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Abstract

The large block index, or heap cache, is an undocumented data structure 

used by the Windows Heap Manager in Microsoft® Windows® 2000, XP, 

and Server® 2003 to improve heap performance under certain specific load 

conditions. The processes and code that support this data structure have 

certain notable security implications, which can contribute to the exploitability 

of memory corruption vulnerabilities. In this paper, we examine the security 

properties of this system, and highlight how it can alter the risk profile of 

certain classes of memory corruption vulnerabilities.

Specifically, leveraging the heap cache can increase heap determinism, allow 

exploitation of large free block corruption, allow exploitation of stale pointers 

to large free blocks, and provide a mechanism for exploiting limited 1-2 byte 

encryption of large blocks.

Introduction 
Studying heap exploitation from a general perspective can be difficult, as it’s 

important to maintain perspective as to which pre-conditions have relevance in 

real-world situations. To put it succinctly, it’s important to avoid the strawberry 

pudding predicament, enunciated by Sinan Eren as, “I can make a strawberry 

pudding with so many prerequisites.”

This work was born out of grappling with multiple memory corruption 

vulnerabilities involving sparsely populated heaps with large blocks. While 

the more intricate attack techniques documented within are useful in these 

situations, this paper has a simpler goal: to document an aspect of the heap 

that can affect heap determinism and alter the exploitability of large block 

code. The heap cache is tied to simple run-time performance metrics and its 

invocation comes in concert with changes to the somewhat counter-intuitive 

de-commitment policy of the heap. Consequently, this information should 

prove useful in efforts to better understand, predict, and model heap behavior.

Prior Work
General Heap Exploitation

There are several excellent resources covering the security of the Windows 

Heap Manager. The following list, while not comprehensive, should provide the 

reader with sufficient background to follow this discussion.	
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An excellent starting point are the two presentations by Matt Conover and 

Oded Horovitz. They each cover slightly different ground, but are both very 

informative, and provide insight to many undocumented aspects of the heap:

•	  Windows Heap Exploitation (Conover and Horovitz 2004 SyScan)

•	 Reliable Windows Heap Exploits (Conover and Horovitz 2004 X’Con)

There is a free chapter from the excellent book, “Advanced Windows 

Debugging,” which details how to use windbg to explore heap internals:

•	 Advanced Windows Debugging Sample Chapter (Hewardt and Pravat 
2008)

Alexander Sotirov’s Heap Fung Shei library and paper are very informative, as 

they are chiefly concerned with heap determinism:

•	 Heap Fung Shui in JavaScript (Sotirov 2007)

Immunity also has an excellent paper with a similar focus on determinism 

and practical exploitation. Their python ID heap code is very informative, as it 

encapsulates a lot of hard-won knowledge about the system’s internals:

 •	 Understanding and bypassing Windows Heap Protection (Waisman 
2007)

•	 Source code for Module Libs.libheap (Immunity 2009)

Brett Moore’s papers look specifically at exploitation in the face of technical 

countermeasures. They represent the current and most effective publicly 

documented attacks against the XPSP3 Heap Manager. Our specific technical 

attacks complement and build on Moore’s attacks in both concept and 

execution.

•	 Exploiting Freelist[0] on XP Service Pack 2 (Moore 2005)

•	 Heaps About Heaps (Moore 2008)
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Finally, Ben Hawkes has done a considerable amount of research on attacking 

the Vista Heap Manager. Windows Vista® has similarly purposed data 

structures in _Heap!BlocksIndex, though the underlying implementation is 

sufficiently different.	

•	 Attacking the Vista Heap (Hawkes 2008)

Heap Cache Exploitation

Public mentions of the heap cache are rare, as it’s an undocumented internal 

data structure that is enabled dynamically at run-time. From an attacker’s 

perspective, it is essentially an advisory subsystem that can often be avoided or 

disabled.

The heap cache is really only covered in one public resource: Horovitz and 

Conover’s first talk on the exploitation of the Windows heap (Conover and 

Horovitz 2004 XCon, 22-26). They cover it well, and the talk and accompanying 

code proved very useful in our efforts to understand the system. Our 

examination of the heap cache has very much built on their work, though we’ve 

observed a handful of key differences in the implementation that are probably 

the result of technology drift.

It’s also worth noting that many of our specific technical attacks build on Brett 

Moore’s (Moore 2005) (Moore 2008) and Nicolas Waisman’s (Waisman 2007) 

research and are very similar in nature, and we also detail attacks similar to 

Ben Hawkes’ work against Windows Vista (Hawkes 2008). 

Terminology	

We borrow the name “heap cache” from Matt and Oded’s (Conover and 

Horovitz 2004 XCon, 22) talk, which is also in line with various clues 

taken from published symbols and debugger support. The pointer in the 

WinXP SP3 _HEAP structure in the ntdll.dll pdb is actually called the 
LargeBlocksIndex, Unfortunately, it lacks type definitions in the public 

and checked pdbs, and is specified as a void pointer. The functions that work 

directly with this data structure indicate that it is known internally as both the 

heap cache and the large block index. There is some very rough support for it 

in the windbg “!heap –s” extension, but it relies on private symbol data that 

aren’t available.
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Background

In this paper, we’ll look at the heap cache data structure in-depth and see how 

it can be manipulated by attackers. We’ll also look at the performance metrics 

and how the de-committing policy changes in reaction to certain heuristics.

Large Block Example

Let’s start off with some code of dubious quality:

This simple code causes an access violation, as the memory backing b2 has 

been de-committed back to the operating system. While this may seem like a 

form of justice for such clearly misanthropic code, it is a somewhat counter-

intuitive result for those of us used to Unix® memory semantics. In practice, 

this behavior can prove quite restrictive when analyzing memory corruption 

issues involving large blocks, especially when there are necessarily several 

large de-allocations in a row or if there are stale pointers to large blocks.

Now, consider the following code:

b1=HeapAlloc(pHeap,0,41952); 

b2=HeapAlloc(pHeap,0,41952);	

b3=HeapAlloc(pHeap,0,41952);

HeapFree(pHeap,0,b1); 

HeapFree(pHeap,0,b2); 

HeapFree(pHeap,0,b3);

((unsigned char *)b2)[35000]=0;
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	 for (i=0;i<300;i++) 

	 { 

		  b1=HeapAlloc(pHeap,0,65536);		

		  HeapFree(pHeap,0,b1); 

	 } 

 

	 b1=HeapAlloc(pHeap,0,41952); 

	 b2=HeapAlloc(pHeap,0,41952); 

	 b3=HeapAlloc(pHeap,0,41952); 

 

	 HeapFree(pHeap,0,b1); 

	 HeapFree(pHeap,0,b2); 

	 HeapFree(pHeap,0,b3);

           ((unsigned char *)b2)[35000]=0;



This code doesn’t cause an access violation, and the system cheerfully writes 

over the semantically invalid memory. What’s different here? 

Well, Windows did something dangerously bordering on clever. The repeated 

allocation and de-allocation of large heap blocks has not gone unnoticed, and 

the Heap Manager has enacted two changes in order to improve performance:

•	 The heap cache has been activated to improve large block performance

•	 The de-committing policy has been changed to favor populating the 
free list instead of de-committing large blocks

Windows Memory

We’ll briefly touch on Windows memory semantics and basic heap memory 

management before we start looking at the heap cache in detail.

Reservation and Commitment

Windows distinguishes between reserved memory and committed memory 

(Microsoft 2009).

Logically, a process first reserves a range of memory, which causes the kernel 

to mark off that range of virtual memory addresses as unavailable. Reserving 

memory doesn’t actually map anything to the virtual addresses, so writes, 

reads, and executes of reserved memory will still cause an access violation. 

The kernel does not attempt to guarantee or pre-arrange backing memory 

for reserved memory either. Reserving is essentially just a mechanism for 

protecting a range of addresses from being allocated out from under the user.

After reserving a portion of the address space, the process is free to commit 

and de-commit memory within it. Committing memory is the act of actually 

mapping and backing the virtual memory. Processes can freely commit 

and de-commit memory within a chunk of reserved memory without ever 

un-reserving the memory (called releasing the memory).

In practice, many callers reserve and commit memory at the same time, and 

de-commit and release memory at the same time. Reserving, committing, 

de-committing, and releasing of memory are all performed by the 
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VirtualAlloc() and VirtualFree() functions.

Heap Segments

The back-end Heap Manager organizes its memory by segments, where each 

segment is a block of contiguous virtual memory that is managed by the 

system (This is an internal Heap Manager data structure and not related to 

x86 segmentation). When possible, the system will use committed memory 

to service requests, but if there isn’t sufficient memory available, the Heap 

Manager will attempt to commit reserved memory within the heap’s existing 

segments in order to fulfill the request. This could involve committing 

reserved memory at the end of the segment or committing reserved memory in 

holes in the middle of the segment. These holes would be created by previous 

de-committing of memory.

By default, the system reserves a minimum of 0x100000 bytes of memory when 

creating a new heap segment, and commits at least 0x2000 bytes of memory at 

a time. The system creates new heap segments as necessary and adds them to 

an array kept at the base of the heap. The first piece of datum in a heap segment 

is typically the segment header, though the segment header for the base of 

the heap’s segment comes after the heap header. Each time the heap creates a 

new segment, it doubles its reserve size, causing it to reserve larger and larger 

sections of memory.

Uncommitted Range Tracking

Each heap has a portion of memory set aside to track uncommitted ranges 

of memory. These are used by the segments to track all of the holes in their 

reserved address ranges. The segments track this with small data structures 

called UnCommitted Range (UCR) entries. The heap keeps a global list 

of free UCR entry structures that the heap segments can request, and it 

dynamically grows this list to service the needs of the heap segments. At the 

base of the heap, UnusedUnCommittedRanges is a linked list of the empty 

UCR structures that can be used by the heap segments. UCRSegments is a 

linked list of the special UCR segments used to hold the UCR structures. 

When a segment uses a UCR, it removes it from the heap’s 

UnusedUnCommittedRanges linked list and puts it on a linked list in the 

segment header called UnCommittedRanges. The special UCR segments 
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are allocated dynamically. The system starts off by reserving 0x10000 

bytes for each UCR segment, and commits 0x1000 bytes (one page) 

at a time as additional UCR tracking entries are needed. If the UCR 

segment is filled and all 0x10000 bytes are used, the heap manager 

will create another UCR segment and add it to the UCRSegments 
list.

Free Lists

The Heap Manager maintains several doubly linked lists to track free 

blocks in the heap. These are collectively referred to as the free lists, 

and they reside at the base of the heap. There are separate free lists 

for each possible block size below 1024 bytes, giving a total of 128 

free lists (heap blocks are sized in multiples of 8.) Each doubly linked 

free list has a sentinel head node located in the array at the base of the 

heap. Each head node contains two pointers: a forward and a back link. 

For most free lists, all of the blocks in the list are the same size, which 

corresponds to the position of the list in the FreeList array.

All blocks higher than or equal to size 1024, however, are kept in a 

single free list at FreeList[0]. (This slot is available because there 

aren’t any free blocks of size 0.) The free blocks in this list are sorted 

from the smallest block to the largest block. So, FreeList[0].flink 

points to the smallest free block (of size>=1024), and FreeList[0].
blink points to the largest free block (of size>=1024.)

 

Figure 1 - Free Lists

The free lists also have a corresponding bitmap, called the 

FreeListsInUseBitmap, which is used for quickly scanning through 
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the FreeList arrays. Each bit in the bitmap corresponds to one free list, and the 

bit is set if there are any free blocks in the corresponding list.

