
IBM X-Force research and development team
July 2009

Heap Cache Exploitation - White
Paper by IBM Internet Security
Systems

Written by: John McDonald
IBM X-Force® Researcher - IBM Internet Security Systems (ISS)

Contents

Heap Cache Exploitation
Page 1

Abstract

The large block index, or heap cache, is an undocumented data structure

used by the Windows Heap Manager in Microsoft® Windows® 2000, XP,

and Server® 2003 to improve heap performance under certain specific load

conditions. The processes and code that support this data structure have

certain notable security implications, which can contribute to the exploitability

of memory corruption vulnerabilities. In this paper, we examine the security

properties of this system, and highlight how it can alter the risk profile of

certain classes of memory corruption vulnerabilities.

Specifically, leveraging the heap cache can increase heap determinism, allow

exploitation of large free block corruption, allow exploitation of stale pointers

to large free blocks, and provide a mechanism for exploiting limited 1-2 byte

encryption of large blocks.

Introduction
Studying heap exploitation from a general perspective can be difficult, as it’s

important to maintain perspective as to which pre-conditions have relevance in

real-world situations. To put it succinctly, it’s important to avoid the strawberry

pudding predicament, enunciated by Sinan Eren as, “I can make a strawberry

pudding with so many prerequisites.”

This work was born out of grappling with multiple memory corruption

vulnerabilities involving sparsely populated heaps with large blocks. While

the more intricate attack techniques documented within are useful in these

situations, this paper has a simpler goal: to document an aspect of the heap

that can affect heap determinism and alter the exploitability of large block

code. The heap cache is tied to simple run-time performance metrics and its

invocation comes in concert with changes to the somewhat counter-intuitive

de-commitment policy of the heap. Consequently, this information should

prove useful in efforts to better understand, predict, and model heap behavior.

Prior Work
General Heap Exploitation

There are several excellent resources covering the security of the Windows

Heap Manager. The following list, while not comprehensive, should provide the

reader with sufficient background to follow this discussion.	

Abstract 1

Introduction 1

Prior Work 1

Background 4

Heap Cache 8

Technical Findings 11

Mitigation 33

Conclusion 34

Appendix A - Heap Cache Internals
36

Appendix B - Free List Algorithm
Pseudo-code 40

Appendix C - Heap Cache Algorithm
Pseudo-code 47

Appendix D - De-committing Policy	
56

Appendix E - Historical XP Attacks	
60

An excellent starting point are the two presentations by Matt Conover and

Oded Horovitz. They each cover slightly different ground, but are both very

informative, and provide insight to many undocumented aspects of the heap:

•	 Windows Heap Exploitation (Conover and Horovitz 2004 SyScan)

•	 Reliable Windows Heap Exploits (Conover and Horovitz 2004 X’Con)

There is a free chapter from the excellent book, “Advanced Windows

Debugging,” which details how to use windbg to explore heap internals:

•	 Advanced Windows Debugging Sample Chapter (Hewardt and Pravat
2008)

Alexander Sotirov’s Heap Fung Shei library and paper are very informative, as

they are chiefly concerned with heap determinism:

•	 Heap Fung Shui in JavaScript (Sotirov 2007)

Immunity also has an excellent paper with a similar focus on determinism

and practical exploitation. Their python ID heap code is very informative, as it

encapsulates a lot of hard-won knowledge about the system’s internals:

 •	 Understanding and bypassing Windows Heap Protection (Waisman
2007)

•	 Source code for Module Libs.libheap (Immunity 2009)

Brett Moore’s papers look specifically at exploitation in the face of technical

countermeasures. They represent the current and most effective publicly

documented attacks against the XPSP3 Heap Manager. Our specific technical

attacks complement and build on Moore’s attacks in both concept and

execution.

•	 Exploiting Freelist[0] on XP Service Pack 2 (Moore 2005)

•	 Heaps About Heaps (Moore 2008)

Heap Cache Exploitation
Page 2

Finally, Ben Hawkes has done a considerable amount of research on attacking

the Vista Heap Manager. Windows Vista® has similarly purposed data

structures in _Heap!BlocksIndex, though the underlying implementation is

sufficiently different.	

•	 Attacking the Vista Heap (Hawkes 2008)

Heap Cache Exploitation

Public mentions of the heap cache are rare, as it’s an undocumented internal

data structure that is enabled dynamically at run-time. From an attacker’s

perspective, it is essentially an advisory subsystem that can often be avoided or

disabled.

The heap cache is really only covered in one public resource: Horovitz and

Conover’s first talk on the exploitation of the Windows heap (Conover and

Horovitz 2004 XCon, 22-26). They cover it well, and the talk and accompanying

code proved very useful in our efforts to understand the system. Our

examination of the heap cache has very much built on their work, though we’ve

observed a handful of key differences in the implementation that are probably

the result of technology drift.

It’s also worth noting that many of our specific technical attacks build on Brett

Moore’s (Moore 2005) (Moore 2008) and Nicolas Waisman’s (Waisman 2007)

research and are very similar in nature, and we also detail attacks similar to

Ben Hawkes’ work against Windows Vista (Hawkes 2008).

Terminology	

We borrow the name “heap cache” from Matt and Oded’s (Conover and

Horovitz 2004 XCon, 22) talk, which is also in line with various clues

taken from published symbols and debugger support. The pointer in the

WinXP SP3 _HEAP structure in the ntdll.dll pdb is actually called the
LargeBlocksIndex, Unfortunately, it lacks type definitions in the public

and checked pdbs, and is specified as a void pointer. The functions that work

directly with this data structure indicate that it is known internally as both the

heap cache and the large block index. There is some very rough support for it

in the windbg “!heap –s” extension, but it relies on private symbol data that

aren’t available.

Heap Cache Exploitation
Page 3

Background

In this paper, we’ll look at the heap cache data structure in-depth and see how

it can be manipulated by attackers. We’ll also look at the performance metrics

and how the de-committing policy changes in reaction to certain heuristics.

Large Block Example

Let’s start off with some code of dubious quality:

This simple code causes an access violation, as the memory backing b2 has

been de-committed back to the operating system. While this may seem like a

form of justice for such clearly misanthropic code, it is a somewhat counter-

intuitive result for those of us used to Unix® memory semantics. In practice,

this behavior can prove quite restrictive when analyzing memory corruption

issues involving large blocks, especially when there are necessarily several

large de-allocations in a row or if there are stale pointers to large blocks.

Now, consider the following code:

b1=HeapAlloc(pHeap,0,41952);

b2=HeapAlloc(pHeap,0,41952);	

b3=HeapAlloc(pHeap,0,41952);

HeapFree(pHeap,0,b1);

HeapFree(pHeap,0,b2);

HeapFree(pHeap,0,b3);

((unsigned char *)b2)[35000]=0;

Heap Cache Exploitation
Page 4

	 for (i=0;i<300;i++)

	 {

		 b1=HeapAlloc(pHeap,0,65536);		

		 HeapFree(pHeap,0,b1);

	 }

	 b1=HeapAlloc(pHeap,0,41952);

	 b2=HeapAlloc(pHeap,0,41952);

	 b3=HeapAlloc(pHeap,0,41952);

	 HeapFree(pHeap,0,b1);

	 HeapFree(pHeap,0,b2);

	 HeapFree(pHeap,0,b3);

 ((unsigned char *)b2)[35000]=0;

This code doesn’t cause an access violation, and the system cheerfully writes

over the semantically invalid memory. What’s different here?

Well, Windows did something dangerously bordering on clever. The repeated

allocation and de-allocation of large heap blocks has not gone unnoticed, and

the Heap Manager has enacted two changes in order to improve performance:

•	 The heap cache has been activated to improve large block performance

•	 The de-committing policy has been changed to favor populating the
free list instead of de-committing large blocks

Windows Memory

We’ll briefly touch on Windows memory semantics and basic heap memory

management before we start looking at the heap cache in detail.

Reservation and Commitment

Windows distinguishes between reserved memory and committed memory

(Microsoft 2009).

Logically, a process first reserves a range of memory, which causes the kernel

to mark off that range of virtual memory addresses as unavailable. Reserving

memory doesn’t actually map anything to the virtual addresses, so writes,

reads, and executes of reserved memory will still cause an access violation.

The kernel does not attempt to guarantee or pre-arrange backing memory

for reserved memory either. Reserving is essentially just a mechanism for

protecting a range of addresses from being allocated out from under the user.

After reserving a portion of the address space, the process is free to commit

and de-commit memory within it. Committing memory is the act of actually

mapping and backing the virtual memory. Processes can freely commit

and de-commit memory within a chunk of reserved memory without ever

un-reserving the memory (called releasing the memory).

In practice, many callers reserve and commit memory at the same time, and

de-commit and release memory at the same time. Reserving, committing,

de-committing, and releasing of memory are all performed by the

Heap Cache Exploitation
Page 5

VirtualAlloc() and VirtualFree() functions.

Heap Segments

The back-end Heap Manager organizes its memory by segments, where each

segment is a block of contiguous virtual memory that is managed by the

system (This is an internal Heap Manager data structure and not related to

x86 segmentation). When possible, the system will use committed memory

to service requests, but if there isn’t sufficient memory available, the Heap

Manager will attempt to commit reserved memory within the heap’s existing

segments in order to fulfill the request. This could involve committing

reserved memory at the end of the segment or committing reserved memory in

holes in the middle of the segment. These holes would be created by previous

de-committing of memory.

By default, the system reserves a minimum of 0x100000 bytes of memory when

creating a new heap segment, and commits at least 0x2000 bytes of memory at

a time. The system creates new heap segments as necessary and adds them to

an array kept at the base of the heap. The first piece of datum in a heap segment

is typically the segment header, though the segment header for the base of

the heap’s segment comes after the heap header. Each time the heap creates a

new segment, it doubles its reserve size, causing it to reserve larger and larger

sections of memory.

Uncommitted Range Tracking

Each heap has a portion of memory set aside to track uncommitted ranges

of memory. These are used by the segments to track all of the holes in their

reserved address ranges. The segments track this with small data structures

called UnCommitted Range (UCR) entries. The heap keeps a global list

of free UCR entry structures that the heap segments can request, and it

dynamically grows this list to service the needs of the heap segments. At the

base of the heap, UnusedUnCommittedRanges is a linked list of the empty

UCR structures that can be used by the heap segments. UCRSegments is a

linked list of the special UCR segments used to hold the UCR structures.

When a segment uses a UCR, it removes it from the heap’s

UnusedUnCommittedRanges linked list and puts it on a linked list in the

segment header called UnCommittedRanges. The special UCR segments

Heap Cache Exploitation
Page 6

are allocated dynamically. The system starts off by reserving 0x10000

bytes for each UCR segment, and commits 0x1000 bytes (one page)

at a time as additional UCR tracking entries are needed. If the UCR

segment is filled and all 0x10000 bytes are used, the heap manager

will create another UCR segment and add it to the UCRSegments
list.

Free Lists

The Heap Manager maintains several doubly linked lists to track free

blocks in the heap. These are collectively referred to as the free lists,

and they reside at the base of the heap. There are separate free lists

for each possible block size below 1024 bytes, giving a total of 128

free lists (heap blocks are sized in multiples of 8.) Each doubly linked

free list has a sentinel head node located in the array at the base of the

heap. Each head node contains two pointers: a forward and a back link.

For most free lists, all of the blocks in the list are the same size, which

corresponds to the position of the list in the FreeList array.

All blocks higher than or equal to size 1024, however, are kept in a

single free list at FreeList[0]. (This slot is available because there

aren’t any free blocks of size 0.) The free blocks in this list are sorted

from the smallest block to the largest block. So, FreeList[0].flink

points to the smallest free block (of size>=1024), and FreeList[0].
blink points to the largest free block (of size>=1024.)

Figure 1 - Free Lists

The free lists also have a corresponding bitmap, called the

FreeListsInUseBitmap, which is used for quickly scanning through

NonDedicatedListLength

LargeBlocksIndex

PseudoTagEntries

FreeList[0].Blink

FreeList[0].FLink

FreeList[1].FLink

FreeList[1].BLink

FreeList[2].FLink

FreeList[2].BLink

0x16c

0x170

0x174

Heap Base

0x178

0x17c

0x180

0x184

0x188

0x18c

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

Heap Cache Exploitation
Page 7

the FreeList arrays. Each bit in the bitmap corresponds to one free list, and the

bit is set if there are any free blocks in the corresponding list.

Algorithms

The free lists contain pointers to all of the free blocks that exist in the heap,

and much of the operation of the Heap Manager is concerned with managing

these lists and using them to locate available blocks. Due to coalescing and

block-splitting, both allocation and de-allocation can add and remove blocks

to and from the free lists. Considering both allocation and de-allocation, we’ve

isolated three core free list algorithms that are used repeatedly throughout

heap code: searching for blocks in the free lists, linking blocks into the free lists,

and unlinking blocks from the free lists. We’ve included pseudo-code for these

algorithms in Appendix B, which will be useful for following our specific attack

techniques.

