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Abstract

Malicious software is rampant on the Internet and is cost-
ing billions of dollars each year. Safe and thorough anal-
ysis of malware is key to protecting systems and cleaning
those that have already been infected. Virtualization of-
fers strong isolation to malware analyzers, but most anal-
ysis tools must still run alongside the malware increas-
ing detectability of the analysis platform. This reduces
the value of the analysis because some malware is know
to behave differently when being analyzed. Because of
their complexity and generality of purpose, current gen-
eral purpose virtualization platforms are not well suited
to supporting customized analysis tools at the virtual ma-
chine monitor (VMM) level.

We propose a lightweight hardware-supported virtual-
ization platform that is purpose-built for malware anal-
ysis. Hardware virtualization makes the VMM difficult
to detect and reduces its size and complexity. We fur-
ther simplify our VMM by not implementing virtualiza-
tion features that are unnecessary for malware analysis
(e.g., virtual device emulation). Our platform is more
amenable to developing and deploying analysis tech-
niques directly in the VMM than Xen or VMWare. In
this paper, we discuss our prototype design and imple-
mentation. We also discuss the effectiveness of various
malware analysis techniques that we have developed to
run on our platform. Finally, we show that our platform
is not susceptible to general purpose virtualization detec-
tion techniques.

1 Introduction

In today’s hostile but highly connected computing envi-
ronment, spyware, adware, viruses, and trojans – collec-
tively called malware, pose a serious threat to our com-
puter systems. According to Computer Economics, more
than 13 billion dollars were lost due to malware attacks in
2006 alone [7]. Furthermore, 55% of all on-line users be-

lieve their systems had been infected with spyware [21].
All signs point towards malware being a considerable
risk in the future.

Malware analysis plays a critical role in countering
this alarming trend. Through detailed analysis of a par-
ticular malicious application, security researchers are
able to gain an insightful view of its intent, mechanisms,
and risk. This knowledge is very valuable in predicting
the threats posed by the malware, creating anti-virus sig-
natures, developing tools to patch infected systems, and
in some cases tracing back to the criminal behind it. Tra-
ditional tools for malware analysis include disassemblers
[26], debuggers [34], dynamic black box analysis such as
function call tracing facilities (e.g., strace), and network
sniffers [33]. While these methods have proved to be
somewhat effective, each suffers from certain drawbacks.
Disassembling, like other static analysis techniques, can
be circumvented by packing or dynamic code translation
[17, 23]. Dynamic black box analysis gives only an in-
complete view of the malware. Debugging, on the other
hand, provides a more exhaustive view but is vulnera-
ble to debugger fingerprinting [29, 12]. As malware gets
more and more complex, it is often impractical and un-
necessary to analyze each and every instruction. The best
general solution is to combine these techniques.

Another common approach in malware analysis is to
use analyzing tools in conjunction with virtualization
technology, taking advantage of its capabilities to isolate
and roll back the system hosting the malware. Because
of the simple resources abstraction provided by virtual
machines, many systems use them to perform intrusion
detection [11, 6, 20, 14], while others use them to cre-
ate honeypots [30, 32]. Unfortunately, malware writ-
ers are using increasingly complex techniques to evade
detection and prevent forensic analysis. To avoid being
analyzed in a virtual machine, attackers have developed
techniques to detect virtualization through side channels
[24] or through artifacts of the virtualization platform
[18]. When the malware detects it is running inside a
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virtual machine, it will often exit and prevent further
analysis of its activities. Some malware is even known
to behave differently to fool analyzers of its intentions
[8]. Therefore, minimal detectability of the virtualization
platform will greatly affect the outcome and the accu-
racy of malware analysis. Existing virtual machine mon-
itors (VMMs) such as VMWare or Xen, which are often
used in malware analysis, are very vulnerable to detec-
tion mainly due to their generality of purpose. By tak-
ing advantage of recently introduced hardware-support
for virtualization [13, 3] and focusing on malware analy-
sis only, we are able to create simpler virtualization plat-
form which will be both easier to use/extend and harder
to detect.

In this paper, we present the design and implementa-
tion of a hardware virtualization supported malware anal-
ysis platform which we call MAVMM (Malware Analy-
sis Virtual Machine Monitor). Our goals for this work
are

1. small and simple hypervisor

2. minimal detectability

3. minimal dependence on the structure and trust of
the guest operating system

Our platform uses a purpose-built hypervisor which al-
lows a human analyzer access to the monitored guest’s
activities. Our system works by extracting various fea-
tures from the monitored guest operating system. We
have investigated how to support extraction of the follow-
ing features: memory pages, disk blocks, system calls,
function calls, and network interaction.

Using these low-level abstractions, we can provide
the analyzer with a fairly complete picture of the mal-
ware’s activities while not trusting the guest operating
system. Hardware enforced isolation protects the hyper-
visor from attack by the malware. While complete un-
detectability is most likely a panacea [10], our system
is more difficult to detect than simply running analysis
tools alongside the malware or using a standard virtual-
ization system. Our approach improves upon previous
work because of its limited detectability and simplicity
for deploying new analysis techniques. Since this sys-
tem will not support arbitrary virtualization features, we
avoid the complexity and overhead of such systems (e.g.,
virtual device emulation). Our platform can be more
readily accessible for analysis tools to be deployed than a
full virtualization platform. It is also simple enough for
other researchers to re-use for their own analysis tech-
niques.

