
Web Application Security - Buffer Overflows:
Are you really at risk?

Tom Olzak
July 2006

OK, I know what you’re thinking, “I can’t read another paper on buffer overflows.” But
just stay with me for a moment. There’s been a lot of information floating around the
Internet about the dangers of buffer overflow vulnerabilities in web applications, but just
how vulnerable are your web apps? In this paper I’ll explore the answer to that question,
and the answer may pleasantly surprise you.

A Buffer Overflow Refresher

Buffer overflows occur when more data is written to memory than was allocated by the
program. In other words, the programmer was responsible for properly managing
memory and made a common error. It doesn’t take much of an overflow to impact a
system. As little as one byte of data can cause a security incident. The scary thing is,
buffer overflow vulnerabilities are one of the most popular targets of criminal hackers.

I’ve listed three common overflow types. There are more, but the fundamental causes
and effects are the same.

Stack Overflow
The stack is an area of memory where your computer stores information that won’t fit in
its registers. There are different types of stacks created depending on the applications
and the operating system (OS) executing on your system. For our purposes, I’ll
demonstrate the use of a stack allocated to an application thread.

Example 1 in Figure 1 depicts a stack with two entries. The entries in a stack are
typically located by using an offset from the stack’s starting address, and the stack returns
data using the principle of First In Last out.

The first entry in our stack is located at offset 0000. The offset for each new entry is
stored in the stack pointer register. In this case, the value 10 is the newest entry. Since
there were already four bytes of data in stack, this data value was located at the fifth byte
(counting from 0) in the stack space, and the stack pointer was set to 0004. When the
application requests the last value added to the stack, the value located at 0004 will be

http://en.wikipedia.org/wiki/Stack_%28data_structure%29
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://www.cacs.louisiana.edu/%7Emgr/404/burks/foldoc/4/111.htm

returned and the stack pointer set to 0000. If no other new entries are made before the
next request for stack data, then the value located at 0000 will be returned.

The values in Example 1 represent the location in the program where execution will
resume when the current function completes its tasks and a value passed to a called
function. In other words, a function was called during program execution. In order for
the program to know where to resume once the called function returns control back to the
calling function, the address of the next line of code to be executed is stored in the stack.
In this case, the value of that address is 0650. The value of 10 in offset 0004 represents a
value passed to the called function. In this example, there’s no problem. The
programmer assumed that the value passed to the called function would not exceed 4
bytes. The called function executes, and control is returned to the appropriate line of
code in the calling function.

Figure 1: Stack Examples

In Example 2, an attacker is taking advantage of a buffer overflow vulnerability in the
application. The attacker found that the programmer didn’t add code to verify the size or
data type of the data passed to the called function. By entering the value 10000850
(which exceeds the expected 4-byte limit), the attacker has succeeded in overwriting the
return address stored in offset 0000 with the address of a malicious executable. When the
called function completes its tasks, control will be handed over to the malicious program
at address 0850 instead of the next line in the calling function at address 0650.

Not all buffer overflow attacks are designed to cause the execution of malicious code. In
Example 3, the attacker simply entered a series of 9’s. In this case, the program will
probably crash when it attempts to return control to the calling function.

The data provided to the called function might come from a variety of sources. The key
point to take from this example is that the input was not properly validated.

http://en.wikipedia.org/wiki/Crash_%28computing%29

(Note: For you purists out there, I know that certain values in the stack might not be
stored most significant digit first. This is just easier for demonstration purposes.)

Heap Overflow
When a program retrieves a large amount of data for processing, a portion of memory
known as the heap is allocated to handle the loaded data. In low-level languages like C
and C++, the programmer is responsible for ensuring the proper amount of memory is set
aside. If the loaded data is larger than the allocated heap memory, the system could
crash.

Integer Overflow
When adding two integers, the result occasionally exceeds the memory allocated for the
result. The following example is from the OWASP Buffer Overflows document.

When added together, the following two eight bit integers (10 + 5) fit nicely into an eight
bit result space:

 0000 1010 (10)
 +0000 0101 (5)
 0000 1111 (15)

But what about the following:

 1100 0000 (208)
 1101 0000 (192)
 0001 1001 0000 (400)

The sum of 400 won’t fit in an 8 bit memory space.

The integer overflow is not necessarily a good vehicle for outside attacks. But if your
application doesn’t return an exception error, your data integrity might be a little off. In
this case, you might end up with a value of 144 (1001 0000) instead of 400 in your
database or in your next processing step.

The Danger of Buffer Overflows to Web Apps

So now that I’ve covered the dangers of buffer overflows, let’s get down to the business
of assessing the real-world risk of buffer overflow vulnerabilities in custom developed
web applications. There are three principle factors that determine the vulnerability of a
web application environment to buffer overflow exploits:

1. Programming languages used
2. Vulnerabilities associated with the underlying infrastructure
3. Programming processes and techniques

http://en.wikipedia.org/wiki/Dynamic_memory_allocation
http://www.owasp.org/index.php/Buffer_Overflows

Programming Languages Used
In order for programmers to inadvertently introduce buffer overflow vulnerabilities into
your custom web applications, they must use languages that rely on them to allocate
memory and define data types. Development environments like Java and .NET don’t
allow programmers that much latitude. This makes applications written in Java or .NET
all but immune to buffer overflow issues. The following table lists common
programming languages/environments and whether they’re safe or unsafe relative to
introducing overflow risks:

Table 1: Buffer Overflow Risks by Language/Environment

(OWASP, 2006)

Looking at this table, it’s apparent that the languages and environments most commonly
used for web application development today (e.g. Java, .NET, Perl) are safe. This doesn’t
mean that using .NET technology, for example, makes you completely immune. Errors
in the programming language or development environment itself might introduce one or
two overflow problems. For this reason, make sure you’re always using the most current
release.

