
	

	

A Report submitted in partial fulfilment of the
regulations governing the award of the Degree of

BSc (Honours) Ethical Hacking for Computer
Security at the University of Northumbria at

Newcastle

Project Report

Implementing Basic Static Code Analysis into
Integrated Development Environments (IDEs)

to Reduce Software Vulnerabilities.

Ryan Dewhurst - 08026925
2011/2012

General Computing Project

	

Ryan	 Dewhurst	 2	

Authorship Declaration

I declare the following:

(1) that the material contained in this dissertation is the end result of my own work and
that due acknowledgement has been given in the bibliography and references to ALL
sources be they printed, electronic or personal.

(2) the Word Count of this Dissertation is ~20,000

(3) that unless this dissertation has been confirmed as confidential, I agree to an entire
electronic copy or sections of the dissertation to being placed on the eLearning Portal
(Blackboard), if deemed appropriate, to allow future students the opportunity to see
examples of past dissertations. I understand that if displayed on eLearning Portal it
would be made available for no longer than five years and that students would be able
to print off copies or download.

(4) I agree to my dissertation being submitted to a plagiarism detection service, where it

will be stored in a database and compared against work submitted from this or any
other School or from other institutions using the service.

In the event of the service detecting a high degree of similarity between content within
the service this will be reported back to my supervisor and second marker, who may
decide to undertake further investigation that may ultimately lead to disciplinary
actions, should instances of plagiarism be detected.

(5) I have read the Northumbria University/CEIS Policy Statement on Ethics in

Research and Consultancy and I confirm that ethical issues have been considered,
evaluated and appropriately addressed in this research.

SIGNED:

 Ryan Dewhurst

Date:

	

Ryan	 Dewhurst	 3	

Acknowledgements

Marie for her love and support.

Dr. Christopher Laing for his continued support and guidance.

My university colleagues whom have been a source of inspiration, motivation and
friendship.

Marisa Fagan for her support and guidance.

Johannes Dahse of the RIPS project for giving me permission to use their Taint
Analysis data.

The late Alan Turing for his contributions to modern computing.

Finally, to the many giants within the security industry that has contributed
software, research, knowledge, opinion and time to enhance software security.

	

Ryan	 Dewhurst	 4	

Abstract

Software security is a problem that has no easy solution. Almost daily there are
reports of companies being breached and personal data being compromised. This
report aims to research the problem of software security; this includes the
software development process and how security plays a role in that process.

This report discusses the design, implementation and testing of a product that aims
to help in developing secure software by integrating Static Code Analysis
techniques into Integrated Development Environments (IDEs).

This report will conclude that all aims and objectives set in the initial Terms of
Reference document were met and recommends that the PHP Interpreter should
implement Taint Analysis as well as recommending a debate on a UK law that
focuses on software security.

	

Ryan	 Dewhurst	 5	

List of Contents
	

Authorship Declaration ……………………………………………….... 2

Acknowledgements ……………………………………………….... 3

Abstract ……………………………………………….... 4

List of Contents ……………………………………………….... 5

Introduction ……………………………………………….... 7

Software Security ……………………………………………….... 9

Software Development
Life Cycles (SDLCs)

………………………………………………....

11

Security Development
Lifecycle (SDL)

………………………………………………....

13

Static Code Analysis ……………………………………………….... 18

Integrated Development
Environments (IDEs)

………………………………………………....

25

Product Development ……………………………………………….... 25

Summary ……………………………………………….... 29

Design ……………………………………………….... 31

Implementation ……………………………………………….... 39

Testing ……………………………………………….... 48

Evaluation ……………………………………………….... 57

Conclusion ……………………………………………….... 62

References ……………………………………………….... 64

Bibliography ……………………………………………….... 69

Appendices ……………………………………………….... 70

Appendix A - Terms of
Reference

………………………………………………....

70

Appendix B – PHP

	

Ryan	 Dewhurst	 6	

Deprecated Functions ……………………………………………….... 80

Appendix C – PHP
Lexical Analysis Tokens

………………………………………………....

80

Appendix D –
Accessibility Test

………………………………………………....

84

Appendix E – AChecker
Accessibility Report

………………………………………………....

85

Appendix F – Usability
& Compatibility
Inspection

………………………………………………....

86

	

	

Ryan	 Dewhurst	 7	

1. Introduction

Traditional methods of reducing software security vulnerabilities are normally
employed after the software development process. Instead, this can be done in the
early stages of development through the following of a methodology such as a
Security Development Lifecycle (SDL). It is evident by the amount of
vulnerabilities being discovered within software that SDLs are not widely used or
that SDLs are not as efficient as they possibly could be.

According to Microsoft, the later vulnerabilities are found within the development
of software, the more time it takes the developer to fix, thus, increasing the cost of
the overall development process (Microsoft, 2011).

During the coding stage of a Software Development Life Cycle (SDLC),
Microsoft’s Secure Development Lifecycle (SDL) recommends three practices
within their Implementation phase.

• SDL Practice 8: Use Approved Tools

The development team should choose and agree on a list of tools and their
versions that should be used within the development process.

• SDL Practice 9: Deprecate Unsafe Functions

The development team should not use unsafe functions within their
software. This includes functions that have been deprecated by the
programming language.

• SDL Practice 10: Perform Static Analysis

The development team should perform Static Code Analysis on their
software in order to detect potential vulnerabilities.

(Microsoft, 2011)

The author will research modern software development, how security is
implemented into the software development process and current static code
analysis techniques. A software product will be designed and implemented in the
area of secure software development.

The product produced implements deprecated function matching and Static Code
Analysis into an Integrated Development Environment (IDE). The purpose of the
work is to demonstrate the possibility of combining IDEs with Static Code
Analysis to make security more accessible to software developers.

The report concludes that current software development techniques have their
limitations. For smaller software projects a Security Development Lifecycle may
be too resource intensive.

	

Ryan	 Dewhurst	 8	

The report goes on to recommend the wide adoption of Static Code Analysis
combined with Integrated Development Environments (IDE), the implementation
of Taint Analysis within the PHP Interpreter and a debate on the introduction of a
UK law on software security.

1.1 . Structure of Report

The main content of the report concentrates on software development, software
security and the implementation of a software product. The start of each of the
following sections is clearly stated and underlined within the report.

• Analysis

This section describes the problem of software security, giving examples
and evidence of the problem. A literature survey of the software
development process is carried out to identify how security plays a role
within software development. A discussion of possible solutions,
justification and specification for a product is given.

• Synthesis

This section describes the work done to develop the product produced. The
design of the product is discussed along with design documentation.
Particular interesting points of the product’s implementation is discussed a
long with code examples and figures where appropriate. Finally, the
product’s testing is discussed.

• Evaluation and Conclusions

This section gives an evaluation on the product and project process.
Discussion of problems faced and overcome. The project is concluded and
recommendation’s for further work is given.

	

Ryan	 Dewhurst	 9	

Analysis

2. Software Security

Human beings often make mistakes when writing code for computer applications.
These mistakes are known as ‘bugs’ and these ‘bugs’ may have unforeseen
consequences, some of them minor, some of them quite serious. For example, a
software bug in a Point of Sale (PoS) device may calculate decimal places
incorrectly leading to over or under charging the customer. The same bug miss-
calculating decimal places within a missile launch system could send a missile on
the wrong trajectory.

A particular serious and possibly fatal consequence of a software error occurred
between 1985 and 1987. The Therac-25 radiation therapy machine massively
overdosed its patients by 100 times the intended dose (Baase, 2002). The reason
for the machine overdosing patients was a software bug attributed to bad software
design and development (Leveson, 1995).

Some software bugs have security implications such as affecting confidentiality,
availability and/or integrity of itself or the wider system it runs on. According to
Allen (Allen, et al. 2008) the core properties of secure software are:

• Confidentiality: Only authorised users are able to access the information or
resources allocated to them.

• Integrity: Unauthorised users are unable to make modifications to the

system or its assets.

• Availability: The system is accessible and operational to authorised users.

Security bugs, more commonly known as ‘vulnerabilities’, that inhibit certain
characteristics have over the years been given names, such as Buffer Overflow,
Cross-Site Scripting (XSS), Integer Overflow, Information Leakage, Race
Conditions and many more.

Buffer Overflow/Overrun

Buffer Overflows are known to affect low-level programming languages such as
C and C++ that have direct access to the systems Random Access Memory
(RAM) data allocation. A Buffer Overflow occurs when a part of memory has
been allocated to the software and user controlled data is put into that part of
memory that is too large for the buffer, causing an ‘overflow’ into other parts of
the system’s memory. The effect of such a vulnerability being exploited could
lead to a system crash causing a Denial of Service (DoS) or allowing a remote
attacker to execute commands on the Operating System (OS) known as Remote
Command Execution (RCE) (Howard, M & LeBlanc, D et al, 2005).

Cross-Site Scripting (XSS)

	

Ryan	 Dewhurst	 10	

Cross-Site Scripting (XSS) is a security vulnerability that generally affects web
applications. Cross-Site Scripting (XSS) occurs when un-sanitised user supplied
input is used by the application in its output. The effect of XSS being exploited
can lead to the defacement of a web application, the theft of users authentication
(session) cookies or it can be used as a communication channel to exploit a
browser vulnerability such as a Buffer Overflow (Howard, M & LeBlanc, D et al,
2005).

Information Leakage

Information Leakage is a security vulnerability that occurs when the application
intentionally or unintentionally discloses certain information about itself or its
environment that could be useful to an attacker to carry out further attacks.
Information Leakage can occur within application error messages, within client
side source code, within TCP packets and many other places. For example,
Information Leakage could lead to an attacker knowing internal network Internet
Protocol (IP) addresses, the internal network topology and valid system usernames
(Howard, M & LeBlanc, D et al, 2005).

An example of a serious consequence of security breach occurred between 2006
and 2008. Alberto Gonzales and two accomplices compromised a US company
called Heartland Payment Systems, at the time described by the United States
Department of Justice (DoJ) as ‘the single largest data breach in US history’
(Department of Justice, 2009). According to the Indictment the vulnerability
exploited was SQL Injection via one of the companies web applications
(Department of Justice, 2009).

It is evident by looking at public online vulnerability tracking databases that in the
short term the problem of insecure software is not going to go away. By
conducting a search on the Open Source Vulnerability Database (OSVDB) for all
vulnerabilities listed from the 1st of January 2011 until the 21st of December 2011
shows that a total of 6,652 separate vulnerabilities were submitted to its database
during the time frame (OSVDB, 2011). The same search criteria carried out on the
National Institute of Standards and Technology (NIST) National Vulnerability
Database shows a total of 4,053 reported vulnerabilities during 2011 (NIST,
2011). These databases rely on vulnerabilities being submitted to them by various
organisations and volunteers; the differences in the amount of vulnerabilities
between them both could be explained by the popularity of one over the other.

During 2005 a paper titled ‘Cyber Security: A Crisis of Prioritization’ was
presented to the then President of the United States, George W. Bush (PICTA,
2005). PICTA believed that “software development is not yet a science or a
rigorous discipline, and the development process by and large is not controlled to
minimize the vulnerabilities that attackers exploit.” (PICTA, 2005).

In a similar vein the US Department of Homeland Security describes the major
difference between secure and insecure software as being the software
development process itself, in particular those processes that are used in the
requirements specification, design, implementation, deployment, support, and
update of the software (Department of Homeland Security, 2006).

	

Ryan	 Dewhurst	 11	

This project intends to address some of those concerns by creating a product that
can be used within the development of software to further reduce vulnerabilities in
the software when implemented.

3. Software Development Life Cycles (SDLCs)

3.1 Introduction

In this section an overview of the Software Development Life Cycle (SDLC) is
presented, in doing so different SDLCs will be introduced and their involvement
in the development of modern software will be presented.

3.2 Software Development Life Cycle (SDLC)

A Software Development Life Cycle (SDLC), also known as a Software
Development Process, is a set of guidelines (a methodology) followed by an
individual software developer or by a team of developers to develop and/or
maintain new software products. The aim of a SDLC is to avoid past mistakes and
improve the development process that in turn should reduce development cost and
increase software quality.

The International Standards Organisation (ISO) produces several standards in
relation to SDLCs; a brief selection of these is:

ISO 12207: Systems and software engineering - Software life cycle processes.
Establishes a common framework for software life cycle processes (ISO, 2008).

ISO 15288: Systems and software engineering - System life cycle processes.
Establishes a common framework for the life cycle of for man-made systems
(ISO, 2008).

ISO 15026: Systems and software engineering - Systems and software assurance.
Establishes a common framework for the measurement of software assurance
(IS0, 2008).

Access to these ISO documents is limited, however each standard is concerned
with the design and development of software.

The U.S. Department of Health & Human Services (HSS) list five SDLCs they
deem as ‘acceptable’: Waterfall, Prototyping, Incremental, Spiral and Rapid
Application Development (RAD) (The U.S. Department of Health & Human
Services, 2008). These SDLCs will be used to give a brief understanding of the
differences between them.

3.3 Waterfall

The Waterfall is a SDLC that ensures software development continually
progresses in a linear fashion (like a waterfall), progressing through each of the,

	

Ryan	 Dewhurst	 12	

typically, six stages. The six stages are: Initial Investigation, Requirements,
Design, Coding, Implementation and Operation & Support (maintenance). These
six stages or variants of them are seen throughout most other SDLCs.

The Initial Investigation: involves the investigation of any specific knowledge
the development team may require to develop the software.

The Requirements: consists of problem analysis and product descriptions.
Typically this involves a number of Software Requirements Specification (SRS)
documents being completed. A SRS document contains a complete and concise
description of the external interface of the software system with its environment,
including other software, communication channels, hardware and users (Davis,
1993).

The Design: issues to be considered such as future proofing, usability and
security. Detailed plans may be drawn up. The more detailed the design, the less
likely it is for problems to arise during later stages.

The Coding: the act of writing the software itself, using the knowledge gained
within the initial investigation, requirements and design stages, to construct the
software’s algorithms. Testing should be carried out on the software at milestones
previously set during the design stage.

The Implementation: deployment into the environment in which it is to be used.
Further testing should be carried out at this stage for Quality Assurance (QA).

The Support: at this stage changes may be made to the code due to user
feedback, bugs, environment changes or any other code changes made after the
software has been released.

3.4 Prototyping

Prototyping, instead of being a complete SDLC, focuses on incomplete prototypes
of the software. Proof of Concept (PoC) code is produced and re-produced until
the software matures and develops into the specification needed.

3.5 Incremental

Within Incremental SDLC many mini waterfalls are performed, all phases of the
actual waterfall model are completed for only small parts of the software system,
before proceeding to the next increment (The U.S. Department of Health &
Human Services, 2008).

3.6 Spiral

The Spiral SDLC is a meta-process that can be implemented into other SDLC
processes. There are typically four different stages: Analysis, Evaluation,
Development and Planning. As the spiral shape suggests, this is a ‘looped’
process, once an iteration of the SDLC is complete, the SDLC process starts
again.

	

Ryan	 Dewhurst	 13	

3.7 Summary

In this section various SDLCs have been briefly introduced. The actual production
of code represents a small element of the overall Software Development Life
Cycle (SDLC), however it is this element that has the potential to introduce the
greatest number of human errors.

4. Security Development Lifecycle (SDL)

4.1 Introduction

In this section the reader will be introduced to the concept of Security
Development Lifecycles (SDLs) and see how they fit into a traditional SDLC.

4.2 Security Development Lifecycle (SDL)

A Security Development Lifecycle (SDL) is an extra layer on top of a traditional
Software Development Life Cycle (SDLC). In a traditional SDLC, security testing
is normally left until the coding and implementation phases. An SDL ensures
security plays a role within every stage of the SDLC, from the initial
investigation, right through to the support/maintenance phase.

Once such SDL is the Microsoft SDL and according to Microsoft, “[…] the
Microsoft SDL is a collection of mandatory security activities, presented in the
order they should occur and grouped by the phases of the traditional software
development life cycle (SDLC)” (Microsoft, 2010).

There are other SDLs available such as the Adobe Secure Product Lifecycle
(Adobe, 2011) and the Cisco Secure Development Lifecycle (CISCO, 2011). This
paper will concentrate on one SDL, the Microsoft SDL, as it is the SDL the author
is most familiar with and this section’s aim is to only introduce the basic concepts
of a SDL and not to compare them.

The main reasons to implement a SDL are:

Increase software security

Microsoft has had a mandatory SDL process implementation policy on all
software products developed since 2004 (Microsoft, SDL Process Guidance
Version 5.1). We can safely assume that all software developed pre 2004 did not
undergo an SDL process and that software developed post 2004 did undergo a
SDL process within Microsoft.

The Microsoft Windows XP Operating System (OS) was released in 2001, three
years before SDLs were mandatory. The Microsoft Windows Vista Operating
System (OS) was released in 2007, three years after SDLs were mandatory and
according to Microsoft, ‘the first Microsoft operating system to benefit from the
SDL’ (Microsoft, 2011).

	

Ryan	 Dewhurst	 14	

According to Microsoft, ‘After the first year, Windows Vista had 45% fewer
vulnerabilities than Windows XP’ (Microsoft, 2011).

Compliance

There are a number of different industry compliance standards depending on the
type of software being developed and there are a number of different government
standards depending on what country the software is developed or deployed in.

One example of industry compliance standards would be the Payment Card
Industry Data Security Standard (PCI-DSS). The standard outlines ‘a
comprehensive list of requirements that a payment processor must comply with in
order to process credit card payments’ (PCI-DSS, 2010).

The most applicable requirement to software security and secure software
development is PCI Requirement 6, ‘Develop and maintain secure systems and
applications’. In particular, requirement 6.5, “Develop applications based on
secure coding guidelines.” (PCI-DSS, 2010).

The PCI-DSS version 2 does not state what ‘secure coding guidelines’ the
payment card processor must use, leaving it open to interpretation.

Other security compliance measures include the US Government Health Insurance
Portability and Accountability Act (HIPPA).

Reduce development cost

According to Microsoft, the later vulnerabilities are found within the development
of software, the more time it takes the developer to fix, thus, increasing the cost of
the development process (Microsoft, 2011).