Heap Cache

As we’ve discussed, all free blocks with a size greater than or equal to 1024

are stored in FreeList[0]. This is a doubly linked list, sorted by size from

smallest to largest, with no additional enhancements for speed. Consequently,

if FreeList[0] grows to hold a large number of blocks, the heap manager will

need to traverse multiple list nodes every time it searches the list.

The heap cache is a performance enhancement that attempts to minimize the

cost of frequent traversals of FreeList[0]. It does this by creating an external

index for the blocks in FreeList[0]. It’s important to note that the Heap

Manager doesn’t actually move any free blocks into the cache. The free blocks

are still all kept in FreeList[0], but the cache contains several pointers into the

nodes within FreeList[0], which are used as short-cuts to speed up traversal.

The cache is a simple array of buckets, where each bucket is intptr_t bytes in

size, and contains either a NULL pointer or a pointer to a block in FreeList[0].

By default, the array contains 896 buckets, which accounts for each possible

block size between 1024 and 8192. This is a configurable size, which we’ll refer

to here as the maximum cache index.

Each bucket contains a single pointer to the first block in FreeList[0] with

the size represented by that bucket. If there is no entry in FreeList[0] with

Heap Cache Exploitation
Page 8

that exact size, the bucket contains NULL. The last bucket in the heap cache

is unique: instead of representing the specific size 8192, it represents all sizes

greater than or equal to the maximum cache index. So, it will point to the first

block in FreeList[0] that is larger than the maximum size. (e.g. >=8192 bytes)

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

Cache Bucket 0xa8

Cache Bucket 0xa7

Cache Bucket 0xa6

Figure 2 – Heap Cache and FreeList[0]

Most buckets are empty, so there is an additional bitmap that is used for fast

searching of the array. This bitmap works just like the bitmap used to accelerate

the free list.

In Appendix A, you will find more information about the heap cache data

structure, including details of how its size is calculated and how it is initialized.

In Appendix C, you will find pseudo-code for the algorithms that operate on the

heap cache.

Heap Cache Invocation

The heap cache isn’t activated until the Heap Manager observes significant

utilization of the FreeList[0]data structure at run-time. The actual

initialization and synchronization with FreeList[0] is performed by the

function RtlpInitializeListIndex(), and is further detailed in A.3.

There are two performance metrics used by the Heap Manager, either of which

will cause the heap cache to be instantiated:

32 blocks must exist in 1.	 FreeList[0] simultaneously				

	 -or-

A total of 256 blocks must have been de-committed2.	

Heap Cache Exploitation
Page 9

Simultaneous Free Blocks

The first heuristic looks for signs of a fragmented FreeList[0]. Every time

the Heap Manager adds a free block to the FreeList[0]doubly-linked

list, it calls the function RtlpUpdateIndexInsertBlock(). Similarly,

when it removes a free block from this linked list, it calls the function

RtlpUpdateIndexRemoveBlock().

Before the heap cache is invoked, these two functions simply maintain a

counter that the Heap Manager uses to track the relative demand being placed

on FreeList[0]. After the system observes a situation where there are 32

simultaneous entries in FreeList[0], it then activates the heap cache by calling

RtlpInitializeListIndex().

Cumulative De-committing

The second heuristic is present in the RtlpDeCommitFreeBlock() function,

which implements much of the logic that drives the de-committing process.

Here, if the system de-commits a total of 256 blocks from the beginning of the

process lifetime, it will activate the heap cache.

When the heap cache is activated by either heuristic, it triggers changes in the

system’s de-commitment policy. The essence of these changes is to perform

much less de-commitment and instead save large free blocks in the free list.

De-committing Policy

The de-committing policy is nuanced, and we cover it in more detail in

Appendix D. For the purposes of understanding the basic logic, this brief and

slightly inaccurate summary should suffice:

•	 When the heap cache is turned off, the Heap Manager will generally
de-commit free blocks above 1 page in size, assuming there is at least
64k of free blocks sitting in the free lists. (The block being freed counts
towards the 64k, so a block of size 64k +/- 8k would necessarily be
de-committed upon free.)

•	 When the heap cache is turned on, the Heap Manager will generally
avoid de-committing memory and instead save the blocks to the free
list.

Heap Cache Exploitation
Page 10

De-committing works by taking a large block and splitting it into three pieces:

a piece leading up to the next page boundary, a set of whole pages encompassed

cleanly by the block, and a piece containing any data past the last clean page

boundary. The partial page pieces are coalesced and typically placed on the

free lists (unless they coalesce to a large size), and the wholly encompassed set

of contiguous pages is de-committed back to the kernel.

Technical Findings

Heap Cache Invocation

The first finding is the most technically straightforward, yet arguably the most

relevant in terms of overall impact.

Certain memory corruption vulnerabilities occur in large blocks, as they

are tied to corruption of data structures of a large fixed size or large variable

size. Exploitation of these vulnerabilities can be problematic with the default

behavior of the heap manager, as blocks that are de-committed have a handful

of undesirable properties. The following three are the most notable: corrupted

data that exists within the blocks can be discarded before being processed,

various holes can be created in virtual memory that may not lend themselves

to a deterministic heap state, and the memory can simply no longer be valid,

meaning that dereferencing of stale pointers will cause access violations and

undesirable exceptions.

There are certainly mechanisms by which technical attackers can overcome

or minimize these issues, and their effectiveness generally depends on

the particular circumstances of the vulnerability and the degree to which

the attacker has control of the program’s run-time environment. While a

clever allocation pattern or sequence of inputs can often yield windows of

vulnerability, there are situations where it is a non-trivial problem to overcome

(In fact, two of these situations directly led to this research.).

So, our first finding is simply that the intentional creation of the heap cache

data structure can have a normalizing effect on process memory processing

behavior, and can convert otherwise difficult heap corruption scenarios

involving de-committing of heap blocks into more straightforward data

corruption problems. The overall behavior and impact of the heap cache is

also worth considering even in the more common case of memory corruption

Heap Cache Exploitation
Page 11

involving small blocks. De-committing of coalesced free blocks can lead

to seemingly intermittent deviations that can hinder attempts to create

deterministic heap state via heap spraying or other well-documented methods.

As we previously discussed, there are two ways of causing the Heap Manager

to instantiate the heap cache, which should provide multiple viable options for

attackers. Essentially an attacker needs to cause one of the following conditions

to become true:

•	 32 free blocks need to exist in the FreeList[0] data structure
simultaneously

	 -or-

•	 256 blocks need to have been de-committed since the program was
initiated

Invocation via Simultaneous Entries

If an attacker has some control over the allocation and de-allocation within the

target program, they can likely find a pattern of requests or activity that will

lead to this heuristic being triggered. For example, in a relatively clean heap,

the following pattern will cause the heap cache to be created after roughly 32

times through the loop:

This works by creating free blocks that are surrounded by busy blocks. Each

time through the loop, the allocation size is increased so that the existing

holes in the heap won’t be filled. In an active heap, a pattern like this should

eventually engage the simultaneous block heuristic, if given sufficient

iterations.

Prerequisites
The attacker must have some ability to influence allocation and de-allocation

Heap Cache Exploitation
Page 12

for (i=0;i<32;i++)

{

	 b1=HeapAlloc(pHeap, 0, 2048+i*8);

	 b2=HeapAlloc(pHeap, 0, 2048+i*8);

	 HeapFree(pHeap,0,b1);

}

behavior of the target software. This could involve the ability to open multiple

simultaneous connections, or the ability to control allocation sizes and make

various allocation patterns in sequence.

Invocation via De-committing

For some applications, this may be easier for an attacker to utilize. In order

to trigger this heuristic, the attacker needs to cause more than 256 blocks to

de-commit over the lifetime of a process.

In order for a block to be de-committed, there needs to be at least 64k of free

data in the heap (the block being freed will count towards this total). Also, the

block has to be bigger than a page.

The simplest way to cause this to happen is to cause an allocation and freeing of

a buffer of size 64k or higher, 256 times. Here’s a simple example:

Smaller buffers can be used as well if the heap total free size is already close

to the 64k mark or can be grown there artificially. Coalescing behavior can be

used if necessary to get sufficiently large blocks to be freed and de-committed.

Prerequisites
The attacker must have some ability to influence allocation and de-allocation

behavior of the target process. This could involve making multiple requests

in sequence, or providing specially formatted input engineered to cause large

allocations and de-allocations.

Index De-synchronization

As we’ve established, the heap cache is a supplemental index into the existing

FreeList[0] doubly-linked list data structure. Our second finding is that the

index data structure itself can be desynchronized from the other heap data

structures. This can lead to multiple subtle attacks that can be initiated via

various types of corruption of heap meta-data.	

for (i=0;i<256;i++)

{

	 b1=HeapAlloc(pHeap, 0, 65536);			

HeapFree(pHeap,0,b1);

}

Heap Cache Exploitation
Page 13

The basic idea of these attacks is to get the heap cache to point at semantically

invalid memory for a particular bucket.

You can desynchronize the heap cache by altering the current size of any free

chunk present in the heap cache. Depending on your ability to position yourself

adjacent to a free buffer in memory (present in the cache index), this can be

performed with a limited one-byte overflow in which you didn’t have much

control over the content.

The chief property exploited by these attacks is that when the heap cache

code goes to remove an entry from the cache, it looks up that entry using the

size as an index. So, if you change the size of a block, the heap cache can’t

find the corresponding array entry and fails open without removing it. This

leaves a stale pointer that typically points to memory that is handed back to the

application.

This stale pointer is treated like a legitimate entry in FreeList[0] for a

particular size, which can allow multiple attacks. We’ll cover a few different

techniques for leveraging this situation and compare them with existing

attacks.

Basic De-synchronization Attack

The simplest form of this attack works by corrupting the size of a large block

that has already been freed and is resident in one of the 896 heap cache buckets.

Let’s look at a diagram of a potential set of free blocks:

Figure 3 – Basic De-synchronization Attack Step 1

Heap Cache Exploitation
Page 14

Cur Size: 0x91

Flink: 0x154BB8 Blink: 0x150178

0x1536A0

0x154BB0

0x156CC0

0x1536A0

0x91
...

0x211
...

Heap Cache (0x370000)

0x268

Flags: None

Cur Size: 0x200

Flink: 0x156CC8 Blink: 0x1536A8

0x154BB0
Flags: None

Cur Size: 0x268

Flink: 0x150178 Blink: 0x154BB8

0x156CC0
Flags: LastInSeg

Flink: 0x1536A8

FreeList[0] (0x150178)

Blink: 0x156CC8

In the above diagram, we have a FreeList[0] with three blocks on it, of sizes

0x91 (0x488 bytes), 0x211 (0x1088 bytes), and 0x268 (0x1340 bytes). The

heap cache is instantiated, and we see that it has entries in the three buckets

corresponding to our blocks.

Let’s assume that we can do a one-byte overflow of a NULL into the current size

field of the free block at 0x154BB0. This will change the block size from 0x211

to 0x200, shrinking the block from 0x1088 bytes to 0x1000 bytes. This will

look like the following:

Figure 4 – Basic De-synchronization Attack Step 2

Now, we’ve changed the size of the free chunk at 0x154BB0, which has

desynchronized our FreeList[0] with the index maintained by the heap cache.

Currently, the bucket for block size 0x211 is pointing to a free block that is

actually of block size 0x200.

Note: Throughout the rest of the discussion, we will refer to sizes in terms of
“block size,” which we define as 1/8th of the size in bytes. This corresponds to
the size values that are actually stored in memory in the current/previous size
fields, and used as indexes in the look-aside, cache, and free lists. In general, we
are only discussing large blocks, so any time we specify a size less than 0x400,
we are talking about a block size, which is 1/8th of the actual size in bytes.

For the simplest form of the attack, let’s assume that the next memory operation

the application does is an allocation for block size 0x200 (0x1FF taking the 8

Cur Size: 0x91

Flink: 0x154BB8 Blink: 0x150178

0x1536A0

0x154BB0

0x156CC0

0x1536A0

0x91
...

0x211
...

Heap Cache (0x370000)

0x268

Flags: None

Cur Size: 0x211

Flink: 0x156CC8 Blink: 0x1536A8

0x154BB0
Flags: None

Cur Size: 0x268

Flink: 0x150178 Blink: 0x154BB8

0x156CC0
Flags: LastInSeg

Flink: 0x1536A8

FreeList[0] (0x150178)

Blink: 0x156CC8

Heap Cache Exploitation
Page 15

byte header into account.) First, the Heap Manager does a search for a size of

0x200. (You can follow the logic in our pseudo-code for the search algorithm in

Appendix B.1.)

