
Hardware Virtualization Rootkits
Dino A. Dai Zovi

ddz@matasano.com

matasano

Agenda

• Introductions
• Virtualization Overview
• Intel Virtual Machine Extensions
• Vitriol: The VT-x Rootkit
• Demonstration

matasano

Who We Are

• Dave Goldsmith (@stake cofounder)
• Jeremy Rauch (SecurityFocus

cofounder)
• Thomas Ptacek (Arbor)
• Window Snyder (Microsoft XPSP2)
• Dino Dai Zovi (Bloomberg)

matasano

• D E P L O Y S A F E
Reverse and Pen-Test Products
for enterprises

• S H I P S A F E
Audit and Test Products
for vendors

• C L O C K W O R K
our First Product
coming July/August 2006

What We Do

matasano

Why am I here?

• Most current CPUs now support Hardware
Virtual Machines (HVMs)

• Virtualization, especially hardware-supported,
offers tremendous space/power/cost savings
to enterprises

• Hardware VM Rootkits run between the
operating system and true hardware:
– In memory pages inaccessible to the running operating

system
– Mediating access to devices, observing and filtering input/

output

• HVM Rootkits can install themselves by
migrating the running OS into a VM while the
OS is running.

matasano

Overview of Virtualization

matasano

Traditional Operating System

• Modern operating
systems perform
direct device access
in kernel

• “Virtualize” CPU time
and devices to
applications
– Pre-emptive

multitasking
– Hardware abstractions

Operating System

App App App

Hardware

matasano

Software-Based Virtualization

• Run multiple
operating systems
concurrently

• Software Virtual
Machine Monitor
(VMM) virtualizes
hardware

• Approaches:
– Instruction

Interpretation and
translation

Hardware

Virtual Machine Monitor

VM 0

Operating System

App App App

Emulated Hardware

VM 1

Operating System

App App App

Emulated Hardware

Operating System

matasano

Interpretation and Translation

• Interpret processor instructions
individually
– Used if virtual machine may not be the same

architecture as the host

• Translate and cache instruction
fragments
– Translate instructions to native instruction set and

execute that instead

• Translate privileged instructions
– Run user mode code natively
– Translate privileged instructions to emulate expected

behavior

matasano

VMware

• VMM occupies Ring 0
along with Host and
Guest OS

• Guest kernel code is
translated

• Guest user code runs
in ring 3

• Host memory is not
mapped in guest

• VMM memory is
protected from guest

Hardware

VMM

VM 1

OS

App App

Emulated HW

OS

VM 0

OS

App App

Emulated HW

matasano

Hardware Virtualization

Hardware

VMM

VM 0

OS

App App

HAL

VM 1

OS

App App

Ring 0

Ring 3

matasano

Hardware Virtualization

• Abstracts CPU beyond Ring 0 or
Supervisor mode

• New VMM instructions can only be
issued in “root” domain

• Events cause transition from guest OS
to hypervisor OS.

• Guest/Host state is stored in memory

matasano

Hardware Virtualization

• IBM Logical Partitioning (LPAR)
– IBM POWER5 processors (1999)

• Intel VT
– VT-I: Future Itanium processors
– VT-x: Core Duo and Solo (Jan 2006)

• AMD Pacifica
– Athlon 64 X2 and FX (June 2006)

matasano

Intel Virtual Machine Extensions

matasano

Intel VT-x Overview

• Processor operates in two different
modes
– VMX root (fully privileged ring 0)
– VMX non-root (less privileged ring 0)

• Virtual Machine Monitor launches Virtual
Machines in VMX non-root mode

• Events may cause a VM exit
– Selective exceptions, I/O device access, instructions,

special register access
– VMX non-root state is swapped out
– VMX root state is swapped in

matasano

Intel VT-x in Detail

• Adds 10 new instructions
• Stores host and guest state in Virtual

Machine Control Structure (VMCS)
– Control registers
– Debug register (DR7)
– RSP, RIP, RFLAGS
– Selector, base, limit, and access rights for segments

(CS, SS, DS, ES, FS, GS, LDTR, TR)
– GDTR, IDTR limit and base
– MSRs

matasano

VMX Instruction Set

VMXON/VMXOFF Enable/Disable VMX
operation

VMCLEAR Initialize VMCS region

VMPTRLD/VMPTRST Load/Store Current
VMCS pointer

VMREAD/VMWRITE Read or Write VMCS
fields

VMLAUNCH/VMRESUME Launch or resume
virtual machine

VMCALL Issued from virtual
machine to call into
VMM

matasano

Interesting things about VT-x

• The entire OS-visible state of the
processor is swapped in/out of memory

• Virtual Machines can have direct
memory and device access
– Intended to minimize VM exit overhead
– Direct access to portions of I/O space or memory can

be trapped

• Preventing detection was a design goal:
– “There is no software-visible bit whose setting indicates whether a

logical processor is in VMX non-root operation. This fact may allow
a VMM to prevent guest software from determining that it is
running in a virtual machine” -- Intel VT-x specification

matasano

Potential VT-x Hacks

• Run native OS as VM, use VT-x for:
– Fast sleep and resume
– Remote kernel debugging
– “Safe-mode” driver development