The remainder of this paper is organized as follows:
We present the design for our VMM in Section 2. We de-
scribe our implementation and some of our experiences

during the development process in Section 3. We per-
form some preliminary evaluations on MAVMM in Sec-
tion 4. We further examine related work in Section 5 and
conclude in Section 6.

2 Design

In developing the design for MAVMM, we evaluated
multiple mechanisms and techniques for feature extrac-
tion, communication with the analysis platform, and vir-
tualization support. In this section, we present these tech-
niques and mechanisms, explain the decision that we had
to make, and why we chose one approach over the others.

2.1 Hardware Virtualization Support

We implement our system using the AMD Secure Virtual
Machine (SVM) extensions. Because the memory man-
agement unit (MMU) is on die, AMD engineers were
able to include more advanced virtualization features
than the comparable Intel extensions (which do not have
an on-die MMU). For example, AMD natively supports
nested paging in hardware. It also provides convenient
mechanisms to reserve physical memory from being used
for DMA. Though we believe our system could be ported
to the Intel platform, we found that it is easier to develop
for the AMD architecture. AMD also provides the Sim-
now simulation environment [1] which fully supports the
SVM virtualization extensions easing our development
and testing.

2.2 Boot Strapping

Our VMM platform is based on TVMM [16] and cur-
rently runs inside of the AMD Simnow simulator. How-
ever, our VMM does not rely directly on Simnow to func-
tion and should be able to run on bare hardware. Our
platform is booted directly by the boot loader to prevent
any malicious application from subverting our system.
Furthermore, the guest operating system is fully virtual-
ized from boot time to ensure that the VMM is protected
by the hardware.

We use the GRUB boot loader to start the system. The
guest operating system image is specified using the mod-
ule parameter in the GRUB configuration. GRUB passes
a multiboot info structure to the VMM which defines the
memory map, command line arguments, and any addi-
tional GRUB parameters that we may specify. Our VMM
executable is stored in a simplified 32-bit ELF format.
We use the mkelf32 utility included with Xen to build
this simplified ELF image from raw object files.

The guest operating system must also be an ELF im-
age. By default, the Linux kernel has it’s own file format
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that is different from ELF. However because ELF com-
patible kernel images are needed for other systems like
network boot and kernel-in-BIOS, we use the mkelfIm-
age tool to create an ELF image from the original Linux
kernel. It combines the kernel image with a small stub
loader which handles command line arguments and em-
beds an initrd file inside the ELF image.

We use nested paging to protect VMM memory from
being tampered by the guest operating system. Before
booting the guest, we update BIOS provided E820 mem-
ory map to mark host’s memory pages as reserved. This
gives the guest an illusion that these pages are used by
the BIOS and therefore should not be altered.

To protect the VMM from being affected by exter-
nal device DMA, we use the Device Exclusion Vector
(DEV) feature of the AMD SVM extension. We allocate
a bitmap which defines which memory pages are avail-
able for external DMA. We mark all VMM pages as un-
available by setting our modified DEV to one of the DE-
VBASE registers using the DEVCTL PCI configuration
space function block [2].

2.3 Memory

Memory is the most important feature that we need to ex-
tract to analyze the running malware; it is also critical for
other types of analysis like call tracing and network in-
teraction. Thankfully, AMD SVM provides an extensive
interface for managing virtual machine memory. Our
VMM uses nested paging rather than shadow paging.
This adds an additional an additional table and layer to
the address translation process called the nested layer.
The nested page table translates from guest physical to
host physical addresses (see Figure 1). Hardware sup-
port helps to avoid excessive entries into the VMM while
running memory intensive applications because the hard-
ware can handle the translation directly and take advan-
tage of the TLB cache.

In Linux (and most other modern operating systems),
each process has its own virtual address space and page
tables. We use the page table base pointer (stored in reg-
ister CR3) to track a specific process. For now, we will
assume that we already know the base pointer address
for the malware process we wish to track (for further dis-
cussion on this see Section 2.7.2). To watch a process,
we register a non-restartable intercept for the task switch
event. We do not intercept on MOV to/from CR3 in-
structions because SVM does not execute that intercept
on context switches and it would negate the performance
improvement from nested paging by forcing a VMM en-
try on all translation events. We then examine the gCR3
register to get a pointer to the current processes page ta-
bles. If the process is being watched, we can dump the
memory or otherwise examine its contents.

The most effective means of analyzing the memory of
watched process in our system is to extract it from the
analysis platform. This way we can use existing power-
ful tools on a normal machine to analyze the dump. We
can dump process memory periodically or at specified
times during the execution of a process. To begin the
memory dump, we mark all the active mapped pages of
the malware’s virtual memory in the VMM host page ta-
bles as not writable. We also mark those pages as being
copied using the OS reserved protection bits in the page
table entry. We use this extra bit to allow the VMM to
incrementally write the memory dump to persistent stor-
age while the process continues to execute in copy-on-
write manner. On each VMM entry (caused by inter-
cepts, handling interceptable interrupts, etc..) the VMM
incrementally dumps marked pages to persistent storage
(see Section 2.7.1). If the VMM receives a page fault for
a dumped page, the VMM will immediately write that
page to persistent storage and clear the copy and write-
only bits. To prevent large timing discrepancies, we copy
a fixed number of memory pages to persistent storage per
VMM entry. This allows us to amortize the cost of dump-
ing the data across many VMM invocations (and even
in other unwatched processes) which will appear like a
much more plausible system slow down than an artifi-
cially long context switch time. If the persistent storage
mechanism is still too slow to write, we can also copy the
process memory to a scratch location inside the VMMs
memory that is not available to the guest. This would
allow multiple memory dumps to be pending writing to
storage without slowing down the watched process con-
siderably.

