

 www.harmonysecurity.com
 info@harmonysecurity.com

Buffer Overflows
Defending against arbitrary code insertion and execution

By Stephen Fewer

Contents

1 Introduction 2
1.1 Where does the problem lie? 2
1.1.1 The Stack 2
1.1.2 No Bounds Checking 5
2 Smashing the Stack 6
3 Prevention 6
3.1 Non Executable Stacks 6
3.2 Random Stack Addresses 6
3.3 Bounds Checking 7
4 Process Segments 7
5 References 8

1 Introduction
Buffer Overflows are one of the most
common and potentially deadly forms of
attack against computer systems to date.
They allow an attacker to locally or
remotely inject malicious code into a system
and compromise its security. They arise out
of poor programming practices and buggy
software. First seen in the Internet Worm of
1987 they can occur on all major platforms
(UNIX, Linux, Win32, and Solaris) and all
major architectures (Intel, Alpha and MIPS).
There are in fact many variations of buffer
overflows but this paper will deal with the
most basic and common type, i.e. stack
based overflows. Other types include heap-
based overflows, frame pointer overflows
and adjacent memory space overflows.
These however are beyond the scope of this
paper. I will begin with observing how this
vulnerability arises before assessing what
methods are used to prevent such
occurrences from being able to happen.
Throughout this paper I will be using C code
examples and x86 Assembly Language
examples (coded in the Intel syntax, the
AT&T syntax is messy). All examples are
intended to work on a Win32 system but
should be portable to Linux unless otherwise
stated.

1.1 Where does the problem lie?
To understand and prevent this type of
vulnerability we need to fully understand
where the weaknesses in the system are.
There are two key elements involved here:

• The stack and function calling.
• Memory I/O with no bounds checking.

1.1.1 The Stack

An executing program, further referenced in
this paper as a process, uses the stack

primarily for passing arguments
(pointers, variables) and function
calling. Variables can be held in the
stack but are also stored in other
locations of a process depending
how they are instantiated or allocated
(Refer to section 4 Process Segments
for a list of possibilities). The stack
is an abstract space that uses a
method known as Last in First out
(LIFO). This means the last thing to
be pushed onto the stack can be
retrieved by popping it out. Pushing
and Popping will automatically grow
and shrink the stack. It is important
to remember the stack grows
downwards in memory as it gets
bigger (see Figure 1). This is because
the stack works backwards, the
bottom of it is located at a higher
memory address then the top.

Figure 1

Variables declared inside a function
are allocated space within the stack
frame of that function. To understand
what a stack frame is and how
memory is allocated for a variable
we can use the example C code in
Listing 1 and its assembly language
equivalent in Listing 2.

1: int main ()
2: {
3: char buffer[16];
3: return 0;
4: }

Listing 1

1: push ebp
2: mov ebp, esp
3: sub esp, 0x10
4: xor eax, eax
5: mov esp, ebp
6: pop ebp
7: ret

Listing 2

In Listing 1 we see a very simple C program
which when run will allocate 16 bytes on the
stack to a variable called buffer and then
exit. This does not give us much information
on how the stack is used so we must look
into its assembly equivalent. Listing 2 shows
us the same program, which will do exactly
the same thing when run, but here we can
see exactly what is going on inside the
process space.

There are three registers used here, the base
pointer (EBP), the stack pointer (ESP) and
the accumulator register (EAX). The EBP is
a static pointer within a stack frame and can
be used to reference variables held within
the stack. The ESP is a dynamic register that
will grow and shrink as variables are
allocated and de-allocated on the stack
(Refer to Figure 1). The EAX is used
normally to return values from a function.
The first two lines are called the procedure
prelude; this is what sets up a new stack
frame. Line one saves the old base pointer
by pushing it onto the stack. Line two moves
the current stack pointer into the base
pointer. Now a new stack frame has been set
up. By executing line two the base of this
new stack frame begins at the top of
previous stack. Thus a stack frame can be
considered a separate stack for the current
function held on top of the callers stack

frame. Line three is where the 16
bytes are allocated for the variable
"buffer". It increases the stack size
by subtracting 16 bytes from the
stack pointer (remember that the
stack grows down and the ESP
points to a lower memory address
than the EBP, this is why we subtract
the required amount). If we were to
reference this variable we would
point to its address in memory by
referring to the EBP (this is possible
because the base pointer is static.).
For example: lea eax, [ebp-0x10]. If
we executed this line EAX would
point to our variable. Line four sets
the functions return value to zero by
xoring the EAX with itself, thus
reducing it to zero. Lines five and six
are known as the procedure
prologue. Line five destroys the
current stack frame by moving the
base pointer into the stack pointer.
This will set the ESP back to its
original value before the function
was called. Line six restores the EBP
to its original value before the
function was called. Finally in line
seven the function after restoring the
ESP and EBP returns.

Listing 3 (shown below) and its
assembly equivalent in Listing 4
shows us a practical example of
stack frames being created and
destroyed as function foo() is called
and returns. A quick overview of
what happens is a new stack frame is
created when main() is called. As
foo() is called a separate stack frame
is arranged on top of main()'s one.

