CHAPTER 3

iptables: The Linux
Firewall Administration
Program

Chapter 2, “Packet-Filtering Concepts,” covers the background ideas and
concepts behind a packet-filtering firewall. Each built-in rule chain has its
own default policy. Each rule can apply not only to an individual chain, but
also to a specific network interface, message protocol type (such as TCP,
UDP, or ICMP), and service port or ICMP message type number. Individual
acceptance, denial, and rejection rules are defined for the INPUT chain and
the OUTPUT chain, as well as for the FORWARD chain, which you'll learn about
at the end of this chapter and in Chapter 6, “Packet Forwarding.” The next
chapter pulls those ideas together to demonstrate how to build a simple,
single-system, custom-designed firewall for your site.

This chapter covers the iptables firewall administration program used to
build a Netfilter firewall. For those of you who are familiar with or accus-
tomed to the older ipfwadm and ipchains programs used with the IPFW
technology, iptables will look very similar to those programs. However, it is
much more feature-rich and flexible, and it is very different on subtle levels.

There is indeed a difference between iptables and Netfilter, though you'll
often hear the terms used interchangeably. Netfilter is the Linux kernel-
space program code to implement a firewall within the Linux kernel, either
compiled directly into the kernel or included as a set of modules. On the
other hand, iptables is the userland program used for administration of the
Netfilter firewall. Throughout this text, I will refer to iptables as being inclu-
sive of both Netfilter and iptables, unless otherwise noted.

CHAPTER 3: iptables:The Linux Firewall Administration Program

Differences Between IPFW and Netfilter
Firewall Mechanisms

Because iptables is so different from the previous ipchains, this book won’t attempt to cover
the older implementation.

The next section is written for the reader who is familiar with or is currently using ipchains. If
iptables is your first introduction to Linux firewalling, you can skip ahead to the section
“Netfilter Packet Traversal.”

If you are converting from ipchains, you'll notice several minor differences in the iptables syn-
tax, most notably that the input and output network interfaces are identified separately.
iptables is highly modularized, and the individual modules must occasionally be loaded
explicitly. Logging is a rule target rather than a command option. Connection state tracking
can be maintained. Address and Port Translation are now logically separate functions from
packet filtering. Full Source and Destination Address Translation are implemented.
Masquerading is now a term used to refer to a specialized form of source address NAT. Port
forwarding and Destination Address Translation are supported directly without the need for
third-party software support such as ipmasqadm.

MASQUERADING IN EARLIER VERSIONS OF LINUX

For those of you who are new to Linux, Network Address Translation (NAT) is fully implemented
in iptables. Before this, NAT was called masquerading in Linux. A simple, partial implementation
of Source Address Translation, masquerading was used by site owners who had a single public
IP address and who wanted other hosts on their private network to be capable of accessing the
Internet. Outgoing packets from these internal hosts had their source address masqueraded to
that of the public, routable IP address.

The most important difference is in how packets are routed or forwarded through the operat-
ing system, making for subtle differences in how the firewall rule set is constructed.

For ipchains users, understanding the differences in packet traversal that are discussed in the
next two sections is very important. iptables and ipchains look very much alike on the sur-
face, but they are very different in practice. It's very easy to write syntactically correct iptables
rules that have a different effect from what a similar rule would have done in ipchains. It can
be confusing. If you already know ipchains, you must keep the differences in mind.

64

Differences Between IPFW and Netfilter Firewall Mechanisms

IPFW Packet Traversal

Under IPFW (ipfwadm and ipchains), three built-in filter chains were used. All packets arriv-
ing on an interface were filtered against the input chain. If the packet was accepted, it was
passed to the routing module. The routing function determined whether the packet was to be
delivered locally or forwarded to another outgoing interface. IPFW packet flow is pictured in
Figure 3.1.

FIGURE 3.1
IPFW packet traversal. (Figure based on “Linux IPCHAINS-HOWTO,” by Rusty Russel, v1.0.8.)

Interface Interface
> Input m Forward —pp Output -
Chain Chain Chain

Local

Processes

If forwarded, the packet was filtered a second time against the forward chain. If the packet
was accepted, it was passed to the output chain.

Both locally generated outgoing packets and forwarded packets were passed to the output
chain. If the packet was accepted, it was sent out the interface.

Received and sent local (loopback) packets passed through two filters. Forwarded packets
passed through three filters.

The loopback path involved two chains. As shown in Figure 3.2, each loopback packet passed
through the output filter before going “out” the loopback interface, where it was then deliv-
ered to the loopback’s input interface. Then the input filter was applied.

Note that the loopback path demonstrates why people’s X Window session hangs when start-
ing a firewall script that either doesn't allow loopback traffic or fails before doing so when a
deny by default policy is used.

In the case of response packets being demasqueraded before forwarding them on to the LAN,
the input filters were applied. Rather than passing through the routing function, the packet
was handed directly to the output filter chain. Thus, demasqueraded incoming packets were
filtered twice. Outgoing masqueraded packets were filtered three times.

65

CHAPTER 3: iptables:The Linux Firewall Administration Program

FIGURE 3.2
IPFW loopback and masqueraded packet traversal. (Figure based on “Linux IPCHAINS-HOWTO,” by Rusty
Russel, v1.0.8.)

o
®
3
]
2]
a
c
@
&
QO
o
I
=
e

Interface . Interface

v Input |~ Forward |'~~ Output
> Chain _V Chain Chain [~

Local
Processes J

Netfilter Packet Traversal

Under Netfilter (iptables), built-in INPUT, OUTPUT, and FORWARD filter chains are used.
Incoming packets pass through the routing function, which determines whether to deliver the
packet to the local host’s input chain or on to the forward chain. Netfilter packet flow is pic-
tured in Figure 3.3.

FIGURE 3.3
Netfilter packet traversal. (Figure based on “Linux 2.4 Packet Filtering HOWTO,” by Rusty Russel, v1.0.1.)

Forward
> » | Chan |———>,

Input | —» Local —>» |Output
Chain Processes Chain

66

Basic iptables Syntax

If a locally destined packet is accepted by the INPUT chain’s rules, the packet is delivered local-
ly. If a remotely destined packet is accepted by the FORWARD chain’s rules, the packet is sent
out the appropriate interface.

Outgoing packets from local processes are passed to the OUTPUT chain’s rules. If the packet is
accepted, it is sent out the appropriate interface. Thus, each packet is filtered once (except for
loopback packets, which are filtered twice).

Basic iptables Syntax

Firewalls built with Netfilter are built through the iptables firewall administration command.
The iptables command implements the firewall policies that you create and manages the
behavior of the firewall. Netfilter firewalls have three individual tables: filter, NAT, and man-
gle. Within these tables, firewalls are built through chains, with each individual link in the
chain being an individual iptables command.

Within the default filter table there is a chain for input or data coming into the firewall, a
chain for output or data leaving the firewall, a chain for forwarding or data being sent through
the firewall, and other chains including chains named and configured by the user, commonly
(and appropriately) called user-defined chains. The NAT and mangTe tables have specialty
chains that will be discussed later. For now, it’s sufficient to know that the filter table is the
default table for implementing a basic firewall, the NAT table is used to provide NAT and
related functions, and the mangTe table is used when the packet will be altered by the firewall.

iptables commands are issued with very specific syntax. Many times, the ordering of the
options given to iptables makes the difference between a successful command and a syntax
error. The commands issued to iptables fall through, so a command that allows certain pack-
ets that follows a command that denies those same packets will cause the data to be dropped
by the firewall.