This is confirmed by a survey produced by The National Institute of Standards
and Technology (NIST), published within a report called ‘The Economic Impacts
of Inadequate Infrastructure for Software Testing’ (NIST, 2002). The below table
is the direct result of the survey. It illustrates the amount of hours it takes to fix
bugs at specific stages of a Software Development Life Cycle (SDLC).

Stage
Introduced

Requirem
ents

Coding/unit
testing

Integration Beta
Testing

Post-product
Release

Requirements 1.2hrs 8.8hrs 14.8hrs 15.0hrs 18.7hrs
Coding/unit

testing
NA 3.2hrs 9.7hrs 12.2hrs 14.8hrs

Integration NA NA 6.7hrs 12.0hrs 17.3hrs
Table 4-1 –The time it takes to fix bugs at specific stages of the SDLC.

Although the cost of fixing bugs may reduce with the implementation of a SDL,
there are other additional costs to take into consideration; the additional man-
hours through planning and paper work, there may also be costs associated with
the purchase of additional, possibly outsourced, security products and/or services.

	

Ryan	 Dewhurst	 15	

4.3 Microsoft Security Development Lifecycle (SDL)

The Microsoft Security Development Lifecycle (SDL) has five phases; each one
designed to be implemented into an existing traditional Software Development
Life Cycle (SDLC) phase. The five phases are: Requirements, Design,
Implementation, Verification and Release. There is also a Pre-SDL requirement,
which is Training and a Post-SDL requirement, which is Response. Within the
seven phases there are a total of seventeen different ‘practices’.

The table below shows the relationships between the five Microsoft SDL phases,
including the Pre and Post SDL requirements and the five Waterfall SDLC phases.

Microsoft
SDL Training Require

ments Design Implementation Verification Release Response

Waterfall
SDLC N/A Require

ments Design Coding Implem
entation Support

Table 4-2 – Tables comparing the phases of the Microsoft SDL and the Waterfall
SDLC.

Pre-SDL - Training

Microsoft describes security training (practice 1) as a ‘Pre-SDL requirement’ as it
is not directly related to the actual software being developed. The security training
is designed to give all of the software development team, including developers,
testers and managers a basic understanding of security concepts and to inform
them of the latest trends in security and privacy. Microsoft advises that one unique
training class should be taken at least once a year (Microsoft, 2011).

Phase 1 - Requirements

SDL-Practice 2: Security Requirements: This practice is designed to lay the
groundwork for the SDL. Assigning security professionals to the project,
assigning minimum security and privacy standards and creating a security
vulnerability tracking system (Microsoft, 2011).

SDL-Practice 3: Define Quality Gates/Bugs Bars: A bug bar is an agreed level of
severity that the application is required to meet before being released. The bug bar
defines four levels of severity: Critical, Important, Moderate and Low. An
example would be that a development manager would agree with his team that the
software could not be released with any bugs classified as Moderate or above
(Microsoft, 2011).

SDL-Practice 4: Security and Privacy Risk Assessment: This practice requires that
a Security Risk Assessment (SRA) and a Privacy Risk Assessment (PRA) be
completed (Microsoft, 2011).

Phase 2 – Design

SDL-Practice 5: Establish Design Requirements: Within this practice, security and
privacy should be designed to fit in with the overall software design specification.

	

Ryan	 Dewhurst	 16	

This prevents secure and security features being ‘bolted on’ at a later stage of the
SDL (Microsoft, 2011).

SDL-Practice 6: Attack Surface Analysis/Reduction: Attack surface reduction
reduces the risk of an attack from a malicious user by reducing the potential weak
points in the application. Disabling or limiting features within the software can
reduce the attack surface (Microsoft, 2011).

SDL-Practice 7: Threat Modelling

A threat model is an analysis that helps determine the level of risk to the
application and how attacks can occur. A threat model’s objective is to highlight
areas of the application of most risk to vulnerabilities or attack, allowing time and
effort to be concentrated in those areas (Microsoft, 2011).

Phase 3 - Implementation

SDL-Practice 8: Use Approved Tools: This practice requires the development
team to define and keep updated a list of approved tools to be used during the
coding phase of a SDLC. The list of tools should contain the version of the tool to
be used (this would normally be the latest) and its required configuration
(Microsoft, 2011).

SDL-Practice 9: Deprecate Unsafe Functions: This practice requires the
development team to define a list of unsafe functions. Some programming
language functions and APIs may be deemed as insecure or less secure than
others, these may include deprecated functions (Microsoft, 2011).

SDL-Practice 10: Perform Static Analysis: This practice requires the development
team to perform static code analysis on the software. Static code analysis as the
name suggests is an analysis of the source code while it is in a ‘static’ state, static,
meaning pre-compilation or interpreted source code. Static code analysis may
include automated solutions such as static code analysis software or human
manual code reviews on the source code. Static code analysis may be referred to
as a ‘White Box’ testing technique, where the tester has all of the information at
hand unlike a ‘Black Box’ testing technique where the tester has no prior or
internal knowledge about the test subject. Static Code Analysis will be discussed
in more detail later on in the paper in section 4.

Phase 4 – Verification

SDL-Practice 11: Perform Dynamic Analysis: Dynamic Analysis is when
software is compiled/interpreted and then analysed in its running state to assess
that it behaves as expected. Some of the behaviours that will be observed are
memory leaks, memory allocation and/or software crashes (Microsoft, 2011).

SDL-Practice 12: Fuzz Testing: The act of ‘fuzzing’ is to send random data to all
of a software applications input points. This is done while the software is in a
dynamic state and in an automated fashion. While the software is processing the

	

Ryan	 Dewhurst	 17	

random data it is being monitored with the intent to find any potential bugs (Doyle
& Fly. et al. 2007).

SDL-Practice 13: Attack Surface Review: This practice is to ensure the original
attack surface review completed during the design stage and compare it against a
new one completed after the source code has been written (Microsoft, 2011).

Phase 5 – Release

SDL-Practice 14: Incident Response Plan: An Incident Response Plan (IRP)
should be implemented even if no software vulnerabilities were found to affect the
software at the time of release. This is due to the possibility of new threats
emerging over time (Microsoft, 2011).

SDL-Practice 15: Final Security Review: The Final Security Review (FSR) is an
examination of the entire Security Development Lifecycle (SDL) process on the
software. The FSR would include a review of the threat model, tools output and
the software’s performance against the quality/bug bars (Microsoft, 2011).

SDL-Practice 16: Release/Archive: Before the software is released the
development team must certify that all security and privacy criteria have been
met. All documentation and source code must be archived in a secure place and
backed-up in case it needs to be referred to in future (Microsoft, 2011).

Post-SDL - Response

SDL-Practice 17: Execute Incident Response Plan: Execute the Incident Response
Plan (IRP) if a security incident occurs. This requirement is considered to be
‘Post-SDL’, a requirement that exists after the SDL has been completed. Although
not part of the original Microsoft SDL, it would be recommended to monitor
system and Intrusion Detection Log files at this point (Microsoft, 2011).

4.4 SDL Effectiveness

Michael Howard is the Principal Security Program Manager at Microsoft and the
author of several software security books such as ‘Writing Secure Code’, ‘The
Security Development Lifecycle’ and ‘19 Deadly Sins of Software Security’.
Speaking of his own experiences he goes on to conclude that there is no one
solution to software security. A Security Development Lifecycle (SDL) will help
to reduce software vulnerabilities, however, achieving zero vulnerabilities within
software is unachievable (Howard, 2007).

New types of vulnerabilities are constantly being discovered; some recent
examples include Cross-Site Tracing (XST) (Grossman, 2003) or Clickjacking
(Hansen & Grossman, 2008). It would be hard if not impossible to predict these
vulnerabilities during the SDL, however, it would be possible to reduce the risk to
exposure of new vulnerabilities by reducing the attack surface as discussed in
Microsoft SDL practices 6 and 13.

	

Ryan	 Dewhurst	 18	

Another possibility to further improve the SDL’s effectiveness could be to
combine the three practices within ‘Phase 3 – Implementation’ of the SDL. By
combining ‘SDL-Practice 8: Use Approved Tools’, ‘SDL-Practice 9: Deprecate
Unsafe Functions’ and ‘SDL-Practice 10: Perform Static Analysis’ into the
development environment itself, it may be possible to lower the time needed to
carry out these practices as well as reduce vulnerabilities in the final product.

5. Static Code Analysis

In this section of the paper Static Code Analysis tools and techniques will be
researched in order for the author to have a better understanding of the topic. This
will benefit the author when implementing the final product.

5.1 Introduction

Static Code Analysis as briefly described in Microsoft SDL-Practice 10 is when
source code is analysed in an automated fashion in a ‘static’ (non-running) state.
Modern compilers use Static Code Analysis to translate source code into a
machine-readable language. Specialist software tools use the same techniques to
discover potential vulnerabilities. There are both Open Source/Free and
commercial Static Code Analysis tools available. As well as the specialist tools,
basic Operating System commands such as the Linux ‘grep’ command can be
used to locate potential vulnerabilities.

Example recursive grep command used to find MySQL queries within PHP:

grep -ir "mysql_query" *

A small selection of Static Code Analysis tools and the programming languages
they support are listed below.

Open Source / Free tools:

Name	 Analyses	
RIPS	 PHP	

Agnitio	 Objective-‐C,	 C#,	
Java	 &	 Android	

Microsoft	 FxcCop	 .NET	
FlawFinder	 C/C++	

Pixy	 PHP	
Table 5-1 – Table showing the different free SCA tools available.

Commercial tools:

Name	 Analyses	
HP	 Fortify	 Multiple	

Veracode	 Multiple	

	

Ryan	 Dewhurst	 19	

CodeSecure	 Multiple	

Rational	
AppScan	

COBOL	 &	
SAP	

Table 5-2 – Table showing the different commercial SCA tools available.

5.2 Static Code Analysis Techniques

5.2.1 Data Flow Analysis

Data flow analysis is used to collect run-time (dynamic) information about data in
software while it is in a static state (Wögerer, 2005).

There are three common terms used in data flow analysis, basic block (the code),
Control Flow Analysis (the flow of data) and Control Flow Path (the path the data
takes):

Basic block: A sequence of consecutive instructions where control enters at the
beginning of a block, control leaves at the end of a block and the block cannot halt
or branch out except at its end (Wögerer, 2005).

Example PHP basic block:

1. $a = 0;
2. $b = 1;
3.
4. if ($a == $b)
5. { # start of block
6. echo “a and b are the same”;
7. } # end of block
8. else
9. { # start of block
10. echo “a and b are different”;
11.} # end of block

Control Flow Graph (CFG): An abstract graph representation of software by use
of nodes that represent basic blocks. A node in a graph represents a block;
directed edges are used to represent jumps (paths) from one block to another. If a
node only has an exit edge, this is known as an ‘entry’ block, if a node only has a
entry edge, this is know as an ‘exit’ block (Wögerer, 2005).

Example Control Flow Graph; ‘node 1’ represents the entry block and ‘node 6’
represents the exit block.

	

Ryan	 Dewhurst	 20	

Figure 5-1 – Example Control Flow Graph.

Control Flow Path (CFP): The logical path flow of the source code represented
with nodes. In the example Control Flow Graph above the ‘path’ is the ordering of
the nodes and the arrows that link them, beginning with an entry node and ending
with an exit node.

5.2.2 Taint Analysis

Potentially Vulnerable Functions (PVFs) also known as ‘sinks’ are identified
within source code via pattern string matching. Parameters passed to the PVFs are
traced back to their inception via use of Data Flow Analysis. If the PVFs
parameters were ‘tainted’ by user controlled input, the source code being
examined is marked as being vulnerable. If, however, the user-tainted variables
have been secured by the use of a ‘securing’ (sanitizing) function the source code
being examined will not be marked as vulnerable (Dahse, 2010). Taint (verb),
“contaminate or pollute (something)” (Oxford, 2010).

Some programming languages such as Perl (Patwardhan. et al, 2002) and Ruby
(Thomas. et al, 2009) have Taint Checking built into them and enabled in certain
situations such as accepting data via CGI.

Using PHP as an example to show basic taint analysis.

1. $user_tainted = $_GET[‘tainted’];
2. echo($user_tainted);

In the example above the variable $user_tainted is tainted by user supplied input
via the super global $_GET variable. The $user_tainted variable is then passed to
a sink ‘echo()’ that outputs the user supplied input. This is a simplified example of
Cross-Site Scripting (XSS) vulnerability.

1. $user_tainted = $_GET[‘tainted’];
2. $sanitized = htmlspecialchars($user_tainted);
3. echo($sanitized);

	

Ryan	 Dewhurst	 21	

The example above is the same as the previous example except that the
$user_tainted variable is now passed through a ‘sanitizing’ function,
htmlspecialchars, rendering the piece of code not vulnerable to Cross-Site
Scripting (XSS).

The htmlspecialchars PHP function converts the following special characters into
their HTML entities equivalent (PHP, 2012).

Special	 Character	 HTML	 	
&	 &	
"	 "	
	 ‘	 '	
<	 <	
>	 >	

Table 5-3 – Table showing the HTML equivalents to special chatacters.

Example JavaScript passed through the htmlspecialchars function:

Before	 <script>alert(1)</script>	
After	 <script>alert(1)</script>	

Table 5-4 – Table showing the before and after of a string passed through the
htmlspecialchars function.

Taint analysis uses three arrays of data to identify potential vulnerabilities;
sources, sinks and sanitizing functions. Using PHP to show examples of sources,
sinks and sanitizing functions below. This is not a comprehensive list, however it
should give an idea of the various functions that could be used in PHP taint
analysis.

Sources

Sources are possible tainted data from users, files, databases or any other user
controllable input.

• User tainted: $GLOBALS, $_SERVER, $_GET, $_POST, $_FILES,
$_COOKIE, $_SESSION, $_REQUEST, $_ENV.

• File tainted: file(), fopen(), popen(), file_get_contents(), fread(), fscanf().

• Database tainted: mysql_fetch_array(), mysql_fetch_assoc(),

mysql_fetch_field(), mysql_fetch_object(), mysql_fetch_row().

Sinks

Sinks are potential vulnerable functions where sources may end up, such as
outputting data or running SQL queries.

• Cross-Site Scripting (XSS): echo(), print(), printf().

	

Ryan	 Dewhurst	 22	

• SQL Injection: mysql_query(), pg_query().

• Command Execution: exec(), shell_ exec(), system(), proc_open().

• File Inclusion: include(), require(), require_once(), include_once().

Sanitizing Functions

Sanitizing functions are functions that make sources of tainted variables ‘un-
tainted’ before reaching a sink.

• Cross-Site Scripting (XSS): htmlspecialchars(),htmlentities().

• SQL Injection: mysql_real_escape_string(),sqlite_escape_string().

• Command Execution: escapeshellcmd(),escapeshellarg().

• File Inclusion: None found within PHP.

5.2.3 String Matching

String matching is simple string comparison that can be used to match function
names within source code to a list of undesirable functions. This technique can be
used to identify deprecated and/or unsafe functions as described in Microsoft
SDL-Practice 9.

PHP started to deprecate functions and show warnings since the release of version
5.3.x. The following functions were deprecated within PHP 5.3x (PHP, 2012):

call_user_method
call_user_method_array
define_syslog_variables

dl
ereg

ereg_replace
eregi

eregi_replace
set_magic_quotes_runtime

session_register
session_unregister
session_is_register

set_socket_blocking
split
spliti

sql_regcase
mysql_db_query

	

Ryan	 Dewhurst	 23	

mysql_escape_string
Tabke 5-6 – Table showing a list of PHP deprecated functions.

5.2.4 Lexical Analysis

Lexical Analysis converts source code syntax into ‘tokens’ of information in an
attempt to abstract the source code and make it easier to manipulate (Sotirov,
2005).

The PHP tokeniser allows users to use the PHP Lexical Analysis engine (PHP,
2012). PHP has a built in API function that converts PHP source code into an
array of PHP tokens. token_get_all() parses the given source string into PHP
language tokens using the Zend engine's lexical scanner” (PHP, 2012).

The tokenisation source code is in the ‘ext/tokenizer/tokenizer.c’ file in PHP
version 5.

Pre tokenised source code:

<?php $name = "Ryan"; ?>

Post tokenised source code:

T_OPEN_TAG
T_VARIABLE
=
T_CONSTANT_ENCAPSED_STRING
;
T_CLOSE_TAG

Sample PHP tokens (see Appendix C for a complete list):

Token Syntax
T_VARIABLE $foo

T_FOR for
T_IF if

T_COMMENT // or #, and /* */ in PHP 5
T_BOOLEAN_AND &&
T_BOOLEAN_OR ||

Table 5-7 – Table showing a small sample of PHP tokens.

5.3 Limitations

Static Code Analysis will not detect business logic flaws. Static Code Analysis
tools have no awareness of context; by analysing the source code they are
unaware of what functionality should be available to individual users. For
example static code analysis tools would not know whether an individual user
should be able to make database amendments or not.

	

Ryan	 Dewhurst	 24	

Another limitation to Static Code Analysis tools is False Positives and False
Negatives. Static Code Analysis tools are dependant on the rules their developers
have written for them; these rules may be too limited or too greedy in their pattern
matching.

5.3.1 False Positives

Pixy, a PHP Static Code Analysis tool was found to produce a false positive rate
of around 50% (Jovanovic, et al. 2007). Every false positive has to be manually
reviewed; the more there are the more time it takes to interpret the results in a
meaningful way. If the false positive rate of Pixy is around 50% then maybe it is
no better than a flip of a coin in deciding if an algorithm is vulnerable or not.

In the following example the RIPS version 0.51 PHP Static Code Analysis tool
was used to scan the source code of a custom dynamic PHP web application. The
screenshot shows that RIPS incorrectly identified a piece of code as being
vulnerable to Cross-Site Scripting (XSS).

Figure 5-2 – RIPS.