The system will go to the heap cache, see that the bitmap field for 0x200

indicates that it is empty, and then it will scan the heap cache’s bitmap. It will

find our entry at 0x211, and return the pointer to the chunk at 0x154BB0.

Now, the allocation routine receives its answer from the search, and verifies it

is large enough to service the allocation. It is, so the Heap Manager proceeds

to perform an unlink (see our pseudo-code for the unlink algorithm in

Appendix B.2). The unlink will call RtlpUpdateIndexRemoveBlock(),

passing it our block. If you are following along in the pseudo-code for

RtlpUpdateIndexRemoveBlock() (Appendix C.3), you will see that it will

pull out the size 0x200 from our block, and check the heap cache to see if

the bucket for 0x200 points to our block. It does not since it’s empty, and the

function will return without doing anything.

The unlinking will work since the block is correctly linked into FreeList[0],

but the heap cache will not be updated. Since, for simplicity, we chose an

allocation size of 0x200 (4096 bytes), the block will be the perfect size and

there won’t be any block splitting or re-linking. So, no errors will be fired, and

the system will return 0x154BB8 back to the application, leaving the system in

the following state:

Figure 5 – Basic De-synchronization Attack Step 3

Heap Cache Exploitation
Page 16

Cur Size: 0x91

Flink: 0x156CC8 Blink: 0x150178

0x1536A0

0x154BB0

0x156CC0

0x1536A0

0x91
...

0x211
...

Heap Cache (0x370000)

0x268

Flags: None

Cur Size: 0x200

Flink: 0x156CC8 Blink: 0x1536A8

0x154BB0
Flags: Busy

Cur Size: 0x268

Flink: 0x150178 Blink: 0x1536A8

0x156CC0
Flags: LastInSeg

Flink: 0x1536A8

FreeList[0] (0x150178)

Blink: 0x156CC8

You can see that the FreeList[0] now contains only two blocks: 0x1536A0

and 0x156CC0. The heap cache, however, contains a stale entry to 0x154BB0,

which is now a block that is marked as busy by the system. Since it is a busy

block, the application will start writing its data where the flink and blink
entries are.

For the simplest form of this attack, we’ll just assume that from here, the

application does multiple allocations for size 0x200 (4096 bytes). Each time

this happens, the system will go to the heap cache. The heap cache will find the

stale entry at 0x211, and the system will see that the block at 0x154BB0 is big

enough to service the request. (It never checks the flags to ensure that the block

is actually free.)

Now, the system will attempt to do a safe unlink of the stale block from

FreeList[0]. This could cause an access violation depending on what the

application fills in for the flink and blink fields. If flink and blink are

overwritten with invalid addresses, the Heap Manager will cause an exception

when it attempts to de-reference them. If the flink and blink pointers are

untouched, or are overwritten with readable addresses, then the stale block will

fail the safe-unlink check.

Failing the safe-unlink check generally doesn’t impede an attack,

as a failure doesn’t cause an unhandled exception to be raised or

otherwise cause the process to terminate. (The HeapSetInformation()
HeapEnableTerminationOnCorruption option isn’t supported in Microsoft

Windows versions prior to Windows Server 2008 and Microsoft Vista.

For Microsoft Server 2003 and Windows XP, if the image gflag FLG_

ENABLE_SYSTEM_CRIT_BREAKS is set, the Heap Manager will call

DbgBreakPoint() and raise an exception if the safe-unlink check fails. This is

an uncommon setting, as its security properties aren’t clearly documented.)

The end result of the attack technique is that multiple independent allocations

will return the same address to the application:

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

Heap Cache Exploitation
Page 17

Summary - One-byte Overflow of Cached Free Block

If the attacker can change the current size field of a block that is pointed to by

the heap cache, that block won’t be properly removed from the heap cache, and

a stale pointer will remain.

This attack looked at the simplest form of this situation. The result of the

attack is that every time the application attempts to allocate a particular

size, it receives the same pointer to a block of memory already in use. The

exploitability of this would depend specifically on what the application did with

this memory. In general, you’d look for a situation where a pointer to an object

or function was at the same logical location as a field that was based on attacker-

supplied data. Then, you’d try to create a sequence of events where the pointer

would be initialized, the user-malleable data would be stored, and then the now

corrupt pointer would be used.

Prerequisites

•	 The attacker must be able to write into the current size field of a block
that is free and present in the heap cache

•	 The attacker must be able to anticipate a future allocation size that the
application will request

•	 The attacker must avoid allocations that cause splitting or re-linking
of the corrupt block (or anticipate and plan for them)

•	 HeapAlloc() incorrectly returning the same address for independent
requests must create an exploitable condition in the application

Existing Attacks

To help put our findings in context, we’ve compiled a summary of the existing

attack techniques that target the XP Heap Manager. This list, located in

Appendix E, represents a distillation of the references listed in the Prior Work

section.

The primary prerequisite for our first de-synchronization attack is the ability to

corrupt the current size field of a large, free block pointed to by the heap cache.

This corruption can be caused with a one or two byte limited-control overflow,

Heap Cache Exploitation
Page 18

which makes it somewhat unique among the known attack techniques. To see

how this might be useful, let’s briefly review the current set of attacks:

Size Field Corruption (1-4 byte Overflows)

Assuming that we can only overwrite 1-4 bytes, there are a few existing attacks

that may be useful. Specifically, if an attacker can overwrite a free chunk that

is the only entry on a specific dedicated free list, they can cause the Free List

bitmap to be improperly updated. This would only work for blocks smaller than

or equal to 1024 bytes, and, presupposing a 1-4 byte overflow situation, the

overwritten block would need to be the only entry in its dedicated free list. This

attack is listed in Appendix E as the Bitmap Flipping Attack / Bitmap XOR
Attack. Moore’s Heaps about Heaps documents this attack and credits it to

Nicolas Waisman (Moore 2008, 21).

Controlled 16+ Byte Overflows

If you relax our pre-condition to include situations where the attacker can

overwrite and control 16 or more bytes of chunk meta-data, then there are other

alternative attack vectors that have been previously published.

Nicolas Waisman’s bitmap flipping attack can be applied to blocks that are

on populated dedicated freelists, but this requires overwriting the flink and

blink fields with two identical pointer values that are safe to de-reference. This

attack, outlined in Moore’s Heaps about Heaps, is applicable to free blocks of

size <=1024 bytes (Moore 2008, 21).

Moore has identified multiple attacks against the free list maintenance

algorithms, which can also be applied in this situation. Moore’s attacks should

work for large block exploitation as well, making them viable alternatives

to heap cache de-synchronization. Specifically, the FreeList[0] Insert,
FreeList[0] Searching, and FreeList[0] Re-linking attacks should be

applicable, though each have different technical prerequisites and trade-offs.

These attacks generally require writing specific valid pointers to the flink and

blink fields and some degree of prediction or preparation of memory that these

pointers will reference (Moore 2008, 23-29).

De-synchronization Insert Attack

We saw that when a cache bucket is desynchronized from FreeList[0], data

supplied by the application can end up being interpreted as the flink and blink

Heap Cache Exploitation
Page 19

pointers of a FreeList[0] node. This is because the stale pointer handed to

the application still points to memory that the heap cache considers to be a

free block. Consequently, the first eight bytes written into the newly allocated

memory can be incorrectly interpreted as flink and blink pointers by the Heap

Manager.

If the attacker can control what the application writes to these first eight bytes,

he can intentionally provide malicious flink and blink pointers. In Heaps

About Heaps, Moore documents several attacks against the Heap Manager that

are predicated on corrupting flink and blink pointers (Moore 2008 23-25). His

attacks posit a buffer overflow being the primary cause of the corrupt pointers;

but, with some subtle adjustments, we can re-apply them in this context as well.

Traversal and the Cache

Before we look at specific attacks, it’s important to understand how the presence

of the heap cache subtly changes the FreeList[0] traversal algorithms. Instead

of starting at the head of FreeList[0] and traversing the linked list using the

forward links, the Heap Manager first consults the heap cache. It will get a

result from the heap cache, but depending on the context, it will either use the

result directly, discard it, or use it as the starting point for future searching.

To be more specific, the allocation and linking algorithms both use the

RtlpFindEntry() function to query the heap cache, but they use the pointer

returned from the function differently. RtlpFindEntry() accelerates searches

of FreeList[0] using the heap cache, and is documented in Appendix C.2 in

pseudo-code. RtlpFindEntry() is passed a size parameter, and it returns a

pointer to the first free block it finds in FreeList[0] that is the same size or

larger.

Allocation

The allocation algorithm is looking for a block on the free list that it can unlink

from the list, parcel up as necessary, and return back to the application. The

code will consult the heap cache with RtlpFindEntry() for the requested

size. If the bucket for that size has an entry, RtlpFindEntry() will simply

return it without explicitly checking its internal size in the chunk header.

RtlpFindEntry() generally won’t de-reference any pointer in a bucket and

check its size until it gets to the point where it has to look at the catch-all

block (typically >= 8192 bytes.) It will then search through the FreeList[0]

Heap Cache Exploitation
Page 20

manually, starting at the block pointed to in the catch-all bucket.

The allocation code in RtlAllocateHeap() that calls RtlpFindEntry() looks

at the block it gets back, and if it notices that the block is too small, it changes

its strategy entirely. Instead of trying to traverse the list to find a bigger block, it

will just give up on the free list approach entirely and extend the heap to service

the request. This is an uncommon situation that is typically only brought about

by our intentional de-synchronization; but. it doesn’t cause any debug messages

or errors.

Linking
The linking algorithm is more amenable towards attacker manipulation. In

general, what the linking code wants to do is find a block that is the same size or

bigger, and use that block’s blink pointer to insert itself into the doubly linked

list. The linking code will call RtlpFindEntry() in order to find a block that

is the same size or greater than the one it is linking. If the linking code calls

RtlpFindEntry() and notices that the returned block is too small, it will keep

traversing the list looking for a larger block instead of giving up or signaling an

error.

Insert Attack

So, if we’ve indirectly corrupted the flink of a large block in FreeList[0] and

it is consulted during an allocation search, there is no real harm done if we’ve

intentionally made the size smaller than the bucket’s intended contents. The

allocation code will simply extend the heap and not disturb the free list or heap

cache (beyond some temporary additions of blocks representing the newly

committed memory.)

During linking searches, however, our malicious pointers will be further

searched. So, if the application does an allocation and gets back one of our

desynchronized stale pointers, and we can get it to write flink and blink values

that we can control or predict, then we’re in a relatively advantageous situation.

The following diagram shows what this looks like in memory:

Heap Cache Exploitation
Page 21

Figure 6 – Insert Attack Step 1

We’ve got a valid set of free blocks, in a valid FreeList[0], all with entries in the

heap cache. We’ll do a 1-byte overflow of a NUL into the block at 0x1574D0:

Figure 7 – Insert Attack Step 2

This does the corruption that we’d expect, slightly changing the size of the

block in the 0x211 heap cache bucket. Let’s assume the application allocates an

0x1FF (x8) sized buffer. This is proceeding similarly to our first attack method,

but this time, we’ll assume that the attacker has control over the first few bytes

written into the buffer it just got back from HeapAlloc().

Heap Cache Exploitation
Page 22

Cur Size: 0x91

Flink: 0x1574D8 Blink: 0x150178

0x155FC0

0x1574D0

0x1595E0

0x155FC0

0x91
...

0x211
...

Heap Cache (0x370000)

0x344

Flags: None

Cur Size: 0x211

Flink: 0x1595E8 Blink: 0x155FC8

0x1574D0
Flags: None

Cur Size: 0x344

Flink: 0x150178 Blink: 0x1574D8

0x1595E0
Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

Cur Size: 0x91

Flink: 0x1574D8 Blink: 0x150178

0x155FC0

0x1574D0

0x1595E0

0x155FC0

0x91
...

0x211
...

Heap Cache (0x370000)

0x344

Flags: None

Cur Size: 0x200

Flink: 0x1595E8 Blink: 0x155FC8

0x1574D0
Flags: None

Cur Size: 0x344

Flink: 0x150178 Blink: 0x1574D8

0x1595E0
Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

Figure 8 – Insert Attack Step 3

So, two useful things have happened. First, our corrupted block has been

removed from the real valid FreeList[0], as its linkage pointers were correct

when the allocation occurred. Second, the heap cache entry for size 0x211 is

incorrect and is pointing to a buffer that is only of size 0x200.

Our goal now is to perform an attack against unsafe linking, which, once we

are at this point, parallels the FreeList[0] Insertion attack outlined by Brett

Moore (Moore 2008, 23-25). Ideally, the next thing we’d need to happen would

be for the application to free a block of a size less than 0x200, but greater than

0x91. This will cause the block being linked in to the free list to be placed right

before our corrupted block, which isn’t actually on the real FreeList[0]. For

the payload of this attack, we will target a look-aside list. blink has been set to

0x1506E8, which is the base of the look-aside list for block size 0x2.

