saved EIP we can redirect the 
processes execution flow to anywhere we 
want (e.g. our own malicious shellcode). 
The function foo() returns by using the 
saved EIP that was pushed onto the stack by 
the call in line seven. The function foo 
removes its stack frame in line two of 
Listing 4 and restoring main()'s stack 
pointers (EBP and EBP), thus restoring 
main()'s stack frame. When a return is 
performed in assembly it is the same as: 
 
mov edx, dword[ebp+0x04] ; moves 
the saved EIP into EDX 
jmp edx ; jumps to the address in 
EDX 
 



 
 

 
 

1.1.2 No Bounds Checking 
Writing to memory can be hazardous 
if there is no procedure employed to 
check how much data is being 
written and where it is being written 
to. For example if we have a buffer 
in memory which is 16 bytes long 
and we write 24 bytes to it we will 
overwrite the 8 bytes at the end 
which don't belong to the buffer. 
Listing 5 demonstrates this with a 
complete example using a C 
program. 
 
 1: #include <stdio.h> 
 2: #include <string.h> 
 3: 
 4: char overflowbuffer[24] =     
 "CCCCCCCCCCCCCCCCCCCCCCC"; 
 5: 
 6: int main() 
 7: { 
 8: 
 9: char one[16] = "AAAAAAAAAAAAAAA"; 
10: char two[16] = "BBBBBBBBBBBBBBB"; 
11: 
12: printf("before...\n"); 
13: printf("one: %s\n", one); 
14: printf("two: %s\n\n", two); 
15: 
16: strcpy(two, overflowbuffer); 
17: 
18: printf("after...\n"); 
19: printf("one: %s\n", one); 
20: printf("two: %s\n\n", two); 
21: 
22: return 0; 
23: } 

Listing 5 

 
Upon compiling and executing this 
application you will receive the 
output as show in Listing 6. Up until 
line fifteen the processes stack will 
look like Figure 2. Keep in mind that 
the stack works backwards so the 
two strings appear reversed (the dot 
at the end of each string is a null 
character, 0x00, which is appended 
to the end of a string to indicate its 
termination.). After executing line 
sixteen, the variable overflow buffer 
gets copied into memory starting at 

the beginning address of the variable two. 
However the variable overflow buffer is 
eight bytes longer than the variable two and 
will overflow into the variable one's 
memory space. The processes stack will 
now look like Figure 3. Printing out the two 
variables again after executing line fifteen 
verifies this. 
 

 
Figure 2 

 

 
Figure 3 

 
The reason we are able to do this is because 
most functions (notably in the C/C++ 
language) that write to memory perform no 
bounds checking. Also most compilers don't 
provide for bounds checking at compile time 
to warn developers. Therefore overflows are 
a very regular occurrence in real world 
applications. In the next section we will look 
how no bounds checking and the stack 
methodology can be used for malicious 
purposes. 
 

before... 
one: AAAAAAAAAAAAAAA 
two: BBBBBBBBBBBBBBB 
after... 
one: CCCCCCC 
two: CCCCCCCCCCCCCCCCCCCCCCC 

Listing 6 

 



 
 

 
 

2 Smashing the Stack 
Smashing the stack is the term used 
to refer to a stack based buffer 
overflow where the process 
execution flow is redirected into 
malicious shellcode. To do this we 
need to inject our own code into the 
processes memory space (usually 
into the current stack frame) and 
overwrite the saved EIP (which is 
located 4 bytes below the current 
frames EBP) to point to our own 
code so it will get executed. Listing 7 
contains a program that will when 
executed overwrite the EBP and the 
EIP with our own values. 
 
 1: #include <stdio.h> 
 2: #include <string.h> 
 4: void foo(char *ptr) 
 5: { 
 6: printf("\tinside foo()\n"); 
 7: char smallbuff[128]; 
 8: strcpy(smallbuff, ptr); 
 9: printf("\tleaving foo()\n"); 
10: return; 
11: } 
12: int main() 
13: { 
14: printf("starting\n"); 
15: char bigbuff[160]; 
16: for(int i=0; i< 160; i++) 
17: { 
18: bigbuff[i] = 'A'; 
19: } 
20: // These 4 bytes will overwrite 
the saved EBP 
21: bigbuff[128] ='B'; 
22: bigbuff[129] ='B'; 
23: bigbuff[130] ='B'; 
24: bigbuff[131] ='B'; 
25: // These 4 bytes will overwrite 
the saved EIP 
26: bigbuff[132] ='C'; 
27: bigbuff[133] ='C'; 
28: bigbuff[134] ='C'; 
39: bigbuff[135] ='C'; 
30: printf("calling foo()\n"); 
31: foo(bigbuff); 
32: // We will never get here 
33: printf("finished\n"); 
34: return 0; 
35: } 

Listing 7 

 
Upon executing this code the 
processes instruction pointer will get 

overwritten to 0x43434343 (0x43 is 'C' in 
hexadecimal) and the base pointer will get 
overwritten to 0x42424242. For our own 
code to be executed we would insert it into 
the first 124 bytes of the buffer and point the 
EIP back into it. 
 