The reason RIPS thinks it is vulnerable because it identifies the source of user
tainted variable (uid) being passed to a sensitive sink (echo). RIPS does not take
into account that the ‘uid’ variable is fist passed through a custom function called
‘sanitise’ that contains the PHP htmlspecialchars sanitising function. As discussed
in the ‘Taint Analysis’ section of the paper, htmlspecialchars converts special
characters to their HTML equivalent, rending the source code not vulnerable to
Cross-Site Scripting (XSS).

To fix the aforementioned False Positive within RIPS, the ‘sanitise’ function
could be added to RIPS’s ‘sanitizing functions’ array. A better solution would be
for RIPS to analyse the contents of the ‘sanitise’ function to discover the
htmlspecialchars function within it.

5.3.2 False Negatives

A false negative, in the context of Static Code Analysis, is when vulnerabilities
exist within the software being analysed, however the Static Code Analyser does
not identify them. False negatives could be seen as being more serious than a false

	

Ryan	 Dewhurst	 25	

positive, at least with a false positive you can deduce if it is vulnerable or not. A
False Negative may give a false sense of security.

False Negatives can occur when Static Code Analysis tools do not check for
certain types of vulnerabilities, check for the vulnerabilities in the wrong way or
there is an underlying logic problem with the Static Code Analysis tools
themselves.

6. Integrated Development Environments (IDEs)

Integrated Development Environments (IDEs) are programs that aid in the
development of software, specifically in the writing of source code. IDEs are
commonly desktop applications with Graphical User Interfaces (GUIs), however,
there are web based IDEs available and GUIs are not always necessary.

Textmate

Textmate is a commercial Mac OS X only IDE with support for ‘over 50
programming languages’ (Textmate, 2012).

NetBeans

NetBeans is Open Source/Free cross-platform IDE with support for ‘Java, XML,
DTD, CSS, HTML, ERB, RHTML, JSP, Javadoc, JavaScript, PHP, Groovy, C
and C++, and more’ (NetBeans, 2012).

Eclipse

Eclipse is a Java OpenSource/Free cross-platform IDE with support for ‘Ada, C,
C++, COBOL, Java, Perl, PHP, Python, R, Ruby (including Ruby on Rails
framework), Scala, Clojure, Groovy and Scheme’ (Eclipse, 2012).

Cloud9

Cloud9 is an OpenSource/Free/Commercial online AJAX ‘Development as a
Service’ (DaaS) IDE with support for ‘Javascript and HTML/CSS’ as well as
limited support for ‘Coffeescript, Ruby, PHP and many others’ (Cloud9, 2012).

The above IDEs share common functionality, such as:

• Graphical User Interface (GUI).
• The ability to open/edit/save source code.
• Syntax highlighting.
• Debugging features.
• Compiler/interpreter.
• File management.

7. Product Development

	

Ryan	 Dewhurst	 26	

The problem discussed within this paper is that of insecure software and its
consequences. The author has researched the software development process and
how security can be implemented into a development process. From the many
examples given throughout the paper it is clear to the author that there is room for
improvement in the development process.

The product outlined within the following sections will attempt to make it easier
to detect potential vulnerabilities at the earliest stage possible within the coding
stage of the development process. This will be accomplished by the use of Static
Code Analysis techniques within the IDE itself.

7.1 Product Requirements

Based on the research, literary review and the project’s main aims and objectives
set out in the Terms of Reference (TOR) document. There are three product
requirements as stated in the list below.

The product’s three requirements are:

• To combine the three stages of the Implementation phase of the Microsoft
SDL.

This requirement was one of the main objectives set out in the Terms of
Reference (TOR) document and will combine the three Implementation
phases of the Microsoft SDL into one product. The three practices are
practice 8 (Use Approved Tools), practice 9 (Deprecate Unsafe Functions)
and practice 10 (Perform Static Analysis).

By combining the three phases it is hoped that the Implementation phase
of an SDL is easier to implement and thus the use of SDLs more widely
adopted.

• To reduce the overall amount of vulnerabilities within software.

This requirement will aim to detect vulnerabilities within software thus
increasing its security. The whole point of the product and this project is to
increase software security by combining an IDE with Static Code
Analysis.

• To create a basic but usable IDE with basic Static Code Analysis built in.

This requirement was one of the main objectives set out in the Terms of
Reference (TOR) document. The concept of combining an IDE with Static
Code Analysis to detect vulnerabilities at the earliest stage, minimising
development/support cost and increasing software security.

7.2 Product Specification

	

Ryan	 Dewhurst	 27	

The intention of the solution is a product that improves the SDL by helping
decrease the amount of vulnerabilities within software. The product will be a basic
Integrated Development Environment (IDE) that combines Static Code Analysis
techniques within it. This will make the developer aware of vulnerabilities within
their software at the earliest stage, allowing them to fix the problem and produce
code that is more secure.

From the research carried out in the Analysis section of this report, it is clear that
there is a general consensus that the problem of insecure software is down to the
development process. For that reason, the development process, specifically the
coding stage, will be combined with Static Code Analysis.

The product will consist of:

• A basic IDE with a GUI.
• Identify deprecated and/or unsafe functions within source code.
• Identify possible vulnerabilities within source code.

7.3 Product Function

The Static Code Analysis engine needs to take source code as input from the GUI
and return its findings as output to the GUI. The Static Code Analysis engine and
IDE GUI source code should be kept separate and not rely on each other. The
Static Code Analysis engine should be developed to initially support one
programming language due to time and scope of the project; however,
consideration for future expansion should be kept in mind.

The Static Code Analysis engine must ensure all code passed to it is properly
sanitised as to avoid vulnerabilities like command or code execution.

The following steps could be used:

1. Clean/Normalise the code.
Remove code comments.
Remove unwanted formatting characters.
Transform the code into a dataset.

2. Analyse the code.
String Matching.
Lexical Analysis.
Data Flow Analysis.
Taint Analysis.

3. Output Findings.
Format the findings.
Output findings.

7.3.3 Technologies

	

Ryan	 Dewhurst	 28	

The Static Code Analysis engine will initially only analyse PHP source code due
to time and scope. PHP allows the use of its own Lexical Analysis; this could be
used within the Static Code Analysis engine. PHP is also one of the programming
languages the author is most familiar with. PHP is free and Open Source.

According to TIOBE which uses search engines to create statistical data on which
programming language has the most lines of code written, PHP comes 6th, making
it the number one web programming language on the list (TIOBE, 2012).

Because the source code being analysed will be PHP, to allow for as much
integration as possible and minimise the code base, the IDE and Static Code
Analysis engine could be developed in PHP.

Because of the choice of development language is a web programming language,
the IDE could be web based. This would allow for a cloud9 type of IDE, a ‘cloud’
IDE.

• Advantages to the user:
Available anywhere with an Internet connection.
Data backed up remotely.
Minimised local system resources used.

• Disadvantages to the user:

Internet connection needed.

The IDE GUI could use client side scripting such as JavaScript to create a rich
user environment. JavaScript derivatives such as AJAX and jQuery can also be
used for asynchronous client-server communications.

Apache will be used as the web server as it is both free and Open Source. The
author is also most familiar with Apache over any other web server.

A backend SQL database could be used such as MySQL or SQLite to store user
and/or system data. If a backend database is needed, paramatised queries must be
used on all queries to prevent SQL Injection.

An alternative method to the solution could be to develop the whole Static Code
Analysis engine in JavaScript/AJAX. This would allow for the whole process to
take place on the users browser and analysis could take place instantaneously as
the users write their code. This would also suppress the need for having to pass
the users code to the back-end server for processing and then the results passed
forward to the client when complete. If database storage is needed, new features
present in HTML5 could be used such as client-side storage, although, this would
require users to use modern updated browsers in order for the product to function
properly. Another disadvantage to using JavaScript/AJAX would be that my skill
level in these languages is low compared to my skill level in PHP and the Lexical
Analysis engine built into PHP could not be used.

7.3.4 Product Development

	

Ryan	 Dewhurst	 29	

A Waterfall type Software Development Life Cycle (SDLC) will be used and it
will incorporate some aspects of the Microsoft Security Development Lifecycle
(SDL) where appropriate and as time permits. The benefit of using the Waterfall
SDLC is that the development stages are clearly defined. The Microsoft SDL will
ensure the product developed will be security focused and contain minimal
vulnerable code.

7.4 Testing strategy

The product will have two parts, the IDE and the Static Code Analysis engine,
although it should be noted that the IDE would have less importance as compared
to the Static Code Analysis engine.

The IDE’s functionality can be tested individually. For example, does the menu
work as indented? Does the Code Editor work as intended? The GUI should be
intuitive and easy to use. These are all based on the users perspective; a survey
could be produced and distributed amongst software developers to gather their
opinions. Once the IDE is in a working state, the IDE can be used to develop
itself, making it easier to spot any potential usability issues.

The Static Code Analysis engine can be tested against known vulnerable source
code to see how many False Positives and/or False Negatives are produced. This
will be a good indicator of accuracy/effectiveness. The Static Code Analysis
engine can also be compared against other Static Code Analysers by analysing the
same piece of code and comparing the results.

Both the IDE and Static Code Analysis engine should undertake a white box and
black box tests for security vulnerabilities to ensure vulnerabilities are kept to a
minimum. This will be part of the Security Development Lifecycle.

8. Summary

8.1 Software Security

Although there exists many products and techniques to reduce vulnerabilities in
software, it is apparent that at this moment in time there is no one solution and
there may never be a ‘silver bullet’. Even with all of the products and techniques
available there is no law against producing or selling insecure software to the
consumer. There is software compliance such as the PCI DSS, however this only
applies to organisations that take or process payments from certain credit cards.
Even then, it only provides “a baseline of technical and operational requirements”
(PCI-DSS, 2010).

8.1.2 Consequences

Campbell et al researched the stock market share price of various companies that
had been compromised, they found that there was “some support for the argument

	

Ryan	 Dewhurst	 30	

that information security breaches adversely affect the future economic
performance of affected firms” (Campbell et al, 2003).

Not only does software security possibly impact an organisation’s share price,
vulnerabilities within software can be used to infect and spread malware. Stuxnet
is a piece of ‘sophisticated’ malware that specifically targets industrial control
systems by exploiting vulnerabilities in the Microsoft Windows Operating System
and in Siemens control software (Falliere. et al, 2011).

From the examples given throughout this paper, it is clear that software in-security
can have a negative financial effect on organisations and can also be used to
attack critical infrastructure.

There may also be reputational damage caused, however, this is hard to quantify
in terms of concrete financial figures. One example of reputational loss is Ratners
jewellers: the then CEO Gerald Ratner publicly described his products as ‘crap’
which lead to losses in sales, the resignation of Gerald Ratner and a change of the
company’s name (McKeone, 1995).

8.2 What are SDLCs/SDLs?

Software Development Life Cycles (SDLCs) are a way for development teams to
organise their software development into stages, with the intent on lowering
development time and increasing code quality. Additionally a Security
Development Lifecycle (SDL) can be used to implement security into the
development process.

Although SDLs are intended to add security to the development process they are
not the ‘silver bullet’ and as seen previously in this paper zero vulnerabilities
within software is unachievable. SDLs may also be costly and time consuming to
implement, however, there were neither studies nor data found to support this.

	

Ryan	 Dewhurst	 31	

Synthesis

The previous chapters consisted of research and literary reviews into software
security, modern software development through the use of Software Development
Life Cycles (SDLC), Security Development Lifecycles (SDLs) and a brief look at
the different Integrated Development Environments (IDEs) available.

9. Design

One of the main objectives of the project, as outlined in the Terms of Reference
(TOR) document available in Appendix A, was to combine the functionality of an
Integrated Development Environment (IDE) with the three Implementation phase
practices of the Microsoft Security Development Lifecycle (SDL). The three
Microsoft SDL practices of the Implementation phase are:

• Microsoft SDL practice 8; Use Approved Tools.
• Microsoft SDL practice 9; Deprecate Unsafe Functions.
• Microsoft SDL practice 10; Perform Static Analysis.

Practice 8 of the Microsoft SDL, the use of approved tools, cannot be
implemented into the product. As briefly discussed in the previous Analysis
section, this practice requires that the development team define a list of tools that
should be used within their software development. The list of tools each
development team defines will differ depending on the software they are
developing and the technologies they use. Practice 8 is there for not a practice that
can be implemented into the author’s product.

The product will consist of a Static Code Analysis engine and deprecated function
string matching built into an Integrated Development Environment (IDE). This
will mean that practice 9 and practice 10 of the Microsoft SDL will be
implemented into an IDE.

9.1. Software Development Life Cycle (SDLC)

The Software Development Life Cycle (SDLC) that will be used is the Waterfall
SDLC as described earlier in the paper. Development will be split into phases
such as requirements, design, implementation, verification and finally
maintenance. The splitting of phases into clearly defined sections will help
organise the development of the product.

9.2. Integrated Development Environment (IDE)

The IDE GUI will be designed to conform to the design of traditional IDEs to
ensure developer familiarity. Figure 9-1 shows the GUI of the Cloud9 web based
IDE and Figure 9-2 shows the GUI of the Eclipse desktop based IDE, both
representing traditional IDE GUI design. Taking into account the design of the
Cloud9 and Eclipse IDEs, the product will have a source code editing area where
the user can write, edit and/or paste their source code, line numbering, syntax
highlighting, a menu and an information panel.

	

Ryan	 Dewhurst	 32	

Figure 9-1 – Cloud9 Web IDE GUI.

Figure 9-2 – Eclipse Desktop IDE GUI.

The product could be implemented as a desktop application or a web based
application. The author has some experience in creating web applications. Web
based applications also offer some advantages over desktop applications.

These advantages include but are not limited to:

• No user installation: Web based applications do not require installation.

• No need to support varied user environments: Web based applications do
not rely on the Operating System (OS) type, any OS can be used to use
web applications.

	

Ryan	 Dewhurst	 33	

• Minimal user system resources used: No files will be needed to be on the

users file system. No additional software packages to support the
application will be run.

• Easier to push updates: Updates can be applied to the central web
application, making the updates instant and no need for users to
downloaded updated versions.

• Accessible anywhere with an Internet connection: As a minimum, web
based applications only require a web browser and an Internet connection
to be used.

The disadvantages of having a web based application:

• The user may need a modern browser: Some older web browsers may not
have the required functionality that is used within the web application.

• Not all browsers may be supported: Not all web browsers behave in the
same way, this may affect support for some browsers due to the time
needed to accommodate for them.

• An Internet connection is needed: Web based applications require an
Internet connection if the application relies on the server for some of its
processing.

The disadvantages may be less of a problem when taking the target audience,
software developers, into account. It would be expected that a software developer
has an Internet connection and use a modern web browser.

The whole user experience will take place on one page without the need for any
reloading of the page. This will be achieved with JavaScript, AJAX and HTML5
techniques. The code editor will load with some sample PHP source code, with a
brief explanation of what the product does; this will ensure the purpose of the
application is made clear and the user can test how the application works with
little effort.

There will be three main components to the IDE GUI, the main menu, the code
editor and the information panel.

1. Main Menu

The main menu will sit at the very top of the GUI window and will consist of
a number of different clickable buttons. The menu will consist of the
following buttons:

• Run – start static analysis
• Clear – clear the code editor
• Help – help/usage information

	

Ryan	 Dewhurst	 34	

• About – concept/contact information

2. Code Editor

The Code Editor will sit underneath the menu, expanding all the way to
the right and left hand side window edges. The Code Editor should be as
large as possible as this is where the developer will be writing their code.
The Code Editor should have line numbers and possibly syntax
highlighting. This design will replicate the code editing areas of the
previously seen IDEs.

The Code Editor is a source of user input and all data will need to be
sanitised without interfering with the users raw code.

3. Information Panel

The Information Panel will be where the Static Code Analysis information
and other general IDE information will be displayed to the user. The Static
Code Analysis results will have the line number of the vulnerability
identified, the type of vulnerability, some basic remediation advice and a
link to where the user can obtain further information. The Information
Panel will be located underneath the Code Editor.

The Information panel is a source of output; all data output is needed to be
properly sanitised.

9.3. Static Code Analysis (SCA)

The Static Code Analysis engine will consist of some of the Static Code Analysis
techniques discussed earlier in the paper. The following three techniques will be
used:

• Lexical Analysis: will be used to turn the users raw source code into
tokens.

• Taint Analysis: will be used to analyse tokens for tainted variables.

• String Matching: will be used to identify deprecated functions in the users

source code.

The raw source code will first go through a Lexical Analysis engine and then
through Taint Analysis to detect any potential vulnerabilities. Sting matching will
then used on the raw source code to detect the use of any deprecated functions.

The following diagram is a visual representation of the Static Code Analysis data
flow and software architecture. Each rectangular box represents a piece of logical
functionality with each arrow representing the flow of data.

	

Ryan	 Dewhurst	 35	

Figure 9-3 - Static Code Analysis data and logic flow diagram.

Each logical operation depicted in the above diagram is explained below:

• The Code Editor: will consist of an area on the screen where the user can
write, edit, copy and paste their source code. Other code viewing features
such as line numbering and syntax highlighting will be implemented to aid
the user.

• The Raw Code: this is the source code extracted from the Code Editor

without any changes made to it, the users source code will be sent to the
server for tokenisation by the Lexical Analysis engine.

• Lexical Analysis: here the raw source code will be passed through a

Lexical Analysis algorithm, turning raw code into token/value pairs for
later analysis.

• Taint Analysis: once the raw source code is tokenised, Taint Analysis will

take place. Here, vulnerabilities are identified from sources of input that
are followed through the code into potentially vulnerable functions (sinks).

• String Matching: taking the raw source code as input, string matching

will attempt to match deprecated function names that are listed in
Appendix B.

• Results: here the results from the String Matching and the Taint Analysis

will be correlated and displayed to the user in the IDE Information Panel.

9.4. UML Use Case Diagram

The Unified Modelling Language (UML) is a modelling language standard that
helps in the design and helps to visualise different parts of a software application
or business process. A Use Case Diagram is one of the five UML diagrams that
model the behaviour of a system (Booch, 1998). The Use Case Diagram below
represents the product to be implemented.

	

Ryan	 Dewhurst	 36	

Figure 9-4 – UML Use Case Diagram.