Algorithms

The free lists contain pointers to all of the free blocks that exist in the heap, 

and much of the operation of the Heap Manager is concerned with managing 

these lists and using them to locate available blocks. Due to coalescing and 

block-splitting, both allocation and de-allocation can add and remove blocks 

to and from the free lists. Considering both allocation and de-allocation, we’ve 

isolated three core free list algorithms that are used repeatedly throughout 

heap code: searching for blocks in the free lists, linking blocks into the free lists, 

and unlinking blocks from the free lists. We’ve included pseudo-code for these 

algorithms in Appendix B, which will be useful for following our specific attack 

techniques.

Heap Cache

As we’ve discussed, all free blocks with a size greater than or equal to 1024 

are stored in FreeList[0]. This is a doubly linked list, sorted by size from 

smallest to largest, with no additional enhancements for speed. Consequently, 

if FreeList[0] grows to hold a large number of blocks, the heap manager will 

need to traverse multiple list nodes every time it searches the list.

The heap cache is a performance enhancement that attempts to minimize the 

cost of frequent traversals of FreeList[0]. It does this by creating an external 

index for the blocks in FreeList[0]. It’s important to note that the Heap 

Manager doesn’t actually move any free blocks into the cache. The free blocks 

are still all kept in FreeList[0], but the cache contains several pointers into the 

nodes within FreeList[0], which are used as short-cuts to speed up traversal.

The cache is a simple array of buckets, where each bucket is intptr_t bytes in 

size, and contains either a NULL pointer or a pointer to a block in FreeList[0]. 

By default, the array contains 896 buckets, which accounts for each possible 

block size between 1024 and 8192. This is a configurable size, which we’ll refer 

to here as the maximum cache index.

Each bucket contains a single pointer to the first block in FreeList[0] with 

the size represented by that bucket. If there is no entry in FreeList[0] with 
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that exact size, the bucket contains NULL. The last bucket in the heap cache 

is unique: instead of representing the specific size 8192, it represents all sizes 

greater than or equal to the maximum cache index. So, it will point to the first 

block in FreeList[0] that is larger than the maximum size. (e.g. >=8192 bytes)

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

CK Flg Rs Seg

Cur Size Prev Size

BLink

FLink

Cache Bucket 0xa8

Cache Bucket 0xa7

Cache Bucket 0xa6

Figure 2 – Heap Cache and FreeList[0]

 

Most buckets are empty, so there is an additional bitmap that is used for fast 

searching of the array. This bitmap works just like the bitmap used to accelerate 

the free list.

In Appendix A, you will find more information about the heap cache data 

structure, including details of how its size is calculated and how it is initialized. 

In Appendix C, you will find pseudo-code for the algorithms that operate on the 

heap cache.

Heap Cache Invocation

The heap cache isn’t activated until the Heap Manager observes significant 

utilization of the FreeList[0]data structure at run-time. The actual 

initialization and synchronization with FreeList[0] is performed by the 

function RtlpInitializeListIndex(), and is further detailed in A.3. 

There are two performance metrics used by the Heap Manager, either of which 

will cause the heap cache to be instantiated:

32 blocks must exist in 1.	 FreeList[0] simultaneously				  

 

	 -or-

A total of 256 blocks must have been de-committed2.	
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Simultaneous Free Blocks

The first heuristic looks for signs of a fragmented FreeList[0]. Every time 

the Heap Manager adds a free block to the FreeList[0]doubly-linked 

list, it calls the function RtlpUpdateIndexInsertBlock(). Similarly, 

when it removes a free block from this linked list, it calls the function 

RtlpUpdateIndexRemoveBlock(). 

Before the heap cache is invoked, these two functions simply maintain a 

counter that the Heap Manager uses to track the relative demand being placed 

on FreeList[0]. After the system observes a situation where there are 32 

simultaneous entries in FreeList[0], it then activates the heap cache by calling 

RtlpInitializeListIndex().

Cumulative De-committing

The second heuristic is present in the RtlpDeCommitFreeBlock() function, 

which implements much of the logic that drives the de-committing process. 

Here, if the system de-commits a total of 256 blocks from the beginning of the 

process lifetime, it will activate the heap cache. 

When the heap cache is activated by either heuristic, it triggers changes in the 

system’s de-commitment policy. The essence of these changes is to perform 

much less de-commitment and instead save large free blocks in the free list.

De-committing Policy

The de-committing policy is nuanced, and we cover it in more detail in 

Appendix D. For the purposes of understanding the basic logic, this brief and 

slightly inaccurate summary should suffice:

•	 When the heap cache is turned off, the Heap Manager will generally 
de-commit free blocks above 1 page in size, assuming there is at least 
64k of free blocks sitting in the free lists. (The block being freed counts 
towards the 64k, so a block of size 64k +/- 8k would necessarily be 
de-committed upon free.)

•	 When the heap cache is turned on, the Heap Manager will generally 
avoid de-committing memory and instead save the blocks to the free 
list. 
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De-committing works by taking a large block and splitting it into three pieces: 

a piece leading up to the next page boundary, a set of whole pages encompassed 

cleanly by the block, and a piece containing any data past the last clean page 

boundary. The partial page pieces are coalesced and typically placed on the 

free lists (unless they coalesce to a large size), and the wholly encompassed set 

of contiguous pages is de-committed back to the kernel.

Technical Findings

Heap Cache Invocation

The first finding is the most technically straightforward, yet arguably the most 

relevant in terms of overall impact. 

Certain memory corruption vulnerabilities occur in large blocks, as they 

are tied to corruption of data structures of a large fixed size or large variable 

size. Exploitation of these vulnerabilities can be problematic with the default 

behavior of the heap manager, as blocks that are de-committed have a handful 

of undesirable properties. The following three are the most notable: corrupted 

data that exists within the blocks can be discarded before being processed, 

various holes can be created in virtual memory that may not lend themselves 

to a deterministic heap state, and the memory can simply no longer be valid, 

meaning that dereferencing of stale pointers will cause access violations and 

undesirable exceptions.

There are certainly mechanisms by which technical attackers can overcome 

or minimize these issues, and their effectiveness generally depends on 

the particular circumstances of the vulnerability and the degree to which 

the attacker has control of the program’s run-time environment. While a 

clever allocation pattern or sequence of inputs can often yield windows of 

vulnerability, there are situations where it is a non-trivial problem to overcome 

(In fact, two of these situations directly led to this research.).

So, our first finding is simply that the intentional creation of the heap cache 

data structure can have a normalizing effect on process memory processing 

behavior, and can convert otherwise difficult heap corruption scenarios 

involving de-committing of heap blocks into more straightforward data 

corruption problems. The overall behavior and impact of the heap cache is 

also worth considering even in the more common case of memory corruption 
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involving small blocks. De-committing of coalesced free blocks can lead 

to seemingly intermittent deviations that can hinder attempts to create 

deterministic heap state via heap spraying or other well-documented methods.

As we previously discussed, there are two ways of causing the Heap Manager 

to instantiate the heap cache, which should provide multiple viable options for 

attackers. Essentially an attacker needs to cause one of the following conditions 

to become true:

•	 32 free blocks need to exist in the FreeList[0] data structure 
simultaneously 

 

	 -or-

•	 256 blocks need to have been de-committed since the program was 
initiated

Invocation via Simultaneous Entries

If an attacker has some control over the allocation and de-allocation within the 

target program, they can likely find a pattern of requests or activity that will 

lead to this heuristic being triggered. For example, in a relatively clean heap, 

the following pattern will cause the heap cache to be created after roughly 32 

times through the loop:

 

This works by creating free blocks that are surrounded by busy blocks. Each 

time through the loop, the allocation size is increased so that the existing 

holes in the heap won’t be filled. In an active heap, a pattern like this should 

eventually engage the simultaneous block heuristic, if given sufficient 

iterations.

Prerequisites 
The attacker must have some ability to influence allocation and de-allocation 
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for (i=0;i<32;i++) 

{ 

	 b1=HeapAlloc(pHeap, 0, 2048+i*8); 

	 b2=HeapAlloc(pHeap, 0, 2048+i*8); 

	 HeapFree(pHeap,0,b1); 

}



behavior of the target software. This could involve the ability to open multiple 

simultaneous connections, or the ability to control allocation sizes and make 

various allocation patterns in sequence.

Invocation via De-committing

For some applications, this may be easier for an attacker to utilize. In order 

to trigger this heuristic, the attacker needs to cause more than 256 blocks to  

de-commit over the lifetime of a process.

In order for a block to be de-committed, there needs to be at least 64k of free 

data in the heap (the block being freed will count towards this total). Also, the 

block has to be bigger than a page.

The simplest way to cause this to happen is to cause an allocation and freeing of 

a buffer of size 64k or higher,  256 times. Here’s a simple example:

Smaller buffers can be used as well if the heap total free size is already close 

to the 64k mark or can be grown there artificially. Coalescing behavior can be 

used if necessary to get sufficiently large blocks to be freed and de-committed.

Prerequisites 
The attacker must have some ability to influence allocation and de-allocation 

behavior of the target process. This could involve making multiple requests 

in sequence, or providing specially formatted input engineered to cause large 

allocations and de-allocations.

Index De-synchronization

As we’ve established, the heap cache is a supplemental index into the existing 

FreeList[0] doubly-linked list data structure. Our second finding is that the 

index data structure itself can be desynchronized from the other heap data 

structures. This can lead to multiple subtle attacks that can be initiated via 

various types of corruption of heap meta-data.	

for (i=0;i<256;i++) 

{ 

	 b1=HeapAlloc(pHeap, 0, 65536);			 

HeapFree(pHeap,0,b1); 

}
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The basic idea of these attacks is to get the heap cache to point at semantically 

invalid memory for a particular bucket.

You can desynchronize the heap cache by altering the current size of any free 

chunk present in the heap cache. Depending on your ability to position yourself 

adjacent to a free buffer in memory (present in the cache index), this can be 

performed with a limited one-byte overflow in which you didn’t have much 

control over the content.

The chief property exploited by these attacks is that when the heap cache 

code goes to remove an entry from the cache, it looks up that entry using the 

size as an index. So, if you change the size of a block, the heap cache can’t 

find the corresponding array entry and fails open without removing it. This 

leaves a stale pointer that typically points to memory that is handed back to the 

application.

This stale pointer is treated like a legitimate entry in FreeList[0] for a 

particular size, which can allow multiple attacks. We’ll cover a few different 

techniques for leveraging this situation and compare them with existing 

attacks.

Basic De-synchronization Attack

The simplest form of this attack works by corrupting the size of a large block 

that has already been freed and is resident in one of the 896 heap cache buckets. 

Let’s look at a diagram of a potential set of free blocks: 

 

Figure 3 – Basic De-synchronization Attack Step 1
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In the above diagram, we have a FreeList[0] with three blocks on it, of sizes 

0x91 (0x488 bytes), 0x211 (0x1088 bytes), and 0x268 (0x1340 bytes). The 

heap cache is instantiated, and we see that it has entries in the three buckets 

corresponding to our blocks.

Let’s assume that we can do a one-byte overflow of a NULL into the current size 

field of the free block at 0x154BB0. This will change the block size from 0x211 

to 0x200, shrinking the block from 0x1088 bytes to 0x1000 bytes. This will 

look like the following:

Figure 4 – Basic De-synchronization Attack Step 2 

Now, we’ve changed the size of the free chunk at 0x154BB0, which has 

desynchronized our FreeList[0] with the index maintained by the heap cache. 

Currently, the bucket for block size 0x211 is pointing to a free block that is 

actually of block size 0x200.