3 Prevention 
To render this class of vulnerability obsolete 
we must review what methods are most 
likely to succeed. There are two main 
options available. 
 
• Protection at run time; kernel patches, 

modified run time environment. 
• Protection at compile time; Modified 

compilers, secure functions. 
 

3.1 Non Executable Stacks 
By modifying the kernel we can set the stack 
segment of a process to become non-
executable. Therefore if the execution flow 
was ever redirected inside the stack to 
execute code a general protection fault 
would occur causing the process to produce 
a core dump. Currently this method is only 
possible under operating systems such as 
UNIX and Solaris as system level 
modification is easily applied. Systems such 
as Windows NT would need a new kernel 
from Microsoft. This is a run time solution 
that does not solve the problem completely. 
The vulnerably process attacked will still 
crash out (like a denial of service attack) and 
ways around non-executable stacks have 
been discovered. It also ignores more 
advanced types of buffer overflows such as 
heap based overflows. 
 

3.2 Random Stack Addresses 
In order to execute malicious code injected 
into the stack the EIP must be pointed to the 



 
 

 
 

stack, normally at ESP. If however 
we can make the stack address 
random every time a process runs, 
the attacker will not know where to 
point the instruction pointer. This is 
not completely true for Windows 
systems as it is often possible to 
point the EIP into a fixed address 
which contains a line of code similar 
to JMP ESP, which upon executing 
will jump to wherever the ESP is and 
begin executing from there. 
Therefore randomizing won't make a 
difference. This is only possible 
because DLL's are mapped to a fixed 
base address in a process memory 
space and it is easy to find an 
instruction such as JMP ESP to 
reference. Systems such as UNIX 
don't employ such a technique and, 
therefore, randomizing the stack 
address will help reduce the 
possibilities of an attack succeeding. 
This method can be employed at run 
time by the kernel or at compile time 
by the programmer. It still won't 
solve the problem and acts only as a 
deterrent, best used in conjunction 
with other methods. 
 

3.3 Bounds Checking 
As the heart of the vulnerability lies 
in being able to write past the bounds 
of a variable, one of the most 
effective methods to secure against 
this is to employ secure coding in the 
form of bounds checking. Bounds 
checking can be employed in the 
functions that access memory or in 
the compiler itself, which will 
modify the code as needed. An 
example of a function which uses 
bounds checking is the common 
string function strncpy(). It will only 
copy a certain amount of bytes 

unlike the function strcpy() which will copy 
as many as possible until a null byte is 
found. An example is given below. 
 
strcpy(smallbuff, ptr); // insecure 
coding!!! 
 
strncpy(smallbuff, sizeof(smallbuff), ptr); 
// secure coding :) 

 
If bounds checking is employed at compile 
time the programmer can be warned of 
possible vulnerabilities and the code can be 
modified to protect against then. It is easier 
to employ this under platforms like Linux as 
they are open source and easily modified. 
An example is a modification for gcc (the 
Linux C/C++ compiler) which will compile 
insecure code and produce safer code. It is 
important to note that C/C++ is the most 
vulnerable language due to its ability to 
access and reference memory directly. Java 
completely avoids this entire class of 
vulnerability as it has sophisticated memory 
management algorithms that will not allow a 
user to overwrite areas of memory. However 
C/C++ is the most widely used development 
language and most operating systems are 
largely developed with it (e.g. UNIX, Linux 
and Windows). 
 

4 Process Segments 
When an application is compiled various 
parts are placed in certain segments 
depending what they are. They will then get 
mapped into a process space upon 
execution. There are five main segment 
types. 
 
1. The stack segment is for the stack which 

is used for passing arguments and 
storing variables. 

 
2. The code segment, also called the text 

segment, contains the compiled code. 
 



 
 

 
 

 
3. The heap Segment is for 

variables dynamically allocated 
at run time, e.g. 
char * buf = new char[malloc(i)]; 

 
4. The Block Started by Symbol 

(BSS) Segment is for global 
variables un-initialized at 
compile time, e.g. int i; 

 
5. The Data Segment is for global 

variables initialized at compile 
time, e.g. int i=9; 
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