• Checkpoint OS state before entering development
driver

• Resume from checkpoint if there is a fault
• Remote debugging is a pain

• Really nasty rootkits

matasano

Vitriol: The VT-x Rootkit

matasano

Virtual Machine Rootkits

• SubVirt, Samuel T. King et al, University
of Michigan and Microsoft Research
– Malicious kernel module modifies boot sequence to

load original OS inside Virtual PC

• Vitriol, Dino Dai Zovi, Matasano
Security
– VM rootkit for MacOS X using Intel VT-x on Intel

Core Duo/Solo

• BluePill, Joanna Rutkowska, COSEINC
– VM rootkit for Windows Vista x64 using AMD Pacifica

on AMD Athlon 64

matasano

Hardware VM Rootkits

• Starts running in kernel in ring 0,
installs rootkit hypervisor.

• Carves out some memory for hypervisor
• Migrates running OS into a VM
• Intercepts access to selected hardware

devices
• Responds to “magic” instructions

matasano

Implementing a MacOS X
VT-x Rootkit

• Loadable Kernel Extension installs
rootkit and unloads itself

• Three main functions:
– Vmx_init()

• Detects and initializes VT-x capabilities
– Vmx_fork()

• Migrate running OS into VM, fork running system
into Guest VM and Host hypervisor

– On_vm_exit()
• Handle VM exit events

matasano

VM Launch Sequence
OS VM

Hypervisor

V
M
X

F
O
R
K

O
S

VM Entry

VM Exit

O
N

V
M

E
X
I
T

O
S

VM Entry

Initialize VM

matasano

vmx_init()

• Check for VMX in CPUID and feature
control MSR

• Enable VMX in CR4
• Allocate physical memory page for

Virtual Machine Control Store (VMCS)
• Enable VMX operation for current

processor with VMXON instruction
– VMX operation and state is per-processor
– You must lock your kernel thread to one processor

matasano

vmx_fork()

• Allocate code, stack, data for hypervisor
• Migrates running operating system into VM
• Set VM state to current state of running OS
• Set execution controls to minimize VM exits

– Ignore guest exceptions, IO access, etc.

• Execution in VM continues running OS
• On VM exits, rootkit hypervisor executes

matasano

on_vm_exit()

• Handles VM exit events
• Emulate expected behavior for

instructions like CPUID, CR0-CR4
access, RDMSR/WRMSR, etc.

• Implements backdoor functionality
– CPUID instruction command channel
– Filter/monitor/record device access
– Hide blocks on disk by filtering ATAPI packets
– Record keystrokes

matasano

CPUID Command Channel

• CPUID always causes a VM Exit
• CPUID can be executed in ring 3
• Magic values in EAX indicate requested

action
• Action performed on running OS or

value returned in registers
– Change UID of specified process to 0 (root)
– Hide specified process

matasano

Challenges

• VMX operation is per-CPU, keeping
kernel thread on one CPU is tough

• Migrating one CPU or core of SMP
system into VM might be tricky

• Observing raw device access requires
mini-drivers to decode ATAPI/USB
packets, etc.

matasano

Detecting VT-x Rootkits

• There is no hardware bit or register that
indicates that the processor is running
in VMX non-root mode

• Approaches:
– Attempt to use VMX to create a VM
– Attempt to detect latency caused by VM exit events

matasano

The VMX Test

• VMX instructions always cause a VM
exit

• Create a simple VM to execute a few
arithmetic instructions and store result

• If a host should support VMX, but it
fails, host may be in a VM

• Is a rootkit going to fully emulate VMX?

matasano

VM Exit Latency

• Some instructions always cause VM
Exit:
– CPUID, INVD, MOV from CR3, RDMSR, WRMSR and

VMX instructions

• Measure latency of these instructions
using RDTSC

matasano

Latencies on Core Duo 2.16

Instruction VMX Root VMX Non-Root

ENTER/LEAVE ~14 ~14

CPUID ~200 ~3000

matasano

Countering Latency Measurements

• VT-x supports TSC offset for guests
• On a VM exit, get current TSC
• Before VM re-launch, add elapsed TSC

to guest negative TSC offset
• Guest may still be able to detect clock

skew against “real world” time

matasano

Demonstration

matasano

Future Work

• Support multiple cores
– Yes, I cheat and turn off one of my cores

• Manipulate VM’s page table to hide
rootkit pages

• Implement remote access features
– Requires a good way to hook functions in the

virtualized OS…

matasano

For More Information…

• Rootkit or source code is not available
• Xen 3.0 source code
• “Subverting the Windows Kernel for Fun

and Profit”, Joanna Rutkowska
– Discusses her AMD Pacifica Rootkit for Windows Vista

x64

Question the answers. But not my
answers to your questions.

ddz@matasano.com