Note: Throughout the rest of the discussion, we will refer to sizes in terms of 
“block size,” which we define as 1/8th of the size in bytes. This corresponds to 
the size values that are actually stored in memory in the current/previous size 
fields, and used as indexes in the look-aside, cache, and free lists. In general, we 
are only discussing large blocks, so any time we specify a size less than 0x400, 
we are talking about a block size, which is 1/8th of the actual size in bytes.

For the simplest form of the attack, let’s assume that the next memory operation 

the application does is an allocation for block size 0x200 (0x1FF taking the 8 
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byte header into account.) First, the Heap Manager does a search for a size of 

0x200. (You can follow the logic in our pseudo-code for the search algorithm in 

Appendix B.1.) 

The system will go to the heap cache, see that the bitmap field for 0x200 

indicates that it is empty, and then it will scan the heap cache’s bitmap. It will 

find our entry at 0x211, and return the pointer to the chunk at 0x154BB0.

Now, the allocation routine receives its answer from the search, and verifies it 

is large enough to service the allocation. It is, so the Heap Manager proceeds 

to perform an unlink (see our pseudo-code for the unlink algorithm in 

Appendix B.2). The unlink will call RtlpUpdateIndexRemoveBlock(), 

passing it our block. If you are following along in the pseudo-code for 

RtlpUpdateIndexRemoveBlock() (Appendix C.3), you will see that it will 

pull out the size 0x200 from our block, and check the heap cache to see if 

the bucket for 0x200 points to our block. It does not since it’s empty, and the 

function will return without doing anything.

The unlinking will work since the block is correctly linked into FreeList[0], 

but the heap cache will not be updated. Since, for simplicity, we chose an 

allocation size of 0x200 (4096 bytes), the block will be the perfect size and 

there won’t be any block splitting or re-linking. So, no errors will be fired, and 

the system will return 0x154BB8 back to the application, leaving the system in 

the following state:

Figure 5 – Basic De-synchronization Attack Step 3
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You can see that the FreeList[0] now contains only two blocks: 0x1536A0 

and 0x156CC0. The heap cache, however, contains a stale entry to 0x154BB0, 

which is now a block that is marked as busy by the system. Since it is a busy 

block, the application will start writing its data where the flink and blink 
entries are.

For the simplest form of this attack, we’ll just assume that from here, the 

application does multiple allocations for size 0x200 (4096 bytes). Each time 

this happens, the system will go to the heap cache. The heap cache will find the 

stale entry at 0x211, and the system will see that the block at 0x154BB0 is big 

enough to service the request. (It never checks the flags to ensure that the block 

is actually free.)

Now, the system will attempt to do a safe unlink of the stale block from 

FreeList[0]. This could cause an access violation depending on what the 

application fills in for the flink and blink fields. If  flink and blink are 

overwritten with invalid addresses, the Heap Manager will cause an exception 

when it attempts to de-reference them. If the  flink and blink pointers are 

untouched, or are overwritten with readable addresses, then the stale block will 

fail the safe-unlink check.

Failing the safe-unlink check generally doesn’t impede an attack, 

as a failure doesn’t cause an unhandled exception to be raised or 

otherwise cause the process to terminate. (The HeapSetInformation() 
HeapEnableTerminationOnCorruption option isn’t supported in Microsoft 

Windows versions prior to Windows Server 2008 and Microsoft Vista. 

For Microsoft Server 2003 and Windows XP, if the image gflag FLG_

ENABLE_SYSTEM_CRIT_BREAKS is set, the Heap Manager will call 

DbgBreakPoint() and raise an exception if the safe-unlink check fails. This is 

an uncommon setting, as its security properties aren’t clearly documented.)

The end result of the attack technique is that multiple independent allocations 

will return the same address to the application:

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8 

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8 

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8 

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8
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Summary - One-byte Overflow of Cached Free Block

If the attacker can change the current size field of a block that is pointed to by 

the heap cache, that block won’t be properly removed from the heap cache, and 

a stale pointer will remain.

This attack looked at the simplest form of this situation. The result of the 

attack is that every time the application attempts to allocate a particular 

size, it receives the same pointer to a block of memory already in use. The 

exploitability of this would depend specifically on what the application did with 

this memory. In general, you’d look for a situation where a pointer to an object 

or function was at the same logical location as a field that was based on attacker-

supplied data. Then, you’d try to create a sequence of events where the pointer 

would be initialized, the user-malleable data would be stored, and then the now 

corrupt pointer would be used.

Prerequisites

•	 The attacker must be able to write into the current size field of a block 
that is free and present in the heap cache

•	 The attacker must be able to anticipate a future allocation size that the 
application will request

•	 The attacker must avoid allocations that cause splitting or re-linking 
of the corrupt block (or anticipate and plan for them)

•	 HeapAlloc() incorrectly returning the same address for independent 
requests must create an exploitable condition in the application

Existing Attacks

To help put our findings in context, we’ve compiled a summary of the existing 

attack techniques that target the XP Heap Manager. This list, located in 

Appendix E, represents a distillation of the references listed in the Prior Work 

section.

The primary prerequisite for our first de-synchronization attack is the ability to 

corrupt the current size field of a large, free block pointed to by the heap cache. 

This corruption can be caused with a one or two byte limited-control overflow, 
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which makes it somewhat unique among the known attack techniques. To see 

how this might be useful, let’s briefly review the current set of attacks:

Size Field Corruption (1-4 byte Overflows)

Assuming that we can only overwrite 1-4 bytes, there are a few existing attacks 

that may be useful. Specifically, if an attacker can overwrite a free chunk that 

is the only entry on a specific dedicated free list, they can cause the Free List 

bitmap to be improperly updated. This would only work for blocks smaller than 

or equal to 1024 bytes, and, presupposing a 1-4 byte overflow situation, the 

overwritten block would need to be the only entry in its dedicated free list. This 

attack is listed in Appendix E as the Bitmap Flipping Attack / Bitmap XOR 
Attack. Moore’s Heaps about Heaps documents this attack and credits it to 

Nicolas Waisman (Moore 2008, 21).

Controlled 16+ Byte Overflows

If you relax our pre-condition to include situations where the attacker can 

overwrite and control 16 or more bytes of chunk meta-data, then there are other 

alternative attack vectors that have been previously published.

Nicolas Waisman’s bitmap flipping attack can be applied to blocks that are 

on populated dedicated freelists, but this requires overwriting the flink and 

blink fields with two identical pointer values that are safe to de-reference. This 

attack, outlined in Moore’s Heaps about Heaps, is applicable to free blocks of 

size <=1024 bytes (Moore 2008, 21).

Moore has identified multiple attacks against the free list maintenance 

algorithms, which can also be applied in this situation. Moore’s attacks should 

work for large block exploitation as well, making them viable alternatives 

to heap cache de-synchronization. Specifically, the FreeList[0] Insert, 
FreeList[0] Searching, and FreeList[0] Re-linking attacks should be 

applicable, though each have different technical prerequisites and trade-offs. 

These attacks generally require writing specific valid pointers to the flink and 

blink fields and some degree of prediction or preparation of memory that these 

pointers will reference (Moore 2008, 23-29).

De-synchronization Insert Attack

We saw that when a cache bucket is desynchronized from FreeList[0], data 

supplied by the application can end up being interpreted as the flink and blink 
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pointers of a FreeList[0] node. This is because the stale pointer handed to 

the application still points to memory that the heap cache considers to be a 

free block. Consequently, the first eight bytes written into the newly allocated 

memory can be incorrectly interpreted as flink and blink pointers by the Heap 

Manager.

If the attacker can control what the application writes to these first eight bytes, 

he can intentionally provide malicious flink and blink pointers. In Heaps 

About Heaps, Moore documents several attacks against the Heap Manager that 

are predicated on corrupting flink and blink pointers (Moore 2008 23-25). His 

attacks posit a buffer overflow being the primary cause of the corrupt pointers; 

but, with some subtle adjustments, we can re-apply them in this context as well.

Traversal and the Cache

Before we look at specific attacks, it’s important to understand how the presence 

of the heap cache subtly changes the FreeList[0] traversal algorithms. Instead 

of starting at the head of FreeList[0] and traversing the linked list using the 

forward links, the Heap Manager first consults the heap cache. It will get a 

result from the heap cache, but depending on the context, it will either use the 

result directly, discard it, or use it as the starting point for future searching.

To be more specific, the allocation and linking algorithms both use the 

RtlpFindEntry() function to query the heap cache, but they use the pointer 

returned from the function differently. RtlpFindEntry() accelerates searches 

of FreeList[0] using the heap cache, and is documented in Appendix C.2 in 

pseudo-code. RtlpFindEntry() is passed a size parameter, and it returns a 

pointer to the first free block it finds in FreeList[0] that is the same size or 

larger.

Allocation

The allocation algorithm is looking for a block on the free list that it can unlink 

from the list, parcel up as necessary, and return back to the application. The 

code will consult the heap cache with RtlpFindEntry() for the requested 

size. If the bucket for that size has an entry, RtlpFindEntry() will simply 

return it without explicitly checking its internal size in the chunk header. 

RtlpFindEntry() generally won’t de-reference any pointer in a bucket and 

check its size until it gets to the point where it has to look at the catch-all 

block (typically >= 8192 bytes.)  It will then search through the FreeList[0] 
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manually, starting at the block pointed to in the catch-all bucket.

The allocation code in RtlAllocateHeap() that calls RtlpFindEntry() looks 

at the block it gets back, and if it notices that the block is too small, it changes 

its strategy entirely. Instead of trying to traverse the list to find a bigger block, it 

will just give up on the free list approach entirely and extend the heap to service 

the request. This is an uncommon situation that is typically only brought about 

by our intentional de-synchronization; but. it doesn’t cause any debug messages 

or errors. 

Linking 
The linking algorithm is more amenable towards attacker manipulation. In 

general, what the linking code wants to do is find a block that is the same size or 

bigger, and use that block’s blink pointer to insert itself into the doubly linked 

list. The linking code will call RtlpFindEntry() in order to find a block that 

is the same size or greater than the one it is linking. If the linking code calls 

RtlpFindEntry() and notices that the returned block is too small, it will keep 

traversing the list looking for a larger block instead of giving up or signaling an 

error. 

Insert Attack

So, if we’ve indirectly corrupted the flink of a large block in FreeList[0] and 

it is consulted during an allocation search, there is no real harm done if we’ve 

intentionally made the size smaller than the bucket’s intended contents. The 

allocation code will simply extend the heap and not disturb the free list or heap 

cache (beyond some temporary additions of blocks representing the newly 

committed memory.)

During linking searches, however, our malicious pointers will be further 

searched. So, if the application does an allocation and gets back one of our 

desynchronized stale pointers, and we can get it to write flink and blink values 

that we can control or predict, then we’re in a relatively advantageous situation. 

The following diagram shows what this looks like in memory:
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Figure 6 – Insert Attack Step 1

We’ve got a valid set of free blocks, in a valid FreeList[0], all with entries in the 

heap cache. We’ll do a 1-byte overflow of a NUL into the block at 0x1574D0:

 

Figure 7 – Insert Attack Step 2

 

This does the corruption that we’d expect, slightly changing the size of the 

block in the 0x211 heap cache bucket. Let’s assume the application allocates an 

0x1FF (x8) sized buffer. This is proceeding similarly to our first attack method, 

but this time, we’ll assume that the attacker has control over the first few bytes 

written into the buffer it just got back from HeapAlloc(). 
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Figure 8 – Insert Attack Step 3

 

So, two useful things have happened. First, our corrupted block has been 

removed from the real valid FreeList[0], as its linkage pointers were correct 

when the allocation occurred. Second, the heap cache entry for size 0x211 is 

incorrect and is pointing to a buffer that is only of size 0x200.