Since we are using the page table base address as the
identifying feature of a watched process, we won’t be
able to monitor the memory of any sub-process which
the malware creates. To combat this problem, we have
considered two solutions: 1) dump all processes once the
watched process begins and 2) infer sub-process CR3 ad-
dresses using system call tracing. While easy to imple-
ment, option 1 would produce higher performance over-
head since persistent storage is likely to be slow. Further-
more, the voluminous data would be mostly unused and
uninteresting while requiring considerable overhead. For
these reasons, option 2 is more appealing because it al-
lows us to reliably determine sub-process executions and
track memory in a more efficient manner.

To accomplish sub-process memory tracking we need
to intercept fork system calls (see Section 2.4). We keep
a list of all known CR3 addresses for unwatched pro-
cesses (including the kernel). When we intercept a fork
system call we monitor all task switches during that pro-
cesses execution for a new unknown address to be loaded
into CR3. This way we can track sub-process execu-
tions that are the result of the malware application. Sim-
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Figure 1: Nested Paging in AMD SVM [31]

ilar techniques have been demonstrated for tracking pro-
cesses from a VMM in Antfarm [15].

2.4 System Calls
Native applications can invoke a system call in two dif-
ferent ways in Linux. By executing the int $0x80 assem-
bly language instruction, or by executing the sysenter in-
struction (sysenter is a recent addition and is only sup-
ported in 2.6 series Linux kernels). Similarly, the kernel
can exit from a system call by executing the iret or the
sysexit assembly language instructions [4].

Linux uses the eax register to pass the system call
number from the user program to the kernel. The user
mode process also finds the return code of the system
call in the eax register. We have to access the system
call number to identify the system call invoked. This is
straightforward in case of the int $0x80 instructions. The
AMD SVM allows software interrupt instructions in the
guest to be intercepted by means of control bits in the
VMCB (Virtual Machine Control Block). INT n and iret
instructions can be chosen by the hypervisor to be inter-
cepted. In the VMCB control area, setting the 20th and
the 21st bit of byte 0x00Ch, enables iret and INTn in-
struction interception respectively [2].

In the event of an INT intercept, the hypervisor first
checks if the instruction is int $0x80, by examining the
1st byte of the EXITINTINFO field in the VMCB (This
byte is equal to the 8-bit IDT vector of the interrupt). If it
is indeed $0x80, it reads eax register and can record the
system call number. If the instruction is not int $0x80,
the control is transferred to the guest. In the event of an
iret intercept, the hypervisor records the eax value if the
last intercept was an int $0x80. This state is maintained
in the hypervisor in a single byte flag int80. After record-
ing the return value, int80 is reset.

Unfortunately, the hypervisor cannot register sysenter/

sysexit for interception. In cases where both the CPU and
the Linux kernel can support sysenter/sysexit instruction,
the libc wrapper function may generate them to invoke a
system calls because they are faster than int and iret. We
have not yet determined how to provide the system call
analysis of sysenter and sysexit. We can either modify
the Linux kernel to use only int $0x80 or make it call a
into the hypervisor just before the sysenter call and pass
the exit code of int $0x80 to the hypervisor (by writing
the EXITINTINFO field of the vmcb). To avoid modify-
ing the guest operating system heavily, we are currently
planning to use Damn Small Linux (DSL) 4.2.5 which
utilizes a 2.4 based kernel and int $0x80 for system calls.

2.4.1 Parameter Gathering

The system call parameters are written in the CPU reg-
isters before issuing the system call. As with every C
function call, parameters are automatically saved on the
user stack when the wrapper routine (_syscall0 etc) is in-
voked. This routine will find the parameters on the user
stack, copy them to the appropriate registers and pass the
parameters to the kernel appropriately.

Six registers are set aside to transfer the parameters.
For system calls that require more than six parameters, a
single register is used to point to a memory area in the
process address space that contains the parameter values
[4]. On a system call intercept, the hypervisor dumps the
values in the six parameter registers. However, there is a
semantic gap here. The hypervisor has no way of know-
ing the number and type of all the parameters. To over-
come this, we can have a map in the hypervisor storing
the number and type of each parameter, corresponding
to all the system calls. This is similar in principle to the
way the strace command works.

In case the last register points to a memory area con-
taining more parameters, the hypervisor should retrieve
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them directly out of the guest virtual memory. This is
complicated by the fact that the page containing that
memory area might get swapped to the disk. The chances
of that page being swapped out is small as it was last
accessed by the wrapper function, which then called int
$0x80. In case that the page is invalid and swapped to
disk, we mark it as needing a system call evaluation by
the hypervisor (in the VMM page tables). We also mark
the page as invalid in the VMM page tables so that once
it is remapped by the guest operating system it will fault
immediately to the VMM. When the guest kernel makes
the page valid again, the system will fault into the hyper-
visor and dump the rest of the system call arguments.

2.5 Library Calls

We have investigated how to provide a list of library calls
executed by the malware. However, there is a seman-
tic gap to be bridged and we faced some design trade-
offs. We studied how ltrace and gtrace utilities work
[22]. Ltrace intercepts and displays all calls to dynam-
ically linked functions, by using the PLT/GOT mecha-
nism. .plt and .got are elf object headers that are used
by the dynamic linker to resolve external/shared library
references.