The basic syntax for an iptables command begins with the iptables command itself, followed
by one or more options, a chain, a set of match criteria, and a target or disposition. The layout
of the command largely depends on the action to be performed. Consider this syntax:

iptables <option> <chain> <matching criteria> <target>

In building a firewall, the option is usually -A to append a rule onto the end of the ruleset.
Naturally, there are several options depending on the target and the operation being per-
formed. This chapter covers most of those options.

As previously stated, the chain can be an input chain, an output chain, a forwarding chain, or
a user-defined chain. In addition, the chain might also be a specialty chain contained in the
NAT or mangle tables.

67

CHAPTER 3: iptables:The Linux Firewall Administration Program

The matching criteria in an iptables command sets the conditions for the rule to be applied.
For example, the matching criteria would be used to tell iptables that all TCP traffic destined
for port 80 is allowed into the firewall.

Finally, the target sets the action to perform on a matching packet. The target can be some-
thing as simple as DROP to silently discard the packet, or it can send the matching packet to a
user-defined chain, or it can perform any other configured action in iptables.

The following sections of this chapter show hands-on examples using iptables to implement
real-world rules for various tasks. Some of the examples include syntax and options that
haven't yet been introduced. If you get lost, refer to this section or the iptables man page for
more information on the syntax being used.

iptables Features

iptables uses the concept of separate rule tables for different kinds of packet processing func-
tionality. These rule tables are implemented as functionally separate table modules. The three
primary modules are the rule filter table, the NAT nat table, and the specialized packet-
handling mangTe table. Each of these three table modules has its own associated module
extensions that are dynamically loaded when first referenced, unless you've built them directly
into the kernel.

The filter table is the default table. The other tables are specified by a command-line
option. The basic filter table features include these:

m Chain-related operations on the three built-in chains (INPUT, OUTPUT, and FORWARD) and
on user-defined chains

m Help

Target disposition (ACCEPT or DROP)

IP header field match operations for protocol, source and destination address, input and
output interfaces, and fragment handling

m Match operations on the TCP, UDP, and ICMP header fields

The filter table has two kinds of feature extensions: target extensions and match extensions.
The target extensions include the REJECT packet disposition, the BALANCE and CLUSTERIP tar-
gets, the CLASSIFY target, CONNMARK, TRACE, and the LOG and ULOG functionalities. The match
extensions support matching on the following:

m The current connection state

m Port lists (supported by the multiport module)

68

iptables Features

The hardware Ethernet MAC source address or physical device

The type of address, link-layer packet type, or range of IP addresses
Various parts of IPSec packets or the IPSec policy

The ICMP type

The length of the packet

The time the packet arrived

Every nth packet or random packets

The packet sender’s user, group, process, or process group 1D

The IP header Type of Service (TOS) field (possibly set by the mangTe table)
The TTL section of the IP header

The iptables mark field (set by the mangle table)

Rate-limited packet matching

The mangTe table has two target extensions. The MARK module supports assigning a value to
the packet’s mark field that iptables maintains. The TOS module supports setting the value
of the T0S field in the IP header.

UPCOMING FEATURES IN IPTABLES

iptables is being actively developed and enhanced. Based on the source code and build envi-
ronment, it is clear that additional modules will be available by the time this book is published.
Some other modules are not intended for release in the public distributions.

For example, there is an experimental MIRROR target. This target retransmits a packet after
reversing the source and destination sections of the IP header.

The nat table has target extension modules for Source and Destination Address Translation
and for Port Translation. These modules support these forms of NAT:

SNAT—Source NAT.
DNAT—Destination NAT.

MASQUERADE—A specialized form of source NAT for connections that are assigned
a temporary, changeable, dynamically assigned IP address (such as a phone dial-up
connection).

REDIRECT—A specialized form of destination NAT that redirects the packet to the local
host, regardless of the address in the IP header’s destination field.

69

CHAPTER 3: iptables:The Linux Firewall Administration Program

All TCP state flags can be inspected, and filtering decisions can be made based on the results.
iptables can check for stealth scans, for example.

TCP can optionally specify the maximum segment size that the sender is willing to accept in
return. Filtering on this one, single TCP option is a very specialized case. The TTL section of
the IP header can also be matched and is a specialized case as well.

TCP connection state and ongoing UDP exchange information can be maintained, allowing
packet recognition on an ongoing basis rather than on a stateless, packet-by-packet basis.
Accepting packets recognized as being part of an established connection allows bypassing the
overhead of checking the rule list for each packet. When the initial connection is accepted,
subsequent packets can be recognized and allowed.

Generally, the TOS field is of historical interest only. The TOS field is either ignored or used
with the newer Differentiated Services definitions by intermediate routers. IP TOS filtering has
uses for local packet prioritizing—routing and forwarding among local hosts and the local
router.

Incoming packets can be filtered by the MAC source address. This has limited, specialized
uses for local authentication because MAC addresses are passed only between adjacent hosts
and routers.

Individual filter log messages can be prefixed with user-defined strings. Messages can be
assigned kernel logging levels as defined for /etc/syslog.conf. This allows logging to be
turned on and off, and for the log output files to be defined, in /etc/sysTog.conf. In addi-
tion, there is a ULOG option that sends logging to a userspace daemon, ulogd, to enable further
detail to be logged about the packet.

Packet matches can be limited to an initial burst rate, after which a limit is imposed by the
number of allowed matches per second. If match limiting is enabled, the default is that, after
an initial burst of five matched packets, a rate limit of three matches per hour is imposed. In
other words, if the system were flooded with ping packets, for example, the first five pings
would match. After that, a single ping packet could be matched 20 minutes later, and another
one could be matched 20 minutes after that, regardless of how many echo-requests were
received. The disposition of the packets, whether logged or not, would depend on any subse-
quent rules regarding the packets.

The REJECT target can optionally specify which ICMP (or RST for TCP) error message to
return. The IPv4 standard requires TCP to accept either RST or ICMP as an error indication,
although RST is the default TCP behavior. iptable’s default is to return nothing (DROP) or else
to return an ICMP error (REJECT).

70

iptables Features

Along with REJECT, another special-purpose target is QUEUE. Its purpose is to hand off the
packet via the netlink device to a user-space program for handling. If there is no waiting pro-
gram, the packet is dropped.

RETURN is another special-purpose target. Its purpose is to return from a user-defined chain
before rule matching on that chain has completed.

Locally generated outgoing packets can be filtered based on the user, group, process, or
process group 1D of the program generating the packet. Thus, access to remote services can be
authorized at the packet-filtering level on a per-user basis. This is a specialized option for
multiuser, multipurpose hosts because firewall routers shouldn’t have normal user accounts.

Matching can be performed on various pieces of IPSec header, including the SPIs (security
parameter indices) of the AH (authentication header) and ESP (encapsulating security payload).

The type of packet, be it broadcast, unicast, or multicast, is another form of match. This is
done at the link layer.

A range of ports as well as a range of addresses are also valid matches with iptables. The type
of address is another valid match as well. Related to type matching is the ICMP packet type.
Recall that there are a number of valid types of ICMP packet types. Iptables can match against
these types.

The length of the packet is a valid match, as is the time a packet arrived. This time matching
is interesting. Using the time matches, you could configure the firewall to reject certain traffic
after business hours or allow it only during certain times of day.

A good match for auditing, a random packet match is also available with iptables. Using this
match, you can capture every nth packet and log it. This would be a method for auditing the
firewall rules without logging too much information.

NAT Table Features

There are three general forms of NAT:

m Traditional, unidirectional outbound NAT—Used for networks using private addresses.

m Basic NAT—Address Translation only. Usually used to map local private source
addresses to one of a block of public addresses.

m NAPT (Network Address Port Translation)—Usually used to map local private source
addresses to a single public address (for example, Linux masquerading).

m Bidirectional NAT—Two-way address translation allows both outbound and inbound
connections. A use of this is bidirectional address mapping between IPv4 and IPv6
address spaces.