Vulnerabilities Associated with the Underlying Infrastructure
Now you’ve begun to feel a little safer—a little less paranoid—because your web
applications are all written in Java… not so fast. You’re not on high ground just yet.

Those reasonably safe web applications have to run in OS’s which in turn run in a
network environment full of services and utilities that are probably still written
completely or partially in C, C++, or another low level language. Some of the weak
points in your buffer overflow defenses might include:

 Microsoft Windows
 Linux
 Apache
 IIS
 MySQL
 Oracle

 And one of a thousand other tools and applications that help deliver web services
to your users

Consider not using any product provided by a vendor who doesn’t react quickly to
announcements about buffer overflow vulnerabilities. And of course, keep your
applications and operating systems patched.

Programming Processes and Techniques
In the final analysis, it still comes down to how aware you and your development team
are about the proper management of input into your web application environment. One
common mistake organization’s make is relying on the safety of an environment like
.NET while developing applications that call external tools and applications that are
written in unsafe low level languages like C.

The primary reason many utilities and resource intensive applications are still written in
low level languages is to take advantage of faster execution times. Yes, you might have
to give up a little response time when you move to a higher level language. You’ll have
to decide whether the reduction in risk is worth the tradeoff in performance. If you must
maintain higher performance levels, consider selecting products from vendors who
demonstrate their processes--both manual and automated--for identifying and eliminating
buffer overflow vulnerabilities.

So What Does This All Mean?

Although the risk still exists that your custom web application might fall victim to a
buffer overflow attack, it isn’t very likely. This is supported by the fact that the Web
Application Security Consortium (WASC) has been unable to list any media reports that
describe a successful buffer overflow attack against a web application
(http://webappsec.org/projects/whid/).

According to Jeremiah Grossman, founder of WASC, organizations are better off
focusing on the vulnerabilities that are known successful targets or weaknesses in web
applications, including (2006):

 Cross-site Scripting
 SQL Injection
 Authentication/Authorization Loopholes
 Business Logic Flaws

Before I close out this topic, I’d like to leave you with a list of things you can do to
protect yourself from buffer overflow vulnerabilities no matter where they might be
found or potentially introduced into your environment. (And most of them are a good
idea even if you’re not worried about buffer overflows…)

http://webappsec.org/projects/whid/

 Check your buffer accesses by using safe string and buffer handling functions.
For example, use strncat instead of strcat. Use strncpy instead of strcpy.

 Use operating system level buffer overflow defenses like the compiler switch /GS.
 Keep your development environments up to date. More defenses are added with

every release.
 Keep your OS and other underlying software infrastructure patched.
 Use high level programming languages and development environments whenever

possible.
 When using low-level languages, make sure to audit the code for potential data

type or memory allocation errors.
 Consider non-executable stack technology. This is potentially helpful in

preventing certain types of stack overflow attacks. However, it can introduce
compatibility issues. For example, programs written in Java that compile code on
the fly will most likely fail to run properly.

 Train your developers. Make sure they ask the right questions when writing
applications or selecting tools.

__
Copyright 2006 Thomas W. Olzak. Tom Olzak, MBA, CISSP, MCSE, is President and CEO of Erudio
Security, LLC. He can be reached at tom.olzak@erudiosecurity.com or by visiting
http://adventuresinsecurity.com

Check out Tom’s book, Just Enough Security

Additional security management resources are available at
http://adventuresinsecurity.com

Listen to Tom’s podcasts at http://blastpodcast.com/viewpodcast.html?id=441

Free security training available at http://adventuresinsecurity.com/SCourses

http://www.cplusplus.com/ref/cstring/strncat.html
http://www.cplusplus.com/ref/cstring/strcat.html
http://www.cplusplus.com/ref/cstring/strncpy.html
http://www.cplusplus.com/ref/cstring/strcpy.html
http://www.developer.com/security/article.php/11580_3417861_2
mailto:tom.olzak@erudiosecurity.com
http://adventuresinsecurity.com/
http://www.amazon.com/gp/product/141167541X/qid=1151094612/sr=1-1/ref=sr_1_1/102-0044978-8250540?s=books&v=glance&n=283155
http://adventuresinsecurity.com/
http://blastpodcast.com/viewpodcast.html?id=441
http://adventuresinsecurity.com/SCourses

Works Cited

Grossman, J. (2006). Myth-busting web application buffer overflows. Retrieved July 24,
 2006 from
 http://www.whitehatsec.com/articles/mythbusting_buffer_overflow.shtml

OWASP (2006). Buffer overflows. Retrieved July 24, 2006 from
 http://www.owasp.org/index.php/Buffer_Overflows

Other Resources

Understanding Buffer Overflows

http://www.whitehatsec.com/articles/mythbusting_buffer_overflow.shtml
http://www.owasp.org/index.php/Buffer_Overflows
http://www.informit.com/guides/content.asp?g=security&seqNum=152&rl=1