Gtrace traces all function calls and memory accesses
of dynamically linked programs. We briefly describe
how gtrace utility achieves function tracing [22]. It uses
symbol information (to mark which symbol is a function)
present in the .symtab and the .dynsym (for external and
dynamic symbols exported). Then it inserts breakpoints
in the entry point of all functions. The traced program is
controlled with the SYS_ptrace system call from a dif-
ferent process. It also uses the .plt and .got sections to
find address to insert breakpoints in dynamically linked
shared function calls.

Let us reason how a similar method can be achieved
in the hypervisor. Fortunately, the .dynsym and .dyn-
str sections are present in the running process image and
the kernel can be modified to pass a pointer to the be-
ginning of these sections to the hypervisor. The .dynstr
section holds strings needed for dynamic linking, most
commonly the strings that represent the names associ-
ated with symbol table entries [28]. So the hypervisor
can identify which library call is being invoked with the
help of these two sections. But first the hypervisor needs
to gain control every time a library call is made by the
traced process. The function call instructions JMP and
CALL cannot be registered for interception by the hy-
pervisor. So we need to insert breakpoints in the entry
point of all library calls, before the process starts execut-
ing. This has to be done by the kernel (by using ptrace)
or through binary translation, which makes this method
similar to debugging a process. We know that debug-

ging is vulnerable to debugger fingerprinting [12, 29]. So
we have to make a trade off between what facilities we
want to provide towards malware analysis and how light
weight and undetectable the hypervisor should to remain.
We believe that system call tracing is more valuable for
determining the effects of a malware application because
they show all persistent or external interactions. While
library call tracing is useful for reverse engineering how
a malware application works, it is often unnecessary to
assess its risk and impact.

2.6 Network and Disk
The support for tracking network interaction is based on
tracking system calls. The Linux network API depends
on the system call sys_socketcall() which in turn calls
sys_recv() and sys_send(). We have discussed in sec-
tion 2.4 how the hypervisor will track all system calls
and gather their parameters. There are a few additional
things the hypervisor should do to provide comprehen-
sive network sniffing.

The hypervisor compares the eax register to the sys-
tem call number for sys_socketcall i.e., 102. If the sys-
tem call is sys_socketcall, it will do additional parsing of
the parameters like obtaining the destination/source IP
address by following the sockaddr pointer and the write
message by following the write buffer pointer. This en-
tails getting the data from the guest pages. However, that
page might have become invalid due to swapping. This
can be handled in the same manner as described in sec-
tion 2.4.1. The hypervisor should store the pointer pa-
rameters for some calls like recv(), recvmsg() etc, which
point to the received message buffers.

The iret case requires special treatment in case of
sys_socketcall. The hypervisor will be in a state which
tells that it is waiting for an iret interception. When
an iret interception occurs, it follows the pointers stored
from the parameters of recv(), recvmsg() calls and dump
the buffers from guest memory. Unfortunately, the pars-
ing of the return values and parameter structures will
have be specific to Linux network system calls.

2.7 VMM I/O
One of the questions that we faced in our design process
is how to get data out of our system, so that future anal-
ysis could be done upon the data.

2.7.1 Getting Analysis Data out of VMM

We had several choices for extracting data from our anal-
ysis platform: use the same hard-disk as the guest operat-
ing system, a separated hard disk, an USB flash drive, or
simply dumping the data out through the serial port. For
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simplicity, we decided to avoid directly using the hard
disk of the guest operating system to avoid conflicts and
contention. Another alternative would be to modify the
kernel and have it dump the data out. If the VMM con-
tained its own hardware drivers and file systems, imple-
mentation would have been easier. However, this would
go against our goal of making the platform as simple as
possible. We also did not want to depend on the guest
operating system to perform I/O for us because of trust
issues and portability.

This leaves external drives and serial port communi-
cations as the preferred methods for extracting data. For
both external drive and serial port, we can use BIOS
services to dump the data out. With the choice of low
level primitives, the USB drive could be formatted as an
FAT32 disk which has the maximum capacity of 4GB,
then interrupt 13h could be used to write to/read from
its sectors (ah = 03h/02h). Similarly we can use inter-
rupt 14h to initialize communication port (ah = 00h) and
send/receive (ah =01h/02h).

We can also implement a simple driver using in and
out instructions. The BIOS stores pointers to the device
memory at fixed locations. For example, pointers to all
the available serial ports are stored at 0x0400. We can di-
rectly drive the serial port by using out instructions after
configuring the device using the BIOS provided memory
map.

Regardless of our choice of an output mechanism, an
important issue is how to protect the disk from being
tampered with or detected by the malware. An external
disk would appear to be unmounted and we could try to
remove BIOS provided memory map from the guest vir-
tual memory. We could use a similar technique to hide
the serial port from the guest. If a 0x0 pointer is stored
in the BIOS map, the system will interpret it as there not
being a hardware serial port available.

Given that we can use Simnow to bind a virtual serial
port in the simulator to a real port on the hosting system,
we decided to use the serial port for the first stage of our
work. Though it is likely to be very slow, it will illustrate
a proof-of-concept for our ideas. The same hiding and
I/O mechanisms could be ported to an external disk.

2.7.2 Specifying a Watched Process

Our hypervisor is the first layer above the hardware and
virtualizes the operating system running on it. We want
our layer to be as efficient and as unobtrusive as possible.
Thus, we want it to dump the memory and intercept in-
structions of only those processes which the user deems
suspicious and wants to diagnose. In the normal mode
of processing, the hypervisor will have all intercepts dis-
abled. It will not watch any memory or system calls and
the system should run without considerable performance

penalty.
To let the user start a process with the hypervisor

watching enabled, we need to modify the Linux kernel
using a loadable kernel module. We evaluated two tech-
niques for doing this: VMMCALL with CR3 address and
kernel updates to the task state segment (TSS).