71

CHAPTER 3: iptables:The Linux Firewall Administration Program

m Twice NAT—Two-way Source and Destination Address Translation allows both outbound
and inbound connections. Twice NAT can be used when the source and destination net-
works’ address spaces collide. This could be the result of one site mistakenly using pub-
lic addresses assigned to someone else. Twice NAT also can be used as a convenience
when a site was renumbered or assigned to a new public address block and the site
administrator didn't want to administer the new address assignments locally at that
time.

iptables NAT supports source (SNAT) and destination NAT (DNAT). The NAT table allows for
modifying a packet’s source address or destination address and port. It has three built-in
chains:

m The PREROUTING chain specifies destination changes to incoming packets before passing
the packet to the routing function (DNAT). Changes to the destination address can be
to the local host (transparent proxying, port redirection) or to a different host for host
forwarding (ipmasgadm functionality, port forwarding in Linux parlance) or load sharing.

m The OUTPUT chain specifies destination changes to locally generated outgoing packets
before the routing decision has been made (DNAT, REDIRECT). This is usually done to
transparently redirect an outgoing packet to a local proxy, but it can also be used to
port-forward to a different host.

m The POSTROUTING chain specifies source changes to outgoing packets being routed
through the box (SNAT, MASQUERADE). The changes are applied after the routing
decision has been made.

MASQUERADING IN IPTABLES

In iptables, masquerading is a specialized case of source NAT in the sense that the masqueraded
connection state is forgotten immediately if the connection is lost. It's intended for use with
connections (for example, dial-up) in which the IP address is assigned temporarily. If the user
reconnected immediately, he would probably be assigned a different IP address than he had
during the previous connection. (This is often not the case with many cable-modem and

ADSL service providers. Often, after a connection loss, the same IP address is assigned upon
reconnection.)

With regular SNAT, connection state is maintained for the duration of a timeout period. If a
connection were reestablished quickly enough, any current network-related programs could
continue undisturbed because the IP address hasn’t changed, and interrupted TCP traffic
would be retransmitted.

72

iptables Features

The distinction between MASQUERADE and SNAT is an attempt to avoid a situation that
occurred in previous Linux NAT/MASQUERADE implementations. When a dial-up connec-
tion was lost and the user reconnected immediately, he was assigned a new IP address. The
new address couldn’t be used immediately because the old IP address and NAT information
were still in memory until the timeout period expired.

Figure 3.4 shows the NAT chains in relation to the routing function and INPUT, OUTPUT, and
FORWARD chains.

FIGURE 3.4
NAT packet traversal. (Figure based on “Linux 2.4 Packet Filtering HOWTO,” v1.0.1, and “Linux 2.4 NAT
HOWTO,” v1.0.1.)

Destination

3 » | Forward Source
NAT Chain NAT

y

Input | —» Local —>» | Output
Chain Processes Chain

Pre-routing Post-routing

Note that, for outgoing packets, the routing function is implied between the local process and
the OUTPUT chain. Static routing is used to determine which interface the packet will go out
on, before the OUTPUT chain’ filter rules are applied.

mangle Table Features

The mangle table allows marking, or associating a Netfilter-maintained value, with the packet,
as well as making changes to the packet before sending the packet on to its destination. The
mangle table has five built-in chains:

m The PREROUTING chain specifies changes to incoming packets as they arrive at an inter-
face, before any routing or local delivery decision has been made.

m The INPUT chain specifies changes to packets as they are processed, but after the
PREROUTING chain is traversed.

73

CHAPTER 3: iptables:The Linux Firewall Administration Program

m The POSTROUTING chain specifies changes to packets as they are exiting the firewall, after
the OUTPUT chain is traversed.

m The FORWARD chain specifies changes to packets that are forwarded through the firewall.

m The OUTPUT chain specifies changes to locally generated outgoing packets.

For the TOS field, the local Linux router can be configured to honor the T0S flags set by the
mangTe table or as set by the local hosts.

Little information is available about packet marking in the iptables documentation, beyond
that it's used by the Linux Quality of Service implementation and that it’s intended as a com-
munication flag between iptables modules.

The preceding sections provided an overview of the features available in iptables and the gen-
eral structure and functionality of the individual table modules. The following sections present
the syntax used to invoke these features.

iptables Syntax

As presented earlier, iptables uses the concept of separate rule tables for different packet pro-
cessing functionality. Nondefault tables are specified by a command-line option. Three tables
are available:

m filter—The filter table is the default table. It contains the actual firewall filtering
rules. The built-in chains include these:

m INPUT
® OQUTPUT
® FORWARD

m nat—The nat table contains the rules for Source and Destination Address and Port
Translation. These rules are functionally distinct from the firewall filter rules. The built-
in chains include these:

® PREROUTING (DNAT/REDIRECT)
m QUTPUT (DNAT/REDIRECT)
m POSTROUTING (SNAT/MASQUERADE)

® mangle—The mangle table contains rules for setting specialized packet-routing flags.
These flags are then inspected later by rules in the filter table. The built-in chains
include these:

74

iptables Syntax

® PREROUTING (routed packets)
m INPUT (packets arriving at the firewall but after the PREROUTING chain)
® FORWARD (changes packets being routed through the firewall)

m POSTROUTING (changes packets just before they leave the firewall, after the OUTPUT
chain)

m OUTPUT (locally generated packets)

SYNTAX FORMAT CONVENTIONS

The conventions used to present command-line syntax options are fairly standard in the com-
puter world. For those of you who are new to Linux or to computer documentation in general,
Table 3.1 shows the conventions used in the upcoming syntax descriptions.

TABLE 3.1
Conventions Representing Command-Line Syntax Options

ELEMENT DESCRIPTION

| A bar or pipe symbol separates alternate syntax options. For example, most
of the iptables commands have both a short and a long form, such as -L
and --Tist,and so they would be listed as alternate options because you
would use one or the other of -L or --T1ist.

<value> Angle brackets indicate a user-supplied value, such as a string or numeric
value.

[1] Square brackets indicate that the enclosed command, option, or value is
optional. For example, most match operators can take a negation operator, !,
which matches anything other than the value specified in the match.The
negation operator is usually placed between the match operator and the
value to be matched.

<value>:<value> A colon indicates a range of values.The two values define the minimum and
maximum values within the range. Because ranges themselves are optional,
the convention is more often presented as <value>[:<value>].

filter Table Commands

The filter table commands are provided by the ip_tables module. The functionality is
enabled by loading the module, which is done automatically with the first invocation of the
iptables command, or it could be compiled into the kernel itself, which means you don’t need
to worry about modules being loaded at all.

75

CHAPTER 3: iptables: The Linux Firewall Administration Program

fi1ter TABLE OPERATIONS ON ENTIRE CHAINS

Table 3.2 shows the iptables operations on entire chains.

TABLE 3.2

iptables Operations on Entire Chains

OPTION

-N | --new-chain <chain>

-F | --flush [<chain>]

-X | --delete-chain [<chain>]

-P | --policy <chain> <policy>
-L | --Tist [<chain>]

-Z | --zero

-h | <some command> -h

--modprobe=<command>

-E | --rename-chain <old chain> <new chain>

DESCRIPTION
Creates a user-defined chain.

Flushes the chain, or all chains if none is
specified.

Deletes the user-defined chain, or all
chains if none is specified.

Defines the default policy for one of the
built-in chains, INPUT, OUTPUT, or
FORWARD.The policy is either ACCEPT or
DROP.