Our goal now is to perform an attack against unsafe linking, which, once we 

are at this point, parallels the FreeList[0] Insertion attack outlined by Brett 

Moore (Moore 2008, 23-25). Ideally, the next thing we’d need to happen would 

be for the application to free a block of a size less than 0x200, but greater than 

0x91. This will cause the block being linked in to the free list to be placed right 

before our corrupted block, which isn’t actually on the real FreeList[0]. For 

the payload of this attack, we will target a look-aside list. blink has been set to 

0x1506E8, which is the base of the look-aside list for block size 0x2.

(Note: We’re making a few assumptions as to the application’s subsequent 
allocation and free behavior; but, it’s worth noting that the system doesn’t 
necessarily have to free a block at this point, as an allocation that split a block 
and left the correct post-coalesce remainder would accomplish the same thing.)

To keep things straightforward, let’s assume that the application frees a block 

of size 0x1f1. You might want to consult the pseudo-code for the linking logic in 

Appendix B.3. What will happen is the following:
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The heap manager will write the address of our block to the base lookaside-list 

pointer at 0x1506e8. This will replace any existing look-aside list with a singly-

linked list of our own construction. It will look like this:	

Thus, three allocations from the corrupted look-aside list will cause our 

arbitrary address, 0xAABBCCDD, to be returned to the application. That will 

look like the following:

 

 Figure 9 – Insert Attack Step 4
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afterblock = 0x1574d8; 
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Summary – Insert Attack w/One-byte Overflow

If the attacker can change the current size field of a block that is pointed to by 

the heap cache, that block won’t be properly removed from the heap cache, and 

a stale pointer will remain. If the attacker can cause the application to allocate a 

buffer from that stale pointer, and the attacker can control the contents of what 

is stored in that buffer, he/she can provide malicious forward and back links.

This attack uses malicious forward and back links designed to overwrite the 

base of a look-aside list when a new block is linked in to FreeList[0]. It is an 

adaptation of the insertion attack described by Brett Moore in Heaps about 

Heaps (Moore 2008, 23-25), altered to use the heap cache de-synchronization 

technique. The attacker causes a new block to be inserted immediately before 

the stale heap cache entry, which means that the new block’s address will be 

written to the attacker-controlled blink pointer. By pointing blink at the base 

of a look-aside list, the attacker can provide their own singly-linked list, causing 

the attacker-supplied arbitrary flink pointer to eventually be used to service an 

allocation.

The end-result of the attack is that the attacker can get attacker-controlled data 

written to an arbitrary address, by explicitly controlling the address returned to 

an allocation request.

Prerequisites

•	 The attacker must be able to write into the current size field of a block 
that is free and present in the heap cache

•	 The attacker must be able to predict subsequent allocations that the 

application will make

•	 The attacker must avoid allocations that cause splitting or re-linking 

of the corrupt block, or prepare/inherit a buffer that prevents 

coalescing

•	 The attacker must control the contents of the first two DWORDS of 

what is written into the buffer allocated via the heap cache.
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Existing Attacks 

This attack is unique in its ability to allow for the exploitation of a 1-4 byte 

overflow for blocks of a size higher than 1024. Beyond this unique property 

and its setup using the heap cache, it can be considered to be in the same class 

of attacks as the insertion, searching, and re-linking attacks described by Brett 

Moore in his presentation Heaps about Heaps (Moore 2008, 23-29).

 

De-synchronization Size Targeting

One problem that occurs when attacking the heap cache in practice is that 

there is a lot of linking and unlinking traffic against the free lists in general. 

This activity can complicate multi-step attacks and conspire to make them 

probabilistic and non-deterministic. 

Outside of multi-threading scenarios, one simple cause of unexpected free list 

activity is block splitting. Block splitting occurs because most larger allocation 

requests will not perfectly correspond in size with a free block resident in 

FreeList[0]. Instead, a free block that is overly large will be selected and then 

split into two blocks: a result block, and a remainder block. The result block 

services the allocation request from the application, so it is unlinked from 

FreeList[0], marked as busy, and handed up to the caller. The remainder block 

holds the excess bytes that were unused when fulfilling the allocation request. 

It will have a new chunk header synthesized, be coalesced with its neighbors, 

and then be linked into the appropriate FreeList[n].

Given some control of the application’s allocation and free behavior, there are 

a few ways an attacker can increase the resiliency of these attacks. We’ll briefly 

look at one technique, which involves creating a hole in the heap cache for a 

specific allocation size, and using entries to defend that hole from spurious 

activity.

Shadow Free Lists

The general approach for handling variance in the execution flow in a 

real-world program is to try and maintain a mostly innocuous, consistent 

heap cache. This means that most requests should end up pointing at valid 

FreeList[0] blocks, and the system should largely function correctly. For an 

attack targeting one particular allocation size, one can set up what is essentially 

a shadow FreeList[0] and dial in sizes that cause a specific trapdoor to be 
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created in the heap cache. Consider the following three buckets in the heap 

cache: 

 

Figure 10 – De-synchronization Size Targeting

Here, we have a FreeList[0] with a head node and two entries (the white 

nodes in 0x155FC0 and 0x1595E0). These are valid and self-consistent, and 

synchronized with their corresponding cache bucket entries. Now, we have a 

stale desynchronized bucket (bucket 0x92 in the heap cache). It is pointing at 

the shadow FreeList[0], which is logically consistent except for not having a 

head node.

Building such a shadow list is relatively straightforward, depending on 

the attacker’s ability to control allocation and de-allocation. Once you do a 

de-synchronization and further allocation that selects the desynchronized 

block, you will have a stale pointer in the heap cache, but FreeList[0] will be 

valid in and of itself. The index will be wrong, but the list will still be coherent. 

From there, if you link new free entries by selecting the poisoned entry out of 

the heap cache with the linking algorithm, the inserted entries will form a 

shadow FreeList[0]. This list can only by reached through the heap cache, and 

won’t be accessible via a normal traversal of FreeList[0].
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Allocation

To see why this could be useful, let’s first consider allocation. Let’s assume that 

the bucket at 0x92 is the critical size we are using to exploit the system, and we 

want to tightly govern which requests modify its state. If you recall, a search for 

an appropriately sized buffer is going to skim through the cache buckets using 

the bitmap for fast resolution. Here, we’ve defended against this somewhat 

by causing a valid free entry to exist in bucket 0x91. Let’s consider possible 

activity:

•	 If an allocation comes in for a size <=0x91, the valid entry in bucket 
0x91 will be selected and used. If the attacker arranges for multiple 
0x91 entries to be in the FreeList[0], they can be used as a stopgap to 
protect the malicious entry.

•	 If an allocation for 0x92 comes in, it will attempt to use the evil free 
list chunk, but see that its size is too small to handle the request. 
Consequently, it will forego the fake free lists entirely and just extend 
the heap and use new memory to service the allocation request. (This 
happens because we set the block size to a small value intentionally.)

•	 If an allocation for 0x93 comes in, it will use the valid free list entry in 

that bucket.

Linking Searches

Now, let’s consider linking searches. 

•	 If the search is for a size <=0x91, the valid free list entry in bucket 0x91 
will be returned

•	 If the search is for 0x93, the valid free list entry will be used, which 
should be innocuous

•	 If the search is for exactly 0x92, the malicious free list chunk will be 
used. For linking, it will see that the size is too small, but then follow 
the malicious free list’s flink. From this point on, the system will be 
operating on the shadow free list that was provisioned entirely by the 
attacker. This can be used to perform the insertion/linking attacks 
described previously.

Heap Cache Exploitation
Page 27



Malicious Cache Entry Attack

So far, we’ve looked at attacks centered around creating a stale pointer in the 

heap cache. There is a slightly different attack method, which aims to get an 

attacker-controlled pointer directly into the heap cache. When a valid block is 

removed from the heap cache, the code that updates the cache trusts the flink 

value in the block, which can lead to exploitable conditions if the flink pointer 

has been corrupted. 

This attack is very similar to Moore’s attack on FreeList[0] Searching, which 

splices the FreeList[0] in order to set up an exploitable situation (Moore 2008, 

26-27). The heap cache changes the dynamics of the situation slightly, such 

that an attacker can make a less-pronounced change to the data structure and 

alter a particular subset of FreeList[0].

When the heap cache removes a block of a given size, it updates the bucket for 

that size with a pointer to the next appropriate block in FreeList[0]. If there is 

no such appropriate block, it sets the pointer to NULL and clears the associated 

bit in its bitmap. Normally, every possible block size between 1024 to 8192 

bytes has its own bucket in the heap cache, and blocks higher than or equal 

to size 8192 bytes all go into the last bucket. Buckets that represent a specific 

size – under normal conditions – will only point to blocks of that size, and the 

last bucket will just point to the first block in FreeList[0] that is too big for the 

heap cache to index. The following figure shows a normal heap situation with 

the heap cache:

 

Figure 11 – Malicious Cache Entry Attack Diagram
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Here, we see a small part of the heap cache, and we can see that the bucket 

for size 0x100 points to the block at 0x155FC0. There is a second block of size 

0x100 in the free list, at 0x1574D0, which is not pointed to by the heap cache. 

There is also a block of size 0x101 at 0x1595E0, which is in the heap cache.

So, if block 0x155FC0 is removed from the heap cache, the bucket for size 

0x100 will need to be updated. In the above situation, it will be updated to point 

to 0x1574D0. If 0x1574D0 was later removed from the cache, the bucket for size 

0x100 would be set to NULL.

The removal algorithm works by using the flink pointer of the block it 

is removing to find the next block in FreeList[0]. If that block is of the 

appropriate size, it sets the heap cache entry to it. For the catch-all bucket, 

it doesn’t de-reference the flink pointer since it doesn’t need to check that 

the sizes match. (It only needs to make sure it’s not the very last block in 

FreeList[0].)

So, if an attacker can provide a malicious flink value through memory 

corruption, and this value is a valid pointer to an appropriate size word, then 

they can get a malicious address placed into the heap cache. In the previous 

attacks, we altered the size of a free chunk so that it would never be removed 

from the heap cache, causing stale pointers to be returned back to the 

application. In this attack, we are attempting to corrupt the flink pointer of 

a free chunk, and to get our corrupt value to actually be placed into the heap 

cache. Once our corrupt and arbitrary value is in the heap cache for a particular 

size, it will be returned to the application, allowing for a controllable write to 

arbitrary memory.

Dedicated Bucket

For entries not in the catch-all bucket, you generally would need to predict 

the size of the entry you are overwriting, and provide a pointer that points to 

two bytes equal to that size. If you get the size wrong, the heap cache won’t be 

updated, and you will essentially be in a desynchronized state similar to the 

initial stages of the first attacks we outlined. However, let’s assume that we can 

predict the target block’s size with some regularity. For example, say you are 

overwriting a chunk with the following values:
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Figure 12 – Malicious Cache Entry Attack Dedicated Bucket Step 1

 

Assume that the attacker knows the size of the chunk that is being corrupted, 

and does the following overwrite:

Figure 13 – Malicious Cache Entry Attack Dedicated Bucket Step 2 

Essentially, the attacker didn’t change anything beyond pointing the flink at a 

free list head node at the base of the heap. This takes advantage of the situation 

that the attacker knows that an empty free list head node will point at itself, 

thus the “block” at 0x150208 will be interpreted as the following:

Data

Valid Flink

Cur:0x208 Prv:0x100

Valid Blink

0 0 0 0
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Data

Flink: 0x150210

Cur:0x208 Prv:0x100

Valid Blink

0 0 0 0



Figure 14 – Malicious Cache Entry Attack Dedicated Bucket Block

 

Now, the attacker would cause the application to allocate memory until the 

poisoned value 0x150210 was in the heap cache entry for size 0x208. Note that 

the size of the corrupt block being freed is 0x208, and the size of the block at its 

flink pointer, 0x150208 is 0x208. Thus, when the corrupted block is removed 

from the heap cache, it will pass the size check, and the heap cache will be 

updated to point to 0x150208.