The simplest mechanism is to insert a VMMCALL in-
struction into the kernel when it creates a new process’s
page table base pointer. VMMCALL allows the guest
operating system to explicitly call into the hypervisor.
While this method requires minimal modification to the
guest operating system, it does not itself help the hyper-
visor track sub-process executions.

We use the hardware task switching provided in the
AMD architecture [2] to both track watched processes
and keep watching any sub-process executions. On each
process switch, the kernel updates some fields of the TSS
(Task-State Segment) so that the corresponding CPU’s
control unit may safely retrieve the information it needs
[4]. There are some reserved/unused bytes in the AMD
TSS. For the process of interest, the Linux kernel does
the following:

1. It flags one unused byte, say watchFlg, in the TSS.
It is the kernel’s responsibility to continue flagging
all child processes forked by the malicious one.

2. It explicitly calls VMEXIT with an error code
which tells the hypervisor that it has to turn on in-
struction intercepts. This is done just once and not
for all the child processes invoked. The hypervi-
sor enables instruction interception on receiving this
trap.

3. Once the malicious process and all its children have
exited, it again calls VMEXIT with an error code,
which tells the hypervisor to stop tracking. The hy-
pervisor disables all instruction intercept on receiv-
ing this trap.

For the while, the hypervisor tracking is enabled, it
checks if watchFlg is set on each MOV TO/FROM CR3
and task switch. If it is set, it performs full tracking. If it
is not set, it enables just MOV TO/FROM CR3 and task
switch interception.

For simplicity, we decided to use the VMMCALL
with CR3 address mechanism to specify a watched pro-
cess. It requires minimal modification to the guest oper-
ating system and when combined with fork system call
tracing and CR3 inference it is equally powerful as TSS
tracking. Furthermore, TSS tracking requires more trust
in the guest operating system, which we wish to avoid as
much as possible.
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3 Implementation

3.1 Enhancing TVMM
The original version of TVMM, on which we based our
code, and the Simple Operating System (SOS) that came
with it are highly coupled. SOS simply prints a message
to the screen and passes control back to TVMM where it
would halt. While TVMM was a useful proof-of-concept
for understanding AMD SVM virtualization, it was not
full featured enough and sufficiently free of bugs to run
a more complex OS or program. We modified TVMM
in a number of ways to make it boot a general purpose
program that was designed to run on bare hardware. As
a first step, we modified TVMM to run GRUB Invaders,
a multiboot compliant kernel game [27]. In so doing, we
prepared our VMM to implement more advanced mal-
ware analysis techniques on a general purpose operating
system.

3.1.1 Debugging Mechanisms

TVMM has very basic support for debugging. It only
allows printing information to the screen which is not re-
liable since the output could be overwritten by the guest
operating system. It was not possible to stop in the mid-
dle of the program and examines its state. We developed
a framework which allowed us to send debugging data to
a serial port and set breakpoints at any given point in the
execution of the program. The breakpoints were created
by reading memory at a special location (0x00FFFFFF)
and setting memory reference breakpoints in Simnow de-
bugger. These debugging mechanisms were very effec-
tive. They helped us to detect bugs and errors and to
successfully implement various changes to TVMM.

3.1.2 Memory Layout and Management

Originally, the host (TVMM) allocated 4MB of space
in the low memory for itself. The guest (VM) was as-
signed another 4MB after the physical memory of the
host. TVMM also sets up one allocation bitmap to man-
age its memory allocation as we show in Figure 2.

We totally redesigned TVMM’s memory structure. In
MAVMM, the guest is located in low memory, with
the VMM occupying the last few megabytes of physical
memory.This approach makes it possible to do identity
mapping between guest physical and host physical ad-
dresses simplifying access to I/O. After the guest phys-
ical memory allocation, we store the code of the VMM
followed by two allocation bit maps: one for the host and
one for the guest. This allows us to protect host mem-
ory from the guest by separately managing their mem-
ory. We also use the guest allocation bitmap to allocate
and manage memory and structures to be passed to the

guest. These structures include the guest’s initial IDT,
GDT and paging tables (if needed). We also enhanced
the general purpose allocator in TVMM to use a heap.
Figure 3 shows the modified memory structure.

3.1.3 Guest Operating Modes

Initially, TVMM only supported booting the guest in 64
bit mode (long mode) with a guest paging structure of
2MB pages. This is inflexible since we also want to be
able to boot 32 bit OSes and programs which may ex-
pect to start in real or legacy protected mode with paging
off. For example, the ELF image of Linux that we tested
against would crash at boot using TVMM. It crashed
when trying to clear the PE (protected mode) flag of
CR0. This happened because the PG (paging enabled)
flag, which is required by long mode, was set in TVMM
and clearing PE while leaving PG set would create an
inconsistent CPU state and a trap.

We modified TVMM to support various different guest
operating modes that are configurable at boot time, in-
cluding real mode, protected mode with paging disabled,
protected mode with 4MB memory pages, protected
mode with 4KB pages, and long mode with 2MB pages.
The original version of TVMM with long mode only cre-
ated page tables for 4MB of guest physical memory, so
we expanded it to support arbitrarily large guest physical
memory. Since segmentation is disabled in long mode,
TVMM did not handle properly setup the CPU segmen-
tation registers. To support legacy protected mode, we
had to set up the guest’s GDT table. Basically, we cre-
ated a minimal number GDT entries: a single code seg-
ment and a few data segments. Each segment has has
4GB range and is based at virtual address 0. Memory
management is by far the most complicated task that our
VMM has to handle, due to the fact that there are many
different CPU and paging modes.

