
Information Security Bulletin February 2001, Page 27

Copyright ©2001 CHI Publishing Ltd - Do not copy without written permission

NTFS Alternate Data Streams
H. Carvey, CISSP

Introduction
Windows NT (WNT) and Windows 2000 (W2K)
have powerful graphical user interfaces that
make the job of assessing the security condition
of in addition to securing these operating sys-
tems considerably easier. Changing the bad
logon limit is, for example, relatively easy to
both understand and do in both of these Win-
dows operating systems. Providing adequate se-
curity does not, however, always involve work-
ing with mainstream features of applications, op-
erating systems, and networks. Alternate data
streams (ADSs) are an example. This little-known
feature available with the NT File System (NTFS)
in WNT 4.0 and Win2K (RICH98) has been avail-
able since the advent of NTFS in the first WNT
release, WNT 3.1. Although this feature is rela-
tively unknown by the vast majority of WNT us-
ers and administrators, it provides a potentially
very powerful attack mechanism for malicious
individuals intent on compromising and exploit-
ing WNT and W2K systems.

What is an ADS? How can ADSs be created and
how can executables be run in them? How can
they be misused (e.g., by having malicious
executables run in them)? How can they be
found? This paper addresses these and other re-
lated issues concerning ADSs and security con-
siderations.

What Is an Alternate Data Stream?
In the most fundamental sense, an ADS means
embedding files in files (RUSS00). When a file is
created, the data for that file are written to an
unnamed data stream associated with a file-
name, such as “myfile.txt.” Other named streams
in which additional information can also be
stored can be created behind the unnamed data
stream. In this case the syntax “myfile.txt:hid-
den.txt” (notice the colon) is used. A log of chan-
ges to the file can be maintained in ADSs, for ex-
ample, so that all changes can be rolled back, if
necessary.

A fixed length record within the Master File Table
(MFT) is used to represent each file in the NTFS
file system. Each record within the MFT contains
14 attributes for the file, such as the filename,
standard information, and data, to name a few.
These attributes can either be resident (i.e., they
reside within the MFT record) or nonresident
(i.e., there are pointers to the attributes that re-
side outside the MFT). The data attribute points
to the contents of the file, which is contained in
512-byte clusters on the hard drive if the file is
too large to reside within the MFT itself. NTFS
MFT records can support multiple data attrib-
utes; each of these separate data attributes can

point to a different
set of clusters on
the hard drive.

ADSs were origi-
nally implemented
in WNT systems to allow Macintosh clients to
save files with resource forks on NT servers
along with the resource fork information (which,
if not specifically preserved, will be lost). ADSs
are still found only in the NTFS file system. As
such, ADSs are thus not preserved for files that
are transferred between disparate file systems, as
with email attachments, FTP transfers, or when
the file is copied to a FAT-formatted diskette.
ADSs are preserved, however, if the source and
destination file systems are NTFS.

Creating Alternate Data Streams
Creating ADSs is very straightforward. Assuming
that the C:\ drive is NTFS-formatted, type:

C:\>notepad myfile.txt:hidden.txt

Once NotePad starts, click on the “Yes” button,
type some text, then save the file. If the file
“myfile.txt” does not already exist, it will be cre-
ated. It will be 0 KB in size. You can see this us-
ing the dir command, or via the detailed view in
Windows Explorer. However, you will not see
the ADS named “hidden.txt” using either dir or
Explorer.

You can also create an ADS by typing:

C:\>notepad :hidden.txt

Note that there is no other file name prior to the
colon. This will produce a data stream that is vis-
ible neither through the dir command nor the
Windows Explorer. There is also no telltale 0 KB
file1 to indicate the possible presence of a data
stream.

You can create an ADS and move information
into it using the type command. Assume, for ex-
ample, that there is a file called “myfile.txt” that
contains some text information. We can put this
information into an ADS by entering the follow-
ing command:

C:\>type myfile.txt >
myfile2.txt:hidden.txt

WINDOWS SECURITY

27

1 The 0kB file does not provide a means to test for
the existence of an ADS, however. Rather, it is sim-
ply used here as part of the example.

February 2001, Page 28 Information Security Bulletin

Copyright ©2001 CHI Publishing Ltd - Do not copy without written permission

We can verify that the information was placed in
the ADS by typing:

C:\>notepad myfile2.txt:hidden.txt

The echo and more commands will also permit
you to create and read ADSs. For example:

C:\>echo This is my alternate data
stream > myfile.txt:hidden.txt

will create the ADS, while:

C:\>more < myfile.txt:hidden.txt

will allow the contents of the ADS to be read.