1: void foo()
2: {
3: return;
4: }
5: int main ()
6: {

7: foo();
8: return 0;
9: }

Listing 3

1: push ebp
2: mov ebp, esp
3: pop ebp
4: ret
5: push ebp
6: mov ebp, esp
7: call 1
8: xor eax, eax
9: pop ebp
10: ret

Listing 4

It is extremely important to note that when a
call is performed in assembly the current
Instruction Pointer (EIP) is pushed onto the
stack. The EIP is a pointer to the current line
of code being executed and is the key to
execution redirection. Thus a call in
assembly is the same as:

push eip ; pushes the current EIP
onto the stack
jmp X ; jump to the function at
address X

This allows for a function to return to its
caller as it can restore the old EIP. If we can
overwrite the saved EIP we can redirect the
processes execution flow to anywhere we
want (e.g. our own malicious shellcode).
The function foo() returns by using the
saved EIP that was pushed onto the stack by
the call in line seven. The function foo
removes its stack frame in line two of
Listing 4 and restoring main()'s stack
pointers (EBP and EBP), thus restoring
main()'s stack frame. When a return is
performed in assembly it is the same as:

mov edx, dword[ebp+0x04] ; moves
the saved EIP into EDX
jmp edx ; jumps to the address in
EDX

1.1.2 No Bounds Checking
Writing to memory can be hazardous
if there is no procedure employed to
check how much data is being
written and where it is being written
to. For example if we have a buffer
in memory which is 16 bytes long
and we write 24 bytes to it we will
overwrite the 8 bytes at the end
which don't belong to the buffer.
Listing 5 demonstrates this with a
complete example using a C
program.

 1: #include <stdio.h>
 2: #include <string.h>
 3:
 4: char overflowbuffer[24] =
 "CCCCCCCCCCCCCCCCCCCCCCC";
 5:
 6: int main()
 7: {
 8:
 9: char one[16] = "AAAAAAAAAAAAAAA";
10: char two[16] = "BBBBBBBBBBBBBBB";
11:
12: printf("before...\n");
13: printf("one: %s\n", one);
14: printf("two: %s\n\n", two);
15:
16: strcpy(two, overflowbuffer);
17:
18: printf("after...\n");
19: printf("one: %s\n", one);
20: printf("two: %s\n\n", two);
21:
22: return 0;
23: }

Listing 5

Upon compiling and executing this
application you will receive the
output as show in Listing 6. Up until
line fifteen the processes stack will
look like Figure 2. Keep in mind that
the stack works backwards so the
two strings appear reversed (the dot
at the end of each string is a null
character, 0x00, which is appended
to the end of a string to indicate its
termination.). After executing line
sixteen, the variable overflow buffer
gets copied into memory starting at

the beginning address of the variable two.
However the variable overflow buffer is
eight bytes longer than the variable two and
will overflow into the variable one's
memory space. The processes stack will
now look like Figure 3. Printing out the two
variables again after executing line fifteen
verifies this.

Figure 2

Figure 3

The reason we are able to do this is because
most functions (notably in the C/C++
language) that write to memory perform no
bounds checking. Also most compilers don't
provide for bounds checking at compile time
to warn developers. Therefore overflows are
a very regular occurrence in real world
applications. In the next section we will look
how no bounds checking and the stack
methodology can be used for malicious
purposes.

before...
one: AAAAAAAAAAAAAAA
two: BBBBBBBBBBBBBBB
after...
one: CCCCCCC
two: CCCCCCCCCCCCCCCCCCCCCCC

Listing 6

2 Smashing the Stack
Smashing the stack is the term used
to refer to a stack based buffer
overflow where the process
execution flow is redirected into
malicious shellcode. To do this we
need to inject our own code into the
processes memory space (usually
into the current stack frame) and
overwrite the saved EIP (which is
located 4 bytes below the current
frames EBP) to point to our own
code so it will get executed. Listing 7
contains a program that will when
executed overwrite the EBP and the
EIP with our own values.

 1: #include <stdio.h>
 2: #include <string.h>
 4: void foo(char *ptr)
 5: {
 6: printf("\tinside foo()\n");
 7: char smallbuff[128];
 8: strcpy(smallbuff, ptr);
 9: printf("\tleaving foo()\n");
10: return;
11: }
12: int main()
13: {
14: printf("starting\n");
15: char bigbuff[160];
16: for(int i=0; i< 160; i++)
17: {
18: bigbuff[i] = 'A';
19: }
20: // These 4 bytes will overwrite
the saved EBP
21: bigbuff[128] ='B';
22: bigbuff[129] ='B';
23: bigbuff[130] ='B';
24: bigbuff[131] ='B';
25: // These 4 bytes will overwrite
the saved EIP
26: bigbuff[132] ='C';
27: bigbuff[133] ='C';
28: bigbuff[134] ='C';
39: bigbuff[135] ='C';
30: printf("calling foo()\n");
31: foo(bigbuff);
32: // We will never get here
33: printf("finished\n");
34: return 0;
35: }

Listing 7

Upon executing this code the
processes instruction pointer will get

overwritten to 0x43434343 (0x43 is 'C' in
hexadecimal) and the base pointer will get
overwritten to 0x42424242. For our own
code to be executed we would insert it into
the first 124 bytes of the buffer and point the
EIP back into it.