The VMM itself runs in long mode with a simple
mapping of the first 1 GB of both lower and higher
virtual memory to the first 1 GB of physical memory.
It loads the paging structure and GDT values statically
from within real mode and them jumps directly into long
mode. This is largely unchanged from the original ver-
sion of TVMM.

3.1.4 Hiding Host in Memory Map

Not all regions of machine physical memory are avail-
able to be used by the operating system. Some memory is
reserved by the BIOS and some is used for I/O mapping,
etc... The information about which regions are available
and which are reserved is provided in a structure called
e820 memory map, which can be queried by using func-
tion number 0xE820 of BIOS interrupt 15h. TVMM is
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Figure 2: Original TVMM Memory Layout

Figure 3: MAVMM Memory Layout

multiboot compliant and uses the GRUB boot loader to
ease several tasks including locating itself and the guest
image on disk, and querying the physical memory struc-
ture. GRUB loads the guest image into memory as the
first kernel module and passes its location to TVMM via
a structure called multiboot information. This structure
also contains an e820 memory map.

MAVMM is also a multiboot-compliant boot loader
for its hosted guest VM. To hide the existence of the
VMM from the guest, we modify the multiboot infor-
mation structure to reserve the VMM memory. Since
we provided identity mapping of guest physical and host
physical memory, we added a function which marks the
memory regions that the host uses as reserved in the e820
map before passing it to the guest. This gives the guest
the illusion that these regions are used by the BIOS and
are not available for the OS.

3.1.5 Interrupts

Interrupt handling is also complicated by the state and
mode of the CPU. Interrupt handling is fairly similar in
real mode and protected mode, except that in real mode,
idtr (the interrupt descriptor register) points to an Inter-
rupt Vector Table (IVT) and in protected mode idtr points
to an Interrupt Descriptor Table (IDT). Each IVT entry is
4 bytes and each IDT entry is 8 bytes in size. TVMM did
not set up initial interrupt handlers for the guest since it
expect the guest to set up its own IDT. But this might
break OSes which boot in real mode and rely on BIOS
interrupts for bootstrapping (e.g., the Linux kernel boot
sector uses BIOS interrupts to read from the disk). To
prevent this from happening when the guest boots in real
mode, we set the guest IDTR to point to BIOS interrupt
vector table which begins at memory address 0, with a
limit of 0x3FF. In other cases, we set the idtr’s limit field
to 0 so that the guest know that it should set up its own
IDT if necessary.

3.1.6 Booting Different Types of Guest Images

The original version of TVMM only supported booting
ELF guest images. To make MAVMM more general pur-
pose, we configured it to be able to also boot the multi-
boot format and the Linux kernel boot format. This al-
lows us to boot standard Linux kernel images as well as
the ELF image. We also needed standard multiboot com-
pliance to boot Invaders. We allow the user to specify the
image type at boot time (using GRUB).

The multiboot loader checks the multiboot header
checksum and then loads the image at 0x10000 for real
mode and 0x100000 for protected mode. For historical
reasons, the Linux kernel boot process contains many
static addresses and fields [4]. Our Linux kernel loader
reads the boot header to determine the number of sec-
tors in the setup segment (the real mode kernel code) or
it defaults to 4 if left unspecified by the kernel (another
historical default). It then copies the setup segment code
to address 0x90200. Next it copies the remaining pro-
tected mode kernel segments to 0x10000 if the kernel is
in zImage format or 0x100000 if the kernel is in bzImage
format. The loader then sets the guest entry instruction
pointer to 0x90200.

3.1.7 Handling Guest State

One of the final enhancements we made to TVMM was
to properly save and restore the state of the CPU on
VMEXITs. Using the original version of TVMM, we
were not able to play the Invaders game inside the VMM
because any key press caused a crash. After fixing the in-
terrupt handling (described before), key preses were still
crashing due to a base pointer address from the host be-
ing loaded inside the guest. We spent considerable time
debugging this problem, which was complicated by the
fact that the reproducible error actually happened inside
the BIOS interrupt service routine not inside of the code
of Invaders itself. This problem was present in a variety
of configurations of IDT, paging modes, and operating
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modes.

We finally discovered that TVMM was not properly
implementing SVM virtualization support on a VM-
RUN/VMEXIT by loading and saving guest state. This
caused the guest to be returned in a state different from
what was there before VMEXIT, and the guest’s behavior
was very erratic and undefined. The hardware virtualiza-
tion support automatically performs some state manipu-
lation in the vmcb on a VMRUN or VMEXIT, but it is
up to the VMM developer to ensure that all the state is
saved and restored when transitioning between the host
and the guest. The SVM extensions added the VMLOAD
and VMSAVE instructions to the ISA to assist this, but
they only load and save internal CPU state that is not
normally accessible to the programmer. The VMM de-
veloper has to handle some other visible states like the
rbp, rbx, rcx, rdx, rsi, rdi and r8-r15 registers. We added
code which stored these values after a VMEXIT and re-
stored them when the VMM transferred control back to
the guest. We also added VMLOAD and VMSAVE in-
structions around the VMRUN instruction to ensure that
the guest’s internal state is properly preserved.