Interestingly, the copy command on WNT will
not create ADSs, and will therefore not copy
data to them. However, if copy is used to copy a
file that has associated ADSs, the ADSs will be
copied to the new file as well. This is also true
for files that are moved across partitions using
“drop-and-drag.” Furthermore (as stated earlier),
ADSs do not persist when the file is moved
across disparate file systems, as when transferred
via FTP, or as an email attachment, or when in-
cluded in an archive of files, as with WinZip. As
the authors of Hacking Exposed point out, the
POSIX utility, cp.exe2, can also be used to copy
information to ADSs (MCCL99), as in the follow-
ing example:

C:\>cp myfile.txt
c:\winnt\lanmannt.bmp:hidden.txt

ADSs can be created using other techniques.
Using the Win32API::File module, ActiveState’s
ActivePerl can be used to create and write to an
ADS. Perl can also be used to open an existing
ADS using the open() command. The Perl script
listed in Figure 1 demonstrates the use of Perl to
create (and verify) an ADS, not only on the local
system, but on remote systems, as well.

ADSs can be extremely useful to system adminis-
trators. If maintaining DSNs for databases on re-
mote systems becomes unmanageable, records of
commands or events can be stored in ADSs. Re-
cords of file changes, MD5 hashes of key system
files (to verify file integrity) or key system infor-
mation (serial numbers, configuration informa-
tion, etc) can be stored in ADSs. When the exis-
tence of the data in the ADS is an important fac-
tor, the hidden data may be encrypted or digi-
tally signed to ensure confidentiality and integ-
rity. For example, system administrators may
wish to generate and digitally sign a corporate
identification tag. This tag can be “hidden” on
the hard drive of the system to aid in tracking
and managing corporate computer systems.

Running Executables
in Alternate Data Streams
Text data are not the only information that can
be stored in ADSs. In fact, an executable file can
be placed in and run from an ADS. The authors
of Hacking Exposed point out that an executable
hidden in an ADS can be run using the “start”
command (the command interpreter, cmd.exe,
will not run executables hidden in ADSs). To
demonstrate this, type the following commands:

C:\>type c:\winnt\notepad.exe >
myfile.txt:hidden.exe

C>:\start myfile.txt:hidden.exe

The second command will open a copy of Note-
Pad.

Perl can be used to not only create an ADS (as
demonstrated above), but also to run Perl scripts
that are hidden in an ADS. For example, a Perl
script, myscript.pl, that performs some task, can
be moved to an ADS and run with the following
commands:

C:\>Perltype myscript.pl >
myfile.txt:hidden.pl

C:\>Perlperl myfile.txt:hidden.pl

By using either the “start” command or Perl, WNT
system administrators have a powerful tool at their

WINDOWS SECURITY

2 This tool is from te NT Resource Kit.

Information Security Bulletin February 2001, Page 29

Copyright ©2001 CHI Publishing Ltd - Do not copy without written permission

disposal. Commands can be placed in ADSs and
executed at specific intervals without the user even
knowing that the files exist. The security descriptor
of the files that they hide behind can protect the
code (or commands) in the ADS. However, any
tool that is powerful and useful to the administra-
tor will be equally powerful and useful to a mali-
cious individual who has gained unauthorized ac-
cess to WNT systems.

The Dark Side
Just as ADSs can be extremely useful to the sys-
tem administrator, they can be just as powerful
and useful in the hands of someone who has
gained unauthorized access to an WNT or W2K
system. Consider an e-commerce web site at

which visitors must enter a username and pass-
word before being transferred to a secure,
SSL-enabled portion of the site. This hypothetical
site is hosted on an IIS 4.0 web server. A mali-
cious individual may not have the ability or pa-
tience to properly handle the SSL portion of the
web server, but may still be able to compromise
the web server or operating system itself. This in-
dividual could then modify the ASP page such
that usernames and passwords are saved in an
ADS prior to being authenticated. The usernames
and passwords can be harvested at a later date
without the administrator ever being aware that
the information was being collected and stored.

There are several applications and techniques
available that can be combined with ADSs to in-

WINDOWS SECURITY

#! c:\perl\bin\perl.exe
Script created and tested with ActiveState
Perl build 522

use strict;
use Win32API::File 0.02 qw(:ALL);

my $server = shift || Win32::NodeName;
my $path;

Write alternate data stream to local or remote system

($server eq Win32::NodeName)?($path = “c:\\winnt\\”):
($path = “\\\\$server\\c\$\\winnt\\”);

my $targetfile = “lanmannt.bmp:test.txt”;
print “\n———————————————————-\n”;
print “Create and write to the alternate data stream:
”.$path.$targetfile."\n\n";

This will fail if the file already exists

my $astream = Win32API::File::CreateFile($path.$targetfile,
GENERIC_ALL, 0, [],
OPEN_ALWAYS,
FILE_FLAG_SEQUENTIAL_SCAN, []);

my $str =“This is an alternate data stream test created ”.localtime(time);
if ($astream){
Win32API::File::WriteFile($astream,$str,length($str),[],[]);
Win32API::File::CloseHandle($astream);
print “Alternate file stream created!\n”;
}
else {
print “Alternate file stream creation failed: $^E\n”;
}
print “\n———————————————————-\n”;
print “Open and read the created alternate data stream...\n\n”;
open(FL,$path.$targetfile) || die “Could not open file: $^E\n”;

while (<FL>) {
chomp;
print “$_\n”;
}
close(FL);

Figure 1 - Using PERL to create and verify an ADS

February 2001, Page 30 Information Security Bulletin

Copyright ©2001 CHI Publishing Ltd - Do not copy without written permission

crease their overall, devastating effect. Elitewrap,
available from the PacketStorm security archives,
can be used to create an executable archive of
various files that will be run in accordance with
a packfile. Complicated exploits can be bundled
into a single executable and hidden in an ADS.