9.5. Use Case Description

The product’s main functionality, the running of the Static Code Analysis, is
triggered when the user clicks on the Run button. Below is a Use Case Description
of the codeAnalysis() class that contains the main Static Code Analysis logic,
please refer to Figure 9-5 for the product’s full class diagram.

Use	 Case	 codeAnalysis()	
Summary	 This	 class	 contains	 the	 main	 Static	 Code	 Analysis	

logic.	 It	 iterates	 over	 tokens,	 assigning	 taint	
markers	 and	 propagating	 them.	

Actor	 The	 user	
Trigger	 This	 is	 triggered	 when	 the	 user	 clicks	 on	 the	 Run	

button,	 after	 Lexical	 Analysis	 has	 taken	 place.	

Primary	 Scenario	 1.	 User	 loads	 application.	
	
2.	 User	 presses	 Run	 button.	
	
3.	 Raw	 source	 code	 is	 sent	 to	 server	 for	 Lexical	
Analysis.	
	
4.	 Taint	 Analysis	 takes	 place.	
	
5.	 Results	 are	 displayed	 to	 the	 user.	

	

Ryan	 Dewhurst	 37	

Alternative	 Scenario	 1.	 User	 loads	 application.	
	
2.	 User	 presses	 Run	 button.	
	
3.	 No	 source	 code	 to	 be	 analysed.	
	
4.	 No	 Taint	 Analysis	 takes	 place.	
	
5.	 No	 results	 are	 displayed	 to	 the	 user.	

Exceptional	 Scenario	 None.	
Pre-‐Conditions	 The	 product	 fully	 loaded	 in	 the	 user's	 web	

browser.	
Post-‐Conditions	 The	 Information	 Panel	 is	 populated	 by	 results,	 if	

any.	
Assumptions	 There	 is	 source	 code	 to	 analyse.	

Table 9-1 – codeAnalysis() Use Case Description.

9.6. Pseudo Code

Pseudo code is the simplification of software programs and algorithms that allows
the programmer to concentrate on the logical aspects and not worry about the
source code syntax.

1. User loads product in their browser.
a. If browser supports localstorage.

i. Check if anything is stored.
ii. Load anything that is stored into the Code Editor.

2. User clicks the Run button.
a. Send Code Editor source code to server.

i. Server tokenises code and returns it.
b. Returned tokens are put through Taint Analysis.

i. For every token:
ii. If the token is an assignment variable:

1. Check if the token is a previously tainted variable
and check if it has been re-assigned.

a. If a tainted variable has been re-assigned,
remove the tainted variable from the
‘tainted’ array.

2. Check if the token is a previously tainted variable
and check if it is being copied or concatenated onto
another variable.

a. If the tainted variable has been copied or
concatenated, place the variable it was
copied into in to the ‘tainted’ array.

3. Check if the variables value contains any sources of
user input.

a. If it does, put the variable into the ‘tainted’
array.

	

Ryan	 Dewhurst	 38	

iii. For every other token:
1. Check if token is a sink.

a. Does the sink’s parameters contain sources?
i. If yes, vulnerability found.

b. Does the sink’s parameters contain any
tainted variables?

i. If yes, vulnerability found.
c. Display the results to the user.

3. User clicks Clear button.
a. Set the Code Editor value to blank.
b. Set the Information Panel value to blank.

4. User clicks Help button.
a. Displays help information in Information Panel.

5. User clicks About button.
a. Displays about information in Information Panel.

6. User closes window.
a. Save Code Editor contents to localstorage if the browser supports

it.

9.7. Class Diagram

Having designed the logic flow diagram, the use case diagram and the pseudo
code a class diagram has been designed, although classes may change throughout
the implementation of the product.

	

Ryan	 Dewhurst	 39	

Figure 9-5 – Class Diagram design.

10. Implementation

This section of the paper will describe the implementation of the software product,
the writing of the source code, any problems faced and any problems overcome.

Within the implementation section there will be three specific problems discussed:

• The Code Editor
• Deprecated Functions
• Static Code Analysis

	

Ryan	 Dewhurst	 40	

10.1. The Code Editor

The code editor would consist of a rectangular box where the user could copy,
paste and edit their source code. The code editor would have to be easily
manipulated in order to be able to implement features such as syntax highlighting,
source code parsing and source code indentation.

HTML TextArea

The first idea was to use the textarea HTML tag to create the code editor. The
textarea HTML tag would allow the author to easily create a code editor that
would allow the user to edit their source code. The HTML textarea tag represents
a multi line text field (Berners-Lee & Connolly, 1995).

While attempting to manipulate the HTML textarea with JavaScript, it proved
increasingly difficult to do effectively. Extracting the content and counting the
number of newline characters (\n) would allow the calculation of the total number
of lines within the textarea.

Example:

<textarea rows="2" cols="20>
This is the content of the textarea!\n
This is the second line.\n
This is the third line.\n
</textarea>

We can see from the example above that each line is separated by a newline
character (\n), by counting these we can figure out the total amount of lines within
the textarea.

The next challenge was to find out what line number the user was currently
editing. This information could be used to only parse that particular line every
time the user made any changes, rather than parsing the whole source code every
time.

The first attempt at working out the current line the user was editing seemed to
work as expected. The basic principle was to detect the user’s keyboard presses
and keep track of where the user was moving the cursor within the textarea.

For example, if the user’s cursor started on line 1, if the user pressed the down key
on their keyboard we could guess that the cursor was now on line 2. This worked
fine when the user did not leave the code editor area, for example, not clicking
outside of the code editor window. When the user would do this, however, there
was no way to know where the user inserted the cursor when they clicked back in
the code editor area and so we would lose track of the current line number the user
was editing.

Pseudo code example of the first implementation of cursor tracking:

	

Ryan	 Dewhurst	 41	

1. If the user presses ‘Enter’:
a. Add 1 to the current line count.

2. If the user presses ‘Backspace’:
a. If the line count is more than the total line

count:
i. Minus 1 from the current line count.

3. If the user presses ‘Up’:
a. If the total line count is more than 1 and the

current line count is more than 1:
i. Minus 1 from the current line count.

4. If the user presses ‘Down’:
a. If the total line count is more than 1 and the

current line count is less than the total line
count:

i. Add 1 to the current line count.
5. If the user presses any other key:

a. Do nothing.

The textarea HTML tag has a ‘selectionStart’ attribute within the browser
Document Object Model (DOM). This could have been used to keep track of the
cursor’s position within the textarea. However, at this point the author decided to
see if there might be a more developer friendly way to create an editable code area
within a browser as using the textarea HTML tag was becoming increasingly
complicated to do simple tasks.

HTML DIV

The div HTML tag allows developers to define sections of a web page; it was the
third most common HTML tag on the web in a 2003 study and is supported by all
major browsers (Craven, 2003). Developers use div tags to split their web
applications into sections to allow them to assign different attributes to different
parts of a page, such as colours, borders or text size.

The problem with using div HTML tags is that they are not normally editable in
HTML version 4 like a textarea is. A user cannot normally manipulate the
contents of a div, however, after some research it was found that there was a new
HTML version 5 attribute that could be assigned to a div to make it editable, the
contenteditable attribute allows users to edit the content of div tags (Pilgrim,
2009).

After some time testing the suitability of using contenteditable HTML div tags for
the code editor it was decided that too much time was being spent trying to create
a code editor and it may be best to use an existing solution.

Existing Solutions

There are various open source web based code editors available. A popular
solution is a JavaScript solution called TinyMCE that is used by the popular
WordPress blogging platform (TinyMCE, 2012).

	

Ryan	 Dewhurst	 42	

Another option could have been to use the Ace open source web based IDE
originally developed by the Mozilla Foundation. The commercial cloud9 web
based IDE uses Ace as part of their offering (Ace, 2012).

Both of the above solutions and others seemed to be too feature rich and complex
to manipulate. They would have needed some time investment in researching how
to properly use and edit them.

Another solution was an open source IDE called the Web Installed Open
Development Environment (WIODE). After conducting a brief security audit on
WIODE it was found to contain many security vulnerabilities. This would not
have been acceptable for the software product. The authors of WIODE were
informed of these security vulnerabilities and they have since been fixed
(WIODE, 2011).

Finally, the author came across a project called CoreMirror. CodeMirror offered
just a code editing area with syntax highlighting and code indentation.
CodeMirror had great documentation and an active user base. The CodeMirror
source code seemed to be very developer friendly that offered an API that allowed
developers to easily work with it (CodeMirror, 2012).

Figure 10-1 – CodeMirror JavaScript code editor.

Final Solution

CodeMirror was installed and with help from its documentation the author was
able to quickly start using and manipulating it through its API. CodeMirror is a
JavaScript application, which meant that no server resources would be used to run
it.

10.2. Deprecated Functions

One of the goals of this project was to identify and warn the user about the use of
deprecated and/or unsafe functions (Microsoft SDL practice 9; Deprecate Unsafe
Functions). As CodeMirror already does syntax highlighting, the idea was to use
this existing functionality in order to highlight the deprecated functions within the
code editor. CodeMirror parses the code editor anytime the user changes the code
editor, for example, when the user presses a button or clicks the mouse.

CodeMirror supports syntax highlighting for many different programming
languages. In CodeMirror each programming language is called a ‘mode’, every

	

Ryan	 Dewhurst	 43	

mode has its own folder and a file that contains the functionality in order to carry
out the syntax parsing, as each programming language syntax is different.

The CodeMirror PHP mode relies on functionality from other modes, such as the
XML, CSS and HTML modes. This is so that the code editor can highlight other
common programming language syntax that is often mixed within PHP. The C
mode is used within the PHP mode to borrow functionality from the C syntax
parsing functionality as PHP uses C like syntax, this looks to be a design decision
to maximise code reuse.

CodeMirror parses the code editor’s contents character by character, looking for
particular patterns. If for example a dollar ($) character is seen, this is an
indication that the following characters up until a white space or semi-colon (;) is
a variable name. If a variable name is found, the variable name is wrapped in a
HTML span tag with a class name of ‘cm-variable-2’. The parsed code editor
content that now contains span HTML tags with class names around certain
syntax is then replaced with the original code editor contents. This then allows for
CSS styling to be applied to the HTML span tags via its class name. One example
would be to colour all span HTML tags contents that have the ‘variable’ class to
purple.

Pre-highlighted source code:

$name = “Ryan”;

Post-highlighted source code:

Figure 10-2 – CodeMirror post highlighted source code.

CodeMirror already highlights a selection of function names within the PHP
mode. These functions are kept in an array within the PHP mode file.

keywords: keywords("abstract and array as break case
catch cfunction class clone const continue declare
default do else elseif enddeclare endfor endforeach
endif endswitch endwhile extends final for foreach
function global goto if implements interface instanceof
namespace new or private protected public static switch
throw try use var while xor return die echo empty exit
eval include include_once isset list require
require_once print unset")

	

Ryan	 Dewhurst	 44	

The above keywords are highlighted in purple by a CSS attribute. To highlight
deprecated functions, a new array was added to the CodeMirror PHP mode file
that contained the PHP deprecated function names.

deprecated: keywords("call_user_method
call_user_method_array define_syslog_variables dl ereg
ereg_replace eregi eregi_replace
set_magic_quotes_runtime session_register
session_unregister session_is_register
set_socket_blocking split spliti sql_regcase
mysql_db_query mysql_escape_string")

The CodeMirror C mode then had to be slightly modified to account for the new
‘deprecated’ array.

The author added the following to the mode/clike.js file on line 4:

deprecated = parserConfig.deprecated || {},

And in the same file the author added the following to line 50 (line 51 after adding
the line above):

if (deprecated.propertyIsEnumerable(cur)) {
 if (blockKeywords.propertyIsEnumerable(cur))
 curPunc = "newstatement";
 return "deprecated"; // Class to apply
}

The above would return any PHP function listed in the deprecated array within
span HTML tags with a class of “deprecated”. All that was left to do was to create
a CSS rule to change the colour of all HTML tags with the “deprecated” class to
red.

Any deprecated PHP function typed into our code editor will now be coloured red
as seen in 10-3, an indication that it is a deprecated function. To detect that any
deprecated functions has been found, so that this information could be used later
to further warn the user, it is just a simple case of using JavaScript to search the
DOM for HTML tags with the “deprecated” class.

Figure 10-3 – Split deprecated function shown highlighted in red.

The following code is an example of using the jQuery JavaScript library to detect
any deprecated functions within the DOM.

	

Ryan	 Dewhurst	 45	

if ($(".CodeMirror-lines .cm-deprecated").length > 0) {
 // deprecated function detected
}

If any deprecated functions are detected, the user is warned within the Information
Panel as seen in Figure 10-4.

Figure 10-4 – Information Panel showing deprecated function warning.

10.3. Static Code Analysis

Source Code Parsing

There were two ways in which Static Code Analysis could have been
implemented into the product. The first would have been to use CodeMirror’s own
parser to parse the code editor contents. Potential vulnerabilities could then be
coloured much like the deprecated functions. To do this a new CodeMirror mode
would have had to be created, although CodeMirror provided excellent
documentation, it was decided that the Static Code Analysis engine should be
done separately and the CodeMirror parser would not be used.

This decision was made because the author did not want to rely too heavily on
third party software. Using third party software could limit flexibility in
implementing new functionality in future.

Taint Analysis Data

Once it was decided to do the Static Code Analysis separate from CodeMirror,
Taint Analysis data was needed. The data needed to carry out Taint Analysis was
discussed within the Analysis section of this report.

The Taint Analysis data needed consists of three arrays:

• Sources – sources of tainted data.
• Securing – functions that secure or insecure variables.
• Sinks – functions where tainted data can cause vulnerabilities.

Gathering the PHP sources, securing functions and sinks would entail a lot of time
investment in testing and sourcing this information from the PHP documentation.

An email was sent to the author of another PHP Static Code Analysis tool called
RIPS, asking for the permission to use the three arrays of data (sources, securing
and sinks) within the software product. The author of RIPS, Johannes Dahse,
replied with his agreement.

	

Ryan	 Dewhurst	 46	

If the Taint Analysis data was sourced independently, it would be ignoring an
already established rich resource of information and possibly introduce false
positives and false negatives by accidently missing out useful data.

The Taint Analysis data was transferred over from the RIPS PHP Static Code
Analysis tool to create three JavaScript objects called ‘sources’, ‘securing’ and
‘sinks’. These three objects act like databases and are kept in their own file
separate from the rest of the code base so that accidental changes are kept to a
minimum.

The following table outlines and describes each object’s properties:

Object	 Properties	 Property	 Description	
sources.userInput	 sources	 of	 user	 supplied	 input	

sources.serverParams	 	 PHP	 $_SERVER	 variable	 parameters	
sources.fileInput	 sources	 of	 file	 input	
sources.dbInput	 sources	 of	 database	 input	

sources.otherInput	 sources	 of	 other	 input	
securing.securesAll	 	 secures	 against	 all	 vulnerabilities	
securing.insecuring	 insecures	 a	 previously	 secured	 variable	

securing.xss	 secures	 against	 XSS	 vulnerabilities	
securing.sqlInjection	 secures	 against	 SQL	 Injection	 vulnerabilities	

securing.cmdExec	 	 secures	 against	 Command	 Execution	
vulnerabilities	

securing.xpathInjection	 secures	 against	 XPath	 Injection	 vulnerabilities	
sinks.xss	 XSS	 sinks	

sinks.httpHeader	 HTTP	 Header	 sinks	
sinks.codeEval	 Code	 Evaluation	 sinks	
sinks.fileInclude	 File	 Inclusion	 sinks	
sinks.fileRead	 File	 Read	 sinks	
sinks.cmdExec	 Command	 Execution	 sinks	

sinks.sqlInjection	 SQL	 Injection	 sinks	
sinks.xpathInjection	 Xpath	 Injection	 sinks	
sinks.ldapInjection	 LDAP	 Injection	 sinks	

sinks.headerInjection	 Header	 Injection	 sinks	
Table 10-1 – The product’s source, securing & sinks object’s properties.

It was decided to trigger the Static Code Analysis when a button was pressed
rather than attempting to analyse the code ‘on the fly’ as the user typed in their
code. This would minimise the complexity of parsing the user’s source code and
allow for more time to be spent implementing the Static Code Analysis engine
itself.

Lexical Analysis

Lexical Analysis is used to tokenise the raw source code, this allows for greater
accuracy when conducting the Taint Analysis later on as the user’s source code is

	

Ryan	 Dewhurst	 47	

split into separate distinct tokens. It would have been desirable to do the Lexical
Analysis in the user’s browser with JavaScript. This would mean that no source
code would have to be sent to the server, minimising server resources and
allowing for the application to be used offline.

Another option was to use PHP’s built in Lexical Analysis engine; this would
bring many advantages over implementing a new solution. The PHP Interpreter
uses its own Lexical Analysis engine to interpret PHP source code. Although
using PHP’s own Lexical Analysis engine would mean sending the user’s source
code to the server, this method would create better Lexical Analysis results.

The user’s raw PHP source code is sent to the server via the use of AJAX for
tokenisation by the PHP Lexical Analysis engine. Before the tokenised code is
returned to the client, each token name/value pair is concatenated to a string.

PHP’s Lexical Analysis engine does not assign tokens to some characters, for
easier parsing on the client, any characters without tokens are given the
‘T_NOTOKEN’ token. As well as adding tokens, all PHP comment tokens are
removed, as this data is useless for Taint Analysis because source code comments
cannot contain vulnerabilities.

An example token after being parsed by the server looks like the following string:

“T_OPEN_TAG<:::><?php<:::>1”

The first element, T_OPEN_TAG, is our token name. The second element, <?php,
is our token value. The third element, 1, is the line number the token originated
from. The ‘<:::>’ characters are used as unique separators for the different token
elements. These characters were unique enough to be used as separators as this
sequence of characters is not valid PHP syntax. As all PHP comments are first
removed this ensures they do not interfere with our unique separator. If in future
the chosen separator shows to be a problem, it can be easily changed to something
else.

Using JSON to return the tokenised code was considered and some experiments
using JSON were carried out. Returning the tokenised data in a format the author
expected was hard to control, mainly due to the author’s lack of experience in
using the technology, and so the custom string method was adopted. If the author
had more experience in using JSON, it may have been a viable solution and would
negate the need for using custom token element separators.