3.1.8 Development Experiences and Discussion

As we have discussed, we enhanced TVMM and fixed
numerous bugs. In the process, we thoroughly under-
stood the code of TVMM and documented it heavily with
comments. We hope that this enhanced version will be of
value to researchers in the future.

In parallel to our work enhancing TVMM to support
Invaders, we also worked on booting Linux. We used the
mkelfImage utility to make the ELF image. It creates a
stub loader that prepares the ELF image for loading and
then transfers control to Linux. We were able to pre-
pare the state of the guest enough that the stub loader
completed and transferred control to Linux. The kernel
then began booting, but crashes fairly early on in the boot
process. We have not yet been able to debug the prob-
lem, but we are confident that once we set up the guest
with the state that Linux is expecting, we will be able
to boot Linux. Unfortunately, in review of the assembly
code that performs the first few stages of the Linux boot
process and in looking at the code for other boot load-
ers, Linux has some odd and very particular assumptions
(many of them historic) about the initial state of the sys-
tem that we must ensure we provide in the guest. We
found that when directly booting the Linux kernel image
(using the boot loader we described above), we also ran
into similar problem with machine state that Linux did
not expect.

3.2 Feature Extraction

3.2.1 Memory

Extracting process memory is dependent on which pag-
ing mode the guest OS uses. For example, an OS can
use real mode or paged mode addressing. If paged, it
can use either long or legacy mode addressing. Each ad-
dressing mode has different number of page tables and
thus different ways of interpreting a virtual address. If
the guest uses four level nested paging, our hypervisor
has to do two levels of address translation manually, sim-
ilar to that done by hardware when guest is running. The
VMCB has fields for the paging registers for both host
and guest which the hypervisor can inspect. According
to the addressing mode, it parses the virtual address, uses
the nested paging CR3 (nCR3) and guest CR3 (gCR3)
values saved in the VMCB to get the final physical ad-
dress.

Invaders does not use paging natively (though we also
modified it to run in long mode with minimal changes).
Extracting its memory involves just the host level page
tables pointed to by nCR3. We read the page tables and
traverse to the page table entry for the address we wish
to extract. At the lowest level of page table, we check if
an entry has been accessed or modified. If so, the entire
page is read from physical memory and the bytes are sent
over the serial port.

In order to gather parameters during system call and
network call tracking, we use a similar translation. The
guest physical address is viewed as a 64-bit host virtual
address. Parts of this address are used as offsets into
the four nested page tables (pointed by nCR3) to get the
physical address. The size of the buffer to be read is
specified as a system call parameter and only those many
bytes are fetched from the memory.

3.2.2 System Calls

Implementing system call tracking has been straightfor-
ward. On int 0x80 intercept, MAVMM reads the eax/rax
register (depending on if the guest is in long mode) to get
the system call number. We used the system call struct
sysent table used by the strace Linux implementation to
identify each system call by the system call number. We
only use the system call name and number of parameters
fields of struct sysent. We index into this table and send
the corresponding string to the serial port. MAVMM
reads the parameters which reside in registers (ebx, ecx,
edx, esi, edi, ebp) and sends them to the serial port as
well.
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Table 1: Time to Dump a 2MB Page

Time Units Mean Standard Deviation
clock cycles 487707509 354

ms 542 4e-3

3.2.3 Serial Port Communication

We used the serial port interface provided by the Simnow
simulator to test the serial port communication. Sim-
now provides the abstraction of a serial port by creating a
named pipe. We configure such a serial port in one termi-
nal and using the same named pipe in another terminal,
we see communication between the two.

We wrote a function outf which accepts formatted
strings like printf and sends them to the serial port. We
write to and read from the serial port using simple IN,
OUT assembly instructions. COM1’s base address is
found at physical address 0x0400, COM2’s base address
at 0x0402 and so on. So we can determine which COM
port is present and we set up the Simnow serial port con-
nection accordingly. We are also able to configure the se-
rial port to various speeds and options to better enable the
analysis data to be extracted. While we use a named pipe
for serial communications within Simnow, the code that
interacts with the serial port is not dependent on Simnow
and should work on bare hardware with a real port.

4 Evaluation

We were not able to boot a general purpose operating
system with our VMM yet, so we had to approximate
the evaluation of our system. Our evaluation setup con-
sists of an AMD Simnow virtual machine with a 900Mhz
processor and 256 MB of RAM. The simulator ran on a
2.6 GHz AMD Ahtlon processor with 4 GB of RAM and
Ubuntu Linux 2.6.22-9.

4.1 Data Extraction
Though the serial port is not the most efficient mecha-
nism for transferring large amounts of data, when used
inside Simnow, it was faster than we expected. We in-
strumented TVMM and an external reading process to
compute the time needed to dump a single 2 MB page
over the serial port. We configured the serial port to be in
the fastest mode and disabled interrupts. The results are
shown in Table 1. While it is still costly to dump a single
page, we can envision spreading the work of dumping
the memory across many VMEXITs. We can also store
the memory in a copy-on-write manner and dump it all
after the malicious process exits. This will prevent any
large timing discrepancies detectable in the guest.