Lists the rules in the chain, or all chains if
none is specified.

Resets the packet and byte counters asso-
ciated with each chain.

Lists the iptables commands and options,
or if preceded by an iptables command,
lists the syntax and options for that
command.

Use <command> to load the necessary
module(s) when adding or inserting a rule
into a chain.

Renames the user-defined chain <o1d
chain> to the user-defined chain <new
chain>.

The -h help command is obviously not an operation on a chain nor is --modprobe=
<command>, but I didn’t know where else to list the command.

76

iptables Syntax

The list command takes additional options, as shown in Table 3.3.

TABLE 3.3

Options to the List Chain Command

OPTION DESCRIPTION

-L -n | --numeric Lists the IP addresses and port numbers numerically, rather than by
name

-L -v | --verbose Lists additional information about each rule, such as the byte and packet
counters, rule options, and relevant network interface

-L -x | --exact Lists the exact values of the counter, rather than the rounded-off values

-L -1line-numbers Lists the rule’s position within its chain

filter TABLE OPERATIONS ON A RULE

The most frequently used commands to create or delete rules within a chain are shown in
Table 3.4.

TABLE 3.4

Chain Commands on Individual Rules

COMMAND DESCRIPTION

-A | --append <chain> Appends a rule to the
end of a chain

-I | --insert <chain> Inserts a rule at the
beginning of the chain

-R | --replace <chain> <rule number> <rule specification> Replaces aruleinthe
chain

-D | --delete <chain> <rule number> Deletes the rule at posi-
tion rule number within
a chain

BASIC fi1ter TABLE MATCH OPERATIONS

The basic filter match operations supported in the default iptables filter table are listed in
Table 3.5.

77

CHAPTER 3: iptables: The Linux Firewall Administration Program

TABLE 3.5
f11ter Table Rule Operations

OPTION DESCRIPTION

-i | --in-interface [!] [<interface>] For incoming packets on either the
INPUT or the FORWARD chains, or
their user-defined subchains, speci-
fies the interface name that the rule
applies to. If no interface is speci-
fied, all interfaces are implied.

-0 | --out-interface [!] [<interface>] For outgoing packets on either the
OUTPUT or the FORWARD chains, or
their user-defined subchains, speci-
fies the interface name that the rule
applies to. If no interface is speci-
fied, all interfaces are implied.

-p | --protocol [!] [<protocol>] Specifies the IP protocol that the
rule applies to.The built-in protocols
are tcp, udp, icmp, and all. The pro-
tocol value can be either the name
or the numeric value, as listed in
/etc/protocols.

-s | --source | --src [!] <address>[</mask>] Specifies the host or network source
address in the IP header.

-d | --destination | --dst [!] <address>[</mask>] Specifies the host or network desti-
nation address in the IP header.

-j | --jump <target> Specifies the target disposition for
the packet if it matches the rule.The
default targets include the built-in
targets, an extension, or a user-
defined chain.

[!]1 -f | --fragment Specifies second and additional
fragmented packets. The negated
version of this specifies unfragment-
ed packets.

-c | --set-counters <packets> <bytes> Initializes the packet and byte
counters.

RULE TARGETS ARE OPTIONAL

If the packet matches a rule that doesn’t have a target disposition, the packet counters are
updated, but list traversal continues.

78

tcp filter TABLE MATCH OPERATIONS
TCP header match options are listed in Table 3.6.

TABLE 3.6
tcp filter Table Match Operations
-p tcp OPTION

--source-port | --sport [[!] <port>[:<port>]]
--destination-port | --dport [!] <port>[:<port>]

--tcp-flags [!] <mask>[,<mask>] <set>[,<set>]

[!] -syn

--tcp-option [!] <number>

iptables Syntax

DESCRIPTION

This command specifies the source
ports.

This command specifies the desti-
nation ports.

This command tests the bits in the
mask list, out of which the following
bits must be set in order to match.

The SYN flag must be set as an ini-
tial connection request.

The only legal tcp option is the
maximum packet size that the
sending host is willing to accept.

udp filter TABLE MATCH OPERATIONS
UDP header match options are listed in Table 3.7.

TABLE 3.7

udp fiTter Table Match Operations
-p udp OPTION
--source-port | --sport [!] <port>[:<port>]

--destination-port | --dport [!] <port>[:<port>]

DESCRIPTION
Specifies the source ports

Specifies the destination ports

icmp filter TABLE MATCH OPERATIONS
ICMP header match options are listed in Table 3.8.

TABLE 3.8
icmp fiTter Table Match Operations
MATCH DESCRIPTION

--icmp-type [!] <type>

Specifies the ICMP type name or number.The ICMP type is

used in place of a source port.

79

CHAPTER 3: iptables:The Linux Firewall Administration Program

The major supported ICMP type names and numeric values are the following:

®m echo-reply (0)

® destination-unreachable (3)
B network-unreachable
B host-unreachable
B protocol-unreachable
B port-unreachable
® fragmentation-needed
® network-unknown
B host-unknown
B network-prohibited
B host-prohibited

® source-quench (4)

®m redirect (5)

® echo-request (8)

m time-exceeded (10)

® parameter-problem (11)

ADDITIONAL ICMP SUPPORT

iptables supports a number of additional, less common or router-specific ICMP message types
and subtypes.To see the entire list, use the following iptables help command:
iptables -p icmp -h

filter Table Target Extensions

The filter table target extensions include logging functionality and the capability to reject a
packet rather than dropping it.

Table 3.9 lists the options available to the LOG target. Table 3.10 lists the single option avail-
able to the REJECT target.

80

TABLE 3.9
LOG Target Extension

-j LOG OPTION

--log-Tevel <syslog level>

iptables Syntax

DESCRIPTION

Log level is either the numeric or the symbolic login
priority, as listed in /usr/include/sys/syslog.h.
These are the same log levels used in /etc/
syslog.conf.The levels are emerg (0),alert (1),
crit(2),err (3),warn (4),notice (5),info (6),
memerg (0),alert (1), crit (2),err (3),warn (4),
notice (5),info (6),and debut (7).

--Tog-prefix <"descriptive string"> The prefixis a quoted string that will be printed at

--Tog-ip-options

--log-tcp-sequence

--log-tcp-option

the start of the log message for the rule.

This command includes any IP header options in the
log output.

This command includes the TCP packet’s sequence
number in the log output.

This command includes any TCP header options in
the log output.

TABLE 3.10
REJECT Target Extension

-j REJECT OPTION
--reject-with <ICMP type 3>

--reject-with tcp-reset

--reject-with echo-reply

DESCRIPTION

By default, a rejected packet results in an ICMP type 3 1icmp-
port-unreachable message being returned to the sender.
Other type 3 error messages can be returned instead, including
icmp-net-unreachable,icmp-host-unreachable, icmp-
proto-unreachable,icmp-net-prohibited,and icmp-
host-prohibited.

Incoming TCP packets can be rejected with the more standard
TCP RST message, rather than an ICMP error message.

ping echo-request messages can be rejected with a faked
echo-reply message.That is, the firewall generates the reply,
but the request is not forwarded to the target host.

THE ULOG TABLE TARGET EXTENSION

Related to the LOG target is the ULOG target, which sends the log message to a userspace pro-
gram for logging. Behind the scenes for ULOG, the packet gets multicast by the kernel through
a netlink socket of your choosing (the default is socket 1). The userspace daemon would then

81

CHAPTER 3: iptables:The Linux Firewall Administration Program

read the message from the socket and do with it what it pleases. The ULOG target is typically
used to provide more extensive logging than is possible with the standard LOG target.