The next allocation for block size 0x208 would cause 0x150210 to be returned 

to the application, which would allow the attacker to potentially overwrite 

several heap header data structures. The simplest target would be the commit 

function pointer at 0x15057c, which would be called the next time the heap was 

extended.

Catch-all Bucket

It isn’t necessary to predict the sizes when attacking a block in the catch-all 

block, which, by default, contains any block larger than or equal to 8192 bytes 

in size. Here, the primary requirement is to ensure that the blocks of size 

greater than or equal to 8192 bytes -- yet less than the attack size you choose 

-- are allocated before your overwritten block. This will ensure that your entry 

will make it into the heap cache for the last bucket entry, and the next large 

allocation should return the address you provide. For example, if you overwrote 

the following chunk:

Heap Cache Exploitation
Page 30

Flink: 0x150210

Cur:0x208 Prv:0x15

Blink: 0x150210

8 2 15 0



Figure 15 – Malicious Cache Entry Attack Catch-all Bucket Step 1

And you supplied these values:

Figure 16 – Malicious Cache Entry Attack Catch-all Bucket Step 2

 

Assuming that you could handle coalescing by fortuitous BUSY flags or other 

planning, and every block of size >=0x400 (8192/3) was allocated before your 

block, your poisoned flink of 0x150570 would be promoted to the entry in the 

cache bucket. Then, the next allocation between 8192 and 11072 bytes would 

return 0x150578, allowing you to potentially cause the application to write to 

0x15057c and corrupt the commit function pointer. The size will be checked by 

Data

Valid Flink

Cur:0x508 Prv:0x300

Valid Blink

0 0 0 0
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Data

Flink: 0x150570

Cur:0x568 Prv:0

Valid Blink

0 0 0 0



RtlAllocateHeap(), which will interpret the block contents as:

Figure 17 – Malicious Cache Entry Attack Catch-all Bucket Block

 

Summary – Malicious Cache Entry Attack

If the attacker can overwrite the flink pointer of a large block that is in 

FreeList[0], the corrupted value can eventually be propagated directly to the 

heap cache entry itself. When the application next attempts to allocate a block 

of that size, it will get an attacker controlled pointer instead of a safe piece of 

memory.

Prerequisites

•	 The attacker must be able to overwrite the flink pointer of a free block

•	 The attacker must be able to cause allocations to occur that promote 
this allocation to the heap cache

•	 The application must make a predictable allocation that can be 
targeted by corrupting a heap cache entry.

Existing Attacks 
This is, in essence, a variation of Moore’s attack against FreeList[0] 

Allocation. The interesting property here is that the corruption of the 

FreeList[0] isn’t necessarily as severe because any free list searching behavior 

using the heap cache will be able to pick up the remnants of the FreeList[0] 
past the point where it was corrupted (Moore 2008, 26-27). If we are corrupting 

an interior block that isn’t visible to the heap cache, our corrupt node may 

actually never be accessed until its entry into the index.
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Flink: 0x150570

Cur:0x568 Prv:0x15

Blink: 0x150570

0x68 0x5 0x15 0



Mitigation 

For existing implementations, there are some specific technical changes that 

could be made to the make the heap cache more robust in the face of attack. 

The more straightforward preventative measures are as follows:

•	 The back-end Heap Manager should check if it is returning a block 
marked as BUSY to an allocation request and consider that to be an 
error condition

•	 If RtlpFindEntry() returns a pointer to a block that is too small to 
service the request, this should be treated as an error condition that is 
indicative of corruption and/or an attack

•	 Alternatively, RtlpFindEntry() could be modified to de-reference and 
check the pointer it returns in order to sanity check the block size. This 
would be slightly more robust, as RtlpFindEntry() would know which 
bucket size the block came from and would be able to detect corruption 
that the caller couldn’t.

•	 A default behavior of process termination on heap corruption would 
materially increase the difficulty of performing subtle linking attacks

There are other technical changes that could be considered, but are more costly 

in terms of performance or impact to the existing system. These mitigations are 

as follows:

•	 RtlpUpdateIndexRemoveBlock() could perform a sanity check to 
ensure that the pointer it was passed is actually in the bucket for the 
corresponding size, which would involve traversing list nodes. This 
could potentially be expensive performance-wise, and too severely 
penalize the performance of the heap cache.

•	 Any code that walks FreeList[0] could maintain a running size value 
and ensure that block sizes are monotonically increasing as it traverses 
the list

•	 The heap index could be sanity checked against FreeList[0] in a 
number of ways. This would be an expensive operation, but could be 
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factored in to the flushing algorithm or other periodic code to amortize 
its cost.

•	 Pointers to heap blocks could potentially be range checked against the 
segment at various points in the system, which could add a layer of 
defense (at the cost of adding an additional data structure.)

Strategically, moving to a non-deterministic, difficult to predict ASLR heap 

implementation with encrypted meta-data is a sound approach. Naturally, this 

is exactly what Microsoft has done in newer versions of the operating system. 

From a security perspective, the Vista Heap Manager is certainly moving in the 

right direction, with increased non-determinism via ASLR, protection of heap 

meta-data with encryption, optional process termination upon corruption, and 

an overall heightened focus on security. For more information about security 

enhancements to the newer versions of the Heap Manager, please consult the 

following BlackHat presentation by Adrian Marienscu: 

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Marinescu.pdf

Moving forward, IBM ISS will focus on the Microsoft Vista and Microsoft 

Windows 7 OS’ back-end heap manager implementations and the low-

fragmentation heap front-end, paying particular attention to sub-systems 

affected by run-time heuristics.

 
Conclusion 

The heap cache is an interesting dynamic component of the Windows Heap 

Manager, which, along with its associated changes to memory de-committing 

policies, can play a large role in determining overall heap behavior. We’ve 

studied how the heap cache works, how it fits into the larger system as a whole, 

and provided documentation that should prove useful in integrating this 

knowledge into existing security tools and resources. Our primary focus has 

been an analysis of the heap cache from an application security perspective, 

and, to this end, we’ve documented several notable properties that affect the 

overall security of a running process.

Our primary finding is that the heap cache can be intentionally invoked by 

an attacker in order to make otherwise difficult memory corruption and stale 

pointer attacks involving large blocks exploitable. This can change the risk 
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profile of large block memory corruption vulnerabilities. 

The rest of our efforts focused specifically on the resilience of the heap cache’s 

internal data structures, and showed how the index can be desynchronized or 

corrupted by an attacker as part of an exploit. These specific technical attacks 

each carry various pre-conditions and requirements, and aren’t intended to 

be general indictments of the system as a whole. They show essentially how an 

attacker would approach attacking the system technically, but, in practice, the 

attacks documented within would need considerable effort to be applied in 

real-world situations.

We finished our analysis by considering several specific technical mitigations 

that could be applied to existing systems, and the strategic relevance of 

our observations looking towards the newer versions of the Windows Heap 

Manager.
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Appendix A – Heap Cache Internals 

Note: Many of the details below have been inferred based on the binary and will 
not match the actual internal, private names used by Microsoft.

A.1 Structure Definition

The heap cache consists of an 0x68 byte header, an array of buckets (NumEnts 
* 4 bytes), and a bitmap for fast traversal (NumEnts / 8 bytes). NumEnts is 
0x380 by default. The total size is rounded up to the next 0x1000 byte (1 page) 

boundary for the VirtualAlloc(). The header contains:
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struct HeapCache 

{ 

  ULONG NumBuckets; 

  int CommittedSize; 

  LARGE_INTEGER CounterFrequency; 

  LARGE_INTEGER AverageAllocTime; 

  LARGE_INTEGER AverageFreeTime; 

  int SampleCounter; 

  int field_24; 

  LARGE_INTEGER AllocTimeRunningTotal;    

  LARGE_INTEGER FreeTimeRunningTotal; 

  int AllocTimeCount; 

  int FreeTimeCount; 

  int Depth;  

  int HighDepth; 

  int LowDepth; 

  int Sequence; 

  int ExtendCount; 

  int CreateUCRCount; 

  int LargestHighDepth; 

  int HighLowDifference; 

  unsigned __int8 *pBitmap; 

  HEAP_FREE_ENTRY **pBuckets;

  HEAP_FREE_ENTRY *Buckets[NumBuckets]; 

 

    unsigned int Bitmap[NumBuckets/32]; 

};



A.2 Structure Fields 

NumBuckets - the number of buckets in the heap cache

CommittedSize - the size of the virtual memory allocated for the heap cache

CounterFrequency – the frequency of the high performance counter

AverageAllocTime – every 0x64 allocs, AverageAllocTime is 

AllocTimeRunningTotal/AllocTimeCount

AverageFreeTime - every 0x64 frees, AverageFreeTime is 

FreeTimeRunningTotal/FreeTimeCount

SampleCounter – counter that invokes timing code every 0x200 samples 

(allocation or free)

AllocTimeRunningTotal – running total of time spent in allocation

FreeTimeRunningTotal – running total of time spent in free

AllocTimeCount – counts 0x64 allocs, then used to determine 

AverageAllocTime

FreeTimeCount – counts 0x64 frees, then used to determine AverageFreeTime

Depth - tracks length of catch-all bucket

HighDepth - set to same as Depth initially. incremented when heap is 

extended, and tracks highest value of Depth. set back to Depth on flush

LowDepth – set to same as Depth initially. tracks lowest value of Depth. set 

back to Depth on flush

Sequence – used as simple recursion mechanism. If it’s set, we update it with 

every large block action and track HighDepth nd LowDepth. If Sequence gets 

above 0x400 on a RtlpDeCommitFreeBlock(), we invoke a the global cache 

balancing function.
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ExtendCount – number of times heap has been extended when the cache is 

active

CreateUCRCount – number of times UCR has been created when cache is 

active

LargestHighDepth – Largest HighDepth witnessed over lifetime of cache

HighLowDifference –Largest difference between High and Low depths 

witnessed over lifetime of cache

pBitmap - pointer to the bitmap used for quick navigation of the index

pBuckets - points to the index: the array of buckets

Buckets are an array of NumBuckets pointers, each one representing a 

different size.

Bitmap is used for quick scanning of the cache array. This works identically 

to the bitmap used by the FreeList implementation, with one bit representing 

each bucket.

A.3 Initialization

A pointer to the heap cache is present at offset 0x170 from the base of the heap 

on Microsoft Windows XP SP3. This is the LargeBlockIndex in the _HEAP 

type definition in the public ntdll.dll pdb provided by Microsoft. It is initially 
NULL and is only set if the heap cache is instantiated during the program run-

time.

This function is responsible for initializing the heap cache data structure and 

performing the initial synchronization of the index array with the FreeList[0] 

list.

The heap cache size is calculated based on the _HEAP.
DeCommitFreeBlockThreshold setting for the heap. The 
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struct HeapCache *RtlpInitializeListIndex(PHEAP aHeap)



number of entries in the heap cache is calculated by taking the 

DeCommitFreeBlockThreshold, adding 0x180, and rounding the number up 

to the next 0x20 byte boundary.