Taint Analysis

The basic steps implemented to carry out the Taint Analysis are as follows:

1. Assign taint markers to sources of user input.
2. Propagate markers when string is copied or concatenated.
3. Check if string has been sanitised or un-sanitised.
4. Report vulnerability when tainted string passed to sink un-sanitised.

	

Ryan	 Dewhurst	 48	

Taint Analysis is carried out within the codeAnalysis() function in the
‘js/devbug.js’ file. The codeAnalysis function takes the tokenised code as string
input. The token string is split by the newline character (\n) to create an array of
individual tokens. Each element (token) of the array is then iterated over in a loop.

To find sources of direct user input the token name is checked to see if it is equal
to ‘T_VARIABLE’. Variables are the only way that tokens can contain direct user
supplied input; all other tokens are ignored at this stage for the above reason.

If the variable value contains any elements from any of the ‘sources’ JavaScript
object the variable name is added to a ‘tainted’ array.

During the token loop, if a sensitive sink is come across, the functions parameters
are checked to see if they match any variables in our ‘tainted’ array. If they do, the
variables name, the sinks name, the type of sink and the line number is added to
an output variable that is later output to the Information Panel along with a
hyperlink to further information about the specific vulnerability. The following
screenshot shows the output in the Information Panel:

Figure 10-5 – Information Panel output.

During the above process the tainted variables are traced to see if they assigned to
other variables. For example:

1. $tainted = $_GET[‘tainted’];
2. $another_variable = “string” . $tainted;

In the example above, both the $tainted variable and the $another_variable are
sources of user supplied input because the $tainted variable is used in the value of
$another_variable and thus both variables are marked as being tainted.

In another scenario, a variable may get re-assigned later on in the code:

1. $tainted = $_GET[‘tainted’];
2. $tainted = “a string”;

In the example above, $tainted is tainted by user supplied input on line 1,
however, $tainted is then re-assigned to a string on line 2, making $tainted no
longer tainted by user supplied input past line 2.

The Pseudo Code for the above explanation can be found within the design
documentation.

11. Testing

	

Ryan	 Dewhurst	 49	

In this section the product produced will be tested to prove that it is a viable and
robust piece of software. In total four distinct top-level tests were chosen.

1. Static Code Analysis: Does the Static Code Analysis engine detect
vulnerabilities? Are there any false positives or false negatives?

2. Web Accessibility: Does the product comply with web accessibility
standards? Making it accessible to as many users as possible.

3. Security: Does the product contain any vulnerabilities?

4. Usability & Compatibility: Does the application’s functionality work as

expected? Does the application’s functionality work in the most popular
web browsers?

11.1 Test 1: Static Code Analysis

In order to test the software product’s ability at detecting potential PHP security
vulnerabilities via Static Code Analysis, a web application developed by the final
year BSc (Hons) Web Design & Development students from Northumbria
University was used. This web application was provided to the author as part of
another university module’s assignment.

The RIPS version 0.51 PHP Static Code Analysis tool that the product used the
sources, sinks and securing functions data from was run against the student’s
entire web application. In total RIPS detected 206 vulnerabilities.

The following table is a summary of RIPS’s results:

Vulnerability	 Type	 Amount	 Detected	
Command Execution: 4
File Disclosure: 5
File Manipulation: 16
SQL Injection: 42
Cross-Site Scripting: 3
HTTP Response Splitting: 135
Possible Flow Control: 1
Sum: 206

Table 11-1 – Table showing RIPS’s results.

Test 1.1

The first PHP file scanned by RIPS was ‘admin/categories.php’, RIPS reported
four ‘HTTP Response Splitting’ vulnerabilities within this file. The author’s
product reported one ‘HTTP Response Splitting’ vulnerability and one ‘PHP File
Inclusion’ vulnerability.

	

Ryan	 Dewhurst	 50	

One thing that RIPS does do and that the author’s product does not do is to
include other PHP source code within a PHP file when called by using the
‘include’ or ‘require’ PHP functions.

For example, if we take the following piece of code:

1. <?php
2.
3. include(‘file.php’);
4.
5. ?>

RIPS will analyse line 3 as well as all of the PHP source code contained within
the included file, file.php. The author’s product only has the capability to analyse
one file or code snippet at a time by its very design.

Because of the above functionality within RIPS, it has included another file
‘functions/functions_categories.php’ within the scanned file of
‘admin/categories.php’. The actual sinks that RIPS detected are not in the
originally scanned file, however, are instead located within the included file of
‘functions/functions_categories.php’.

RIPS in fact detected no vulnerabilities within the source code of the originally
scanned file whereas the author’s product detected two.

The two vulnerabilities detected by the author’s product all occurred on one line; a
source of user input directly inserted into the parameter of a sensitive sink.

Vulnerability 1: PHP File Inclusion.

4.include($_SESSION['link2'].'functions/functions_categ
ories.php');

Vulnerability 2: HTTP Response Splitting.

47.header('Location:'.$_SESSION['link'].'error.php?msg=
'.$value);

In both of the above lines of code, the $_SESSION[‘link’] variable is placed
within sensitive sinks, include() and header(), causing the author’s product to
report the vulnerabilities. When migrating the ‘sources’ data during the
implementation over from RIPS, the author noticed that the $_SESSION global
variable was missing from RIPS’s ‘sources’ data and so it was added to the
author’s product.

Adding the $_SESSION PHP global variable to the sources list in the author’s
product was a mistake. After some testing it is apparent that PHP $_SESSION
variables can be set by a user via editing their cookies, however, instead of being
treated as a ‘source’ it should be treated as any other variable would be treated. It

	

Ryan	 Dewhurst	 51	

should only become a source when it is assigned a source. The following is an
example of when a $_SESSION variable can become tainted:

1. $_SESSION[‘tainted’] = $_GET[‘tainted’];

The author’s product produced two false positives because the author added a
source that was in fact not a source of user-supplied input.

The $_SESSION PHP global variable has since been removed from the author’s
product’s source list, fixing the above False Positives. Running the product now
shows zero vulnerabilities in the ‘admin/categories.php’ file as did RIPS.

Test 1.2

The author’s product was run against the file that RIPS included,
‘functions/functions_categories.php’. The author’s product returned nine ‘Header
Injection’ vulnerabilities, whereas RIPS returned four ‘Header Injection’
Vulnerabilities. The author’s product claimed to have identified five more
‘Header Injection’ vulnerabilities than RIPS had.

This indicates that either RIPS or the product is causing either False Negative or
False Positive results.

RIPS’s four ‘Header Injection’ vulnerabilities were found on the following lines
of code, 93, 259, 386 and 391. As well as identifying the vulnerabilities on those
lines, the product identified vulnerabilities on lines 90, 116, 256, 282 and 383.

A simplified version of the source code between lines 82 and 98 of the original
file looks like the following example. According to RIPS one vulnerability is
present between those lines, on line 90 of the original file, according to the
author’s product there are two, on lines 90 and 93 of the original file.

1. if (isset($_REQUEST[‘id’]) &&isset($_REQUEST[‘name’])) {
2.
3. $id = $_REQUEST[‘id’]; // source of user input
4. $name = $_REQUEST[‘name’]; // source of user input
5.
6. if (strlen($name) < 40) { // $name less than 40 chars?
7.
8. $value = $name;
9. header(‘Location: somewhere/’ . $value); // sink
10.
11. } else {
12.
13. header(‘Location: somewhereelse/’ . $name); // sink
14.
15. }
16.
17. } // end if statement

On line 1, the code looks to see if the $_REQUEST[‘id’] and
$_REQUEST[‘name’] variables have been set. If they have been previously set,

	

Ryan	 Dewhurst	 52	

the code re-assigns both variables to new variables, $id and $name on lines 3 and
4. These two variables have now also become the source of user-supplied input.
The code then checks the length of the $name variable via the PHP strlen()
function on line 6, if the $name variable contains less than 40 characters, $name is
re-assigned to $value on line 8 and then $value is placed in a sensitive sink,
header(), on line 9. If, however, $name is equal to or more than 40 characters
$name is placed directly into a sink, header(), on line 13.

The above example highlights another difference between RIPS and the product.
RIPS carries out Data Flow Analysis whereas the author’s product does not.

On this occasion the author’s product correctly detected five more vulnerabilities
within the PHP file than RIPS did. RIPS version 0.51 wrongly assumes that
checking if a string has less than 40 characters is some kind of securing
mechanism, when in fact it is not.

11.2. Test 2: Web Accessibility

The product produced needs to be accessible to as many people as possible.
People with impaired vision and/or other disabilities need to be accounted for.

The World Wide Web Consortium (W3C) is an international standards
organisation that creates web content accessibility guidelines.

In total there are 14 guides the W3C recommend (W3C, 1999).

1. Provide equivalent alternatives to auditory and visual content.
2. Don’t rely on color alone.
3. Use markup and style sheets and do so properly.
4. Clarify natural language usage.
5. Create tables that transform gracefully.
6. Ensure that pages featuring new technologies transform gracefully.
7. Ensure user control of time-sensitive content changes.
8. Ensure direct accessibility of embedded user interfaces.
9. Design for device-independence.
10. Use interim solutions.
11. Use W3C technologies and guidelines.
12. Provide context and orientation information.
13. Provide clear navigation mechanisms.
14. Ensure that documents are clear and simple.

(W3C, 1999)

To test the author’s product for accessibility the author used the above guidelines
in a checklist format to ensure the author conformed as much as possible and
where applicable. Where the product was not conforming to the W3C accessibility
guidelines changes were made where applicable. The checklist used can be found
in Appendix D.

Issue 1

	

Ryan	 Dewhurst	 53	

Whilst going through the checklist it was apparent that the HTML markup was not
adhering to accessibility guidelines. To remedy this, ‘alt’ and ‘title’ HTML
attributes were added to HTML tags where appropriate. These attributes show
alternative text descriptions when needed, for example, for automated screen
readers or when images fail to load or are difficult to see visually.

Issue 2

The default colouring of the author’s product was a light grey background with
white boxes for the Code Editor and the Information Panel. It became apparent
that these colours might not be visually distinct enough for visually impaired
users. It could have been possible to change the default colours however a better
option was to make the applications theme selectable. Using CSS and JavaScript a
selection box was implemented that gives the user an additional theme option. The
additional theme was named ‘Black and White’ and turned the applications
colours to black and white as well as making fonts larger and disabling syntax
highlighting.

Issue 3

If the HTML markup used in the application had any mistakes it could make the
application difficult for screen reading software or browsers to render properly.
The W3C Markup Validation Service is an online service that allows you to scan
web applications for any HTML errors (W3C, 2012). When the W3C Markup
Validator was fist run against the author’s product, it returned 28 errors and 50
warnings within the HTML markup. The main reasons for this were omitting the
‘doctype’ HTML tag, not specifying a language for the application and using
‘title’ attributes where ‘alt’ attributes should have been used. After implementing
and fixing the errors returned by the W3C Markup validator, no further errors or
warnings were returned.

Summary

As seen in the checklist in Appendix D, before testing, the application was only
compliant with 6 of the W3C’s accessibility guidelines. After testing and
implementation of changes, the application is now compliant with 11 of the
W3C’s 14 guidelines. Two of the guidelines, five and seven were not applicable.

Another online service called the Web Accessibility Checker was used to check
the applications compliance to the W3C’s accessibility guidelines (AChecker,
2012). The tool responded with no errors or warnings as to the accessibility of the
application. The full report from this service can be found in Appendix E.

11.3. Test 3: Application Security

The product produced is a web application that relies on the JavaScript
programming language. By using JavaScript it may be possible that user
controllable input reaches a sensitive sink within the application itself causing
DOM based Cross-Site Scripting (XSS) vulnerabilities.

	

Ryan	 Dewhurst	 54	

Apart from the client side JavaScript, the users raw source code is sent to the
server for tokenisation. The user’s raw code is a source of tainted data and should
not be trusted.

A number of different tools were used to assess the products own security after
implementation. It should be noted that the attack surface of the application is
low, with only one source of user input.

DOMinator - The DOMinator tool designed to detect DOM based XSS (Paola,
2011) gave no warnings meaning that it detected no DOM based XSS.

Arachni – The dynamic web application security scanner that checks for various
web application security vulnerabilities (Laskos, 2012) returned no issues related
to the application’s security.

RIPS – PHP Static Code Analysis tool that attempts to detect various PHP related
vulnerabilities using a white box approach detected no server side PHP
vulnerabilities within the product.

Figure 11-1 – RIPS scan output.

11.4. Test 4: Usability & Compatibility Inspection

During this test a checklist was produced to inspect the usability and browser
compatibility of the author’s product. This inspection will ensure that all the
components of the user interface work as expected and work with some of the
most common web browsers.

The browsers used to test the application were:

• Mozilla Firefox version 8.0.1
• Google Chrome version 17.0.963.65
• Apple Safari version 5.1.2
• Microsoft Internet Explorer version 8

	

Ryan	 Dewhurst	 55	

The complete checklist containing all of the results of the test can be found in
Appendix F. The following actions were tested: page load, run button, clear
button, help button, about button, theme selection and unload of the page.

The following checklist was produced for the Mozilla Firefox version 8.0.1
browser, checklists for the other browsers can be found in Appendix F:

Action	 Expected	 Re-‐action	 Actual	 Re-‐action	 Pass	

Load	 Page	
Page	 loads	 as	 expected,	

user	 interface	 as	 expected,	
loads	 in	 a	 timely	 manner.	

Page	 loads	 as	 expected,	
user	 interface	 as	

expected,	 loads	 in	 a	
timely	 manner.	

Yes	

Run	 button	
pressed	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Yes	

Clear	 button	
pressed	

Code	 Editor,	 Information	
Panel	 and	 the	 browsers	
localstorage	 is	 cleared.	

Code	 Editor	 and	 the	
browsers	 localstorage	 is	
cleared.	 Information	
Panel	 is	 not	 cleared.	

No	

Help	 button	
pressed	

Help	 information	 displayed	
in	 the	 Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Help	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

About	 button	
pressed	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

Theme	
selection	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Yes	

Unload	 Page	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Yes	

Table 11-2 – Table showing the usability test results from the Firefox browser.

A common occurrence across all browsers was that the Information Panel was not
cleared of its contents when the Clear button was pressed.

Apart from the Information Panel not clearing, Firefox, Chrome and Safari passed
all of the tests successfully. Internet Explorer however failed during many of the
tests. The theme selection box was out of place making the whole user interface
distorted and hardly usable. When the run button was pressed, the expected action
is that the contents of the Code Editor are analysed and then the results are

	

Ryan	 Dewhurst	 56	

displayed in the Information Panel, this did not happen. When the run button was
pressed, nothing happened. The rest of the buttons seemed to be working as
expected.

Because of the faults when using the Internet Explorer browser, the browser will
be deemed as unsupported until more time is available to attempt to fix the
problems encountered. A short-term solution will be to display a warning when
the user is running Internet Explorer informing them that it is not supported.

11.5. Testing summary

Before testing was carried out it was assumed that the product was robust and fit
for its purpose. What testing allowed was to test that assumption. There were
some defects found, however, fixes were implemented where appropriate.

Overall there were 4 distinct tests carried out.

1. Static Code Analysis: Testing the code analysis engine and its ability to
detect potential vulnerabilities as compared to a similar product.

2. Web Accessibility: Testing the applications accessibility, ensuring that all

types of users are catered for.

3. Application Security: Ensuring the application it self was secure from any
critical vulnerabilities.

4. Usability & Compatibility Inspection: Testing that the application behaved

as intended and testing how the application behaved under different web
browsers.

The above tests were selected because they offer a large coverage of the
applications functionality; the Static Code Analysis, accessibility, security and
compatibility.

	

Ryan	 Dewhurst	 57	

Evaluation and Conclusions

12. Evaluation

12.1. Product Evaluation

The product’s three initial aims were to develop or use an existing Integrated	
Development	 Environment	 (IDE),	 implement	 unsafe/deprecated	 function	
matching	 and	 implement	 Static	 Code	 Analysis.	
	
The	 following	 points	 will	 evaluate	 each	 of	 these	 aims	 in	 further	 detail:	

• Integrated Development Environment (IDE)

The objective was to either use an existing IDE or to develop a new one.
After reviewing the existing IDEs available it was decided that a new IDE
should be developed as the current products available seemed bloated with
functionality that added unnecessary complexity. The most significant part
of an IDE is the code editing area where users can edit, save and paste
their source code, as the decision was made to create a web based product,
a web based solution for a code editing area was needed. After some
research it was found that an existing solution called CodeMirror would be
best suited as it offered good documentation, developer APIs and the
flexibility to turn off unneeded features. After the implementation and
testing of the product, this decision still stands to be the best solution.

As well as the code editing area of an IDE, other important aspects such as
buttons for triggering different functionality and a way to display
important information to the user were needed. The buttons chosen were
created using by using CSS. Not using images for the buttons does add
some unnecessary complexity, for example, when the buttons aesthetics
needed to be changed. Another downside to using CSS buttons is that
older browsers may have difficulty rendering them.

Displaying important information to the user is done via an Information
Panel, this is a designated box at the bottom of the page used to display
important information such as vulnerabilities identified. The Information
Panel takes up a lot of the screens space and is only currently suitable for
displaying text-based information.

• Unsafe/Deprecated function matching

One of the objectives was to warn the user if any unsafe or deprecated
functions were being used within their source code. This was done by
using CodeMirror’s own functionality by amending one of its ‘modes’.
Although simple to implement it did require some investment in
understanding the way CodeMirror worked. One disadvantage to this
method is that when CodeMirror release new updates that fix bugs or

	

Ryan	 Dewhurst	 58	

implement new features, if those updates are to be implemented into the
product then CodeMirror would have to be amended to account for the
unsafe/deprecated function matching every time. This adds unnecessary
work when CodeMirror updates are applied and may delay new
CodeMirror updates being implemented due to the extra work involved.

• Static Code Analysis

The most important objective was to implement Static Code Analysis into
an Integrated Development Environment (IDE). The Static Code Analysis
takes part in two stages, the Lexical Analysis and then the Taint Analysis.