(Note: We’re making a few assumptions as to the application’s subsequent
allocation and free behavior; but, it’s worth noting that the system doesn’t
necessarily have to free a block at this point, as an allocation that split a block
and left the correct post-coalesce remainder would accomplish the same thing.)

To keep things straightforward, let’s assume that the application frees a block

of size 0x1f1. You might want to consult the pseudo-code for the linking logic in

Appendix B.3. What will happen is the following:

Cur Size: 0x91

Flink: 0x1595E8 Blink: 0x150178

0x155FC0

0x1574D0

0x1595E0

0x155FC0

0x91
...

0x211
...

Heap Cache (0x370000)

0x344

Flags: None

Cur Size: 0x200

Flink: 0xAABBCCDD Blink: 0x1506E8

0x1574D0
Flags: Busy

Cur Size: 0x344

Flink: 0x150178 Blink: 0x155FC8

0x1595E0
Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

Heap Cache Exploitation
Page 22

The heap manager will write the address of our block to the base lookaside-list

pointer at 0x1506e8. This will replace any existing look-aside list with a singly-

linked list of our own construction. It will look like this:	

Thus, three allocations from the corrupted look-aside list will cause our

arbitrary address, 0xAABBCCDD, to be returned to the application. That will

look like the following:

 Figure 9 – Insert Attack Step 4

Heap Cache Exploitation
Page 23

afterblock = 0x1574d8;

beforeblock = afterblock->blink; // 0x1506e8

newblock->flink = afterblock; // 0x1574d8

newblock->blink = beforeblock; // 0x1506e8

beforeblock->flink = newblock; // *(0x1506e8)=newblock

afterblock->blink = newblock; // *(0x1574d8 + 4)=newblock

lookaside base(0x1506e8) -> newblock(0x154bb8)

 newblock(0x154bb8) -> afterblock(0x1574d8)

 afterblock(0x1574d8) -> evilptr(0xAABBCCDD)

Cur Size: 0x91

Flink: 0x1595E8 Blink: 0x150178

0x155FC0

0x1574D0

0x1595E0

0x155FC0

0x91
...

0x211
...

Heap Cache (0x370000)

0x344

Flags: None

Cur Size: 0x1F1

Flink: 0x1574D8 Blink: 0x1506E8

0x154BB0
Flags: None

Cur Size: 0x344

Flink: 0x150178 Blink: 0x155FC8

0x1595E0
Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

0x154BB00x1F1
... Cur Size: 0x200

Flink: 0xAABBCCDD Blink: 0x154BB8

0x1574D0
Flags: Busy

Lookaside[2] (0x1506E8)

Flink: 0x154BB8 Flink: 0x1574D8 Flink: 0xAABBCCDD

Summary – Insert Attack w/One-byte Overflow

If the attacker can change the current size field of a block that is pointed to by

the heap cache, that block won’t be properly removed from the heap cache, and

a stale pointer will remain. If the attacker can cause the application to allocate a

buffer from that stale pointer, and the attacker can control the contents of what

is stored in that buffer, he/she can provide malicious forward and back links.

This attack uses malicious forward and back links designed to overwrite the

base of a look-aside list when a new block is linked in to FreeList[0]. It is an

adaptation of the insertion attack described by Brett Moore in Heaps about

Heaps (Moore 2008, 23-25), altered to use the heap cache de-synchronization

technique. The attacker causes a new block to be inserted immediately before

the stale heap cache entry, which means that the new block’s address will be

written to the attacker-controlled blink pointer. By pointing blink at the base

of a look-aside list, the attacker can provide their own singly-linked list, causing

the attacker-supplied arbitrary flink pointer to eventually be used to service an

allocation.

The end-result of the attack is that the attacker can get attacker-controlled data

written to an arbitrary address, by explicitly controlling the address returned to

an allocation request.

Prerequisites

•	 The attacker must be able to write into the current size field of a block
that is free and present in the heap cache

•	 The attacker must be able to predict subsequent allocations that the

application will make

•	 The attacker must avoid allocations that cause splitting or re-linking

of the corrupt block, or prepare/inherit a buffer that prevents

coalescing

•	 The attacker must control the contents of the first two DWORDS of

what is written into the buffer allocated via the heap cache.

Heap Cache Exploitation
Page 24

Existing Attacks

This attack is unique in its ability to allow for the exploitation of a 1-4 byte

overflow for blocks of a size higher than 1024. Beyond this unique property

and its setup using the heap cache, it can be considered to be in the same class

of attacks as the insertion, searching, and re-linking attacks described by Brett

Moore in his presentation Heaps about Heaps (Moore 2008, 23-29).

De-synchronization Size Targeting

One problem that occurs when attacking the heap cache in practice is that

there is a lot of linking and unlinking traffic against the free lists in general.

This activity can complicate multi-step attacks and conspire to make them

probabilistic and non-deterministic.

Outside of multi-threading scenarios, one simple cause of unexpected free list

activity is block splitting. Block splitting occurs because most larger allocation

requests will not perfectly correspond in size with a free block resident in

FreeList[0]. Instead, a free block that is overly large will be selected and then

split into two blocks: a result block, and a remainder block. The result block

services the allocation request from the application, so it is unlinked from

FreeList[0], marked as busy, and handed up to the caller. The remainder block

holds the excess bytes that were unused when fulfilling the allocation request.

It will have a new chunk header synthesized, be coalesced with its neighbors,

and then be linked into the appropriate FreeList[n].

Given some control of the application’s allocation and free behavior, there are

a few ways an attacker can increase the resiliency of these attacks. We’ll briefly

look at one technique, which involves creating a hole in the heap cache for a

specific allocation size, and using entries to defend that hole from spurious

activity.

Shadow Free Lists

The general approach for handling variance in the execution flow in a

real-world program is to try and maintain a mostly innocuous, consistent

heap cache. This means that most requests should end up pointing at valid

FreeList[0] blocks, and the system should largely function correctly. For an

attack targeting one particular allocation size, one can set up what is essentially

a shadow FreeList[0] and dial in sizes that cause a specific trapdoor to be

Heap Cache Exploitation
Page 25

created in the heap cache. Consider the following three buckets in the heap

cache:

Figure 10 – De-synchronization Size Targeting

Here, we have a FreeList[0] with a head node and two entries (the white

nodes in 0x155FC0 and 0x1595E0). These are valid and self-consistent, and

synchronized with their corresponding cache bucket entries. Now, we have a

stale desynchronized bucket (bucket 0x92 in the heap cache). It is pointing at

the shadow FreeList[0], which is logically consistent except for not having a

head node.

Building such a shadow list is relatively straightforward, depending on

the attacker’s ability to control allocation and de-allocation. Once you do a

de-synchronization and further allocation that selects the desynchronized

block, you will have a stale pointer in the heap cache, but FreeList[0] will be

valid in and of itself. The index will be wrong, but the list will still be coherent.

From there, if you link new free entries by selecting the poisoned entry out of

the heap cache with the linking algorithm, the inserted entries will form a

shadow FreeList[0]. This list can only by reached through the heap cache, and

won’t be accessible via a normal traversal of FreeList[0].

Cur Size: 0x91

Flink: 0x1595E8 Blink: 0x150178

0x155FC0

0x1595E0

0x155FC0

0x91

0x93

Heap Cache (0x370000)

Flags: None

Cur Size: 0x10

Flink: 0x1574D8 Blink: 0xAABBCCDD

0x154BB0
Flags: None

Cur Size: 0x93

Flink: 0x150178 Blink: 0x155FC8

0x1595E0
Flags: LastInSeg

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

0x154BB00x92 Cur Size: 0x92

Flink: evil1 Blink: evil2

0x1574D0
Flags: None

Heap Cache Exploitation
Page 26

Allocation

To see why this could be useful, let’s first consider allocation. Let’s assume that

the bucket at 0x92 is the critical size we are using to exploit the system, and we

want to tightly govern which requests modify its state. If you recall, a search for

an appropriately sized buffer is going to skim through the cache buckets using

the bitmap for fast resolution. Here, we’ve defended against this somewhat

by causing a valid free entry to exist in bucket 0x91. Let’s consider possible

activity:

•	 If an allocation comes in for a size <=0x91, the valid entry in bucket
0x91 will be selected and used. If the attacker arranges for multiple
0x91 entries to be in the FreeList[0], they can be used as a stopgap to
protect the malicious entry.

•	 If an allocation for 0x92 comes in, it will attempt to use the evil free
list chunk, but see that its size is too small to handle the request.
Consequently, it will forego the fake free lists entirely and just extend
the heap and use new memory to service the allocation request. (This
happens because we set the block size to a small value intentionally.)

•	 If an allocation for 0x93 comes in, it will use the valid free list entry in

that bucket.

Linking Searches

Now, let’s consider linking searches.

•	 If the search is for a size <=0x91, the valid free list entry in bucket 0x91
will be returned

•	 If the search is for 0x93, the valid free list entry will be used, which
should be innocuous

•	 If the search is for exactly 0x92, the malicious free list chunk will be
used. For linking, it will see that the size is too small, but then follow
the malicious free list’s flink. From this point on, the system will be
operating on the shadow free list that was provisioned entirely by the
attacker. This can be used to perform the insertion/linking attacks
described previously.

Heap Cache Exploitation
Page 27

Malicious Cache Entry Attack

So far, we’ve looked at attacks centered around creating a stale pointer in the

heap cache. There is a slightly different attack method, which aims to get an

attacker-controlled pointer directly into the heap cache. When a valid block is

removed from the heap cache, the code that updates the cache trusts the flink

value in the block, which can lead to exploitable conditions if the flink pointer

has been corrupted.

This attack is very similar to Moore’s attack on FreeList[0] Searching, which

splices the FreeList[0] in order to set up an exploitable situation (Moore 2008,

26-27). The heap cache changes the dynamics of the situation slightly, such

that an attacker can make a less-pronounced change to the data structure and

alter a particular subset of FreeList[0].

When the heap cache removes a block of a given size, it updates the bucket for

that size with a pointer to the next appropriate block in FreeList[0]. If there is

no such appropriate block, it sets the pointer to NULL and clears the associated

bit in its bitmap. Normally, every possible block size between 1024 to 8192

bytes has its own bucket in the heap cache, and blocks higher than or equal

to size 8192 bytes all go into the last bucket. Buckets that represent a specific

size – under normal conditions – will only point to blocks of that size, and the

last bucket will just point to the first block in FreeList[0] that is too big for the

heap cache to index. The following figure shows a normal heap situation with

the heap cache:

Figure 11 – Malicious Cache Entry Attack Diagram

Heap Cache Exploitation
Page 28

Cur Size: 0x100

Flink: 0x1574D8 Blink: 0x150178

NULL

0x155FC0

0x1595E0

0x155FC0

0xFF

0x100

Heap Cache (0x370000)

0x101

Flags: None

Cur Size: 0x100

Flink: 0x1595E8 Blink: 0x155FC8

0x1574D0
Flags: None

Cur Size: 0x101

Flink: 0x150178 Blink: 0x1574D8

0x1595E0
Flags: None

Flink: 0x155FC8

FreeList[0] (0x150178)

Blink: 0x1595E8

Here, we see a small part of the heap cache, and we can see that the bucket

for size 0x100 points to the block at 0x155FC0. There is a second block of size

0x100 in the free list, at 0x1574D0, which is not pointed to by the heap cache.

There is also a block of size 0x101 at 0x1595E0, which is in the heap cache.

So, if block 0x155FC0 is removed from the heap cache, the bucket for size

0x100 will need to be updated. In the above situation, it will be updated to point

to 0x1574D0. If 0x1574D0 was later removed from the cache, the bucket for size

0x100 would be set to NULL.

The removal algorithm works by using the flink pointer of the block it

is removing to find the next block in FreeList[0]. If that block is of the

appropriate size, it sets the heap cache entry to it. For the catch-all bucket,

it doesn’t de-reference the flink pointer since it doesn’t need to check that

the sizes match. (It only needs to make sure it’s not the very last block in

FreeList[0].)

So, if an attacker can provide a malicious flink value through memory

corruption, and this value is a valid pointer to an appropriate size word, then

they can get a malicious address placed into the heap cache. In the previous

attacks, we altered the size of a free chunk so that it would never be removed

from the heap cache, causing stale pointers to be returned back to the

application. In this attack, we are attempting to corrupt the flink pointer of

a free chunk, and to get our corrupt value to actually be placed into the heap

cache. Once our corrupt and arbitrary value is in the heap cache for a particular

size, it will be returned to the application, allowing for a controllable write to

arbitrary memory.