As with the LOG target, processing continues after matches on a ULOG targeted rule. The ULOG
target has four configuration options, as described in Table 3.11.

TABLE 3.11

ULOG Target Extension

OPTION DESCRIPTION

--ulog-nlgroup <group> Defines the netlink group that will receive the packet.The default
group is 1.

--ulog-prefix <prefix> Messages will be prefixed by this value, up to 32 characters in
length.

--ulog-cprange <size> The size in bytes to send to the netlink socket. The default is 0,

which sends the entire packet.

--ulog-qthreshold <size> The size in packets to queue within the kernel. The default is 1,
which means that one packet is sent per message to the netlink
socket.

filter Table Match Extensions

The filter table match extensions provide access to the fields in the TCP, UDP, and ICMP
headers, as well as the match features available in iptables, such as maintaining connection
state, port lists, access to the hardware MAC source address, and access to the IP TOS field.

MATCH SYNTAX

The match extensions require the -m or --match command to load the module, followed by any
relevant match options.

multiport filter TABLE MATCH EXTENSION

multiport port lists can include up to 15 ports per list. Whitespace isn’t allowed. There can
be no blank spaces between the commas and the port values. Port ranges cannot be inter-
spersed in the list. Also, the -m multiport command must exactly follow the -p <protocol>
specifier.

Table 3.12 lists the options available to the multiport match extension.

82

iptables Syntax

TABLE 3.12

muTtiport Match Extension

m | --match multiport OPTION DESCRIPTION

--source-port <port> [,<port>] Specifies the source port(s).
--destination-port <port> [,<port>] Specifies the destination port(s).

--port <port>[,<port>] Source and destination ports are equal, and they

match a port in the list.

The muTtiport syntax can be a bit tricky. Some examples and cautions are included here. The
following rule blocks incoming packets arriving on interface eth0 destined for the UDP ports
associated with NetBIOS and SMB, common ports that are exploited on Microsoft Windows
computers and targets for worms:

iptables -A INPUT -i ethO -p udp\
-m multiport --destination-port 135,136,137,138,139 -j DROP

The next rule blocks outgoing connection requests sent through the eth0 interface to high
ports associated with the TCP services NFS, socks, and squid:

iptables -A OUTPUT -o eth0 -p tcp\
-m multiport --destination-port 2049,1080,3128 --syn -j REJECT

What is important to note in this example is that the muTtiport command must exactly fol-
low the protocol specification. A syntax error would have resulted if the --syn were placed
between the -p tcp and the -m multiport.

To show a similar example of --syn placement, the following is correct:

iptables -A INPUT -i <interface> -p tcp \
-m multiport --source-port 80,443 ! --syn -j ACCEPT

However, this causes a syntax error:

iptables -A INPUT -i <interface> -p tcp ! --syn \
-m multiport --source-port 80,443 -j ACCEPT

Furthermore, the placement of source and destination parameters is not obvious. The follow-
ing two variations are correct:

iptables -A INPUT -i <interface> -p tcp -m multiport \
--source-port 80,443
! --syn -d $IPADDR --dport 1024:65535 -j ACCEPT

and

iptables -A INPUT -i <interface> -p tcp -m multiport \
--source-port 80,443
-d $IPADDR ! --syn --dport 1024:65535 -j ACCEPT

83

CHAPTER 3: iptables:The Linux Firewall Administration Program

However, this causes a syntax error:

iptables -A INPUT -i <interface> -p tcp -m multiport \
--source-port 80,443
-d $IPADDR --dport 1024:65535 ! --syn -j ACCEPT

This module has some surprising syntax side effects. Either of the two preceding correct rules
produces a syntax error if the reference to the SYN flag is removed:
iptables -A INPUT -i <interface> -p tcp -m multiport \

--source-port 80,443
-d $IPADDR --dport 1024:65535 -j ACCEPT

The following pair of rules, however, does not:

iptables -A OUTPUT -o <interface> \
-p tcp -m multiport --destination-port 80,443 \
! --syn -s $IPADDR --sport 1024:65535 -j ACCEPT

iptables -A OUTPUT -o <interface> \
-p tcp -m multiport --destination-port 80,443 \
--syn -s $IPADDR --sport 1024:65535 -j ACCEPT

Note that the --destination-port argument to the multiport module is not the same as the
--destination-port or --dport argument to the module that performs matching for the -p
tcp arguments.

Timit filter TABLE MATCH EXTENSION

Rate-limited matching is useful for choking back the number of log messages that would be
generated during a flood of logged packets.

Table 3.13 lists the options available to the Timit match extension.

TABLE 3.13

14im1it Match Extension

-m | --match Timit OPTION DESCRIPTION

--Timit <rate> Maximum number of packets to match within the given
time frame

--Timit-burst <number> Maximum number of initial packets to match before

applying the limit

The burst rate defines the number of initial matches to be accepted. The default value is five
matches. When the limit has been reached, further matches are limited to the rate limit. The

84

iptables Syntax

default limit is three matches per hour. Optional time frame specifiers include /second,
/minute, /hour, and /day.

In other words, by default, when the initial burst rate of five matches is reached within the
time limit, at most three more packets will match over the next hour, one every 20 minutes,
regardless of how many packets are received. If a match doesn’t occur within the rate limit,
the burst is recharged by one.

It’s easier to demonstrate rate-limited matching than it is to describe it in words. The following
rule will limit logging of incoming ping message matches to one per second when an initial
five echo-requests are received within a given second:
iptables -A INPUT -i ethO \

-p icmp --icmp-type echo-request \

-m Tlimit --1imit 1/second -j LOG

It’s also possible to do rate-limited packet acceptance. The following two rules, in combina-
tion, will limit acceptance of incoming ping messages to one per second when an initial five
echo-requests are received within a given second:
iptables -A INPUT -i ethO \

-p icmp --icmp-type echo-request \

-m 1imit --1imit 1/second -j ACCEPT

iptables -A INPUT -i ethO \
-p icmp --icmp-type echo-request -j DROP

The next rule limits the number of log messages generated in response to dropped ICMP
redirect messages. When an initial five messages have been logged within a 20-minute time
frame, at most three more log messages will be generated over the next hour, one every 20
minutes:
iptables -A INPUT -i ethO \

-p icmp --icmp-type redirect \

-m Timit -j LOG

The assumption in the final example is that the packet and any additional unmatched
redirect packets are silently dropped by the default DROP policy for the INPUT chain.

dstlimit filter TABLE MATCH EXTENSION

The dst1imit match extension enables rate limiting on a per-destination basis, whether per IP
address or per port. Note the difference between the dst1imit match extension and the Timit
match extension, which has one limit for packets of a certain type.

Table 3.14 lists the options for the dst1imit match extension.

85

CHAPTER 3: iptables:The Linux Firewall Administration Program

TABLE 3.14
dst11imit Match Extension

OPTION

--dstlimit <average>

--dstTimit-mode <mode>

--dstTimit-name <name>

[--dstTimit-burst <burst>]

[--dstTimit-htable-size <size>]

[--dstTimit-htabTle-max <entries>]

[--dstTimit-htable-gcinterval <intervals>]

[--dstTimit-htable-expire <time>]

DEFINITION

Maximum average match rate in packets per
second.

Defines the limit to be per IP (dstip), per IP
and port tuple (dstip-dstport), per source
IP and destination IP tuple (srcip-dstip), or
per source IP and destination IP and destina-
tion port tuple (srcipdstip-dstport).

Specifies the name for the file to be placed in
/proc/net/ipt_dstlimit/.

Specifies the number of packets that should
be matched when received as a burst of
packets.The default is 5.