The Lexical Analysis makes use of PHP’s own Lexical Analysis engine.
The raw source code from the Code Editor is sent to the server where the
Lexical Analysis takes place, removing any unnecessary tokens such as
comments, adding new tokens where necessary and then returning the
tokenised source code as a string. Sending the raw source code over the
Internet to the server is almost instantaneous, although when a lot of
source code is sent, around 5000 lines, the Lexical Analysis engine may
take 3-5 seconds to return the tokenised string. Currently the users source
code comments are sent to the server where the server removes them, a
better solution may have been to remove these first, minimising the
amount of code being sent over the Internet and thus minimising the time
taken. The server currently returns a string of tokens separated by a custom
separator and newline characters. Although this has caused no problems
there may be better ways to return the tokenised code, such as in JSON or
XML format.

The Taint Analysis takes place on the users browser by using JavaScript,
this minimises server resources and speeds up the process. The Taint
Analysis engine takes the tokenised code from the servers Lexical
Analysis output as input. The Taint Analysis engine iterates over every
token looking for certain tokens, such as variables that could contain
sources of user input or sinks where those variables may end up. One
Static Code Analysis technique that the product does not make use of is
Data Flow Analysis. This technique would lower the amount of potential
False Positives within the product as it would have a much more detailed
understanding of the flow of data through the code. However, as seen
during testing in the RIPS Static Code Analysis tool, Data Flow Analysis
adds further complexity that could cause potential False Negatives.

One issue that may arise due to the nature of the product is that people
blindly believe its results. For example, if the product returns that no
vulnerabilities were found the user might think that this means their code
can be labelled as ‘secure’. As we have seen during the Analysis section,
software can never be 100% vulnerability free. Appropriate terms and
conditions as well as clearly stating that their code is not ‘secure’ could be
a viable option to avoid this.

	

Ryan	 Dewhurst	 59	

Understanding the strengths and weaknesses of the product is important for its
future development and will help the author understand where improvements
could be made.

Strengths

Having Static Code Analysis built into an IDE allows for the identification of
potential vulnerabilities as the earliest stage of development. Rather than
programmers running separate Static Code Analysis tools after they have written
their code, they can run Static Code Analysis within their development
environment.

The product being a web-based product is a great advantage over existing Static
Code Analysis tools. There is no need for installation; users only need a modern
browser and an Internet connection to use the product. Novice programmers or
users can use the product without being put off by complicated installation and
usage instructions. The product can be used to quickly test small snippets of
untrusted PHP code found on the Internet or to directly write PHP source code
within. Users do not need to worry about whether or not they are running the
latest version of the product, as the online version will always be the latest one.

The product has been tested and works in all major browsers except for one. The
Internet Explorer browser renders the HTML markup differently to other browsers
tested. The HTML markup, CSS and accessibility are all W3C compliant. The
theme of the user interface can be changed to be more suitable for partially sited
users.

The Static Code Analysis engine does not use Data Flow Analysis; this brings the
advantage of lowering complexity and lowering the chances of any false negative
results. However this does cause some weaknesses, as discussed below.

Weaknesses

The product was designed to analyse snippets of PHP code or individual pages.
One weakness due to its design is that a user cannot analyse their full application
in one go. Another weakness due to this design approach is that when other
functions are included within PHP from separate files, these functions will be
ignored, possibly causing false negatives or false positives.

The product does not carry out any Data Flow Analysis, this could cause false
negatives however should decrease the potential amount of false positives within
the results.

The one page design limits the amount of information that can be displayed; this
could be a limiting factor if any future functionality is to be implemented. A better
arrangement of the displayed information is something that could be looked at in
future development.

Alternatives

	

Ryan	 Dewhurst	 60	

Software security is a big problem, a problem that has no easy solution. There is
never going to be one product or guideline that can 100% guarantee the security
of software.

With the combined efforts of vendors, developers, educational institutions and
security professionals the problem of software security could become less of an
issue than it is today.

By raising awareness of the issue it maybe possible to influence the consumers of
software to start demanding a certain level of security within the software they are
purchasing. Only when consumers start to demand software security from their
vendors the author believes that the problem of software security can be
significantly reduced. This is of course assuming that one day the majority of
consumers will care about the security of their software enough to make
purchasing decisions. It is unlikely that the average consumer of software will
ever care as much about the security of software as the author does, the average
consumer does not have the time to worry about such things in their daily lives.

If there is no demand for secure software from the consumer then it could be
possible to enforce software security.

Compilers and Interpreters could be more security conscious. As mentioned in
previous chapters, the Perl and Ruby programming languages have Taint Analysis
engines built into their Interpreters that do not allow the code to be run if a
potential vulnerability is detected. The PHP Interpreter does not have a Taint
Analysis engine, there have been patches written by third parties to implement
such functionality (Core Security Technologies, 2012), however, these have not
been implemented into the PHP core Interpreter.

There are already laws and compliance standards that enforce software vendors
and consumers to create and maintain secure software. The Payment Card
Industry (PCI) Data Security Standard (DSS) is one such compliance standard
required by credit card merchants. The Data Protection Act (DPA) requires a
certain level of security to ensure the safety of data. As far as the author is aware
there is no UK law that holds the creators of software liable for software in-
security. It is possible that if such a law was introduced that it would discourage
small companies or freelance software engineers from creating new software
products. This would be bad for innovation, the economy and Computer Science.
A better solution may be to have a UK wide law that holds companies liable that
sell software and/or software services that do not meet a specified security
standard to a large proportion of the population. Such a law that only targeted
software that is widely consumed and had a commercial interest could
significantly improve the state of software security in the UK. If such as law
should be considered, it should be first debated and include a wide range of
organisations and people from the software industry to voice their concerns.

12.2. Process Evaluation

At the beginning of the project the author struggled to get to grips with the core
concepts behind Static Code Analysis. A lot of research was carried out that

	

Ryan	 Dewhurst	 61	

monopolised a lot of the author’s time due to the steep learning curb needed. The
initial research could have been made easier if the author had chosen a more
familiar topic. However the author would not have gained as much value out of
the project process.

Not only is the author now familiar with the core concepts of Static Code
Analysis, there were many new technologies used by the author that he had not
used before; technologies such as jQuery and JavaScript. The author took a
significant risk in choosing an unfamiliar topic and to work with new
technologies, however, the benefits from doing this are much higher than if a
familiar topic and technologies were used.

Within the Terms of Reference (TOR) document attached in the Appendices,
there were twelve objectives defined.

The first five objectives were to research modern Software Development Life
Cycles (SDLC) and to research the Microsoft Security Development Lifecycle
(SDL) with particular emphasis on the Implementation phase. These five
objectives were achieved and their outcome can be seen from the production of
the Analysis section.

Other objectives outlined in the TOR include the design, development,
implementation and testing of a software product. These objectives were
achieved. The design documentation, discussion on the product’s implementation
and the discussion of the product’s testing can be found within the Synthesis
section of this report.

A Software Development Life Cycle (SDLC) was used during the development of
the product. Although using an SDLC did help in organising the development of
the product to an extent, the author found that it was hard to know when each
section of an SDLC was complete. The author also found that sometimes
previously completed sections of the SDLC had to be revisited as changes were
implemented. The author believes that an SDLC may be more appropriate to
larger teams of developers and/or developers that are constantly developing new
software products.

The author started the project process by following a Security Development
Lifecycle (SDL), specifically the Microsoft SDL. The author found that the work
needed to implement and carry out an SDL on a small one off project was
unrealistic. The amount of additional work would not have been possible to take
on when on a tight deadline. The author believes that an SDL would be most
beneficial when working on large projects and/or with large development teams.
A possibility may be to develop a lightweight SDL for smaller projects.

The author found that some tasks took longer than planned where as others took
less time than planned. Due to the steep learning curve needed, the Analysis
section took longer than planned to produce. Due to the amount of work carried
out during the Analysis section the Synthesis section seemed to be a lot quicker to
produce. Overall, even though some sections took longer time and others a shorter
time than planned, the project will be completed on time.

	

Ryan	 Dewhurst	 62	

The author has improved in time management, research skills, programming
ability, secure coding and writing skills. These are all skills that will benefit the
author later on in his career. The deeper understanding of software security and
secure coding will be of great advantage.

The confidence of the author in these areas has also improved. Taking on and
completing such a big project has given the author the confidence that great things
can be achieved with time and effort.

13. Conclusions

The project has achieved research into modern Software Development, Security
Development Lifecycles (SDL) and Static Code Analysis. As well as the
implementation of a Static Code Analysis engine into an Integrated Development
Environment (IDE).

The two main aims outlined within the Terms of Reference (TOR) document
were:

• To	 investigate	 and	 analyse	 the	 Microsoft	 Secure	 Development	
Lifecycle	 (SDL).	

	
This	 aim	 was	 achieved	 with	 the	 creation	 of	 this	 report,	 specifically	 the	
creation	 of	 the	 Analysis	 section	 and	 the	 software	 product.	

	
• To	 amend	 a	 current	 Integrated	 Development	 Environment	 (IDE)	 to	

implement	 as	 a	 Proof	 of	 Concept	 (PoC)	 the	 three	 practices	 of	 the	
Microsoft	 Secure	 Development	 Lifecycle	 (SDL).	

	
This	 aim	 was	 achieved	 with	 the	 design,	 implementation	 and	 testing	 of	
the	 software	 product	 produced.	 This	 aim	 states	 ‘to	 amend’	 an	
Integrated	 Development	 Environment	 (IDE),	 the	 author	 did	 not	
amend	 an	 IDE	 and	 instead	 created	 his	 own	 IDE	 via	 the	 use	 of	 a	 web	
interface.	 	

It was found that Software Development Life Cycles (SDLCs) have their specific
problems. For example, the Waterfall SDLC splits the development process into
sections. Once one section is complete the developer must move onto the next
section. The author found it difficult to know when a section should be labelled as
‘complete’ and when to move onto the next section. In reality the Waterfall SDLC
did provide a good guideline in the development of the product, however, it was
not a perfect framework to use. It may be possible that no one methodology or
process is ever going to be an exact match for every possible development project,
however, what they do is provide an abstract roadmap of how best to develop
software.

For a small one off project the Microsoft Security Development Lifecycle (SDL)
seemed to be an excessive guideline to follow if followed word for word. By

	

Ryan	 Dewhurst	 63	

keeping security and privacy into consideration during the development process,
this seemed to achieve the same goals as an SDL when used on a small project.
The Microsoft Security Development Lifecycle (SDL) may have been more
beneficial if implemented on a large team of developers or onto a long-term,
complex, piece of software.

With the use of the product, PHP Static Code Analysis will be easily accessible to
developers whom wish to check their code for any potential vulnerabilities. The
product will be released online for users to use freely, over time this should have
an impact, no matter how small, on the overall security of software being
developed. By releasing the product online it will not only actively mitigate
potential vulnerabilities, however, raise awareness to the problem of software
security. Another advantage of releasing the product will be the feedback from
users will be invaluable in shaping the future path the product takes.

13.1. Recommendations

This section will give recommendations for any future work within the area of the
topics covered and points discussed throughout the project.

• Integrated Development Environment (IDE) Static Code Analysis
integration: It would be good to see the wide adoption of Static Code
Analysis within the IDE. The detection of potential vulnerabilities at the
earliest stage brings lots of advantages to software development as
discussed within the project.

• Availability of the product: The product created for this project will be

released online as a free service for anyone to use. This will generate
interest in Static Code Analysis and produce valuable feedback from users,
which can be implemented into the product.

• PHP Interpreter Taint Analysis: The native adoption of Taint Analysis

within the PHP Interpreter would see a significant increase in the security
of web applications on the Internet. The core PHP developers should
revisit the benefits of doing so. With improvements to PHP’s performance
over its release cycles, these performance benefits may be enough to offset
the performance decline of the Taint Analysis.

• Debate on UK law enforcing software security: There is no overall law in

the UK that governs software security. Other industries such as the car
manufacturing industry have safety laws. If done correctly a UK software
security law could improve the state of software security.

	

Ryan	 Dewhurst	 64	

References

Ace. (2012) ajax.org Cloud9 Editor [Online]. Available at: http://ace.ajax.org/
(Accessed: 12th January 2012).

AChecker. (2012) Web Accessibility Checker [Online]. Available at:
http://achecker.ca/checker/index.php (Accessed: 2nd February 2012).

Adobe. (2011) Adobe Secure Product Lifecycle (SPLC) [Online]. Available at:
https://www.adobe.com/security/splc/ (Accessed: 12 November 2011).

Allen, J. et al. (2008) Software security engineering: a guide for project
managers. Addison-Wesley Professional.

Baase, S. (2002) Gift of Fire: Social, Legal, and Ethical Issues for Computers and
the Internet. Prentice Hall.

Berners-Lee, T. & Connolly, D. (1995) RFC 1866 Hypertext Markup Language -
2.0. MIT/W3C.

Booch, G. et al. (1998) The Unified Modeling Language User Guide. Addison
Wesley.

Campbell. et al. (2003) The economic cost of publicly announced information
security breaches: empirical evidence from the stock market. Journal of Computer
Security 11.

CISCO. (2011) CISCO Secure Development Lifecycle (CSDLC) [Online].
Available at:
http://www.cisco.com/web/about/security/cspo/csdl/docs/External_CSDL_Whitep
aper_Final.pdf (Accessed: 21 November 2011).

Cloud9. (2012) Cloud9 IDE [Online]. Available at: http://c9.io/ (Accessed: 5
February 2012).

CodeMirror. (2012) In-browser code editing made bearable [Online]. Available
online: http://codemirror.net/ (Accessed: 22nd January 2012).

Core Security Technologies. (2012) CORE GRASP [Online]. Available online:
http://grasp.coresecurity.com/ (Accessed: 28th February 2012).

Craven, T. (2003) HTML Tags as Extraction Cues forWeb Page Description
Construction. The University of Western Ontario, London, Ontario, Canada.

Dahse, J. (2010) RIPS – A static code analyser for vulnerabilities in PHP scripts
[Online]. Available at: http://www.php-security.org/downloads/rips.pdf
(Accessed: 5 January 2012).

Davis, A.M. (1993) Software Requirements; Objects, Functions & States.
Colorado: Prentice-Hall, Inc.

	

Ryan	 Dewhurst	 65	

Department of Homeland Security. (2006) Security in the Software Lifecycle.
DRAFT Version 1.2. Department of Homeland Security.

Department of Justice (DoJ). (2009) Three Men Indicted for Hacking into Five
Corporate Entities, including Heartland, 7-Eleven, and Hannaford, With Over
130 Million Credit and Debit Card Numbers Stole. New Jersey: United States
Department of Justice.

Doyle, F. & Fly, R. et al. (2007) Open Source Fuzzing Tools. Burlington,
U.S.A:Syngress.

Eclipse. (2012) Language IDE [Online]. Available at:
http://www.eclipse.org/home/categories/index.php?category=ide&tab=learn
(Accessed: 5 February 2012).

Falliere, N. et al. (2011) W32.Stuxnet Dossier. Symantec: Security Response.

Grossman, J. (2003) CROSS-SITE TRACING (XST) [Online]. Available at:
http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf
(Accessed: 29 December 2011).

Hansen, R. & Grossman, J. (2008) Clickjacking [Online]. Available at:
http://www.sectheory.com/clickjacking.htm (Accessed: 3 January 2012).

Howard, M. (2007) Lessons Learned from Five Years of Building More Secure
Software [Online]. Available at:
http://download.microsoft.com/download/A/E/1/AE131728-943B-42B4-B130-
C1DEBE68F503/Trustworthy%20Computing.pdf (Accessed: 3 January 2012).

Howard, M & LeBlanc, D et al. (2005) 19 Deadly Sins of Software Security.
California, U.S.A: McGraw-Hill Companies.

Howard, M & LeBlanc, D. (2003) Writing Secure Code. 2nd edition. Washington,
U.S.A: Microsoft Press.

ISO. (2008) Systems and software engineering - Software life cycle processes.
IEEE.

ISO. (2008)	 Systems and software engineering - System life cycle processes.
IEEE.

ISO. (2008) Systems and software engineering - Systems and software assurance.
IEEE.

Jovanovic, N. Kruegel, C & Kirda, E. (2007) Pixy: A Static Analysis Tool for
Detecting Web Application Vulnerabilities (Short Paper). Vienna. Technical
University of Vienna.

	

Ryan	 Dewhurst	 66	

Laskos, T. (2012) Arachni –Web Application Security Scanner Framework
[Online]. Available at: http://arachni-scanner.com/ (Accessed: 9th February 2012).

Leveson, N. (1995) Medical Devices: The Therac-25. Washington, U.S.A:
University of Washington.

McKeone, D. (1995) Measuring your media profile. Gower Publishing Limited.

Microsoft. (2011) SDL Helps Reduce the Total Cost of Development [Online].
Available at: http://www.microsoft.com/security/sdl/learn/costeffective.aspx
(Accessed: 21 October 2011).

Microsoft. (2011) SDL Helps Build More Secure Software [Online]. Available at:
http://www.microsoft.com/security/sdl/learn/measurable.aspx (Accessed: 9
December 2011).

Microsoft. (2011) SDL Process Guidance Version 5.1 [Online]. Available at:
http://www.microsoft.com/download/en/confirmation.aspx?id=9295 (Accessed: 6
December 2011).

Microsoft. (2010) Simplified Implementation of the Microsoft SDL [Online].
Available at:
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=12379
(Accessed: 14 November 2011).

Munassar, N & Govardhan, A. (2010) A Comparison Between Five Models Of
Software Engineering [Online]. Available at: http:// www.ijcsi.org/papers/7-5-94-
101.pdf (Accessed: 5 December 2011).

NetBeans. (2012) All Features and Supported Technologies [Online]. Available
at: http://netbeans.org/features/all.html (Accessed: 5 February 2012).