Dedicated Bucket

For entries not in the catch-all bucket, you generally would need to predict

the size of the entry you are overwriting, and provide a pointer that points to

two bytes equal to that size. If you get the size wrong, the heap cache won’t be

updated, and you will essentially be in a desynchronized state similar to the

initial stages of the first attacks we outlined. However, let’s assume that we can

predict the target block’s size with some regularity. For example, say you are

overwriting a chunk with the following values:

Heap Cache Exploitation
Page 29

Figure 12 – Malicious Cache Entry Attack Dedicated Bucket Step 1

Assume that the attacker knows the size of the chunk that is being corrupted,

and does the following overwrite:

Figure 13 – Malicious Cache Entry Attack Dedicated Bucket Step 2

Essentially, the attacker didn’t change anything beyond pointing the flink at a

free list head node at the base of the heap. This takes advantage of the situation

that the attacker knows that an empty free list head node will point at itself,

thus the “block” at 0x150208 will be interpreted as the following:

Data

Valid Flink

Cur:0x208 Prv:0x100

Valid Blink

0 0 0 0

Heap Cache Exploitation
Page 29

Data

Flink: 0x150210

Cur:0x208 Prv:0x100

Valid Blink

0 0 0 0

Figure 14 – Malicious Cache Entry Attack Dedicated Bucket Block

Now, the attacker would cause the application to allocate memory until the

poisoned value 0x150210 was in the heap cache entry for size 0x208. Note that

the size of the corrupt block being freed is 0x208, and the size of the block at its

flink pointer, 0x150208 is 0x208. Thus, when the corrupted block is removed

from the heap cache, it will pass the size check, and the heap cache will be

updated to point to 0x150208.

The next allocation for block size 0x208 would cause 0x150210 to be returned

to the application, which would allow the attacker to potentially overwrite

several heap header data structures. The simplest target would be the commit

function pointer at 0x15057c, which would be called the next time the heap was

extended.

Catch-all Bucket

It isn’t necessary to predict the sizes when attacking a block in the catch-all

block, which, by default, contains any block larger than or equal to 8192 bytes

in size. Here, the primary requirement is to ensure that the blocks of size

greater than or equal to 8192 bytes -- yet less than the attack size you choose

-- are allocated before your overwritten block. This will ensure that your entry

will make it into the heap cache for the last bucket entry, and the next large

allocation should return the address you provide. For example, if you overwrote

the following chunk:

Heap Cache Exploitation
Page 30

Flink: 0x150210

Cur:0x208 Prv:0x15

Blink: 0x150210

8 2 15 0

Figure 15 – Malicious Cache Entry Attack Catch-all Bucket Step 1

And you supplied these values:

Figure 16 – Malicious Cache Entry Attack Catch-all Bucket Step 2

Assuming that you could handle coalescing by fortuitous BUSY flags or other

planning, and every block of size >=0x400 (8192/3) was allocated before your

block, your poisoned flink of 0x150570 would be promoted to the entry in the

cache bucket. Then, the next allocation between 8192 and 11072 bytes would

return 0x150578, allowing you to potentially cause the application to write to

0x15057c and corrupt the commit function pointer. The size will be checked by

Data

Valid Flink

Cur:0x508 Prv:0x300

Valid Blink

0 0 0 0

Heap Cache Exploitation
Page 31

Data

Flink: 0x150570

Cur:0x568 Prv:0

Valid Blink

0 0 0 0

RtlAllocateHeap(), which will interpret the block contents as:

Figure 17 – Malicious Cache Entry Attack Catch-all Bucket Block

Summary – Malicious Cache Entry Attack

If the attacker can overwrite the flink pointer of a large block that is in

FreeList[0], the corrupted value can eventually be propagated directly to the

heap cache entry itself. When the application next attempts to allocate a block

of that size, it will get an attacker controlled pointer instead of a safe piece of

memory.

Prerequisites

•	 The attacker must be able to overwrite the flink pointer of a free block

•	 The attacker must be able to cause allocations to occur that promote
this allocation to the heap cache

•	 The application must make a predictable allocation that can be
targeted by corrupting a heap cache entry.

Existing Attacks
This is, in essence, a variation of Moore’s attack against FreeList[0]

Allocation. The interesting property here is that the corruption of the

FreeList[0] isn’t necessarily as severe because any free list searching behavior

using the heap cache will be able to pick up the remnants of the FreeList[0]
past the point where it was corrupted (Moore 2008, 26-27). If we are corrupting

an interior block that isn’t visible to the heap cache, our corrupt node may

actually never be accessed until its entry into the index.

Heap Cache Exploitation
Page 32

Flink: 0x150570

Cur:0x568 Prv:0x15

Blink: 0x150570

0x68 0x5 0x15 0

Mitigation

For existing implementations, there are some specific technical changes that

could be made to the make the heap cache more robust in the face of attack.

The more straightforward preventative measures are as follows:

•	 The back-end Heap Manager should check if it is returning a block
marked as BUSY to an allocation request and consider that to be an
error condition

•	 If RtlpFindEntry() returns a pointer to a block that is too small to
service the request, this should be treated as an error condition that is
indicative of corruption and/or an attack

•	 Alternatively, RtlpFindEntry() could be modified to de-reference and
check the pointer it returns in order to sanity check the block size. This
would be slightly more robust, as RtlpFindEntry() would know which
bucket size the block came from and would be able to detect corruption
that the caller couldn’t.

•	 A default behavior of process termination on heap corruption would
materially increase the difficulty of performing subtle linking attacks

There are other technical changes that could be considered, but are more costly

in terms of performance or impact to the existing system. These mitigations are

as follows:

•	 RtlpUpdateIndexRemoveBlock() could perform a sanity check to
ensure that the pointer it was passed is actually in the bucket for the
corresponding size, which would involve traversing list nodes. This
could potentially be expensive performance-wise, and too severely
penalize the performance of the heap cache.

•	 Any code that walks FreeList[0] could maintain a running size value
and ensure that block sizes are monotonically increasing as it traverses
the list

•	 The heap index could be sanity checked against FreeList[0] in a
number of ways. This would be an expensive operation, but could be

Heap Cache Exploitation
Page 33

factored in to the flushing algorithm or other periodic code to amortize
its cost.

•	 Pointers to heap blocks could potentially be range checked against the
segment at various points in the system, which could add a layer of
defense (at the cost of adding an additional data structure.)

Strategically, moving to a non-deterministic, difficult to predict ASLR heap

implementation with encrypted meta-data is a sound approach. Naturally, this

is exactly what Microsoft has done in newer versions of the operating system.

From a security perspective, the Vista Heap Manager is certainly moving in the

right direction, with increased non-determinism via ASLR, protection of heap

meta-data with encryption, optional process termination upon corruption, and

an overall heightened focus on security. For more information about security

enhancements to the newer versions of the Heap Manager, please consult the

following BlackHat presentation by Adrian Marienscu:

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Marinescu.pdf

Moving forward, IBM ISS will focus on the Microsoft Vista and Microsoft

Windows 7 OS’ back-end heap manager implementations and the low-

fragmentation heap front-end, paying particular attention to sub-systems

affected by run-time heuristics.

Conclusion

The heap cache is an interesting dynamic component of the Windows Heap

Manager, which, along with its associated changes to memory de-committing

policies, can play a large role in determining overall heap behavior. We’ve

studied how the heap cache works, how it fits into the larger system as a whole,

and provided documentation that should prove useful in integrating this

knowledge into existing security tools and resources. Our primary focus has

been an analysis of the heap cache from an application security perspective,

and, to this end, we’ve documented several notable properties that affect the

overall security of a running process.

Our primary finding is that the heap cache can be intentionally invoked by

an attacker in order to make otherwise difficult memory corruption and stale

pointer attacks involving large blocks exploitable. This can change the risk

Heap Cache Exploitation
Page 34

profile of large block memory corruption vulnerabilities.

The rest of our efforts focused specifically on the resilience of the heap cache’s

internal data structures, and showed how the index can be desynchronized or

corrupted by an attacker as part of an exploit. These specific technical attacks

each carry various pre-conditions and requirements, and aren’t intended to

be general indictments of the system as a whole. They show essentially how an

attacker would approach attacking the system technically, but, in practice, the

attacks documented within would need considerable effort to be applied in

real-world situations.

We finished our analysis by considering several specific technical mitigations

that could be applied to existing systems, and the strategic relevance of

our observations looking towards the newer versions of the Windows Heap

Manager.

Heap Cache Exploitation
Page 35

Appendix A – Heap Cache Internals

Note: Many of the details below have been inferred based on the binary and will
not match the actual internal, private names used by Microsoft.

A.1 Structure Definition

The heap cache consists of an 0x68 byte header, an array of buckets (NumEnts
* 4 bytes), and a bitmap for fast traversal (NumEnts / 8 bytes). NumEnts is
0x380 by default. The total size is rounded up to the next 0x1000 byte (1 page)

boundary for the VirtualAlloc(). The header contains:

Heap Cache Exploitation
Page 36

struct HeapCache

{

 ULONG NumBuckets;

 int CommittedSize;

 LARGE_INTEGER CounterFrequency;

 LARGE_INTEGER AverageAllocTime;

 LARGE_INTEGER AverageFreeTime;

 int SampleCounter;

 int field_24;

 LARGE_INTEGER AllocTimeRunningTotal;

 LARGE_INTEGER FreeTimeRunningTotal;

 int AllocTimeCount;

 int FreeTimeCount;

 int Depth;

 int HighDepth;

 int LowDepth;

 int Sequence;

 int ExtendCount;

 int CreateUCRCount;

 int LargestHighDepth;

 int HighLowDifference;

 unsigned __int8 *pBitmap;

 HEAP_FREE_ENTRY **pBuckets;

 HEAP_FREE_ENTRY *Buckets[NumBuckets];

 unsigned int Bitmap[NumBuckets/32];

};

A.2 Structure Fields

NumBuckets - the number of buckets in the heap cache

CommittedSize - the size of the virtual memory allocated for the heap cache

CounterFrequency – the frequency of the high performance counter

AverageAllocTime – every 0x64 allocs, AverageAllocTime is

AllocTimeRunningTotal/AllocTimeCount

AverageFreeTime - every 0x64 frees, AverageFreeTime is

FreeTimeRunningTotal/FreeTimeCount

SampleCounter – counter that invokes timing code every 0x200 samples

(allocation or free)

AllocTimeRunningTotal – running total of time spent in allocation

FreeTimeRunningTotal – running total of time spent in free

AllocTimeCount – counts 0x64 allocs, then used to determine

AverageAllocTime

FreeTimeCount – counts 0x64 frees, then used to determine AverageFreeTime

Depth - tracks length of catch-all bucket

HighDepth - set to same as Depth initially. incremented when heap is

extended, and tracks highest value of Depth. set back to Depth on flush

LowDepth – set to same as Depth initially. tracks lowest value of Depth. set

back to Depth on flush

Sequence – used as simple recursion mechanism. If it’s set, we update it with

every large block action and track HighDepth nd LowDepth. If Sequence gets

above 0x400 on a RtlpDeCommitFreeBlock(), we invoke a the global cache

balancing function.

Heap Cache Exploitation
Page 37

ExtendCount – number of times heap has been extended when the cache is

active

CreateUCRCount – number of times UCR has been created when cache is

active

LargestHighDepth – Largest HighDepth witnessed over lifetime of cache

HighLowDifference –Largest difference between High and Low depths

witnessed over lifetime of cache

pBitmap - pointer to the bitmap used for quick navigation of the index

pBuckets - points to the index: the array of buckets

Buckets are an array of NumBuckets pointers, each one representing a

different size.

Bitmap is used for quick scanning of the cache array. This works identically

to the bitmap used by the FreeList implementation, with one bit representing

each bucket.

A.3 Initialization

A pointer to the heap cache is present at offset 0x170 from the base of the heap

on Microsoft Windows XP SP3. This is the LargeBlockIndex in the _HEAP

type definition in the public ntdll.dll pdb provided by Microsoft. It is initially
NULL and is only set if the heap cache is instantiated during the program run-

time.

This function is responsible for initializing the heap cache data structure and

performing the initial synchronization of the index array with the FreeList[0]

list.

The heap cache size is calculated based on the _HEAP.
DeCommitFreeBlockThreshold setting for the heap. The

Heap Cache Exploitation
Page 38

struct HeapCache *RtlpInitializeListIndex(PHEAP aHeap)

number of entries in the heap cache is calculated by taking the

DeCommitFreeBlockThreshold, adding 0x180, and rounding the number up

to the next 0x20 byte boundary.

This can be set as a parameter when the heap is created with

RtlCreateHeap(). If it is not set as an argument, it is set to the value in

the PEB: _PEB.HeapDeCommitFreeBlockThreshold (>>3). It can

be set in the PE header, and defaults to 0x1000; the size of one page. The

HeapDeCommitTotalFreeThreshold defaults to 0x10000.

The heap cache is located in a separate virtual memory range that is allocated

by RtlpInitializeListIndex using NtAllocateVirtualMemory().