This can be set as a parameter when the heap is created with 

RtlCreateHeap(). If it is not set as an argument, it is set to the value in 

the PEB: _PEB.HeapDeCommitFreeBlockThreshold (>>3). It can 

be set in the PE header, and defaults to 0x1000; the size of one page. The 

HeapDeCommitTotalFreeThreshold defaults to 0x10000.

The heap cache is located in a separate virtual memory range that is allocated 

by RtlpInitializeListIndex using NtAllocateVirtualMemory().

The initial setup is done by walking through FreeList[0], starting at the 

smallest block at the front of the linked list. For each entry in FreeList[0] it 

adds a pointer back to the entry in the appropriate bucket in the heap cache, 

assuming the bucket has not already filled. This works to have the bucket 

point to the smallest appropriate element in the FreeList[0], as the traversal is 

performed from smallest to largest.
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Appendix B – Free List Algorithm Pseudo-code

Note that the following pseudo-code and algorithm descriptions are slightly 

abstracted and represent logical functions, but are not what you will find 

verbatim in ntdll.dll. In the actual assembly, you will see these algorithms 

implemented in multiple places, with some small changes in each instantiation. 

It’s also important to note that we’re talking about the back-end Heap Manager 

specifically. The front-end, comprised of the look-aside lists or, optionally, the 

low fragmentation heap, has its own algorithms. Large blocks aren’t handled by 

the look-aside front-end, and, while the low fragmentation heap handles blocks 

up to 16k, it is optional and isn’t commonly used on XP. (Alexander Sotirov 

informed us of one rather notable exception: Internet Explorer 7 now uses the 

low fragmentation heap on XP.)

B.1 Allocation Search

The free lists are searched for two reasons: to find a free block to service an 

allocation request, and to find the correct place to link in a free block. We’ll 

cover the linking-related searches in B.3 below.

If the allocation search finds a free block to service a request, the block is 

unlinked from the free lists and then processed. This processing can involve 

splitting the block, coalescing the remainder block with its neighbors (this can 

involve unlinking of consumed neighbor blocks), and linking the remainder 

block to the free list. 

The basic goal for this search algorithm is: given a particular block size, find 

the first appropriate free block in the free lists with that size. If there aren’t any 

with that exact size, then find the next largest available block. Let’s look at some 

pseudo-code:
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Searching Pseudo-code Part 1

If the size is below 1024 (0x80 * 8), the system goes directly to the free list at 

the base of the heap corresponding to the block size. If that free list has any 

elements, the searching algorithm will return a pointer to the last element on 

that doubly linked list. 

If the free list for the requested size is empty, then the system needs to find the 

next largest block available. It then scans the free list bitmap, looking for a bit 

set corresponding to a larger block-size free list. (We abstracted the bitmap 

scanning code into a function for clarity.) If it finds a set bit in the bitmap, then 

the search returns the blink of the corresponding free list.

Note that if we can affect the bitmap, we can cause the system to potentially 

return a pointer to the base of the heap in response to an allocation. (If we flip 

the bit for an empty free list, allocations will return an empty free list head’s 

blink, which will point back to the sentinel node.) This is a useful property for 

attacks, which was documented in Brett Moore’s presentation Heaps about 

Heaps, and credited to Nicolas Waisman (Moore 2008, 21).
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if (size<0x80) 

{ 

	 // we have an entry in the free list 

	 if (FreeLists[size].flink != FreeLists[size]) 

		  return FreeLists[size].blink;

	 // ok, use bitmap to find next largest entry 

	 if (offset=scan_FreeListsInUseBitmap(size)) 

	 { 

	            return FreeLists[offset].blink; 

	 }

	 // we didn’t find an entry in the bitmap so fall through  

	 // to Freelists[0] 

} 



Searching Pseudo-code Part 2

	

If the requested block size is >= 1024, or the system doesn’t find an appropriate 

block using the bitmap, then it proceeds to search through the free blocks 

stored in FreeList[0]. As you recall, all free blocks higher than or equal to size 

1024 are kept in this doubly linked list, sorted by size from smallest to largest. 

The above code queries the heap cache if it’s present. It has a special case for 

a very large block allocation request only being fulfilled by a much larger free 

block. This will keep large collections of >16k free blocks from forming if 

there aren’t free blocks of 4k or higher. We’ll look at the heap cache’s searching 

implementation in Appendix C.
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if (Heap->LargeBlocksIndex )	 // Heap Cache active? 

{ 

	 foundentry = RtlpFindEntry(Heap, size);

	 // Not found in Heap Cache 

          if (&FreeLists[0] == foundentry ) 

		  return NULL;

           // returned entry not large enough 

	 if (SIZE(foundentry) < size) 

		  return NULL;

	 // we’re allocing a >=4k block, and the smallest block we find  

	 // is >=16k. flush one of the large blocks, and allocate a new  

	 // one for the request 

           if (LargeBlocksIndex->Sequence && 

		  size > Heap->DeCommitFreeBlockThreshold && 

		  SIZE(foundentry) > (4*size)) 

	 { 

	       RtlpFlushLargestCacheBlock(vHeap); 

               return NULL; 

	 }

	 // return entry found in Heap Cache 

	 return foundentry; 

}



Searching Pseudo-code Part 3

If the heap cache isn’t active, we need to search FreeList[0] manually. 

The system starts with the first free block in FreeList[0], at FreeList[0].
flink, and walks through the linked list until an appropriately sized block is 

found. If the system walks all the way through the list and ends up back at the 

FreeList[0] head node, it knows that there are no suitable free blocks that 

meet the search query.

B.2 Unlinking

Unlinking is removing a particular free block from the free lists. This operation 

was the classic mechanism by which attackers exploited heap corruption 

vulnerabilities, so it now includes additional security checks. This is called safe 

unlinking.

Unlinking is used in allocations to pull an appropriate block off a free list in 

order to service a request. This is typically preceded by a search. Unlinking 

is also used when the heap manager obtains a pointer to a block through a 

// Ok, search FreeList[0] – Heap Cache is not active

Biggest = (struct_HEAP *)Heap->FreeLists[0].Blink;

// empty FreeList[0] 

if (Biggest == &FreeLists[0]) 

	 return NULL;

// Our request is bigger than biggest block available 

if (SIZE(Biggest)<size) 

	 return NULL;

walker = &FreeLists[0];

while ( 1 ) 

{ 

	 walker = walker->Flink;

	 if (walker == &FreeLists[0]) 

		  return NULL;

	 if ( SIZE(walker) >= size) 

		  return walker; 

}

Heap Cache Exploitation
Page 43



different mechanism. This typically occurs during coalescing operations, as 

neighboring blocks that are subject to consolidation may need to be removed 

from the free lists. Coalescing can happen as part of both allocation and free 

operations. Finally, unlinking is used in allocation if the heap is extended, in 

order to remove the newly created free block.

Here is the basic pseudo-code for unlinking, assuming that the block that one 

wants to unlink is in the pointer block:

Unlinking Pseudo-code

This is basically standard code to unlink a node from a doubly linked list, 

with a few additions. First, there is a call to the heap cache that is used both 
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// remove block from Heap Cache (if activated) 

RtlpUpdateIndexRemoveBlock(heap, block);

prevblock = block->blink; 

nextblock = block->flink;

// safe unlink check 

if ((prevblock->flink != nextblock->blink) ||    (prevblock->flink != 

block)) 

{ 

    // non-fatal by default  

    ReportHeapCorruption(…); 

} 

else 

{ 

    // perform unlink| 

    prevblock->flink = nextblock; 

    nextblock->blink = prevblock; 

}

// if we unlinked from a dedicated free list and emptied it, 

// clear the bitmap 

if (reqsize<0x80 && nextblock==prevblock) 

{ 

     size = SIZE(block); 

     vBitMask = 1 << (size & 7); 

     // note that this is an xor 

FreeListsInUseBitmap[size >> 3] ̂ = vBitMask; 

}



for performance based metrics and to instruct the cache to purge an entry if 

necessary. Then, the safe unlink check is performed. Note that if this fails, the 

unlinking operation isn’t performed, but it generally will fail without causing 

an exception, and the code will proceed.

After the block is unlinked, the system attempts to update the bitmap for 

the free list if necessary. Note that this performs an exclusive or to toggle the 

bit, which can be another useful property for an attacker. Specifically, if the 

unlinking fails, but we have a prevblock that is equal to nextblock, it will 

toggle the corresponding bit in the bitmap. (This property was also noted 

in Brett Moore’s Heaps about Heaps presentation and credited to Nicolas 

Waisman.)

B.3 Linking

Linking is taking a free block that is not on any list and placing it into the 

appropriate place in the free lists. In certain situations, the linking operation 

will first need to search the free lists to find this appropriate place. Linking is 

used in allocations when a block is split up and its remainder is added back to 

the free lists. It is also used in free operations to add a free block to the free lists. 

Let’s look at some pseudo-code for the linking operation:

Linking Pseudo-code

This code does a simple search for the correct place to insert the block. If the 
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int size = SIZE(newblock);

// we want to find a pointer to the block that will be after our block

if (size < (0x80)) 

{ 

	 afterblock = FreeList[size].flink; 

 

	 //toggle bitmap if freelist is empty 

	 if (afterblock->flink == afterblock) 

      	        set_freelist_bitmap(size); 

} 

else 

{ 

    if (Heap->LargeBlocksIndex )	// Heap Cache active? 

        afterblock = RtlpFindEntry(Heap, size); 

    else 

        afterblock = Freelist[0].flink;

    while(1) 



This code does a simple search for the correct place to insert the block. If the 

size is <1024, it will insert the block onto the head of the appropriate free list. 

It will toggle the bitmap bit if the free list is empty. (This can be useful for the 

attack outlined in B.1).

If the size is >=1024, it will find the correct place in FreeList[0] to insert the 

block by walking through the doubly linked list. If the heap cache is present, it 

will use it to find the best place in the list to start the search. (Note this allows 

us more flexibility when we desynchronize the heap cache.)
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    { 

        if (afterblock==&FreeList[0]) 

            return; // we ran out of free blocks

        if (SIZE(afterblock) >= size) 

            break;

        afterblock=afterblock->flink; 

    } 

}

// now find a pointer to the block that will be before us 

beforeblock=afterblock->blink;

// we point to the before and after links 

newblock->flink = afterblock; 

newblock->blink = beforeblock;

// now they point to us 

beforeblock->flink = newblock; 

afterblock->blink = newblock;

// update the Heap Cache 

RtlpUpdateIndexInsertBlock(Heap, newblock);



Appendix C – Heap Cache Algorithm Pseudo-code

We’ve documented how the heap cache is integrated into the core operation of 

the Heap Manager in Appendix B. In that coverage, we listed several functions 

that form the core API to the heap cache. The three main functions are: 

RtlpFindEntry() for searching, RtlpUpdateIndexInsertBlock() for linking, 

and RtlpUpdateIndexRemoveBlock() for unlinking. There are additionally 

two functions used for flushing that we will briefly examine.

C.1 Searching

The heap cache is queried with the routine RtlpFindEntry(), which takes a 

pointer to the heap and a size parameter. It searches the heap cache for the first 

block in FreeList[0] that is the same size or bigger than the size parameter, 

and returns a pointer to that block. If it can’t find a suitable block, it returns a 

pointer to the head node of FreeList[0]. Here is pseudo-code for this function:

RtlpFindEntry Pseudo-code

Heap Cache Exploitation
Page 47

_LIST_ENTRY *RtlpFindEntry(PHEAP Heap, size_t Size)

FreeList0 = &Heap->FreeLists[0]; 

Biggest = Heap->FreeLists[0].Blink;

 // empty freelist[0] 

if ( Biggest == FreeList0 ) 

  return FreeList0;

// biggest chunk in freelist isn’t big enough, so just return fl[0] 

if (SIZE(Biggest) < Size ) 

  return FreeList0;

result = FreeList0->Flink;

// if first chunk in free list is big enough, just return it 

if (Size <= SIZE(result)) 

  return result;

Cache = Heap->LargeBlocksIndex; 

 

Index = Size - 128; 

if ( Index >= Cache->NumBuckets ) 

  Index = Cache->NumBuckets - 1;



The search algorithm works very similarly to the free list search algorithm. 