NIST. (2011) National Vulnerability Database [Online]. Available at:
http://web.nvd.nist.gov/view/vuln/search-
results?adv_search=true&cves=on&cve_id=&query=&cwe_id=&pub_date_start_
month=0&pub_date_start_year=2011&pub_date_end_month=11&pub_date_end_
year=2011&mod_date_start_month=-1&mod_date_start_year=-
1&mod_date_end_month=-1&mod_date_end_year=-
1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=&cvss_a=
(Accessed: 21 December 2011)

NIST. (2002) The Economic Impacts of Inadequate Infrastructure for Software
Testing [Online]. Available at:
http://www.nist.gov/director/planning/upload/report02-3.pdf (Accessed: 21
October 2011).

OSVDB. (2011) Search Query: text_type: titles s_date: January 1, 2011 e_date:
December 21, 2011 [Online]. Available at:
http://osvdb.org/search/search?search%5Bvuln_title%5D=&search%5Btext_type

	

Ryan	 Dewhurst	 67	

%5D=titles&search%5Bs_date%5D=January+1%2C+2011&search%5Be_date%5
D=December+21%2C+2011&search%5Brefid%5D=&search%5Breferencetypes
%5D=&search%5Bvendors%5D=&search%5Bcvss_score_from%5D=&search%
5Bcvss_score_to%5D=&search%5Bcvss_av%5D=*&search%5Bcvss_ac%5D=*
&search%5Bcvss_a%5D=*&search%5Bcvss_ci%5D=*&search%5Bcvss_ii%5D
=*&search%5Bcvss_ai%5D=*&kthx=search (Accessed: 21 December 2011).

Oxford. (2010) Oxford Dictionary of English. 3rd edn. OUP Oxford.

Paola, S. (2011) The DOMinator Project [Online]. Available at:
http://blog.mindedsecurity.com/2011/05/dominator-project.html (Accessed: 9th
February 2012).

Patwardhan, N. et al. (2002) Perl in a Nutshell. O'Reilly Media.

PCI-DSS. (2010) Requirements and Security Assessment Procedures Version 2.0
[Online]. Available at:
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf (Accessed: 15
November 2011).

PICTA. (2005) Cyber Security:A Crisis of Prioritization. National Coordination
Office for InformationTechnology Research and Development.

Pilgrim, M. (2009) The Road to HTML 5: contentEditable. Web Hypertext
Application Technology Working Group.

PHP. (2012) Deprecated features in PHP 5.3.x [Online]. Available at:
http://www.php.net/manual/en/migration53.deprecated.php (Accessed: 4 February
2012).

PHP. (2012) List of Parser Tokens [Online]. Available at:
http://www.php.net/manual/en/tokens.php (Accessed: 5 February 2012).

PHP. (2011) Safe Mode [Online]. Available at:
http://php.net/manual/en/features.safe-mode.php (Accessed: 6 December 2011).

PHP. (2012) htmlspecialchars [Online]. Available at:
http://php.net/manual/en/function.htmlspecialchars.php (Accessed: 3 February
2012).

Sotirov, A. (2005) Automatic Vulnerability Detection Using Static Source Code
Aanalysis. The University of Alabama.

Textmate. (2012) textmate - the missing editor [Online]. Available at:
http://macromates.com/ (Accessed: 5 February 2012).

TinyMCE. (2012) TinyMCE - Javascript WYSIWYG Editor. Available at:
http://www.tinymce.com/ (Accessed: 17th March 2012).

	

Ryan	 Dewhurst	 68	

The U.S. Department of Health & Human Services. (2008) Selecting a
Development Approach [Online]. Available at:
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevel
opmentApproach.pdf (Accessed: 11 November 2011).

Thomas, D. et al. (2009) Programming Ruby 1.9: The Pragmatic Programmers'
Guide. Pragmatic Bookshelf.

TIOBE. (2012) TIOBE Programming Community Index for February 2012
[Online]. Available at:
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (Accessed: 6
February 2012).

W3C. (2012) W3C Markup Validation Service. Available at:
http://validator.w3.org/ (Accessed: 23rd January 2012).

W3C. (1999) Web Content Accessibility Guidelines 1.0. Available at:
http://www.w3.org/TR/WAI-WEBCONTENT/#Guidelines (Accessed: March 1
2012).

WIODE. (2011) Improved Multi-User, Performance & Security in 2.5.5.
Available at: http://www.wiode.org/improved-multi-user-performance--security-
in-255 (Accessed: 15th February 2012).

Wögerer, W. (2005) A survey of Static Program Analysis Techniques. Technische
Universität Wien.

	

Ryan	 Dewhurst	 69	

Bibliography

Howard, M & LeBlanc, D. (2003) Writing Secure Code. 2nd edition. Washington,
U.S.A: Microsoft Press.

OWASP Foundation. (2009) Software Assurance Maturity Model (SAMM) v1.0.
OWASP Foundation.

OWASP Foundation. (2008) OWASP Testing Guide v3.0. OWASP Foundation.

OWASP Foundation. (2008) OWASP Code Review Guide v1.1. OWASP
Foundation.

OWASP Foundation. (2006) OWASP CLASP v1.2. OWASP Foundation.

Potter, B. & McGraw, G. (2004) Software security testing. IEEE Security &
Privacy Magazine.

Stuttard, D & Pinto, M. (2011) The Web Application Hacker’s Handbook. 2nd edn.
Indianapolis, U.S.A: Wiley Publishing, Inc.

	

Ryan	 Dewhurst	 70	

Appendices

Appendix A – Terms of Reference (TOR)

CM0645:	 Individual	 Project	
	

Project	 Terms	 of	 Reference	
	
	
	
	

	
Reducing	 software	 vulnerabilities	 within	 the	 coding	 stage	

of	 a	 Software	 Development	 Lifecycle	 (SDLC).	
	
	
	
	
	
	
Name:	 Ryan	 Luke	 Dewhurst	
Student	 ID:	 08026925	
Course:	 Ethical	 Hacking	 for	 Computer	 Security	
Supervisor:	 Dr.	 Christopher	 Laing	
Second	 Marker:	 Dr.	 Emil	 Petkov	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

General	 Computing	 Project	
	 	

	

Ryan	 Dewhurst	 71	

a)	 Project	 Title	
	
Reducing	 software	 vulnerabilities	 within	 the	 coding	 stage	 of	 a	 Software	
Development	 Lifecycle	 (SDLC).	
	
b)	 Background	 to	 Project	
	
Traditional	 methods	 of	 reducing	 software	 security	 vulnerabilities	 are	
normally	 employed	 after	 the	 source	 code	 has	 been	 written.	 This	 can	 be	 done	
in	 the	 early	 stages	 of	 development	 through	 the	 following	 of	 a	 methodology	
such	 as	 a	 Secure	 Development	 Lifecycle	 (SDL).	 It	 is	 evident	 by	 the	 amount	 of	
vulnerabilities	 being	 found	 within	 software	 that	 SDLs	 are	 not	 widely	 used	 or	
that	 SDLs	 are	 not	 as	 efficient	 as	 they	 possibly	 could	 be.	 	
	
According	 to	 Microsoft,	 the	 later	 vulnerabilities	 are	 found	 within	 the	
development	 of	 software,	 the	 more	 time	 it	 takes	 the	 developer	 to	 fix,	 thus,	
increasing	 the	 cost	 of	 the	 development	 process.	 	 (Microsoft,	 2011)	
	
This	 is	 confirmed	 by	 a	 survey	 produced	 by	 The	 National	 Institute	 of	
Standards	 and	 Technology	 (NIST),	 published	 within	 a	 report	 called	 ‘The	
Economic	 Impacts	 of	 Inadequate	 Infrastructure	 for	 Software	 Testing’	 (NIST,	
2002).	 The	 below	 table	 is	 the	 result	 of	 that	 survey.	

Stage
Introduced

Require
ments

Coding/unit
testing

Integratio
n

Beta
Testing

Post-
product
Release

Requirements 1.2 8.8 14.8 15.0 18.7
Coding/unit

testing
NA 3.2 9.7 12.2 14.8

Integration NA NA 6.7 12.0 17.3
	
The	 above	 table	 shows	 that	 it	 takes	 the	 least	 hours	 (1.2)	 to	 fix	 a	 bug	 during	
the	 requirements	 stage	 that	 was	 found	 during	 the	 requirements	 stage.	 It	
takes	 the	 second	 least	 amount	 of	 time,	 3.2	 hours,	 to	 fix	 a	 bug	 during	 the	
coding/unit	 testing	 stage	 when	 found	 during	 that	 stage.	 The	 above	 table	 also	
indicates	 that	 it	 takes	 the	 most	 amount	 of	 time	 to	 fix	 a	 bug	 during	 post-‐
product	 release	 no	 matter	 what	 stage	 the	 bug	 was	 introduced	 at.	 It	 takes	 an	
extra	 11.6	 hours	 to	 fix	 a	 bug	 introduced	 during	 the	 coding	 stage	 at	 post-‐
product	 release.	
	
The	 Microsoft	 Secure	 Development	 Lifecycle	 (SDL)	 process	 fits	 into	 a	
traditional	 Software	 Development	 Lifecycle	 (SDLC)	 consisting	 of	 seven	
phases;	 training,	 requirements,	 design,	 implementation,	 verification,	 release,	
and	 response.	
	
During	 the	 coding	 stage	 of	 a	 SDLC,	 Microsoft’s	 SDL	 recommends	 three	
practices	 within	 their	 Implementation	 phase.	 These	 are,	 #8	 use	 approved	
tools,	 #9	 deprecate	 unsafe	 functions	 and	 #10	 perform	 static	 code	 analysis.	
	

• SDL	 Practice	 #8:	 Use	 Approved	 Tools	

	

Ryan	 Dewhurst	 72	

“Define	 and	 publish	 a	 list	 of	 approved	 tools	 and	 associated	 security	
checks,	 such	 as	 compiler/linker	 options	 and	 warnings.	 The	 list	 should	
be	 regularly	 updated	 with	 the	 latest	 versions	 of	 the	 tools.”	

	
• SDL	 Practice	 #9:	 Deprecate	 Unsafe	 Functions	

“Determine	 the	 list	 of	 banned	 functions,	 use	 header	 files,	 newer	
compliers,	 or	 code	 scanning	 tools	 to	 check	 code	 for	 the	 existence	 of	
banned	 functions,	 and	 then	 replace	 those	 banned	 functions	 with	 safer	
alternatives.”	

	
• SDL	 Practice	 #10:	 Perform	 Static	 Analysis	

“Static	 analysis	 consists	 of	 analyzing	 the	 source	 code	 prior	 to	 compile.”	
	
(Microsoft,	 2011)	
	
Implementing	 and	 maintaining	 the	 above	 three	 rules	 within	 the	 coding	 stage	
of	 a	 SDLC	 is	 both	 time	 consuming	 and	 resource	 intensive.	 The	 individual	
project	 hopes	 to	 solve	 most	 of	 the	 above	 three	 SDL	 practices	 within	 one	
product.	
	
The	 product	 will	 be	 the	 approved	 tool	 and	 not	 many	 other	 tools	 will	 be	
needed	 during	 the	 coding	 stage.	 The	 product	 will	 do	 basic	 string	 matching	 to	
identify	 unsafe	 functions	 ‘on	 the	 fly’.	 The	 product	 will	 also	 perform	 basic	
static	 code	 analysis,	 either	 ‘on	 the	 fly’	 or	 before	 the	 source	 code	 is	 saved	 to	
the	 hard	 disk.	
	
The	 product	 and	 research	 will	 be	 useful	 to	 companies	 that	 have	 implemented	
a	 SDL	 within	 their	 SDLC	 and	 want	 to	 improve	 efficiency	 during	 the	
Implementation	 stage	 of	 the	 SDL.	 I	 will	 need	 to	 research	 and	 learn	 how	
current	 static	 code	 analysis	 technologies	 work	 and	 which	 method	 is	 best	 to	
integrate	 into	 the	 product.	
	
The	 solution	 could	 be	 in	 the	 form	 of	 an	 Integrated	 Development	
Environment.	 (IDE)	 which	 does	 basic	 string	 matching	 for	 unsafe	 functions	
and	 has	 a	 static	 code	 analysis	 engine	 built	 in.	 Research	 into	 the	 different	 IDEs	
available	 and	 what	 functionality	 they	 currently	 offer	 to	 the	 developer	 will	
need	 to	 be	 carried	 out.	
	
The	 product	 should	 initially	 only	 support	 one	 programming	 language,	
however,	 it	 will	 be	 designed	 in	 a	 way	 that	 is	 easily	 extended	 to	 support	 many	
other	 programming	 languages.	 As	 PHP	 is	 one	 of	 the	 programming	 languages	 I	
am	 familiar	 with	 and	 according	 to	 the	 ‘TIOBE	 Programming	 Community	 Index	
for	 October	 2011’,	 it	 is	 the	 4th	 most	 popular	 programming	 language	 used	
(TIOBE,	 2011).	 I	 believe	 PHP	 to	 be	 a	 good	 programming	 language	 to	 start	
with.	
	
c)	 Aims	 of	 the	 project	
	
To	 investigate	 and	 analyse	 the	 Microsoft	 Secure	 Development	 Lifecycle	 (SDL).	

	

Ryan	 Dewhurst	 73	

	
To	 amend	 a	 current	 Integrated	 Development	 Environment	 (IDE)	 to	
implement	 as	 a	 Proof	 of	 Concept	 (PoC)	 the	 three	 practices	 of	 the	 Microsoft	
Secure	 Development	 Lifecycle	 (SDL).	
	
d)	 Objectives	
	

• Research	 Software	 Development	 Life	 Cycles	 (SDLC).	
• Research	 the	 Microsoft	 Secure	 Development	 Lifecycle	 (SDL).	
• Research	 the	 Microsoft	 SDL	 practice	 8;	 Use	 Approved	 Tools.	
• Research	 the	 Microsoft	 SDL	 practice	 9;	 Deprecate	 Unsafe	 Functions.	
• Research	 the	 Microsoft	 SDL	 practice	 10;	 Perform	 Static	 Analysis.	
• Product	 design.	
• Product	 development.	
• Product	 implementation.	
• Product	 testing.	
• Production	 of	 chapters	 of	 the	 project	 report.	
• Product	 evaluation.	
• Process	 evaluation.	

	
e)	 Ethical	 issues	
	
None.	
	
f)	 Relationship	 to	 the	 course	
	

• CM0429	 -‐	 Relational	 Databases	 will	 contribute;	
The	 knowledge	 of	 how	 databases	 work	 and	 how	 applications	 interact	
with	 them.	

	
• EN0402	 -‐	 Programming	 Fundamentals	 with	 Robots	 will	 contribute;	

Basic	 programming	 skills.	
	

• EN0403	 -‐	 Introduction	 to	 Ethical	 Hacking	 will	 contribute;	
Basic	 security	 concepts.	

	
• EN0156	 -‐	 Network	 Technology	 1	 will	 contribute;	

Basic	 server/client	 architecture	 and	 how	 applications	 communicate	
over	 a	 network.	

	
• EN0273	 -‐	 Programming	 in	 C	 will	 contribute;	

Basic	 programming	 in	 C.	
	

• IS0503	 -‐	 Integrative	 Consultancy	 Project	 will	 contribute;	
Communication	 and	 presentation	 skills.	

	
• CM0567	 -‐	 CEIS	 Professional	 Placement	 will	 contribute;	

Practical	 skills	 in	 securing	 applications	 and	 networks.	

	

Ryan	 Dewhurst	 74	

	
The	 course	 has	 not	 addressed	 advanced	 application	 security	 vulnerabilities,	
prevention,	 exploitation	 or	 remediation.	
	
g)	 Sources	 of	 information	 /	 Bibliography	
	
Bibliography:	
	
Howard,	 M	 &	 LeBlanc,	 D	 et	 al.	 (2005)	 19	 Deadly	 Sins	 of	 Software	 Security.	
California,	 U.S.A:	 McGraw-‐Hill	 Companies.	
	
Howard,	 M	 &	 LeBlanc,	 D.	 (2003)	 Writing	 Secure	 Code.	 2nd	 edition.	
Washington,	 U.S.A:	 Microsoft	 Press.	
	
OWASP	 Foundation.	 (2009)	 Software	 Assurance	 Maturity	 Model	 (SAMM)	 v1.0	
[Online].	 Available	 at:	 http://www.opensamm.org/downloads/SAMM-‐1.0-‐
en_US.pdf	 (Accessed:	 21	 October	 2011).	
	
OWASP	 Foundation.	 (2008)	 OWASP	 Testing	 Guide	 v3.0	 [Online].	 Available	 at:	
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf	
(Accessed:	 21	 October	 2011).	
	
OWASP	 Foundation.	 (2008)	 OWASP	 Code	 Review	 Guide	 v1.1	 [Online].	
Available	 at:	
https://www.owasp.org/images/2/2e/OWASP_Code_Review_Guide-‐
V1_1.pdf	 (Accessed:	 21	 October	 2011).	
	
OWASP	 Foundation.	 (2006)	 OWASP	 CLASP	 v1.2	 [Online].	 Available	 at:	
http://www.lulu.com/content/content_download_redirect.php?contentId=1
401307&version=3	 (Accessed:	 21	 October	 2011).	
	
Stuttard,	 D	 &	 Pinto,	 M.	 (2011)	 The	 Web	 Application	 Hacker’s	 Handbook.	 2nd	
edn.	 Indianapolis,	 U.S.A:	 Wiley	 Publishing,	 Inc.	
	
References:	
	
Microsoft.	 (2011)	 SDL	 Helps	 Reduce	 the	 Total	 Cost	 of	 Development	 [Online].	
Available	 at:	
http://www.microsoft.com/security/sdl/learn/costeffective.aspx	 (Accessed:	
21	 October	 2011).	
	
NIST.	 (2002)	 The	 Economic	 Impacts	 of	 Inadequate	 Infrastructure	 for	 Software	
Testing	 [Online].	 Available	 at:	
http://www.nist.gov/director/planning/upload/report02-‐3.pdf	 (Accessed:	
21	 October	 2011).	
	