The initial setup is done by walking through FreeList[0], starting at the

smallest block at the front of the linked list. For each entry in FreeList[0] it

adds a pointer back to the entry in the appropriate bucket in the heap cache,

assuming the bucket has not already filled. This works to have the bucket

point to the smallest appropriate element in the FreeList[0], as the traversal is

performed from smallest to largest.

Heap Cache Exploitation
Page 39

Appendix B – Free List Algorithm Pseudo-code

Note that the following pseudo-code and algorithm descriptions are slightly

abstracted and represent logical functions, but are not what you will find

verbatim in ntdll.dll. In the actual assembly, you will see these algorithms

implemented in multiple places, with some small changes in each instantiation.

It’s also important to note that we’re talking about the back-end Heap Manager

specifically. The front-end, comprised of the look-aside lists or, optionally, the

low fragmentation heap, has its own algorithms. Large blocks aren’t handled by

the look-aside front-end, and, while the low fragmentation heap handles blocks

up to 16k, it is optional and isn’t commonly used on XP. (Alexander Sotirov

informed us of one rather notable exception: Internet Explorer 7 now uses the

low fragmentation heap on XP.)

B.1 Allocation Search

The free lists are searched for two reasons: to find a free block to service an

allocation request, and to find the correct place to link in a free block. We’ll

cover the linking-related searches in B.3 below.

If the allocation search finds a free block to service a request, the block is

unlinked from the free lists and then processed. This processing can involve

splitting the block, coalescing the remainder block with its neighbors (this can

involve unlinking of consumed neighbor blocks), and linking the remainder

block to the free list.

The basic goal for this search algorithm is: given a particular block size, find

the first appropriate free block in the free lists with that size. If there aren’t any

with that exact size, then find the next largest available block. Let’s look at some

pseudo-code:

Heap Cache Exploitation
Page 40

Searching Pseudo-code Part 1

If the size is below 1024 (0x80 * 8), the system goes directly to the free list at

the base of the heap corresponding to the block size. If that free list has any

elements, the searching algorithm will return a pointer to the last element on

that doubly linked list.

If the free list for the requested size is empty, then the system needs to find the

next largest block available. It then scans the free list bitmap, looking for a bit

set corresponding to a larger block-size free list. (We abstracted the bitmap

scanning code into a function for clarity.) If it finds a set bit in the bitmap, then

the search returns the blink of the corresponding free list.

Note that if we can affect the bitmap, we can cause the system to potentially

return a pointer to the base of the heap in response to an allocation. (If we flip

the bit for an empty free list, allocations will return an empty free list head’s

blink, which will point back to the sentinel node.) This is a useful property for

attacks, which was documented in Brett Moore’s presentation Heaps about

Heaps, and credited to Nicolas Waisman (Moore 2008, 21).

Heap Cache Exploitation
Page 41

if (size<0x80)

{

	 // we have an entry in the free list

	 if (FreeLists[size].flink != FreeLists[size])

		 return FreeLists[size].blink;

	 // ok, use bitmap to find next largest entry

	 if (offset=scan_FreeListsInUseBitmap(size))

	 {

	 return FreeLists[offset].blink;

	 }

	 // we didn’t find an entry in the bitmap so fall through

	 // to Freelists[0]

}

Searching Pseudo-code Part 2

	

If the requested block size is >= 1024, or the system doesn’t find an appropriate

block using the bitmap, then it proceeds to search through the free blocks

stored in FreeList[0]. As you recall, all free blocks higher than or equal to size

1024 are kept in this doubly linked list, sorted by size from smallest to largest.

The above code queries the heap cache if it’s present. It has a special case for

a very large block allocation request only being fulfilled by a much larger free

block. This will keep large collections of >16k free blocks from forming if

there aren’t free blocks of 4k or higher. We’ll look at the heap cache’s searching

implementation in Appendix C.

Heap Cache Exploitation
Page 42

if (Heap->LargeBlocksIndex)	 // Heap Cache active?

{

	 foundentry = RtlpFindEntry(Heap, size);

	 // Not found in Heap Cache

 if (&FreeLists[0] == foundentry)

		 return NULL;

 // returned entry not large enough

	 if (SIZE(foundentry) < size)

		 return NULL;

	 // we’re allocing a >=4k block, and the smallest block we find

	 // is >=16k. flush one of the large blocks, and allocate a new

	 // one for the request

 if (LargeBlocksIndex->Sequence &&

		 size > Heap->DeCommitFreeBlockThreshold &&

		 SIZE(foundentry) > (4*size))

	 {

	 RtlpFlushLargestCacheBlock(vHeap);

 return NULL;

	 }

	 // return entry found in Heap Cache

	 return foundentry;

}

Searching Pseudo-code Part 3

If the heap cache isn’t active, we need to search FreeList[0] manually.

The system starts with the first free block in FreeList[0], at FreeList[0].
flink, and walks through the linked list until an appropriately sized block is

found. If the system walks all the way through the list and ends up back at the

FreeList[0] head node, it knows that there are no suitable free blocks that

meet the search query.

B.2 Unlinking

Unlinking is removing a particular free block from the free lists. This operation

was the classic mechanism by which attackers exploited heap corruption

vulnerabilities, so it now includes additional security checks. This is called safe

unlinking.

Unlinking is used in allocations to pull an appropriate block off a free list in

order to service a request. This is typically preceded by a search. Unlinking

is also used when the heap manager obtains a pointer to a block through a

// Ok, search FreeList[0] – Heap Cache is not active

Biggest = (struct_HEAP *)Heap->FreeLists[0].Blink;

// empty FreeList[0]

if (Biggest == &FreeLists[0])

	 return NULL;

// Our request is bigger than biggest block available

if (SIZE(Biggest)<size)

	 return NULL;

walker = &FreeLists[0];

while (1)

{

	 walker = walker->Flink;

	 if (walker == &FreeLists[0])

		 return NULL;

	 if (SIZE(walker) >= size)

		 return walker;

}

Heap Cache Exploitation
Page 43

different mechanism. This typically occurs during coalescing operations, as

neighboring blocks that are subject to consolidation may need to be removed

from the free lists. Coalescing can happen as part of both allocation and free

operations. Finally, unlinking is used in allocation if the heap is extended, in

order to remove the newly created free block.

Here is the basic pseudo-code for unlinking, assuming that the block that one

wants to unlink is in the pointer block:

Unlinking Pseudo-code

This is basically standard code to unlink a node from a doubly linked list,

with a few additions. First, there is a call to the heap cache that is used both

Heap Cache Exploitation
Page 44

// remove block from Heap Cache (if activated)

RtlpUpdateIndexRemoveBlock(heap, block);

prevblock = block->blink;

nextblock = block->flink;

// safe unlink check

if ((prevblock->flink != nextblock->blink) || (prevblock->flink !=

block))

{

 // non-fatal by default

 ReportHeapCorruption(…);

}

else

{

 // perform unlink|

 prevblock->flink = nextblock;

 nextblock->blink = prevblock;

}

// if we unlinked from a dedicated free list and emptied it,

// clear the bitmap

if (reqsize<0x80 && nextblock==prevblock)

{

 size = SIZE(block);

 vBitMask = 1 << (size & 7);

 // note that this is an xor

FreeListsInUseBitmap[size >> 3] ̂ = vBitMask;

}

for performance based metrics and to instruct the cache to purge an entry if

necessary. Then, the safe unlink check is performed. Note that if this fails, the

unlinking operation isn’t performed, but it generally will fail without causing

an exception, and the code will proceed.

After the block is unlinked, the system attempts to update the bitmap for

the free list if necessary. Note that this performs an exclusive or to toggle the

bit, which can be another useful property for an attacker. Specifically, if the

unlinking fails, but we have a prevblock that is equal to nextblock, it will

toggle the corresponding bit in the bitmap. (This property was also noted

in Brett Moore’s Heaps about Heaps presentation and credited to Nicolas

Waisman.)

B.3 Linking

Linking is taking a free block that is not on any list and placing it into the

appropriate place in the free lists. In certain situations, the linking operation

will first need to search the free lists to find this appropriate place. Linking is

used in allocations when a block is split up and its remainder is added back to

the free lists. It is also used in free operations to add a free block to the free lists.

Let’s look at some pseudo-code for the linking operation:

Linking Pseudo-code

This code does a simple search for the correct place to insert the block. If the

Heap Cache Exploitation
Page 45

int size = SIZE(newblock);

// we want to find a pointer to the block that will be after our block

if (size < (0x80))

{

	 afterblock = FreeList[size].flink;

	 //toggle bitmap if freelist is empty

	 if (afterblock->flink == afterblock)

 	 set_freelist_bitmap(size);

}

else

{

 if (Heap->LargeBlocksIndex)	// Heap Cache active?

 afterblock = RtlpFindEntry(Heap, size);

 else

 afterblock = Freelist[0].flink;

 while(1)

This code does a simple search for the correct place to insert the block. If the

size is <1024, it will insert the block onto the head of the appropriate free list.

It will toggle the bitmap bit if the free list is empty. (This can be useful for the

attack outlined in B.1).

If the size is >=1024, it will find the correct place in FreeList[0] to insert the

block by walking through the doubly linked list. If the heap cache is present, it

will use it to find the best place in the list to start the search. (Note this allows

us more flexibility when we desynchronize the heap cache.)

Heap Cache Exploitation
Page 46

 {

 if (afterblock==&FreeList[0])

 return; // we ran out of free blocks

 if (SIZE(afterblock) >= size)

 break;

 afterblock=afterblock->flink;

 }

}

// now find a pointer to the block that will be before us

beforeblock=afterblock->blink;

// we point to the before and after links

newblock->flink = afterblock;

newblock->blink = beforeblock;

// now they point to us

beforeblock->flink = newblock;

afterblock->blink = newblock;

// update the Heap Cache

RtlpUpdateIndexInsertBlock(Heap, newblock);

Appendix C – Heap Cache Algorithm Pseudo-code

We’ve documented how the heap cache is integrated into the core operation of

the Heap Manager in Appendix B. In that coverage, we listed several functions

that form the core API to the heap cache. The three main functions are:

RtlpFindEntry() for searching, RtlpUpdateIndexInsertBlock() for linking,

and RtlpUpdateIndexRemoveBlock() for unlinking. There are additionally

two functions used for flushing that we will briefly examine.

C.1 Searching

The heap cache is queried with the routine RtlpFindEntry(), which takes a

pointer to the heap and a size parameter. It searches the heap cache for the first

block in FreeList[0] that is the same size or bigger than the size parameter,

and returns a pointer to that block. If it can’t find a suitable block, it returns a

pointer to the head node of FreeList[0]. Here is pseudo-code for this function:

RtlpFindEntry Pseudo-code

Heap Cache Exploitation
Page 47

_LIST_ENTRY *RtlpFindEntry(PHEAP Heap, size_t Size)

FreeList0 = &Heap->FreeLists[0];

Biggest = Heap->FreeLists[0].Blink;

 // empty freelist[0]

if (Biggest == FreeList0)

 return FreeList0;

// biggest chunk in freelist isn’t big enough, so just return fl[0]

if (SIZE(Biggest) < Size)

 return FreeList0;

result = FreeList0->Flink;

// if first chunk in free list is big enough, just return it

if (Size <= SIZE(result))

 return result;

Cache = Heap->LargeBlocksIndex;

Index = Size - 128;

if (Index >= Cache->NumBuckets)

 Index = Cache->NumBuckets - 1;

The search algorithm works very similarly to the free list search algorithm.

It uses the size parameter to calculate the index into the array. It then uses

a bitmap, where one bit represents each bucket in the array. Starting at the

calculated bucket, it uses the bitmap to scan the data structure for the next

available free block.

There is special case code if the size corresponds to the last bucket, which

contains all blocks that are too large to have dedicated buckets. In this

situation, it walks through the linked list looking for a suitable block, starting

at the initial pointer in the last bucket.

Note that for allocation-related searches for a free block to service a request, the

Heap Cache Exploitation
Page 48

// user wants a big block - not tracked in cache

if (Index == Cache->NumBuckets - 1)

{

 // the linked list is 8 bytes in, but the ptr refers to the head

 Walker = LISTPTR(Cache->pBuckets[Index]);

 while (Walker != FreeList0)

 {

 // walk through big guys until we find one big enough

 if (SIZE(Walker) >= Size)

 return Walker;

 Walker = Walker->Flink;

 }

}

// ok, use bitmap to find next largest entry

if (offset=scan_HeapCacheBitmap(HeapCache, Size))

{

 return LISTPTR(Cache->pBuckets[offset]);

}

else

{

 DbgPrint(“Index not found into the bitmap %08lx\n”, Size);

 result = (_LIST_ENTRY *)FreeList0;

 return result;

}

block returned by this function represents the end of the search. If the block is

too small somehow (a result of our de-synchronization attack), the allocation

code will simply forego the free lists and extend the heap to create a new block

suitable for the request.