Table 2: VMMCALL Overhead
Time Units Mean Standard Deviation
clock cycles 2262 533

µs 2.5 0.6

Table 3: VMM Detection
Detection Technique VMWare Xen MAVMM
Red Pill (IDT Check) YES YES NO

LDT Check YES YES NO
VMWare Port YES NO NO
MSW Check YES NO NO

4.2 Virtualization Overhead

We added code to Invaders that explicitly causes a trap
into the VMM. We use the VMMCALL instruction to
send data in the eax register to the VMM. This trap is
similar to a null procedure call into the VMM and ap-
proximates the overhead of any VMEXIT switch. We
used the rdtsc instruction to query the program counter
before and after issuing the VMMCALL instruction. We
show the results in Table 2. We found that the trap into
the hypervisor consumed 2.5 µs. Because the tsc is prop-
erly emulated by Simnow, this overhead is likely to be
comparable to that of a real machine.

4.3 Detectability

The last set of evaluations we performed on MAVMM
was to implement some well-known VMM detection al-
gorithms inside of Invaders. We implemented the red pill
technique which looks for an IDT in high memory [24].
We implemented a heuristic developed by Quist and Val-
smith that checks the local descriptor table LDT register
value [29]. We implemented a check for the I/O port
that VMWare uses to talk to its guest. Finally, we im-
plemented a check for a smaller value returned from the
machine status word indicating the presence of a VMM.
We ran each of these techniques inside of VMWare,
para-virtualized Xen 3.1, and MAVMM (see Table 3).
MAVMM was not susceptible to any of these attacks
while Xen and VMWare were susceptible to some or all
of them. A TLB sizing attack as described in [25] can be
used to detect MAVMM but it is a heavy weight test that
consumes considerable CPU resources to reliably detect
the VMM. We do not think this is practical for a stealthy
malware application to use without being easily detected.
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4.4 Experiences and Discussion

Using our MAVMM prototype, we were able to dump
the physical memory of Invaders and inspect the loca-
tion of the alien ships on the screen outside the VMM.
While Invaders is in no way malware, we were able to
prove that we can introspect upon an application running
inside the VMM and access information that would have
otherwise been inaccessible. We were also able to inter-
cept interrupts to determine when the user presses a key
on the keyboard. We can use this for example to make
a full report of all the keys pressed during a single ses-
sion of the game. Again, this information is not useful
by itself but proves that we are able to extract informa-
tion from the running guest. In future work, we plan
to more fully evaluate our extraction techniques against
Linux and eventually Windows.

5 Related Work

VM Introspection (the process of examining a process in-
side a virtual machine from outside the virtual machine)
was introduced by Garfinkle and Rosenblum [11]. While
other work leverages this idea for security purposes like
process tracking [15], intrusion detection [30, 20], and
malware detection [14], our work focuses on hardware-
supported introspection. We also use an entirely new
VMM while previous work modified Xen or VMWare.

A significant motivation for our work was prior work
on malware analysis in a non-virtualized environment.
Malware has proven to be very deft at avoiding analy-
sis through debugger detection [12], fingerprinting [19],
and code obfuscation [23]. Operating system based sys-
tems like Saffron [23] and simulator based systems like
Renovo [17] are able to analyzing running malware and
automatically remove packing or encryption. The Janus
project studied system call tracing for program under-
standing [9]. We aim to implement a subset of this pre-
vious work on malware analysis inside our VMM.

Because of the danger of running malicious soft-
ware, virtualization offers strong protection an d roll-
back mechanisms to aid live debugging. Because virtual
machines are so commonly used by malware analyzers,
virtualization detection is becoming part of modern mal-
ware. The attacks range from simple IDT based attacks
[24, 18] to complicated TLB sizing attacks [10]. We be-
lieve it is reasonable to assume that any virtualization
platform will introduce some detectable changes to the
guest system, so we aim to provide minimal detectability
for the VMM using hardware virtualization. Malicious
software must firstly evade detection and removal so that
it may carry out its task. Since preventing analysis is a
secondary task, the malicious software is unlikely to go
to great lengths to avoid analysis if by doing so it in-

creases its detectability.
Finally, we have found that general purpose VMMs

are as large and complex as a modern operating system.
It is likely vulnerabilities more vulnerabilities will be dis-
covered in these systems that will make them impracti-
cal for malware analysis because of the loss of strong
isolation. Consider the following two vulnerabilities in
VMWare and Xen that can both lead to compromise of
the host system from inside the guest: CVE-2008-0923,
CVE-2008-0600 [5].

6 Conclusion

Our design and implementation of MAVMM shows that
a very lightweight hypervisor, custom built for malware
analysis, is feasible. We investigated various features
which are necessary for malware analysis, and differ-
ent strategies to implement these features in a VMM. We
also built a simple malware analysis supported VMM. At
this stage, our VMM - MAVMM - is able to boot and run
a multiboot compliant kernel game, GRUB Invaders, un-
modified and extract simple forensic information about
its activities. As MAVMM uses hardware virtualization
extensions it remains fairly undetectable, its memory is
protected from both DMA and the guest operating sys-
tem code. VMMs are becoming increasingly large and
complex and are said to have OS like exploitable vulner-
abilities. Being lightweight and simple, MAVMM also
remains less vulnerable.

The TVMM research code that we started with was
inflexible and had a number of flaws. TVMM can essen-
tially boot only its ’sample operating system’. Booting
a real OS or a general purpose program requires myriad
changes and proved to be a daunting task. MAVMM has
been extended to accommodate different guest operating
modes. It can handle different paging modes, page sizes,
CPU operating modes (real/protected/long) and several
types of guest images.

An important goal that we started with was to pro-
vide the Computer Science research community with
a simple and easy to enhance virtualization platform.
MAVMM provides that platform, and by being sim-
ple (around 2000 lines of code) and well documented
MAVMM makes it easy for other researchers to add new
functionality to it, or modify it to serve their purposes.
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