TIOBE.	 (2011)	 TIOBE	 Programming	 Community	 Index	 for	 October	 2011	
[Online].	 Available	 at:	

	

Ryan	 Dewhurst	 75	

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html	
(Accessed:	 21	 October	 2011).	
	
h)	 Resources	
	
I	 will	 need	 to	 purchase	 books	 from	 the	 OWASP	 Foundation,	 as	 the	 university	
library	 does	 not	 supply	 any.	
	
I	 will	 require	 a	 development	 computer	 to	 develop	 the	 product;	 this	 will	 be	
achieved	 with	 a	 virtual	 machine	 on	 a	 host	 computer	 that	 I	 already	 own.	 All	
software	 used	 will	 be	 open	 source	 or	 free	 to	 use.	 For	 example;	 Linux,	 Apache,	
PHP	 and	 MySQL.	
	
For	 the	 final	 demo	 I	 will	 require	 a	 projector	 and	 a	 computer	 with	 Internet	
access.	
	
i)	 Structure	 and	 contents	 of	 project	 report	
	
Abstract	
Project	 abstract.	
	
Chapter	 I:	 Introduction	
An	 introduction	 to	 the	 project,	 its	 aims	 and	 objectives.	
	

• Problem	 description.	
• The	 purpose,	 motivation	 or	 relevance.	
• The	 methods.	
• The	 results.	
• Conclusion.	

	
Chapter	 II:	 Secure	 Development	 Lifecycles	 (SDL)	
An	 introduction	 and	 overview	 of	 current	 SLC	 practices	 and	 methodologies.	
	

• Introduction.	
• Training.	
• Requirements.	
• Design.	
• Implementation.	
• Verification.	
• Release.	
• Response.	

	
Chapter	 II:	 Static	 Code	 Analysis	
An	 introduction	 and	 overview	 of	 Static	 Code	 Analysis	 practices	 and	
methodologies.	
	

• Introduction.	
• Manual	 Vs	 Automated.	

	

Ryan	 Dewhurst	 76	

• Model	 checking.	
• Data-‐flow	 analysis.	
• Abstract	 interpretation.	
• Assertions.	

	
Chapter	 IV:	 Integrated	 Development	 Environments	 (IDE)	
An	 introduction	 and	 overview	 of	 IDEs	 and	 their	 features.	
	

• Introduction.	
• Features.	
• Design.	

	
Chapter	 V:	 The	 product	
Design,	 implementation,	 introduction	 and	 overview	 of	 the	 product,	 how	 it	
works	 and	 how	 it	 can	 be	 used.	
	

• Design	 	
• Implementation	
• Testing	

	
Chapter	 VI:	 Evaluation	 &	 Conclusions	
The	 projects	 conclusions,	 product	 effectiveness	 and	 identification	 of	 possible	
further	 work.	
	

• Product	 evaluation.	
• Process	 evaluation.	
• Conclusions.	

	
	
j)	 Marking	 scheme	
	

i. Project	 Type	
	
General	 Computing	 Project	
	

ii. Project	 Report	
	

• Introduction	
Abstract	 &	 Introduction	

• Analysis	
Secure	 Development	 Lifecycle	 (SDL)	
Static	 Code	 Analysis	
Integrated	 Development	 Environment	 (IDE)	

• Synthesis	
Design	 overview	
Implementation	
Testing	

• Evaluation	 and	 Conclusions	

	

Ryan	 Dewhurst	 77	

Product	
Process	
Conclusion	
	

iii. Product	
	

• An	 Integrated	 Development	 Environment	 (IDE).	
• Unsafe	 function	 string	 matching.	
• Static	 Code	 Analysis	 integration.	
	

l)	 Project	 plan	
	
	
	
Page	 1	

	
Page	 2	

!" #$%&'
()*+

#$%&',$-+ "./$01)2 30$/0

4 510+/$0./+'6+71+8'$2*'
92$:;%1%'9<017101+%

=4'*$;%

= >/)*.<0'"+%1?2'$2*'
"+0$1:+*'>:$2212?

4@'*$;% #.+'ABC4=C44

D EF/1%0-$%'G):1*$;% H'*$;% I/1'=DC4=C44
@ >/)*.<0'"+7+:)J-+20 BA'*$;% ()2'A=CA4C4=
K "/$L0'EF$J0+/%')L'6+J)/0 @A'*$;% 3.2'4KCA4C4=
B "+-)2%0/$01)2'M'N!N9 4@'*$;% 3.2'=KCADC4=

3 (# O # I 3 3 (# O # I 3 3 (# O # I 3 3 (# O
D4'P<0'Q44 AH',)7'Q44 4@',)7'Q44 =4',)7'Q44 =R',)7'Q44

#$%&

3J:10

(1:+%0)2+

3.--$/;

>/)S+<0'3.--$/;

TU0+/2$:'#$%&%

TU0+/2$:'(1:+%0)2+

!2$<017+'#$%&

!2$<017+'(1:+%0)2+

!2$<017+'3.--$/;

($2.$:'#$%&

"./$01)2V)2:;

($2.$:'3.--$/;'6)::.J

($2.$:'3.--$/;

30$/0V)2:;

I121%FV)2:;

"+$*:12+

>/)?/+%%

>$?+'4

>/)S+<0W'>/)S+<04
"$0+W'()2'AHC44C44

	

Ryan	 Dewhurst	 78	

	
Page	 3	

	
Page	 4	

! " # $ $ % " ! " # $ $ % " ! " # $ $ % " ! " # $ $ % " ! " # $ $ % " ! " # $ $ % " ! " # $
&'()*+(,-- ./(012(,-- -&(012(,-- -3(012(,-- &4(012(,-- .&(567(,-& .3(567(,-&

"689

$:;<=

%<;18=*71

$>??6@A

B@*C12=($>??6@A

DE=1@76;("6898

DE=1@76;(%<;18=*71

F762=<+1("689

F762=<+1(%<;18=*71

F762=<+1($>??6@A

%67>6;("689

0>@6=<*7G*7;A

%67>6;($>??6@A(H*;;>:

%67>6;($>??6@A

$=6@=G*7;A

#<7<8IG*7;A

016J;<71

B@*K@188

B6K1(&

B@*C12=L(B@*C12=-
06=1L(%*7(.MN--N--

! ! " # $ # % ! ! " # $ # % ! ! " # $ # % ! ! " # $ # % ! ! " # $ # % ! ! " # $ # % ! ! " #
&'()*+(,-. -/()*+(,-. .0()*+(,-. 0&()*+(,-. &/(%12(,-. -0(%12(,-. .&(%12(,-. .3(%12(,-.

#*45

!6789

"87149:+1

!;<<*=>

?=:@1A9(!;<<*=>

BC91=+*7(#*454

BC91=+*7("87149:+1

D+*A98E1(#*45

D+*A98E1("87149:+1

D+*A98E1(!;<<*=>

"*+;*7(#*45

F;=*98:+G:+7>

"*+;*7(!;<<*=>(H:77;6

"*+;*7(!;<<*=>

!9*=9G:+7>

%8+84IG:+7>

F1*J78+1

?=:K=144

?*K1(0

?=:@1A9L(?=:@1A9-
F*91L(":+(&3M--M--

	

Ryan	 Dewhurst	 79	

	
	 	

! " ! # $ $ % ! " ! # $ $ % ! " ! # $ $ % ! " ! # $ $ % ! " ! # $ $ % ! " ! # $ $ % ! " ! #
&'(#)*(+,& -.(%/0(+,& ,&(%/0(+,& ,1(%/0(+,& &2(%/0(+,& -&(340(+,& -1(340(+,&

!/56

$4789

%87)59:;)

$<==/0>

?0:@)A9($<==/0>

BC9)0;/7(!/565

BC9)0;/7(%87)59:;)

D;/A98E)(!/56

D;/A98E)(%87)59:;)

D;/A98E)($<==/0>

%/;</7(!/56

F<0/98:;G:;7>

%/;</7($<==/0>(H:77<4

%/;</7($<==/0>

$9/09G:;7>

#8;85IG:;7>

F)/J78;)

?0:K0)55

?/K)(L

?0:@)A9M(?0:@)A9,
F/9)M(%:;(-'N,,N,,

	

Ryan	 Dewhurst	 80	

Appendix B – PHP Deprecated Functions

call_user_method
call_user_method_array
define_syslog_variables

dl
ereg

ereg_replace
eregi

eregi_replace
set_magic_quotes_runtime

session_register
session_unregister
session_is_register

set_socket_blocking
split
spliti

sql_regcase
mysql_db_query

mysql_escape_string

Appendix C – PHP Lexical Analysis Tokens

Token Syntax
T_ABSTRACT abstract

T_AND_EQUAL &=
T_ARRAY array()

T_ARRAY_CAST (array)
T_AS as

T_BAD_CHARACTER
T_BOOLEAN_AND &&
T_BOOLEAN_OR ||
T_BOOL_CAST (bool) or (boolean)

T_BREAK break
T_CASE case

T_CATCH catch
T_CHARACTER

T_CLASS class
T_CLASS_C __CLASS__
T_CLONE clone

T_CLOSE_TAG ?> or %>

T_COMMENT // or #, and /* */ in PHP
5

T_CONCAT_EQUAL .=
T_CONST const

	

Ryan	 Dewhurst	 81	

T_CONSTANT_ENCAPSED_STRING "foo" or 'bar'
T_CONTINUE continue

T_CURLY_OPEN {$
T_DEC --

T_DECLARE declare
T_DEFAULT default

T_DIR __DIR__
T_DIV_EQUAL /=
T_DNUMBER 0.12, etc

T_DOC_COMMENT /** */
T_DO do

T_DOLLAR_OPEN_CURLY_BRACES ${
T_DOUBLE_ARROW =>

T_DOUBLE_CAST (real), (double) or (float)
T_DOUBLE_COLON ::

T_ECHO echo
T_ELSE else

T_ELSEIF elseif
T_EMPTY empty

T_ENCAPSED_AND_WHITESPACE " $a"
T_ENDDECLARE enddeclare

T_ENDFOR endfor
T_ENDFOREACH endforeach

T_ENDIF endif
T_ENDSWITCH endswitch
T_ENDWHILE endwhile

T_END_HEREDOC
T_EVAL eval()
T_EXIT exit or die

T_EXTENDS extends
T_FILE __FILE__

T_FINAL final
T_FOR for

T_FOREACH foreach
T_FUNCTION function or cfunction

T_FUNC_C __FUNCTION__
T_GLOBAL global

T_GOTO goto
T_HALT_COMPILER __halt_compiler()

T_IF if
T_IMPLEMENTS implements

T_INC ++
T_INCLUDE include()

T_INCLUDE_ONCE include_once()

	

Ryan	 Dewhurst	 82	

T_INLINE_HTML
T_INSTANCEOF instanceof

T_INT_CAST (int) or (integer)
T_INTERFACE interface

T_ISSET isset()
T_IS_EQUAL ==

T_IS_GREATER_OR_EQUAL >=
T_IS_IDENTICAL ===

T_IS_NOT_EQUAL != or <>
T_IS_NOT_IDENTICAL !==

T_IS_SMALLER_OR_EQUAL <=
T_LINE __LINE__
T_LIST list()

T_LNUMBER 123, 012, 0x1ac, etc
T_LOGICAL_AND and
T_LOGICAL_OR or

T_LOGICAL_XOR xor
T_METHOD_C __METHOD__

T_MINUS_EQUAL -=
T_ML_COMMENT /* and */
T_MOD_EQUAL %=
T_MUL_EQUAL *=
T_NAMESPACE namespace

T_NS_C __NAMESPACE__
T_NS_SEPARATOR \

T_NEW new
T_NUM_STRING "$a[0]"
T_OBJECT_CAST (object)

T_OBJECT_OPERATOR ->
T_OLD_FUNCTION old_function

T_OPEN_TAG <?php, <? or <%
T_OPEN_TAG_WITH_ECHO <?= or <%=

T_OR_EQUAL |=
T_PAAMAYIM_NEKUDOTAYIM ::

T_PLUS_EQUAL +=
T_PRINT print()

T_PRIVATE private
T_PUBLIC public

T_PROTECTED protected
T_REQUIRE require()

T_REQUIRE_ONCE require_once()
T_RETURN return

T_SL <<
T_SL_EQUAL <<=

	

Ryan	 Dewhurst	 83	

T_SR >>
T_SR_EQUAL >>=

T_START_HEREDOC <<<
T_STATIC static
T_STRING "parent"

T_STRING_CAST (string)
T_STRING_VARNAME "${a

T_SWITCH switch
T_THROW throw

T_TRY try
T_UNSET unset()

T_UNSET_CAST (unset)
T_USE use
T_VAR var

T_VARIABLE $foo
T_WHILE while

T_WHITESPACE \t \r\n
T_XOR_EQUAL ^=

	

Ryan	 Dewhurst	 84	

Appendix D – Usability and Compatibility Test

	

Ryan	 Dewhurst	 85	

Appendix E – AChecker Accessibility Report

Web Accessibility Checker
atutor.ca/achecker

:;<=>?@A B@=C; 1, 2012 12D59D37

EF<=CG HIJD ;KKLD//46.64.8.240/M=A@N/EOKG>/?GPQ<R/#
EF<=CG :OKSGD TGPU<R - VWV EK@KOC XF?G YN@SA>O>

:;;<==>?>@>AB C<D><E (FG>H<@>I<=J KL:F 2.0 (M<D<@ ::))
C<NOPA OI QIOEI NPO?@<R= (0 SOGIH)J

LOITPUAG@UA>OI=! VO QIOEI NPO?@<R=.

Page 1/1

	

Ryan	 Dewhurst	 86	

Appendix F – Usability & Compatibility Inspection

Mozilla Firefox version 8.0.1

Action	 Expected	 Re-‐action	 Actual	 Re-‐action	 Pass	

Load	 Page	
Page	 loads	 as	 expected,	

user	 interface	 as	 expected,	
loads	 in	 a	 timely	 manner.	

Page	 loads	 as	 expected,	
user	 interface	 as	

expected,	 loads	 in	 a	
timely	 manner.	

Yes	

Run	 button	 pressed	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Yes	

Clear	 button	 pressed	
Code	 Editor,	 Information	
Panel	 and	 the	 browsers	
localstorage	 is	 cleared.	

Code	 Editor	 and	 the	
browsers	 localstorage	 is	
cleared.	 Information	
Panel	 is	 not	 cleared.	

No	

Help	 button	 pressed	
Help	 information	 displayed	
in	 the	 Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Help	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

About	 button	
pressed	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

Theme	 selection	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Yes	

Unload	 Page	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Yes	

Google Chrome version 17.0.963.65

Action	 Expected	 Re-‐action	 Actual	 Re-‐action	 Pass	

Load	 Page	
Page	 loads	 as	 expected,	

user	 interface	 as	 expected,	
loads	 in	 a	 timely	 manner.	

Page	 loads	 as	 expected,	
user	 interface	 as	

expected,	 loads	 in	 a	
timely	 manner.	

Yes	

	

Ryan	 Dewhurst	 87	

Run	 button	 pressed	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Yes	

Clear	 button	 pressed	
Code	 Editor,	 Information	
Panel	 and	 the	 browsers	
localstorage	 is	 cleared.	

Code	 Editor	 and	 the	
browsers	 localstorage	 is	
cleared.	 Information	
Panel	 is	 not	 cleared.	

No	

Help	 button	 pressed	
Help	 information	 displayed	
in	 the	 Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Help	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

About	 button	
pressed	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

Theme	 selection	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Yes	

Unload	 Page	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Yes	

Apple Safari version 5.1.2

Action	 Expected	 Re-‐action	 Actual	 Re-‐action	 Pass	

Load	 Page	
Page	 loads	 as	 expected,	

user	 interface	 as	 expected,	
loads	 in	 a	 timely	 manner.	

Page	 loads	 as	 expected,	
user	 interface	 as	

expected,	 loads	 in	 a	
timely	 manner.	

Yes	

Run	 button	 pressed	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Yes	

Clear	 button	 pressed	
Code	 Editor,	 Information	
Panel	 and	 the	 browsers	
localstorage	 is	 cleared.	

Code	 Editor	 and	 the	
browsers	 localstorage	 is	
cleared.	 Information	
Panel	 is	 not	 cleared.	

No	

	

Ryan	 Dewhurst	 88	

Help	 button	 pressed	
Help	 information	 displayed	
in	 the	 Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Help	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

About	 button	
pressed	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

Theme	 selection	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Yes	

Unload	 Page	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Yes	

Microsoft Internet Explorer version 8

Action	 Expected	 Re-‐action	 Actual	 Re-‐action	 Pass	

Load	 Page	
Page	 loads	 as	 expected,	

user	 interface	 as	 expected,	
loads	 in	 a	 timely	 manner.	

The	 page	 loads	 in	 a	 timely	
manner,	 however,	 the	

user	 interface	 is	
distorted.	 The	 theme	
selection	 box	 is	 not	

parallel	 with	 the	 buttons.	
And	 the	 buttons	 are	

square	 instead	 of	 round.	

No	

Run	 button	 pressed	

Source	 code	 in	 the	 Code	
Editor	 gets	 analysed	 and	
results	 displayed	 in	 the	

Information	 Panel	
properly.	

Seems	 as	 though	 the	
source	 code	 is	 not	

analysed	 as	 no	 results	 are	
displayed	 within	 the	
Information	 Panel.	

No	

Clear	 button	 pressed	
Code	 Editor,	 Information	
Panel	 and	 the	 browsers	
localstorage	 is	 cleared.	

Code	 Editor	 and	 the	
browsers	 localstorage	 is	
cleared.	 Information	
Panel	 is	 not	 cleared.	

No	

Help	 button	 pressed	
Help	 information	 displayed	
in	 the	 Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Help	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

	

Ryan	 Dewhurst	 89	

About	 button	
pressed	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

About	 information	
displayed	 in	 the	

Information	 Panel	 in	
correct	 font,	 size,	 colour.	

Yes	

Theme	 selection	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Theme	 is	 able	 to	 be	
selected.	 The	 chosen	
theme	 displays	 as	

intended.	

Yes	

Unload	 Page	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Contents	 of	 the	 Code	
Editor	 should	 be	 saved	 to	
localstorage	 and	 then	
retrieved	 on	 page	 load.	

Yes	