Defines the number of buckets in the
hashtable.

Defines the limit for the number of entries in
the hashtable.

Defines the length of time between cleanup
of the hashtable. The value for <interval>
is in milliseconds, with the default being
1000 ms.

Defines the amount of time before an idle
entry is purged from the hashtable. The value
is in milliseconds, with the default being
10000 ms.

state filter TABLE MATCH EXTENSION

Static filters look at traffic on a packet-by-packet basis alone. Each packet’s particular combi-
nation of source and destination addresses and ports, the transport protocol, and the current
TCP state flag combination is examined without reference to any ongoing context. ICMP mes-
sages are treated as unrelated, out-of-band IP Layer 3 events.

The state extension provides additional monitoring and recording technology to augment the
stateless, static packet-filter technology. State information is recorded when a TCP connection
or UDP exchange is initiated. Subsequent packets are examined not only based on the static
tuple information, but also within the context of the ongoing exchange. In other words, some
of the contextual knowledge usually associated with the upper TCP Transport layer, or the
UDP Application layer, is brought down to the filter layer.

86

iptables Syntax

After the exchange is initiated and accepted, subsequent packets are identified as part of the
established exchange. Associated ICMP messages are identified as being related to a particular
exchange.

(In computer terminology, a collection of values or attributes that together uniquely identify
an event or object is called a tuple. A UDP or TCP packet is uniquely identified by the tuple
combination of its protocol, UDP or TCP, the source and destination addresses, and the source
and destination ports.)

For session monitoring, the advantages of maintaining state information are less obvious for
TCP because TCP maintains state information by definition. For UDP, the immediate advan-
tage is the capability to distinguish responses from other datagrams. In the case of an outgoing
DNS request, which represents a new UDP exchange, the concept of an established session
allows an incoming UDP response datagram from the host and port the original message was
sent to, within a certain time-limited window. Incoming UDP datagrams from other hosts or
ports are not allowed. They are not part of the established state for this particular exchange.
When applied to TCP and UDP, ICMP error messages are accepted if the error message is
related to the particular session.

In considering packet flow performance and firewall complexity, the advantages are more
obvious for TCP flows. Flows are primarily a firewall performance and optimization technolo-
gy. The main goal of flows is to allow bypassing the firewall inspection path for a packet.
Much faster TCP packet handling is obtained in some cases because the remaining firewall
filters can be skipped if the TCP packet is immediately recognized as part of an allowed,
ongoing connection. For TCP connections, flow state can be a major win in terms of filtering
performance. Also, standard TCP application protocol rules can be collapsed into a single
initial allow rule. The number of filter rules is reduced (theoretically, but not necessarily in
practice, as you'll see later in the book).

The main disadvantage is that maintaining a state table requires more memory than standard
firewall rules alone. Routers with 70,000 simultaneous connections, for example, would
require tremendous amounts of memory to maintain state table entries for each connection.
State maintenance is often done in hardware for performance reasons, where associative table
lookups can be done simultaneously or in parallel. Whether implemented in hardware or soft-
ware, state engines must be capable of reverting a packet to the traditional path if memory
isn’t available for the state table entry.

Also, table creation, lookup, and teardown take time in software. The additional processing

overhead is a loss in many cases. State maintenance is a win for ongoing exchanges such as an
FTP transfer or a UDP streaming multimedia session. Both types of data flow represent poten-
tially large numbers of packets (and filter rule match tests). State maintenance is not a firewall
performance win for a simple DNS or NTP client/server exchange, however. State buildup and

87

CHAPTER 3: iptables:The Linux Firewall Administration Program

teardown can easily require as much processing—and more memory—than simply traversing
the filter rules for these packets.

The advantages are also questionable for firewalls that filter primarily web traffic. Web
client/server exchanges tend to be brief and ephemeral.

Telnet and SSH sessions are in a gray area. On heavily trafficked routers with many such ses-
sions, the state maintenance overhead may be a win by bypassing the firewall inspection. For
fairly quiescent sessions, however, it’s likely that the connection state entry will timeout and
be thrown away. The state table entry will be re-created when the next packet comes along,
after it has passed the traditional firewall rules.

Table 3.15 lists the options available to the state match extension.

TABLE 3.15

state Match Extension

-m | --match state OPTION DESCRIPTION

--state <state>[,<state>] Matches if the connection state is one in the list. Legal values

are NEW, ESTABLISHED, RELATED, or INVALID.

TCP connection state and ongoing UDP exchange information can be maintained, allowing
network exchanges to be filtered as NEW, ESTABLISHED, RELATED, or INVALID:

m NEW is equivalent to the initial TCP SYN request, or to the first UDP packet.

m ESTABLISHED refers to the ongoing TCP ACK messages after the connection is initiated, to
subsequent UDP datagrams exchanged between the same hosts and ports, and to ICMP
echo-reply messages sent in response to a previous echo-request.

m RELATED currently refers only to ICMP error messages. FTP secondary connections are
managed by the additional FTP connection tracking support module. With the addition
of that module, the meaning of RELATED is extended to include the secondary FTP
connection.

m An example of an INVALID packet is an incoming ICMP error message that wasn't a
response to a current session, or an echo-reply that wasn't a response to a previous
echo-request.

Ideally, using the ESTABLISHED match allows the firewall rule pair for a service to be collapsed
into a single rule that allows the first request packet. For example, using the ESTABLISHED
match, a web client rule requires allowing only the initial outgoing SYN request. A DNS client
request requires only the rule allowing the initial UDP outgoing request packet.

88

iptables Syntax

With a deny-by-default input policy, connection tracking can be used (theoretically) to replace
all protocol-specific filters with two general rules that allow incoming and outgoing packets
that are part of an established connection, or packets related to the connection. Application-
specific rules are required for the initial packet alone.

Although such a firewall setup might very well work for a small or residential site in most
cases, it is unlikely to perform adequately for a larger site or a firewall that handles many con-
nections simultaneously. The reason goes back to the case of state table entry timeouts, in
which a state entry for a quiescent connection is replaced because of table size and memory
constraints. The next packet that would have been accepted by the deleted state entry requires
a rule to allow the packet, and the state table entry must be rebuilt.

A simple example of this is a rule pair for a local DNS server operating as a cache-and-forward
name server. A DNS forwarding name server uses server-to-server communication. DNS traffic
is exchanged between source and destination ports 53 on both hosts. The UDP client/server
relationship can be made explicit. The following rules explicitly allow outgoing (NEW) requests,
incoming (ESTABLISHED) responses, and any (RELATED) ICMP error messages:

iptables -A INPUT -m state \
--state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT --out-interface <interface> -p udp \
-s $IPADDR --source-port 53 -d $NAME_SERVER --destination-port 53 \
-m state --state NEW,RELATED -j ACCEPT

DNS uses a simple query-and-response protocol. But what about an application that can
maintain an ongoing connection for extended periods, such as an FTP control session or a
telnet or SSH session? If the state table entry is cleared out prematurely for some reason,
future packets won't have a state entry to be matched against to be identified as part of an
ESTABLISHED exchange.

The following rules for an SSH connection allow for that possibility:

iptables -A INPUT -m state \
--state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT -m state \
--state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT --out-interface <interface> -p tcp \
-s $IPADDR --source-port $UNPRIVPORTS \
-d $REMOTE_SSH_SERVER --destination-port 22 \
-m state --state NEW, -j ACCEPT

89

CHAPTER 3: iptables:The Linux Firewall Administration Program

iptables -A OUTPUT --out-interface <interface> -p tcp ! --syn \
-s $IPADDR --source-port $UNPRIVPORTS \
-d $REMOTE_SSH_SERVER --destination-port 22 \
-j ACCEPT

iptables -A INPUT --in-interface <interface> -p tcp ! --syn \
-s $REMOTE_SSH_SERVER --source-port 22 \
-d $IPADDR --destination-port $UNPRIVPORTS \
-j ACCEPT

mac filter TABLE MATCH EXTENSION

Table 3.16 lists the options available to the mac match extension.