It uses the size parameter to calculate the index into the array. It then uses 

a bitmap, where one bit represents each bucket in the array. Starting at the 

calculated bucket, it uses the bitmap to scan the data structure for the next 

available free block.

There is special case code if the size corresponds to the last bucket, which 

contains all blocks that are too large to have dedicated buckets. In this 

situation, it walks through the linked list looking for a suitable block, starting 

at the initial pointer in the last bucket.

Note that for allocation-related searches for a free block to service a request, the 
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// user wants a big block - not tracked in cache 

if ( Index == Cache->NumBuckets - 1 ) 

{ 

  // the linked list is 8 bytes in, but the ptr refers to the head 

  Walker = LISTPTR(Cache->pBuckets[Index]); 

  while ( Walker != FreeList0 ) 

  { 

    // walk through big guys until we find one big enough 

    if ( SIZE(Walker) >= Size ) 

      return Walker; 

    Walker = Walker->Flink; 

  } 

}

// ok, use bitmap to find next largest entry 

if (offset=scan_HeapCacheBitmap(HeapCache, Size)) 

{ 

  return LISTPTR(Cache->pBuckets[offset]); 

} 

else 

{ 

  DbgPrint(“Index not found into the bitmap %08lx\n”, Size); 

  result = (_LIST_ENTRY *)FreeList0; 

  return result; 

}



block returned by this function represents the end of the search. If the block is 

too small somehow (a result of our de-synchronization attack), the allocation 

code will simply forego the free lists and extend the heap to create a new block 

suitable for the request.

However, for linking related searches, the pointer returned from 

RtlpFindEntry() is used as a starting point for the search. So, if the block 

returned isn’t large enough, the linking code keeps walking through the 

doubly-linked list to find a block that is large enough. Since it gets the flink 
pointer from the returned block, this provides us some extra flexibility when we 

corrupt or desynchronize blocks that are indexed by the heap cache.

C.2 Linking

 

RtlpUpdateIndexInsertBlock() is used to add a new free block to the 

heap cache, if appropriate. This also keeps track of simultaneous entries in 

FreeList[0], and will enable the heap cache if it sees 32 of them.

RtlpUpdateIndexInsertBlock Pseudo-code
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RtlpUpdateIndexInsertBlock(PHEAP Heap,_HEAP_ENTRY *Chunk) 

if (SIZE(Chunk)<0x80u) 

  return;

++Heap->NonDedicatedListLength;

HCache = Heap->LargeBlocksIndex;

if (!HCache) 

{ 

  // 0x20 simultaneous entries in freelist[0] 

  if ( Heap->NonDedicatedListLength >= 0x20 ) 

    RtlpInitializeListIndex(Heap); 

 

  return; 

}

Index=SIZE(Chunk)-0x80;	

// cap it at catch-all bucket 

if (Index >= HCache->NumEntries) 



If the chunk is smaller than 0x80, return as it doesn’t belong in the heap cache.

Increment heap->NonDedicatedListLength. This keeps track of how many 

simultaneous blocks exist in FreeList[0]. (We activate the heap cache when we 

see 32 simultaneous free large blocks.)

If the heap cache isn’t enabled, we check to see if NonDedicatedListLength 

is 32. If it is, we activate the heap cache by calling RtlpInitializeListIndex(). 

Otherwise, return.

If the cache is present, the index is calculated as Size - 0x80, with a maximum 

index for the catch-all bucket for the biggest chunks.

If it’s within the heap cache, it checks to see if the bucket is set. If the bucket is 

set, it replaces the existing entry with this block. The replace only happens if 

the new entry is smaller than or equal to the existing entry, which is present for 
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  Index=HCache->NumEntries-1;

BucketPtr=&HCache->pBlockIndex[Index]; // location of the bucket 

CacheEnt=*BucketPtr;			   // current bucket entry

// update so it points to us 

// smallest size logic is for catch-all 

if (!CacheEnt || SIZE(Chunk)<=SIZE(CacheEnt))    

  *BucketPtr = Chunk;

// set the corresponding bit in the bitmap 

if (!CacheEnt) 

  HCache->pBitmap[Index >> 3] |= 1 << (Index & 7);

if (Index==(HCache->NumEntries-1)) // last index  

{ 

  // another big guy added 

  ++HCache->Depth;  

  if (HCache->Sequence ) 

  { 

    HCache->Sequence++; 

    if (HCache->Depth > HCache->HighDepth) 

      HCache->HighDepth = HCache->Depth; 

  } 

}



the purpose of the catch-all entry.

If the bucket isn’t set, it sets the bucket and then sets the appropriate bitmap.

Finally, if we add an entry to the catch-all bucket, we increase the Depth, 

increment Sequence, and update HighDepth if necessary.

C.3 Unlinking

 

This looks up the bucket based on the size, and if the bucket is occupied and 

the entry corresponds to the pointer, it looks and sees if it can pull out the next 

entry. It also decrements the simultaneous free block counter.

RtlpUpdateIndexRemoveBlock Pseudo-code
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int RtlpUpdateIndexRemoveBlock(PHEAP aHeap, _HEAP_ENTRY *Chunk) 

Size = SIZE(Chunk); 

HeapCache=Heap->LargeBlocksIndex; 

 

if (Size<0x80) 

  return;

--Heap->NonDedicatedListLength;

if (!HeapCache) 

  return;

Index=Size-128;

// highest bucket 

if (Index>=HeapCache->NumEntries ) 

  Index=HeapCache->NumEntries-1;

//Next is ptr to next chunk in freelist[0] 

if (Chunk->Flink!=&Heap->FreeLists[0]) 

  Next = Chunk->Flink; 

else 

  Next = NULL;

//bucket is pointer to index entry 

Bucket = &HeapCache->pBlockIndex[Index];

// we are in index
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if (*Bucket==Chunk) 

{ 

  // if its a biggie, we don’t care if next size is different 

  if (Index>=HeapCache->NumEntries-1) 

  { 

    if (!Next) 

    { 

      *Bucket = 0; 

      HeapCache->pBitmap[Index >> 3] ̂ = 1 << (Index & 7); 

    } 

    else 

      *Bucket = Next; 

  } 

  else 

  { 

    // its not a biggie, so dont replace with mismatched size 

    if ( !Next || Next.Size != Size ) 

    { 

      *Bucket=0; 

      HeapCache->pBitmap[Index>>3] ̂ = 1 << (Index & 7); 

    } 

    else 

      *Bucket = Next; 

  } 

}

// if it’s a biggie 

if (Index==(HeapCache->NumEntries - 1)) 

{ 

  // decrease the depth 

  if ( --HeapCache->Depth < 0 ) 

    DbgPrint(“Invalid Cache depth\n”);

  // if sequence is set, increment and track lowdepth 

  if (HeapCache->Sequence) 

  { 

    HeapCache->Sequence++; 

    if ((signed int)HeapCache->Depth < HeapCache->LowDepth) 

      HeapCache->LowDepth = HeapCache->Depth; 

  } 

}



If the chunk is smaller than 0x80, return as it’s not in the heap cache.

Decrement heap->NonDedicatedListLength. This keeps track of how many 

simultaneous blocks exist in FreeList[0].

The index is calculated as Size - 0x80, with a maximum index for the catch-all 

bucket for the biggest chunks.

We check the bucket for the size of the chunk we are given, and if the entry in 

the bucket is not our chunk, then we are done.

If our chunk is in the bucket, we update our bucket. Basically, we follow our 

chunks flink, and if the size is the same, we store the flink in the bucket. The 

catch-all bucket is a special case, and we update it if the next chunk is simply of 

a larger size. If the flink isn’t the right size, we store NULL in the bucket and 

toggle the bitmap.

If we added an entry to the catch-all bucket, we decrease the Depth, increment 

Sequence, and update LowDepth if necessary. We print a warning if the 

Cache Depth has gone below zero.

C.4 Flushing

This function takes the largest available block on the free list and attempts to 

de-commit it.

Flushing of the largest block is invoked sometimes in allocation, if the 

requested size is sufficiently large and the retrieved matching block is at least 

four times the size of the requested size.
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int RtlpFlushLargestCacheBlock(PHEAP aHeap)

HeapCache = Heap->LargeBlocksIndex;

if (!HeapCache) 

  return;
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The sequence is checked at de-commit. If the Sequence hits 0x400, 

RtlpFlushCacheContents() is called. This is a more complicated routine that 

adjusts the size of the cache.

First, the difference between HighDepth and LowDepth is calculated. This 

is the amount that the catch-all bucket has grown since initialization or the 

last flush operation. If the current Depth is less than or equal to the difference, 

then HighDepth is set to Depth, LowDepth is set to Depth, Sequence is set 

back to 1, and the function returns.

After the first 0x400 large block events post-initialization, let’s say that 

LowDepth is 0, HighDepth is 5, and Depth is 3. Depth is less than 5, so no 

flushing is performed and LowDepth=HighDepth=Depth=3. Now, let’s say 

0x400 large block operations later, LowDepth is 3, HighDepth is 4, and Depth 

if (!(Sequence = HeapCache->Sequence)) 

  return;

Biggest=Heap->FreeLists[0].Blink;

if ( Biggest==&Heap->FreeLists[0] ) 

  return;

// this prevents lowdepth and highdepth from being altered 

// also prevents recursive flushing 

HeapCache->Sequence = 0;

// remove biggest chunk from the cache map 

BiggestChunk=ENTPTR(Biggest);

// invokes our unlink algorithm on the biggest block 

Do_Unlink(BiggestChunk);

// go ahead and purge any pages we can behind this guy 

Biggest->Flags |= BUSY; 

Heap->TotalFreeSize -= BiggestChunk->Size; 

RtlpDeCommitFreeBlock(aHeap, BiggestChunk, BiggestChunk->Size);

// restore saved sequence 

HeapCache->Sequence = Sequence;

void RtlpFlushCacheContents(PHEAP aHeap)



Heap Cache Exploitation
Page 55

is 3. Depth(3) is going to be higher the difference of 1 (4-3), so we’ll perform 

the flush this time.

The flushing algorithm works by starting at the first entry in the catch-

all bucket and walking through each entry until it hits the beginning of 

FreeList[0]. So, all entries above size 8192 are subject to being flushed.

It calculates the number of entries it needs to flush in order to bring the Depth 

back down to within range of the calculated difference. So, in our previous 

example, if Depth was 3 and DepthDifference was 1, it would free the last two 

blocks present in FreeList[0] in order to bring Depth down to 1.

As it walks through the blocks, it sets the NO_COALESCE flag on any free 

block that it advances past until it reaches the first block it wants to free. Also, if 

it sees any block with the NO_COALESCE flag set, it will go ahead and flush 

that block. So, any free blocks > size 8192 will be flushed during the second 

global flush operation that they witness.

Once it reaches the blocks that it wants to free, it safely unlinks them from 

FreeList[0] and places them in a temporary list.

Once the end of FreeList[0] is reached, the flushing code walks through 

the temporary list and calls RtlpDecommitFreeBlock() on each one. Since 

sequence is temporarily set to 0, this will cause the block to be de-committed.