3 Prevention
To render this class of vulnerability obsolete
we must review what methods are most
likely to succeed. There are two main
options available.

• Protection at run time; kernel patches,

modified run time environment.
• Protection at compile time; Modified

compilers, secure functions.

3.1 Non Executable Stacks
By modifying the kernel we can set the stack
segment of a process to become non-
executable. Therefore if the execution flow
was ever redirected inside the stack to
execute code a general protection fault
would occur causing the process to produce
a core dump. Currently this method is only
possible under operating systems such as
UNIX and Solaris as system level
modification is easily applied. Systems such
as Windows NT would need a new kernel
from Microsoft. This is a run time solution
that does not solve the problem completely.
The vulnerably process attacked will still
crash out (like a denial of service attack) and
ways around non-executable stacks have
been discovered. It also ignores more
advanced types of buffer overflows such as
heap based overflows.

3.2 Random Stack Addresses
In order to execute malicious code injected
into the stack the EIP must be pointed to the

stack, normally at ESP. If however
we can make the stack address
random every time a process runs,
the attacker will not know where to
point the instruction pointer. This is
not completely true for Windows
systems as it is often possible to
point the EIP into a fixed address
which contains a line of code similar
to JMP ESP, which upon executing
will jump to wherever the ESP is and
begin executing from there.
Therefore randomizing won't make a
difference. This is only possible
because DLL's are mapped to a fixed
base address in a process memory
space and it is easy to find an
instruction such as JMP ESP to
reference. Systems such as UNIX
don't employ such a technique and,
therefore, randomizing the stack
address will help reduce the
possibilities of an attack succeeding.
This method can be employed at run
time by the kernel or at compile time
by the programmer. It still won't
solve the problem and acts only as a
deterrent, best used in conjunction
with other methods.

3.3 Bounds Checking
As the heart of the vulnerability lies
in being able to write past the bounds
of a variable, one of the most
effective methods to secure against
this is to employ secure coding in the
form of bounds checking. Bounds
checking can be employed in the
functions that access memory or in
the compiler itself, which will
modify the code as needed. An
example of a function which uses
bounds checking is the common
string function strncpy(). It will only
copy a certain amount of bytes

unlike the function strcpy() which will copy
as many as possible until a null byte is
found. An example is given below.

strcpy(smallbuff, ptr); // insecure
coding!!!

strncpy(smallbuff, sizeof(smallbuff), ptr);
// secure coding :)

If bounds checking is employed at compile
time the programmer can be warned of
possible vulnerabilities and the code can be
modified to protect against then. It is easier
to employ this under platforms like Linux as
they are open source and easily modified.
An example is a modification for gcc (the
Linux C/C++ compiler) which will compile
insecure code and produce safer code. It is
important to note that C/C++ is the most
vulnerable language due to its ability to
access and reference memory directly. Java
completely avoids this entire class of
vulnerability as it has sophisticated memory
management algorithms that will not allow a
user to overwrite areas of memory. However
C/C++ is the most widely used development
language and most operating systems are
largely developed with it (e.g. UNIX, Linux
and Windows).

4 Process Segments
When an application is compiled various
parts are placed in certain segments
depending what they are. They will then get
mapped into a process space upon
execution. There are five main segment
types.

1. The stack segment is for the stack which

is used for passing arguments and
storing variables.

2. The code segment, also called the text

segment, contains the compiled code.

3. The heap Segment is for

variables dynamically allocated
at run time, e.g.
char * buf = new char[malloc(i)];

4. The Block Started by Symbol

(BSS) Segment is for global
variables un-initialized at
compile time, e.g. int i;

5. The Data Segment is for global

variables initialized at compile
time, e.g. int i=9;

5 References

• Protecting Against Some Buffer

Overrun Attacks - Richard
Kettlewell

• Bounds Checking for C -

Richard Jones and Paul Kelly

• Smashing The Stack For Fun

And Profit - Aleph One

• Advanced buffer overflow

exploit - Taeho Oh

• The Tao of Windows Buffer

Overflow - DilDog

• Exploiting Windows NT 4 Buffer

Overruns - David Litchfield

Harmony Security provides computer and network security research and
consultancy. We are focused on delivering new ideas and solutions to this field.
Areas of concern include network and system vulnerabilities, malware and
cryptography.

Copyright © Harmony Security 2007

	 1 Introduction
	1.1 Where does the problem lie?
	1.1.1 The Stack
	1.1.2 No Bounds Checking
	2 Smashing the Stack
	3 Prevention
	3.1 Non Executable Stacks
	3.2 Random Stack Addresses
	3.3 Bounds Checking
	4 Process Segments
	5 References