However, for linking related searches, the pointer returned from

RtlpFindEntry() is used as a starting point for the search. So, if the block

returned isn’t large enough, the linking code keeps walking through the

doubly-linked list to find a block that is large enough. Since it gets the flink
pointer from the returned block, this provides us some extra flexibility when we

corrupt or desynchronize blocks that are indexed by the heap cache.

C.2 Linking

RtlpUpdateIndexInsertBlock() is used to add a new free block to the

heap cache, if appropriate. This also keeps track of simultaneous entries in

FreeList[0], and will enable the heap cache if it sees 32 of them.

RtlpUpdateIndexInsertBlock Pseudo-code

Heap Cache Exploitation
Page 49

RtlpUpdateIndexInsertBlock(PHEAP Heap,_HEAP_ENTRY *Chunk)

if (SIZE(Chunk)<0x80u)

 return;

++Heap->NonDedicatedListLength;

HCache = Heap->LargeBlocksIndex;

if (!HCache)

{

 // 0x20 simultaneous entries in freelist[0]

 if (Heap->NonDedicatedListLength >= 0x20)

 RtlpInitializeListIndex(Heap);

 return;

}

Index=SIZE(Chunk)-0x80;	

// cap it at catch-all bucket

if (Index >= HCache->NumEntries)

If the chunk is smaller than 0x80, return as it doesn’t belong in the heap cache.

Increment heap->NonDedicatedListLength. This keeps track of how many

simultaneous blocks exist in FreeList[0]. (We activate the heap cache when we

see 32 simultaneous free large blocks.)

If the heap cache isn’t enabled, we check to see if NonDedicatedListLength

is 32. If it is, we activate the heap cache by calling RtlpInitializeListIndex().

Otherwise, return.

If the cache is present, the index is calculated as Size - 0x80, with a maximum

index for the catch-all bucket for the biggest chunks.

If it’s within the heap cache, it checks to see if the bucket is set. If the bucket is

set, it replaces the existing entry with this block. The replace only happens if

the new entry is smaller than or equal to the existing entry, which is present for

Heap Cache Exploitation
Page 50

 Index=HCache->NumEntries-1;

BucketPtr=&HCache->pBlockIndex[Index]; // location of the bucket

CacheEnt=*BucketPtr;			 // current bucket entry

// update so it points to us

// smallest size logic is for catch-all

if (!CacheEnt || SIZE(Chunk)<=SIZE(CacheEnt))

 *BucketPtr = Chunk;

// set the corresponding bit in the bitmap

if (!CacheEnt)

 HCache->pBitmap[Index >> 3] |= 1 << (Index & 7);

if (Index==(HCache->NumEntries-1)) // last index

{

 // another big guy added

 ++HCache->Depth;

 if (HCache->Sequence)

 {

 HCache->Sequence++;

 if (HCache->Depth > HCache->HighDepth)

 HCache->HighDepth = HCache->Depth;

 }

}

the purpose of the catch-all entry.

If the bucket isn’t set, it sets the bucket and then sets the appropriate bitmap.

Finally, if we add an entry to the catch-all bucket, we increase the Depth,

increment Sequence, and update HighDepth if necessary.

C.3 Unlinking

This looks up the bucket based on the size, and if the bucket is occupied and

the entry corresponds to the pointer, it looks and sees if it can pull out the next

entry. It also decrements the simultaneous free block counter.

RtlpUpdateIndexRemoveBlock Pseudo-code

Heap Cache Exploitation
Page 51

int RtlpUpdateIndexRemoveBlock(PHEAP aHeap, _HEAP_ENTRY *Chunk)

Size = SIZE(Chunk);

HeapCache=Heap->LargeBlocksIndex;

if (Size<0x80)

 return;

--Heap->NonDedicatedListLength;

if (!HeapCache)

 return;

Index=Size-128;

// highest bucket

if (Index>=HeapCache->NumEntries)

 Index=HeapCache->NumEntries-1;

//Next is ptr to next chunk in freelist[0]

if (Chunk->Flink!=&Heap->FreeLists[0])

 Next = Chunk->Flink;

else

 Next = NULL;

//bucket is pointer to index entry

Bucket = &HeapCache->pBlockIndex[Index];

// we are in index

Heap Cache Exploitation
Page 52

if (*Bucket==Chunk)

{

 // if its a biggie, we don’t care if next size is different

 if (Index>=HeapCache->NumEntries-1)

 {

 if (!Next)

 {

 *Bucket = 0;

 HeapCache->pBitmap[Index >> 3] ̂ = 1 << (Index & 7);

 }

 else

 *Bucket = Next;

 }

 else

 {

 // its not a biggie, so dont replace with mismatched size

 if (!Next || Next.Size != Size)

 {

 *Bucket=0;

 HeapCache->pBitmap[Index>>3] ̂ = 1 << (Index & 7);

 }

 else

 *Bucket = Next;

 }

}

// if it’s a biggie

if (Index==(HeapCache->NumEntries - 1))

{

 // decrease the depth

 if (--HeapCache->Depth < 0)

 DbgPrint(“Invalid Cache depth\n”);

 // if sequence is set, increment and track lowdepth

 if (HeapCache->Sequence)

 {

 HeapCache->Sequence++;

 if ((signed int)HeapCache->Depth < HeapCache->LowDepth)

 HeapCache->LowDepth = HeapCache->Depth;

 }

}

If the chunk is smaller than 0x80, return as it’s not in the heap cache.

Decrement heap->NonDedicatedListLength. This keeps track of how many

simultaneous blocks exist in FreeList[0].

The index is calculated as Size - 0x80, with a maximum index for the catch-all

bucket for the biggest chunks.

We check the bucket for the size of the chunk we are given, and if the entry in

the bucket is not our chunk, then we are done.

If our chunk is in the bucket, we update our bucket. Basically, we follow our

chunks flink, and if the size is the same, we store the flink in the bucket. The

catch-all bucket is a special case, and we update it if the next chunk is simply of

a larger size. If the flink isn’t the right size, we store NULL in the bucket and

toggle the bitmap.

If we added an entry to the catch-all bucket, we decrease the Depth, increment

Sequence, and update LowDepth if necessary. We print a warning if the

Cache Depth has gone below zero.

C.4 Flushing

This function takes the largest available block on the free list and attempts to

de-commit it.

Flushing of the largest block is invoked sometimes in allocation, if the

requested size is sufficiently large and the retrieved matching block is at least

four times the size of the requested size.

Heap Cache Exploitation
Page 53

int RtlpFlushLargestCacheBlock(PHEAP aHeap)

HeapCache = Heap->LargeBlocksIndex;

if (!HeapCache)

 return;

Heap Cache Exploitation
Page 54

The sequence is checked at de-commit. If the Sequence hits 0x400,

RtlpFlushCacheContents() is called. This is a more complicated routine that

adjusts the size of the cache.

First, the difference between HighDepth and LowDepth is calculated. This

is the amount that the catch-all bucket has grown since initialization or the

last flush operation. If the current Depth is less than or equal to the difference,

then HighDepth is set to Depth, LowDepth is set to Depth, Sequence is set

back to 1, and the function returns.

After the first 0x400 large block events post-initialization, let’s say that

LowDepth is 0, HighDepth is 5, and Depth is 3. Depth is less than 5, so no

flushing is performed and LowDepth=HighDepth=Depth=3. Now, let’s say

0x400 large block operations later, LowDepth is 3, HighDepth is 4, and Depth

if (!(Sequence = HeapCache->Sequence))

 return;

Biggest=Heap->FreeLists[0].Blink;

if (Biggest==&Heap->FreeLists[0])

 return;

// this prevents lowdepth and highdepth from being altered

// also prevents recursive flushing

HeapCache->Sequence = 0;

// remove biggest chunk from the cache map

BiggestChunk=ENTPTR(Biggest);

// invokes our unlink algorithm on the biggest block

Do_Unlink(BiggestChunk);

// go ahead and purge any pages we can behind this guy

Biggest->Flags |= BUSY;

Heap->TotalFreeSize -= BiggestChunk->Size;

RtlpDeCommitFreeBlock(aHeap, BiggestChunk, BiggestChunk->Size);

// restore saved sequence

HeapCache->Sequence = Sequence;

void RtlpFlushCacheContents(PHEAP aHeap)

Heap Cache Exploitation
Page 55

is 3. Depth(3) is going to be higher the difference of 1 (4-3), so we’ll perform

the flush this time.

The flushing algorithm works by starting at the first entry in the catch-

all bucket and walking through each entry until it hits the beginning of

FreeList[0]. So, all entries above size 8192 are subject to being flushed.

It calculates the number of entries it needs to flush in order to bring the Depth

back down to within range of the calculated difference. So, in our previous

example, if Depth was 3 and DepthDifference was 1, it would free the last two

blocks present in FreeList[0] in order to bring Depth down to 1.

As it walks through the blocks, it sets the NO_COALESCE flag on any free

block that it advances past until it reaches the first block it wants to free. Also, if

it sees any block with the NO_COALESCE flag set, it will go ahead and flush

that block. So, any free blocks > size 8192 will be flushed during the second

global flush operation that they witness.

Once it reaches the blocks that it wants to free, it safely unlinks them from

FreeList[0] and places them in a temporary list.

Once the end of FreeList[0] is reached, the flushing code walks through

the temporary list and calls RtlpDecommitFreeBlock() on each one. Since

sequence is temporarily set to 0, this will cause the block to be de-committed.

Finally, HighDepth and LowDepth are both set to Cache, Sequence is set

back to 1, and the function returns.

Heap Cache Exploitation
Page 56

Appendix D – De-committing Policy

The de-committing logic is split into two parts: the selection of candidate

blocks and the actual de-committing function. The selection algorithm does

not change when the heap cache is activated. The de-committing function,

however, changes considerably with the presence of the heap cache.

•	 Selection algorithm summary:

If the block being freed is larger than or equal to 1 page in size, and the
total number of free bytes in the heap after the free() will be higher
than 64k, then select the block to be de-committed. Otherwise, the
block is added to the free lists.

•	 De-committing algorithm summary:

If the heap cache is not invoked, then increment Heap-
>DecommitCount. This is a counter that counts the number of
de-commit operations since the beginning of the process. If the counter
is below 256, we de-commit the block. If the counter reaches 256, then
we go ahead and initialize and create the heap cache.

If the heap cache is present, then there are numerous checks, but we generally

insert the block into the free lists instead of de-committing it. There are a

couple of cases to be aware of involving small free lists, which are noted below.

D.1 Selection Algorithm

If a block is freed that meets the following conditions, it is subject to the

de-committing logic. The following pseudo-code shows how a block is

determined to be a candidate for de-committing.

(DeCommitFreeBlockThreshold typically defaults to 0x2000.

DeCommitTotalFreeThreshold typically defaults to 0x2000.)

De-commit Selection Pseudo-code

D.2 RtlpDeCommitFreeBlock

The de-committing routine, RtlpDeCommitFreeBlock(), is where the logic

involving the heap cache comes into play.

Heap Cache Exploitation
Page 57

if (Size >= 0x80)

{

 if (Size>= DeCommitFreeBlockThreshold)

 {

 if (Size + heap->totalFreeSize >=

{

deCommitTotalFreeThreshold)

 {	

 RtlpDeCommitFreeBlock(Heap, Block);

 return;

 }

 }

 if (Size + heap->totalFreeSize > DeCommitTotalFreeThreshold)

 {

 if (!(rtlpDisableHeapLookaside & 0x2))

 {

 if (Size>= 0x200)

 {

 if (PREVSIZE(Block) == 0)

 {	

 RtlpDeCommitFreeBlock(Heap, Block);

 return;

 }

 if (Flags(Block) & LAST_BLOCK)

 {

 RtlpDeCommitFreeBlock(Heap, Block);

 return;

 }

 }

 }	

 }

}

// add to the free list and don’t decommit

AddToFreeList(Block);

Heap Cache Exploitation
Page 58

The first thing the function does is take the block it was given and separate it

into three parts: a clean set of pages aligned on a page boundary, the extra data

that was before these pages and the extra data after these pages. It then attempts

to do coalescing on both the before and after chunks, which will potentially

merge them with adjacent free chunks.

If there is more than 10 UCRs in use by the segment (i.e. holes in the segment),

and the chunk is either the first chunk in the segment or the last chunk in the

segment, then we go ahead and de-commit the block.

If, after coalescing, either of the border chunks is actually big

enough that it’s larger than the DeCommitFreeBlockThreshold,

RtlpDecommitFreeBlock() will actually call itself recursively.