TABLE 3.16
mac Match Extension

-m | --match mac OPTION DESCRIPTION

--mac-source [!] <address> Matches the Layer 2 Ethernet hardware source address, speci-

fied as xx 1 xx:xx:Xxx:Xx:XxX:,in the incoming Ethernet frame

Remember that MAC addresses do not cross router borders (or network segments). Also
remember that only source addresses can be specified. The mac extension can be used only on
an in-interface, such as the INPUT, PREROUTING, and FORWARD chains.

The following rule allows incoming SSH connections from a single local host:

iptables -A INPUT -i <local interface> -p tcp \
-Mm Mac --mac-source XX:XX:XX:IXX:IXX:XX \
--source-port 1024:65535 \
-d <IPADDR> --dport 22 -j ACCEPT

owner filter TABLE MATCH EXTENSION

Table 3.17 lists the options available to the owner match extension.

TABLE 3.17

owner Match Extension
-m | --match owner OPTION DESCRIPTION

--uid-owner <userid> Matches on the creator’s UID

--gid-owner <groupid> Matches on the creator’s GID

--pid-owner <processid> Matches on the creator’s PID

--sid-owner <sessionid> Matches on the creator’s SID or PPID

--cmd-owner <name> Matches on a packet created by a process with command

name name

90

iptables Syntax

The match refers to the packet’s creator. The extension can be used on the OUTPUT chain only.

These match options don’t make much sense on a firewall router; they make more sense on an
end host.

So, let’s say that you have a firewall gateway with a monitor, perhaps, but no keyboard.
Administration is done from a local, multiuser host. A single user account is allowed to log in
to the firewall from this host. On the multiuser host, administrative access to the firewall
could be locally filtered as shown here:
iptables -A OUTPUT -o ethO -p tcp \

-s <IPADDR> --sport 1024:65535 \

-d <fw IPADDR> --dport 22 \

-m owner --uid-owner <admin userid> \
--gid-owner <admin groupid> -j ACCEPT

mark filter TABLE MATCH EXTENSION

Table 3.18 lists the options available to the mark match extension.

TABLE 3.18

mark Match Extension

-m | -match mark OPTION DESCRIPTION

--mark <value>[/<mask>] Matches packets having the Netfilter-assigned mark value

The mark value and the mask are unsigned long values. If a mask is specified, the value and
the mask are ANDed together.

In the example, assume that an incoming telnet client packet between a specific source and
destination had been marked previously:
iptables -A FORWARD -i eth0 -o ethl -p tcp \

-s <some src address> --sport 1024:65535 \

-d <some destination address> --dport 23 \

-m mark --mark 0x00010070 \

-j ACCEPT

The mark value being tested for here was set at some earlier point in the packet processing.
The mark value is a flag indicating that this packet is to be handled differently from other
packets.

tos filter TABLE MATCH EXTENSION

Table 3.19 lists the options available to the tos match extension.

91

CHAPTER 3: iptables:The Linux Firewall Administration Program

TABLE 3.19

tos Match Extension

-m | --match tos OPTION DESCRIPTION

--tos <value> Matches on the IP TOS setting

The tos value can be one of either the string or numeric values:
B minimize-delay, 16, 0x10
B maximize-throughput, 8, 0x08
B maximize-reliability, 4, 0x04
B minimize-cost, 2, 0x02

® normal-service, 0, 0x00

THE VALUE OF TOS BITS

The TOS bits are of historical interest only. Linux does support their use locally, and various
Linux firewall documents refer to the bits and their uses. Nevertheless, the fact remains that the
TOS bits are not used or examined generally.

The TOS field has been redefined as the Differentiated Services (DS) field for use by the
Differentiated Services Control Protocol (DSCP).

For more information on Differentiated Services, see these sources:

m RFC 2474, “Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers”

m RFC 2475, “An Architecture for Differentiated Services”

m RFC 2990, “Next Steps for the I[P QoS Architecture”

m RFC 3168, “The Addition of Explicit Congestion Notification (ECN) to IP”
m RFC 3260, “New Terminology and Clarifications for Diffserv”

unclean filter TABLE MATCH EXTENSION

The specific packet-validity checks performed by the unclean module are not documented.
The module is considered to be experimental, and the iptables authors recommend against its
use for now.

92

iptables Syntax

The following line shows the unclean module syntax. The module takes no arguments:

-m | --match unclean

The unclean extension might be “blessed” by the time this book is published. In the mean-
time, the module lends itself to an example of the LOG options:
iptables -A INPUT -p ! tcp -m unclean \

-j LOG --Tog-prefix "UNCLEAN packet: " \
--Tog-ip-options

iptables -A INPUT -p tcp -m unclean \
-j LOG --Tog-prefix "UNCLEAN TCP: " \
--log-ip-options \
--log-tcp-sequence --log-tcp-options

iptables -A INPUT -m unclean -j DROP

addrtype filter TABLE MATCH EXTENSION

The addrtype match extension is used to match packets based on the type of address used,
such as unicast, broadcast, and multicast. The types of addresses include those listed in
Table 3.20.

TABLE 3.20

Address Types Used with the addrtype Match

NAME DESCRIPTION
ANYCAST An anycast packet
BLACKHOLE A blackhole address
BROADCAST A broadcast address
LOCAL A local address
MULTICAST A multicast address
PROHIBIT A prohibited address
UNICAST A unicast address
UNREACHABLE An unreachable address
UNSPEC An unspecified address

Two commands are used with the addrtype match, as listed in Table 3.21.

93

CHAPTER 3: iptables:The Linux Firewall Administration Program

TABLE 3.21

addrtype Match Commands

OPTION DESCRIPTION

--src-type <type> Matches for addresses with a source of type <type>.
--dst-type <type> Matches for addresses with a destination of type <type>.

iprange filter TABLE MATCH

Sometimes defining a range of IP addresses using CIDR notation is insufficient for your needs.
For example, if you need to limit a certain range of IPs that don't fall on a subnet boundary or
cross that boundary by only a couple addresses, the iprange match type will do the job.

Using the iprange match, you specify an arbitrary range of IP addresses for the match to take
effect. The iprange match can also be negated. Table 3.22 lists the commands for the iprange
match.

TABLE 3.22

iprange Match Commands

COMMAND DESCRIPTION

[!] --src-range <ip address-ip address> Specifies (or negates) the range of IP
addresses to match.The range is given
with a single hyphen and no spaces.

[!] --dst-range <ip address-ip address> Specifies (or negates) the range of IP

addresses to match.The range is given
with a single hyphen and no spaces.

length filter TABLE MATCH

The Tength filter table match examines the length of the packet. If the packets length
matches the value given or optionally falls within the range given, the rule is invoked. Table
3.23 lists the one and only command related to the Tength match.

TABLE 3.23

Tength Match Command

COMMAND DESCRIPTION

--length <length>[:<length>] Matches a packet of <1ength> or within the range

<length:1length>

94

iptables Syntax

NAT Table Target Extensions

As mentioned earlier, iptables supports four general kinds of NAT: source NAT (SNAT); desti-
nation NAT (DNAT); masquerading (MASQUERADE), which is a specialized case of the SNAT
implementation; and local port direction (REDIRECT) to the local host. As part of the NAT
table, each of these targets is available when a rule specifies the nat table by using the -t nat
table specifier.