For instance, the authors of Hacking Exposed use
the example of hiding pwdump.exe in an ADS,
then executing it via the “start” command at a
later date. Pwdump.exe is a program that allows
an administrative-level user to pull password
representations from the SAM database, and is
an integral part of the WNT password cracker,
l0phtcrack. By combining this with Elitewrap, an
attacker could hide the necessary files on a com-
promised WNT system. When executed, the
Elitewrapped programs collect the password
hashes and email them to a separate account.

Another attack might make use of the
AppInit_DLLs Registry key (see Microsoft
KnowledgeBase article Q197571 for the function
of this key). This key can be used to list a DLL
that is loaded whenever a GUI application is
opened. A DLL designed to capture keystrokes
and log them to an ADS could be loaded via this
key, or possibly even hidden in this key.

Finding Alternate Data Streams
It should by now be obvious that ADSs constitute
a major potential source of security-related threat
in computing and networking environments in
which WNT and W2K are found. Corporate in-
formation security policies should thus at a mini-
mum require that system administrators perform
regularly scheduled scans, particularly of key sys-
tems, to verify compliance with configuration
standards. These scans should include a tool or
process for detecting ADSs. Currently available
tools available for detecting ADSs include:

- Streams.exe (written by Mark Russinovich). It
is available from: http://www.sysinternals.com/
misc.htm#Streams.

- “LADS” (written by Frank Heyne) It is avail-
able from http://www.heysoft.de/index.htm.

These tools use the BackupRead() and
BackupSeek() API calls to locate ADSs.

Conclusion
Proper host configuration, in accordance with
corporate information security policies, goes a
long way in preventing and detecting the mali-
cious use of ADSs. Employ the principle of least
privilege when assigning levels of access (to sys-
tems, directories, and files) for users. Be sure to
use the NTFS file system on all WNT and W2K
systems, so that the file system access control list
and auditing capabilities can be employed to the
fullest extent possible. Enable auditing, particu-
larly on key systems. Finally, regularly collect
and analyze Event Log entries from all systems
on a regular basis. Some automated tool - Perl is

wonderful for this - will almost certainly be nec-
essary. (Note: Attempts to create files or write to
existing files in directories restricted from write
access to users will appear as Event ID 560 in the
WNT and W2K EventLog.)

Acknowledgements
Special thanks go to Joe Seitzer and Howard
Kirk for verifying the Perl code for this article,
and to Joe for independently verifying that Perl
scripts can be run from within alternate data
streams.

References
RUSS00 Russinovich, M, Inside Win2K NTFS, Part 2.
Windows 2000 Magazine, November, 2000, pp. 45 51.

MCCL99 McClure, S., Scambray, J., and Kurtz, G.,
Hacking Exposed: Network Security Secrets and Solutions.
Berkeley: Osborne, 1999.

RICH98 Richter, J. and Cabrera, L., A File System for the
21st Century: Previewing the Windows NT 5.0 File Sys-
tem. Microsoft Systems Journal, November, 1998.
http://www.microsoft.com/msj/defaulttop.asp?
page=/msj/1198/ntfs/ntfstop.htm

Other Resources
ActiveState Tool Corp.
http://www.activestate.com

Microsoft KnowledgeBase article Q105763, HOWTO:
Use NTFS Alternate Data Streams

http://support.microsoft.com/support/kb/
articles/Q105/7/63.asp
Note: see also Q193793 and Q188806.

Microsoft KnowledgeBase article Q197571, INFO:
Working with the AppInit_DLLs Registry Value
http://support.microsoft.com/support/kb/
articles/Q197/5/71.asp
NTFS and Alternate Data Stream FAQ, Frank Heyne
http://www.heysoft.de/nt/
ntfs-alternate data stream.htm

PacketStorm Security archives
http://packetstorm.securify.com/trojans

WINDOWS SECURITY

Harlan Carvey, CISSP, is a
network security engineer
for Winstar Communica-
tions, Inc. He has performed
vulnerability assessments,
penetration tests, and secu-
rity policy creation/review
for the federal government,
but much prefers the chal-
lenges associated with the
commercial sector. He has
been involved with many
facets of security (to include
operations, communications,

physical, as well as computer and network) for the past
12 years. At one point, he even worked as a Java Pro-
gramming consultant for IBM. He enjoys programming
Perl on NT. He received his BSEE from the Virginia Mili-
tary Institute, and his MSEE from the Naval Postgraduate
School.