Finally, HighDepth and LowDepth are both set to Cache, Sequence is set 

back to 1, and the function returns.
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Appendix D – De-committing Policy

The de-committing logic is split into two parts: the selection of candidate 

blocks and the actual de-committing function. The selection algorithm does 

not change when the heap cache is activated. The de-committing function, 

however, changes considerably with the presence of the heap cache.

•	 Selection algorithm summary: 
 
If the block being freed is larger than or equal to 1 page in size, and the 
total number of free bytes in the heap after the free() will be higher 
than 64k, then select the block to be de-committed. Otherwise, the 
block is added to the free lists.

•	 De-committing algorithm summary: 
 
If the heap cache is not invoked, then increment Heap-
>DecommitCount. This is a counter that counts the number of 
de-commit operations since the beginning of the process. If the counter 
is below 256, we de-commit the block. If the counter reaches 256, then 
we go ahead and initialize and create the heap cache.

If the heap cache is present, then there are numerous checks, but we generally 

insert the block into the free lists instead of de-committing it. There are a 

couple of cases to be aware of involving small free lists, which are noted below.

D.1 Selection Algorithm

If a block is freed that meets the following conditions, it is subject to the 

de-committing logic. The following pseudo-code shows how a block is 

determined to be a candidate for de-committing.  

(DeCommitFreeBlockThreshold typically defaults to 0x2000. 

DeCommitTotalFreeThreshold typically defaults to 0x2000.)



De-commit Selection Pseudo-code

D.2 RtlpDeCommitFreeBlock

The de-committing routine, RtlpDeCommitFreeBlock(), is where the logic 

involving the heap cache comes into play. 
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if (Size >= 0x80) 

{ 

  if (Size>= DeCommitFreeBlockThreshold) 

  { 

    if (Size + heap->totalFreeSize >=  

{ 

deCommitTotalFreeThreshold) 

    {	  

      RtlpDeCommitFreeBlock(Heap, Block); 

      return; 

    } 

  }

  if (Size + heap->totalFreeSize > DeCommitTotalFreeThreshold) 

  { 

    if (!(rtlpDisableHeapLookaside & 0x2)) 

    { 

      if (Size>= 0x200) 

      { 

        if (PREVSIZE(Block) == 0) 

        {	 

          RtlpDeCommitFreeBlock(Heap, Block); 

          return; 

        } 

        if (Flags(Block) & LAST_BLOCK) 

        { 

          RtlpDeCommitFreeBlock(Heap, Block); 

          return; 

        } 

      } 

    }	  

  } 

}

// add to the free list and don’t decommit 

AddToFreeList(Block);
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The first thing the function does is take the block it was given and separate it 

into three parts: a clean set of pages aligned on a page boundary, the extra data 

that was before these pages and the extra data after these pages. It then attempts 

to do coalescing on both the before and after chunks, which will potentially 

merge them with adjacent free chunks.

If there is more than 10 UCRs in use by the segment (i.e. holes in the segment), 

and the chunk is either the first chunk in the segment or the last chunk in the 

segment, then we go ahead and de-commit the block.

If, after coalescing, either of the border chunks is actually big 

enough that it’s larger than the DeCommitFreeBlockThreshold, 

RtlpDecommitFreeBlock() will actually call itself recursively.

Assuming that this doesn’t happen, the system now checks to see if the heap 

cache is active. If it is not, we do the following:

  v_heapcache_ = Heap->LargeBlocksIndex; 

  if ( !v_heapcache_ ) 

  { 

    ++Heap->DecommitCount; 

    if ( Heap->DecommitCount == 256 ) 

    { 

      if ( LOBYTE(Heap->Flags) & 2 ) 

      { 

        if ( !(RtlpDisableHeapLookaside & 2) ) 

          RtlpInitializeListIndex(Heap); 

      } 

    } 

    goto LABEL_CreateUCR; 

  }

If the heap cache is present, then we check the sequence to see if it’s zero 

(indicating a forced de-commit due to a potentially recursive or mutually 

recursive call), or if we are the only chunk in the segment (no previous or next 

neighbors), then we go ahead and de-commit.

Otherwise, we perform one more check against the heap cache.

If the heap depth is higher than or equal to the HighDepth, then we are going 
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to slightly alter our insertion into the free list. (Every time the heap is extended, 

the HighDepth is incremented, so this can happen even if we haven’t removed 

any entries from the catch-all bucket.) Specifically, if FreeList[0] is empty or 

the largest block in the FreeList[0] is smaller than us or only 512 bytes larger, 

then we de-commit. Otherwise, we insert the block into the free list, but we also 

flush the largest block from the cache.

Assuming we pass the depth check, we simply insert the block into the free list.

There is one last check after everything is complete: the sequence number 

is checked against a large predetermined value (0x400), and if we’ve hit that 

value, we call RtlpFlushCacheContents(), which may reset the Sequence 

value or flush a portion of the blocks higher than size 8192. This is documented 

in C.4, and depends on how the catch-all bucket of the heap cache has been 

utilized over the last 0x400 large block operations. 

D.3 Debugging

(based on Alexander Sotirov’s breakpoints (Sotirov 2007))

bu ntdll!NtAllocateVirtualMemory “.printf \”    

valloc(addr=%x,size=%x,alloc=%x,prot=%x)\\n\”, poi(poi(esp+8)), 

poi(poi(esp+10)), poi(esp+14), poi(esp+18); g”

bu ntdll!NtFreeVirtualMemory “.printf \”   

vfree(addr=%x,size=%x,type=%x)\\n\”, poi(poi(esp+8)), poi(poi(esp+c)), 

poi(esp+10); g”

bu ntdll!RtlpDeCommitFreeBlock “.printf \”  

decommit(heap=%x,ent=%x,size=%x)\\n\”, poi(esp+4), poi(esp+8), 

poi(esp+c); g”

bu ntdll!RtlpInsertFreeBlock “.printf \” 

insfree(heap=%x,ent=%x,size=%x)\\n\”, poi(esp+4), poi(esp+8), 

poi(esp+c); g”



Appendix E – Historical XP Attacks

This list summarizes the existing published techniques for exploiting heap 

corruption on Windows XP. The list includes techniques that are useful for 

achieving a write-4/write-self/4-to-nbyte primitive, but does not include 

techniques that are used as part of the secondary stage of a corruption attack 

(e.g. overwriting segment pointer with an unsafe unlink, or remapping heap 

cache.) This list does not include Ben Hawkes’ research targeting the Vista 

Heap Manager (Hawkes 2008), though many of his techniques should be 

backwards-portable.

E.1 Pre-SP2

Valloc Unlink Attack – overwrite a busy chunk with fields indicating it is a 

virtual alloc chunk, and provide malicious values for flink and blink. This was 

addressed by safe unlinking (Halvar 2002, 21-24).

Coalesce Unlink Attack – overwrite chunk with fields indicating it is a 

free block, providing malicious values for flink and blink. Coalesce will 

cause overwrite chunk to be unlinked. This was addressed by safe unlinking 

(Litchfield 2004, 16) (Conover and Horovitz 2004). 

Coalesce Unlink Double Attack – overwrite active chunk with fields 

indicating it is a busy block, providing malicious values for flink and blink, 

as well as prev and cur size fields pointing to fake pre-constructed blocks. 

Coalesce will cause overwrite chunk and fake chunk to be unlinked, leading to 

multiple arbitrary overwrites.This was addressed by safe unlinking (Conover 

and Horovitz 2004). 

Double Free Attack – Between first and second free, attacker must be able to 

manipulate freed header to perform a malicious coalesce. This was partially 

addressed by safe unlinking (Conover and Horovitz 2004).

One-byte Overflow Coalesce Unlink Attack – overwrite current size field 

of next chunk with LSB of 0 and supply a fake chunk in the source buffer. This 

was addressed by safe unlinking (Conover and Horovitz 2004). 
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E.2 Post-SP2

Cookie Brute Force – in a vacuum, brute forcing cookie value (checked upon 

free() of a busy block), will be correct 1 in 255 times. (Conover and Horovitz 

2004)

Critical Section Unlinking – Small data structures on the Process Heap 

linked from Critical Sections contain a doubly-linked list that can be targeted.  

(Falliere 2005)

Safe Unlinking Defeat – if attacker can overflow a chunk on a free list, and 

knows the size of the chunk, and knows that the free list for that size only 

contains that one chunk, then the attacker can provide skewed flink and blink 

values that still point to the free list head. The second allocation for the size 

corresponding to that free list will end up returning a pointer to the base of the 

heap, allowing for straightforward exploitation. (Conover and Horovitz 2004 

SyScan)

Bitmap Attack – if the Free List bitmap can be disrupted, if a bit 

corresponding with an empty FreeList[] is toggled to be set, it leads to an 

exploitable situation. Essentially an allocation for the size corresponding 

to that bit will return an address at the base of the heap, which can result in 

arbitrary code execution given some ability to control what is written there. The 

commit function pointer is one of the more straightforward ways to achieve this 

end. (Moore 2008, 11-13) (Credited to Nicolas Waisman)

Lookaside Attack – if the flink of a chunk freed to a look-aside list can be 

overwritten, this value will be propagated to the head of the look-aside, causing 

a specific allocation by the application to return the attacker provided address. 

(Anisimov 2004, 3-7)

Double Free Attack – If one chunk is freed to look-aside and other to free 

lists, after allocation from look-aside but before allocation from free lists, we 

can alter flink/blink. If chunk is freed twice to look-aside, we can alter flink 

in between allocations to have arbitrary address populate the look-aside head. 

(Conover 2007)

FreeList Head Attack – if the blink field of any FreeList entry at the base of 

the heap can be overwritten, the address of the next block to be freed will be 
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written to the attacker-supplied address. (Moore)

Bitmap XOR Attack – the free list bitmap is updated via an XOR operation, 

so if the system tries to clear the wrong bit, it can accidentally toggle a free bit 

into a set bit. This results in the Bitmap Attack outlined above. This can be 

caused by an attacker overwriting the current size field of a block on an existing 

FreeList[] for a size <0x80. The attacker either needs to be overwriting the 

only chunk on a FreeList[] (so flink==blink naturally), or the attacker needs 

to overwrite flink and blink manually and set them equal to each other and 

readable. (Moore 2008, 21) (Credited to Nicolas Waisman)

Busy Chunk Manipulation – The attacker changes the size field of a chunk 

that will be freed by the application. This allows them to free the list to an 

arbitrary FreeList[] or look-aside list. (Moore 2008, 22)

FreeList[0] Insert Attack – The attacker overwrites a chunk on FreeList[0]. 

A chunk is then linked into FreeList[0] immediately before the overwritten 

chunk. The address of the chunk being linked in will be written to the attacker 

supplied pointer in overwritten.blink. (Moore 2008, 23-25)

FreeList[0]Searching Attack – The attacker overwrites a chunk on 

FreeList[0]. This chunk provides a flink value that points to a fake chunk. 

The next allocation request will cause this fake chunk to be returned to the 

application. The straightforward way to exploit this is for the attacker to choose 

a flink value at the base of the heap that will end up returning an address in the 

middle of the FreeList[] array. (Moore 2008, 26-27)

FreeList[0] Relinking Attack – The attacker overwrites a chunk on 

FreeList[0]. This chunk provides a flink value that points to a fake chunk. 

The next allocation request will cause the overwritten chunk to be split and 

returned. The remainder chunk will be inserted in the list prior to the provided 

fake flink chunk, causing the address of the remainder chunk to be written to 

the fake chunk’s blink. One potential exploitation technique is to overwrite 

the pointer to the front end heap manager with a pointer to the re-link chunk. 

(Moore 2008, 28-29)
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