SNAT NAT TABLE TARGET EXTENSION

Source Address and Port Translation (NAPT) is the kind of NAT people are most commonly
familiar with. As shown in Figure 3.5, Source Address Translation is done after the routing
decision is made. SNAT is a legal target only in the POSTROUTING chain. Because SNAT is
applied immediately before the packet is sent out, only an outgoing interface can be specified.

FIGURE 3.5
NAT packet traversal.

Destination Source

> > Forward
NAT Chain NAT

y

Input | —» Local —>» | Output
Chain Processes Chain

Pre-routing Post-routing

Some documents refer to this form of source NAT (the most common form) as NAPT, to
acknowledge the port number modification. The other form of traditional, unidirectional NAT
is basic NAT, which doesn’t touch the source port. That form is used when you are translating
between the private LAN and a pool of public addresses.

NAPT is used when you have a single public address. The source port is changed to a free
port on the firewall/NAT machine because it’s translating for any number of internal comput-
ers, and the port that the internal machine is using might already be in use by the NAT
machine. When the responses come back, the port is all that the NAT machine has to

95

CHAPTER 3: iptables:The Linux Firewall Administration Program

determine that the packet is really meant for an internal computer rather than itself and then
to determine which internal computer the packet is meant for.

The general syntax for SNAT is as follows:

iptables -t nat -A POSTROUTING --out-interface <interface> ... \
-j SNAT --to-source <address>[-<address>][:<port>-<port>]

The source address can be mapped to a range of possible IP addresses, if more than one is
available.

The source port can be mapped to a specific range of source ports on the router.

MASQUERADE NAT TABLE TARGET EXTENSION

Source Address Translation has been implemented in two different ways in iptables, as SNAT
and as MASQUERADE. The difference is that the MASQUERADE target extension is intended
for use with connections on interfaces with dynamically assigned IP addresses, particularly in
the case in which the connection is temporary and the IP address assignment is likely to be
different at each new connection. As discussed previously, in the section “NAT Table Features,”
MASQUERADE can be useful for phone dial-up connections in particular.

Because masquerading is a specialized case of SNAT, it is likewise a legal target only in the
POSTROUTING chain, and the rule can refer to the outgoing interface only. Unlike the more
generalized SNAT, MASQUERADE does not take an argument specifying the source address to
apply to the packet. The IP address of the outgoing interface is used automatically.

The general syntax for MASQUERADE is as follows:

iptables -t nat -A POSTROUTING --out-interface <interface> ... \
-j MASQUERADE [--to-ports <port>[-<port>]]

The source port can be mapped to a specific range of source ports on the router.

DNAT NAT TABLE TARGET EXTENSION

Destination Address and Port Translation is a highly specialized form of NAT. A residential or
small business site is most likely to find this feature useful if its public IP address is dynami-
cally assigned or if the site has a single IP address, and the site administrator wants to forward
incoming connections to internal servers that aren’t publicly visible. In other words, the DNAT
features can be used to replace the previously required third-party port-forwarding software,
such as ipmasqgadm.

Referring back to Figure 3.5, Destination Address and Port Translation is done before the
routing decision is made. DNAT is a legal target in the PREROUTING and OUTPUT chains. On the

96

iptables Syntax

PREROUTING chain, DNAT can be a target when the incoming interface is specified. On the
OUTPUT chain, DNAT can be a target when the outgoing interface is specified.

The general syntax for DNAT is as follows:

iptables -t nat -A PREROUTING --in-interface <interface> ... \
-j DNAT --to-destination <address>[-<address>][:<port>-<port>]
iptables -t nat -A OUTPUT --out-interface <interface> ... \

-j DNAT --to-destination <address>[-<address>][:<port>-<port>]

The destination address can be mapped to a range of possible IP addresses, if more than one
is available.

The destination port can be mapped to a specific range of alternate ports on the destination
host.

REDIRECT NAT TABLE TARGET EXTENSION

Port redirection is a specialized case of DNAT. The packet is redirected to a port on the local
host. Incoming packets that would otherwise be forwarded on are redirected to the incoming
interface’s INPUT chain. Outgoing packets generated by the local host are redirected to a port
on the local host’s Toopback interface.

REDIRECT is simply an alias, a convenience, for the specialized case of redirecting a packet to
this host. It offers no additional functional value. DNAT could just as easily be used to cause
the same effect.

REDIRECT is likewise a legal target only in the PREROUTING and OUTPUT chains. On the
PREROUTING chain, REDIRECT can be a target when the incoming interface is specified. On
the OUTPUT chain, REDIRECT can be a target when the outgoing interface is specified.

The general syntax for REDIRECT is as follows:

iptables -t nat -A PREROUTING --in-interface <interface> ... \
-j REDIRECT [--to-ports <port>[-<port>]]
iptables -t nat -A OUTPUT --out-interface <interface> ... \

-j REDIRECT [--to-ports <port>[-<port>]]

The destination port can be mapped to a different port or to a specific range of alternate ports
on the local host.

BALANCE NAT TABLE TARGET EXTENSION

The BALANCE target enables a round-robin method of sending connections to more than one
target host. The BALANCE target uses a range of addresses for this purpose and thus provides a
rudimentary load-balancing.

97

CHAPTER 3: iptables:The Linux Firewall Administration Program

The general syntax for BALANCE is as follows:

iptables -t nat -A PREROUTING -p tcp -j BALANCE \
--to-destination <ip address>-<ip address>

The CLUSTERIP target also provides some of these same options.

mangle Table Commands

The mangTe table targets and extensions apply to the OUTPUT and PREROUTING chains.
Remember, the filter table is implied by default. To use the mangle table features, you must
specify the mangTe table with the -t mangle directive.

mark mangle TABLE TARGET EXTENSION
Table 3.24 lists the target extensions available to the mangle table.

TABLE 3.24

mang1e Target Extensions

-t mangle OPTION DESCRIPTION

-j MARK --set-mark <value> Sets the value of the Netfilter mark value for this packet
-j TOS --set-tos <value> Sets the TOS value in the IP header

There are two mangle table target extensions: MARK and TOS. MARK contains the functionality to
set the unsigned long mark value for the packet maintained by the iptables mangle table.
An example of usage follows:

iptables -t mangle -A PREROUTING --in-interface eth0 -p tcp \
-s <some src address> --sport 1024:65535 \
-d <some destination address> --dport 23 \
-j MARK --set-mark 0x00010070

TOS contains the functionality to set the TOS bits in the IP header.

An example of usage follows:

iptables -t mangle -A OUTPUT ... -j TOS --set-tos <tos>

The possible tos values are the same values available in the filter table’s TOS match exten-
sion module.

98

Summary

Summary

This chapter covered the majority of features available in iptables—certainly, the features most
commonly used. I've tried to give a general sense of the differences between Netfilter and
IPFW, if for no other reason than to give you a “heads up” for the implementation differences
that will appear in the following chapters. The modular implementation divisions of three sep-
arate major tables—f1ilter, mangle, and nat—was presented. Within each of these major
divisions, features were further broken down into modules that provide target extensions and
modules that provide match extensions.

Chapter 4, “Building and Installing a Standalone Firewall,” goes through a simple, standalone
firewall example. Basic antispoofing, denial of service, and other fundamental rules are pre-
sented. The purpose of the chapter isn’t to present a general firewall for people to cut and
paste for practical use, as much as to demonstrate the syntax presented in this chapter in a
functional way.

Subsequent chapters are more specific. User-defined chains, firewall optimization, LAN, NAT,
and multihomed hosts are covered separately, as are larger local network architectures.

99