Assuming that this doesn’t happen, the system now checks to see if the heap

cache is active. If it is not, we do the following:

 v_heapcache_ = Heap->LargeBlocksIndex;

 if (!v_heapcache_)

 {

 ++Heap->DecommitCount;

 if (Heap->DecommitCount == 256)

 {

 if (LOBYTE(Heap->Flags) & 2)

 {

 if (!(RtlpDisableHeapLookaside & 2))

 RtlpInitializeListIndex(Heap);

 }

 }

 goto LABEL_CreateUCR;

 }

If the heap cache is present, then we check the sequence to see if it’s zero

(indicating a forced de-commit due to a potentially recursive or mutually

recursive call), or if we are the only chunk in the segment (no previous or next

neighbors), then we go ahead and de-commit.

Otherwise, we perform one more check against the heap cache.

If the heap depth is higher than or equal to the HighDepth, then we are going

Heap Cache Exploitation
Page 59

to slightly alter our insertion into the free list. (Every time the heap is extended,

the HighDepth is incremented, so this can happen even if we haven’t removed

any entries from the catch-all bucket.) Specifically, if FreeList[0] is empty or

the largest block in the FreeList[0] is smaller than us or only 512 bytes larger,

then we de-commit. Otherwise, we insert the block into the free list, but we also

flush the largest block from the cache.

Assuming we pass the depth check, we simply insert the block into the free list.

There is one last check after everything is complete: the sequence number

is checked against a large predetermined value (0x400), and if we’ve hit that

value, we call RtlpFlushCacheContents(), which may reset the Sequence

value or flush a portion of the blocks higher than size 8192. This is documented

in C.4, and depends on how the catch-all bucket of the heap cache has been

utilized over the last 0x400 large block operations.

D.3 Debugging

(based on Alexander Sotirov’s breakpoints (Sotirov 2007))

bu ntdll!NtAllocateVirtualMemory “.printf \”

valloc(addr=%x,size=%x,alloc=%x,prot=%x)\\n\”, poi(poi(esp+8)),

poi(poi(esp+10)), poi(esp+14), poi(esp+18); g”

bu ntdll!NtFreeVirtualMemory “.printf \”

vfree(addr=%x,size=%x,type=%x)\\n\”, poi(poi(esp+8)), poi(poi(esp+c)),

poi(esp+10); g”

bu ntdll!RtlpDeCommitFreeBlock “.printf \”

decommit(heap=%x,ent=%x,size=%x)\\n\”, poi(esp+4), poi(esp+8),

poi(esp+c); g”

bu ntdll!RtlpInsertFreeBlock “.printf \”

insfree(heap=%x,ent=%x,size=%x)\\n\”, poi(esp+4), poi(esp+8),

poi(esp+c); g”

Appendix E – Historical XP Attacks

This list summarizes the existing published techniques for exploiting heap

corruption on Windows XP. The list includes techniques that are useful for

achieving a write-4/write-self/4-to-nbyte primitive, but does not include

techniques that are used as part of the secondary stage of a corruption attack

(e.g. overwriting segment pointer with an unsafe unlink, or remapping heap

cache.) This list does not include Ben Hawkes’ research targeting the Vista

Heap Manager (Hawkes 2008), though many of his techniques should be

backwards-portable.

E.1 Pre-SP2

Valloc Unlink Attack – overwrite a busy chunk with fields indicating it is a

virtual alloc chunk, and provide malicious values for flink and blink. This was

addressed by safe unlinking (Halvar 2002, 21-24).

Coalesce Unlink Attack – overwrite chunk with fields indicating it is a

free block, providing malicious values for flink and blink. Coalesce will

cause overwrite chunk to be unlinked. This was addressed by safe unlinking

(Litchfield 2004, 16) (Conover and Horovitz 2004).

Coalesce Unlink Double Attack – overwrite active chunk with fields

indicating it is a busy block, providing malicious values for flink and blink,

as well as prev and cur size fields pointing to fake pre-constructed blocks.

Coalesce will cause overwrite chunk and fake chunk to be unlinked, leading to

multiple arbitrary overwrites.This was addressed by safe unlinking (Conover

and Horovitz 2004).

Double Free Attack – Between first and second free, attacker must be able to

manipulate freed header to perform a malicious coalesce. This was partially

addressed by safe unlinking (Conover and Horovitz 2004).

One-byte Overflow Coalesce Unlink Attack – overwrite current size field

of next chunk with LSB of 0 and supply a fake chunk in the source buffer. This

was addressed by safe unlinking (Conover and Horovitz 2004).

Heap Cache Exploitation
Page 60

E.2 Post-SP2

Cookie Brute Force – in a vacuum, brute forcing cookie value (checked upon

free() of a busy block), will be correct 1 in 255 times. (Conover and Horovitz

2004)

Critical Section Unlinking – Small data structures on the Process Heap

linked from Critical Sections contain a doubly-linked list that can be targeted.

(Falliere 2005)

Safe Unlinking Defeat – if attacker can overflow a chunk on a free list, and

knows the size of the chunk, and knows that the free list for that size only

contains that one chunk, then the attacker can provide skewed flink and blink

values that still point to the free list head. The second allocation for the size

corresponding to that free list will end up returning a pointer to the base of the

heap, allowing for straightforward exploitation. (Conover and Horovitz 2004

SyScan)

Bitmap Attack – if the Free List bitmap can be disrupted, if a bit

corresponding with an empty FreeList[] is toggled to be set, it leads to an

exploitable situation. Essentially an allocation for the size corresponding

to that bit will return an address at the base of the heap, which can result in

arbitrary code execution given some ability to control what is written there. The

commit function pointer is one of the more straightforward ways to achieve this

end. (Moore 2008, 11-13) (Credited to Nicolas Waisman)

Lookaside Attack – if the flink of a chunk freed to a look-aside list can be

overwritten, this value will be propagated to the head of the look-aside, causing

a specific allocation by the application to return the attacker provided address.

(Anisimov 2004, 3-7)

Double Free Attack – If one chunk is freed to look-aside and other to free

lists, after allocation from look-aside but before allocation from free lists, we

can alter flink/blink. If chunk is freed twice to look-aside, we can alter flink

in between allocations to have arbitrary address populate the look-aside head.

(Conover 2007)

FreeList Head Attack – if the blink field of any FreeList entry at the base of

the heap can be overwritten, the address of the next block to be freed will be

Heap Cache Exploitation
Page 61

written to the attacker-supplied address. (Moore)

Bitmap XOR Attack – the free list bitmap is updated via an XOR operation,

so if the system tries to clear the wrong bit, it can accidentally toggle a free bit

into a set bit. This results in the Bitmap Attack outlined above. This can be

caused by an attacker overwriting the current size field of a block on an existing

FreeList[] for a size <0x80. The attacker either needs to be overwriting the

only chunk on a FreeList[] (so flink==blink naturally), or the attacker needs

to overwrite flink and blink manually and set them equal to each other and

readable. (Moore 2008, 21) (Credited to Nicolas Waisman)

Busy Chunk Manipulation – The attacker changes the size field of a chunk

that will be freed by the application. This allows them to free the list to an

arbitrary FreeList[] or look-aside list. (Moore 2008, 22)

FreeList[0] Insert Attack – The attacker overwrites a chunk on FreeList[0].

A chunk is then linked into FreeList[0] immediately before the overwritten

chunk. The address of the chunk being linked in will be written to the attacker

supplied pointer in overwritten.blink. (Moore 2008, 23-25)

FreeList[0]Searching Attack – The attacker overwrites a chunk on

FreeList[0]. This chunk provides a flink value that points to a fake chunk.

The next allocation request will cause this fake chunk to be returned to the

application. The straightforward way to exploit this is for the attacker to choose

a flink value at the base of the heap that will end up returning an address in the

middle of the FreeList[] array. (Moore 2008, 26-27)

FreeList[0] Relinking Attack – The attacker overwrites a chunk on

FreeList[0]. This chunk provides a flink value that points to a fake chunk.

The next allocation request will cause the overwritten chunk to be split and

returned. The remainder chunk will be inserted in the list prior to the provided

fake flink chunk, causing the address of the remainder chunk to be written to

the fake chunk’s blink. One potential exploitation technique is to overwrite

the pointer to the front end heap manager with a pointer to the re-link chunk.

(Moore 2008, 28-29)

Heap Cache Exploitation
Page 62

Appendix F – Bibliography

Anisimov, Alexander. 2004. Defeating Microsoft Windows XP SP2 Heap

Protection and DEP bypass. Positive Technologies White Paper, http://www.

maxpatrol.com/defeating-xpsp2-heap-protection.pdf

Conover, Matt and Oded Horovitz. 2004. Reliable Windows Heap Exploits.

CanSecWest 2004, http://www.cybertech.net/~sh0ksh0k/projects/winheap/

CSW04%20-%20Reliable%20Heap%20Exploitation.ppt

Conover, Matt and Oded Horovitz. 2004. Reliable Windows Heap Exploits.

X’Con 2004, http://xcon.xfocus.org/XCon2004/archives/14_Reliable%20

Windows%20Heap%20Exploits_BY_SHOK.pdf

Conover, Matt and Oded Horovitz. 2004. Windows Heap Exploitation

(Win2KSP0 through WinXPSP2). SyScan 2004, http://www.cybertech.

net/~sh0ksh0k/projects/winheap/XPSP2%20Heap%20Exploitation.ppt

Conover, Matt. 2007. Double Free Vulnerabilities - Part 1. Symantec Security

Blog, http://www.symantec.com/connect/blogs/double-free-vulnerabilities-

part-1

Falliere, Nicolas. 2005. A new way to bypass Windows heap protections.

SecurityFocus White Paper, http://www.securityfocus.com/infocus/1846

Flake, Halvar. 2002. Third Generation Exploitation. Blackhat USA 2002,

http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.

ppt

Hawkes, Ben. 2008. Attacking the Vista Heap. Ruxcon 2008, http://www.

lateralsecurity.com/downloads/hawkes_ruxcon-nov-2008.pdf

Hewardt, Mario and Daniel Pravat. 2008. Advanced Windows Debugging. New

Jersey: Addison-Wesley. (Sample Chapter: http://advancedwindowsdebugging.

com/ch06.pdf)

Immunity Inc. Immunity Debugger heap library source code. Immunity Inc.

http://debugger.immunityinc.com/update/Documentation/ref/Libs.libheap-

pysrc.html (accessed June 1, 2009)

Johnson, Richard. 2006. Windows Vista: Exploitation Countermeasures.

Toorcon 8, http://rjohnson.uninformed.org/Presentations/200703%20

EuSecWest%20-%20Windows%20Vista%20Exploitation%20

Countermeasures/rjohnson%20-%20Windows%20Vista%20Exploitation%20

Countermeasures.ppt

Litchfield, David. 2004. Windows Heap Overflows. Blackhat USA 2004, http://

www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-

04-litchfield.ppt

Microsoft. 2009. Virtual Memory Functions. MSDN Online, http://msdn.

microsoft.com/en-us/library/aa366916(VS.85).aspx

Moore, Brett. 2005. Exploiting Freelist[0] on XP Service Pack 2. Security-

Assessment.com White Paper, http://www.insomniasec.com/publications/

Exploiting_Freelist%5B0%5D_On_XPSP2.zip

Moore, Brett. 2008. Heaps About Heaps. SyScan 2008, http://www.

insomniasec.com/publications/Heaps_About_Heaps.ppt

Sotirov, Alexander. 2007. Heap Feng Shui in JavaScript. Black Hat Europe

2007, http://www.blackhat.com/presentations/bh-europe-07/Sotirov/

Presentation/bh-eu-07-sotirov-apr19.pdf

Waisman, Nicolas. 2007. Understanding and bypassing Windows Heap

Protection. SyScan 2007, http://www.immunityinc.com/downloads/Heap_

Singapore_Jun_2007.pdf

© Copyright IBM Corporation 2009

	 IBM Corporation

	 New Orchard Road
Armonk, NY 10504
U.S.A.

	 Produced in the United States of America

	 07-09

All Rights Reserved

	 IBM, the IBM logo, ibm.com, Internet Security
Systems, Proventia and SiteProtector are trademarks or
registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.
If these and other IBM trademarked terms are marked on
their first occurrence in this information with a trademark
symbol (® or ™), these symbols indicate U.S. registered
or common law trademarks owned by IBM at the time
this information was published. Such trademarks may
also be registered or common law trademarks in other
countries. A current listof IBM trademarks is available on
the Web at “Copyright and trademark information” at ibm.
com/legal/copytrade.shtml

 Microsoft, Windows, Vista, Server, and XP are all
trademarks or registered trademarks of Microsoft
Corporation in the United States, other countries, or both.	

	 Other company, product or service names may be
trademarks or service marks of others. References in
this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in
which IBM operates.

SEW03014-USEN-00

Acknowledgements

 IBM Internet Security Systems would like to recognize

and thank the following individuals for their efforts in

both reviewing and providing feedback for this paper:

• Marisa Mack

•	 Brett Moore

•	 Ben Hawkes

•	 Nicolas Waisman

